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Abstract. Reconstructing the structure of the soil using non-invasive techniques
is a very relevant problem in many scientific fields, like geophysics and archaeology.
This can be done, for instance, with the aid of Frequency Domain Electromagnetic
(FDEM) induction devices. Inverting FDEM data is a very challenging inverse
problem, as the problem is extremely ill-posed, i.e., sensible to the presence of
noise in the measured data, and non-linear. Regularization methods substitute
the original ill-posed problem with a well-posed one whose solution is an accurate
approximation of the desired one. In this paper we develop a regularization
method to invert FDEM data. We propose to determine the electrical conductivity
of the ground by solving a variational problem. The minimized functional is made
up by the sum of two term: the data fitting term ensures that the recovered
solution fits the measured data, while the regularization term enforces sparsity on
the Laplacian of the solution. The trade-off between the two terms is determined
by the regularization parameter. This is achieved by minimizing an ℓ2 − ℓq
functional with 0 < q ≤ 2. Since the functional we wish to minimize is non-convex,
we show that the variational problem admits a solution. Moreover, we prove that,
if the regularization parameter is tuned accordingly to the amount of noise present
in the data, this model induces a regularization method. Some selected numerical
examples on synthetic and real data show the good performances of our proposal.
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1. Introduction

In this paper we consider a severely ill-posed problem that arises in geophysics, namely
the reconstruction of the electrical conductivity of the ground using a Frequency
Domain Electromagnetic (FDEM) induction device. In this work we consider a two-
dimensional vertical section of the ground and assume the magnetic permeability to
be known and constant. The extension to the three-dimensional case and unknown
magnetic permeability is straightforward and, for simplicity, we do not consider it
here. The considered problem is of the form

arg min
Σ∈X

∥M(Σ)− B∥2Y , (1)
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where X and Y are Hilbert spaces, Σ ∈ X represents the electrical conductivity, B ∈ Y
collects the (possibly noisy) data measured by the FDEM device, ∥·∥Y denotes the
norm defined on Y, and M : X → Y is a non-linear function. We assume that (1)
is ill-posed, i.e., the solution may not be unique and its computation is very sensible
to the presence of noise in the measured data. Therefore, the naive solution of (1)
is usually a poor approximation of the exact electrical conductivity. To compute a
meaningful solution we need to resort to regularization methods; see, e.g., [18] and
references therein for a more detailed discussion.

We represent the two-dimensional ground as the semi-infinite rectangle [a, b] ×
[0,∞), where the first dimension is the horizontal space dimension (intuitively the
“sea-level”) and the second dimension represents the depth. Our purpose is to
reconstruct an “image” of the electrical conductivity on this rectangle. This can
be done using a FDEM induction device called Ground Conductivity Meter (GCM).
Its principle of operation is based on an alternating electrical current which flows
through a small electric wire coil (the transmitter). A second coil (the receiver) is
positioned at a fixed distance from the first one, and the two coil axes may be aligned
either vertically or horizontally with respect to the subsurface. The transmitting coil
generates an electromagnetic (EM) field above the surface of the ground, a portion
of which propagates into it. This EM field, called the primary field HP , induces an
alternating electrical current within the ground, generating in turn a secondary EM
field HS , which propagates back to the surface and the air above. The second wire
coil acts as a receiver, measuring the amplitude and phase components of the ratio
between the primary and secondary EM fields. The complex measurements obtained
by a GCM depend on some instrument settings, like the orientation of the dipoles,
the frequency of the alternating current, the inter-coil distance, and the height of the
instrument above the ground.

We provide below a brief discussion on the functional M presented in (1). As
we will see, the described model is one-dimensional, i.e., the measured data depends
exclusively on the electrical conductivity below the measuring point.

We assume thatN equispaced measurement sets bj are performed in some interval
[a, b] (in our experiments we set a = 0m and b = 10m). Each set is obtained by
collecting several measurements using different configurations of the FDEM device.
Denoting a sampling of the electrical conductivity of the ground by

Σ = [σ1, . . . ,σN ],

we can discretize the minimization problem (1) as follows

Σ = argmin
Σ

N∑
j=1

∥M(σj)− bj∥22 , (2)

where ∥·∥2 is the Euclidean vector norm, Σ = [σ1, . . . ,σN ] ∈ Rn×N , B =
[b1, . . . ,bN ] ∈ Cm×N , and the vector functionM(Σ) = [M(σ1), . . . ,M(σN )] ∈ Cm×N

returns the readings predicted by the model in the same order they were arranged in
the vector bj . This can be done because the model is one-dimensional, i.e., the values
of the jth column of B depend only on the entries of the jth column of Σ.

Therefore, once discretized, the two-dimensional problem is reduced to N
independent one-dimensional problems.

Although this may seem beneficial, since this decoupling can be greatly useful in
lowering the computational complexity of the problem at hand, this is not completely
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true. A natural approach for solving the two-dimensional problem would be to solve
each one-dimensional problem independently and then “stack” the obtained solutions
in order to get a two-dimensional image; see [14]. However, as we show in our
numerical examples, in practice this approach may lead to poor reconstructions. In
fact, the problem is severely ill-posed and in real-world applications the measured data
is affected by noise, thus the obtained solution can deviate (also substantially) from
the exact σj and this results in the stacked image to be “spliced”. It is the purpose
of this paper to propose a solution method that couples the σj in order to avoid this
“splicing” and to counteract the ill-posedness of the problem. To this end, we consider
the following variational problem

argmin
Σ≥0

1

2
∥M(Σ)−B∥2F +

γ

q
∥D(Σ)∥qq , (3)

where ∥·∥F denotes the Frobenius norm, γ > 0, and 0 < q ≤ 2. With the notation
D(Σ) we denote the vector in RnN defined by

D(Σ) = D(vec(Σ)),

with D = L ⊗ I + I ⊗ L, where ⊗ denotes the Kronecker product, I is the identity
matrix, vec is the vectorization operator, and

L =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

The operatorD (or equivalently the matrixD) is a discretization of the Laplacian, thus
we are considering a high order version of so-called Total Variation regularization [29].
When q = 2 the model (3) reduces to the well-known Tikhonov minimization for
non-linear problems, here with the addition of the non-negativity constraint; see,
e.g., [30] for a first discussion on this kind of problems, [18,22] for a recent discussion
on Tikhonov method and [1] for an algorithm for the solution of the non-negatively
constrained Tikhonov minimization for linear problems. When 1 < q < 2, the term
∥D(Σ)∥qq is convex and smooth, while for q = 1 it is convex, but non-smooth. For

0 < q < 1, we define ∥x∥qq =
∑n

j=1 |xj |q and we still refer to this quantity as to ℓq-
norm, however, this is not a norm since it does not satisfy the triangular inequality.
Therefore, if 0 < q < 1, the second term in (3) is non-convex. Nevertheless, as shown
in [5, 7–10, 25], in imaging application it is beneficial to select 0 < q < 1, this is due
to the fact that, in this case, the ℓq-norm approximates the ℓ0-norm, thus leading to
reconstructions with sparse gradients. This property is desirable in an approximate
reconstruction.

Finally, observe that, since we have used zero boundary conditions for the
discretization of the Laplacian, it holds that rank(D) = nN . Moreover, note that, since
we know that the electrical conductivity is positive, we imposed the non-negativity
constraint.

The main contributions of this paper are the following. Firstly, we describe a new
variational model for computing an approximate solution of (1). The novelty of the
proposed model is the horizontal coupling of the columns of Σ that allows us to obtain
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very accurate reconstructions of the electrical conductivity of the ground that are not
affected by the “splicing” issue described above. To the best of our knowledge, this
coupling has never been considered before in the literature for this kind of problem.
Secondly, we prove the regularization properties of ℓ2− ℓq minimization for non-linear
problems. This properties has been shown firstly in [7] for linear problems and we
extend this analysis to the non-linear case. Finally, we propose an algorithm for the
solution of the problem (3) that extends to the non-linear case the one proposed in [25]
that was constructed for linear problems.

This paper is organized as follows: Section 2 describes the functional M and its
discretization, in Section 3 we show the theoretical properties of (3). Section 4 provides
an algorithm for the computation of an approximate solution of (3), in Section 5
we show some numerical examples to demonstrate the performances of the proposed
approach, and we draw some conclusions and outline future research in Section 6.

2. Modelization of the problem

We now briefly describe how the FDEM device can be modeled. The main non-
linear forward model which describes the interaction between the soil and the FDEM
induction device when the electrical conductivity and the magentic permeability are
known, has been described in [23].

In this model, the soil is assumed to have n layers which are charaterized by
an electrical conductivity σi (measured in S/m) and a magnetic permeability µi

(measured in H/m), for i = 1, . . . , n; see [12, 15] for more details. The thickness
of each layer, measured in meters, is denoted by di, considering infinite the thikness
of the deepest layer dn. Finally, the distance between the coils is represented by ρ and
the height at which the measurements are taken by h.

Let us now consider the propagation constant ui(λ) =
√
λ2 + iσiµiω, where i

denotes the imaginary unit, Re(ui(λ)) ≥ 0, and ω is the angular frequency of the
instrument, that is, 2π times the frequency in Hertz. The variable λ is the variable of
integration which ranges from zero to infinity measuring the ratio between the depth
in meters below the ground surface and the inter-coil distance ρ.

The surface admittance Yi(λ) at the top of each layer verifies the recursion

Yi(λ) = Ni(λ)
Yi+1(λ) +Ni(λ) tanh(diui(λ))

Ni(λ) + Yi+1(λ) tanh(diui(λ))
, (4)

for i = n − 1, . . . , 1, where Ni(λ) = ui(λ)/(iµiω) represents the characteristic
admittance at the i-th layer; see [31]. Note that this formulation of Yi is not
computationally stable and to solve practical problems different formulations have
to be considered. However, our purpose here is to describe the model and we do not
dwell further on the computational issues of the forward model. We refer the interested
reader to [11] for a discussion on the numerical implementation of the forward model.
At the last layer, i.e., when i = n, the characteristic admittance and the surface
admittance coincide being Yn(λ) = Nn(λ) used to initialize the recursion (4). We
remark here, that both the characteristic and the surface admittances are functions
of the frequency ω via the functions ui(λ).

Now, the ratio of the secondary to the primary field for the vertical (ν = 0) and
horizontal (ν = 1) orientation of the coils are given by

Mν(σ,µ;h, ω, ρ) = −ρ3−νHν

[
λ1−νe−2hλRω,0(λ)

]
(ρ), ν = 0, 1, (5)
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where σ = (σ1, . . . , σn)
T , µ = (µ1, . . . , µn)

T , N0(λ) = λ/(iµ0ω), µ0 = 4π · 10−7H/m
is the magnetic permeability of free space. The reflection factor Rω,0(λ) is defined by

Rω,0(λ) =
N0(λ)− Y1(λ)

N0(λ) + Y1(λ)
,

with Y1(λ) computed by the recursion (4), and

Hν [f ](ρ) =

∫ ∞

0

f(λ)Jν(ρλ)λ dλ, ν = 0, 1,

is the Hankel transform, where J0, J1 are first kind Bessel functions of order 0 and 1,
respectively.

Note that functions in (5) are complex valued functions. The imaginary part
or quadrature component of the field ratio is usually interpreted as the apparent
conductivity of the soil, while the magnetic permeability is related to the real or
in-phase component.

Simultaneous measurements with different inter-coil distances or different
operating frequencies can be recorded by recent FDEM devices at different heights.
We denote by ρ = (ρ1, . . . , ρmρ

)T , h = (h1, . . . , hmh
)T , and ω = (ω1, . . . , ωmω

)T , the
vectors containing the loop-loop distances, the heights, and the angular frequencies at
which the readings were taken. We consider the corresponding m = 2mρmhmω data
points bνtls, where t = 1, . . . ,mρ, l = 1, . . . ,mh, s = 1, . . . ,mω, while ν ∈ {0, 1}
represents the vertical and horizontal orientations of the coils, respectively. The
observations bνtls are rearranged in a vector b ∈ Cm.

In various papers this non-linear model has been studied for different device
configurations and different techniques were applied; see, e.g., [12–15, 17, 23]. An
algorithm for the regularized inversion of this model has been implemented in a Matlab
package which includes a graphical user interface in [11].

We remark that, for small values of the conductivity of the soil, a linear model
has been introduced in [26] and has been solved first in [3] and later in [16] from the
theoretical point of view, where an optimized solution method has been proposed.

In the following, it is assumed that the contribution of the permeability
distribution to the overall response is negligible, i.e. µ = µ0, so that the measurements
are considered to be sensitive merely to conductivity values. However, in principle,
the regularization approach discussed here can be easily extended to include also the
inversion for the µ components; see [12].

3. Regularization property

In this section we consider the model (3) in the presence of noise, that is

argmin
Σ≥0

1

2

∥∥M(Σ)−Bδ
∥∥2
F
+

γ

q
∥D(Σ)∥qq , (6)

where δ denotes the noise present in the data, i.e.,∥∥B−Bδ
∥∥ ≤ δ.

We would like to show that the model (6) induces a regularization method. Namely,
if γ is chosen depending on the amount of noise that corrupts the data, then the
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solutions of (6) converge to a minimum norm solution of the noise free problem (3) as
Bδ → B or, equivalently, δ → 0. Denote by J the functional minimized in (6), i.e.,

J (Σ) =
1

2

∥∥M(Σ)−Bδ
∥∥2
F
+

γ

q
∥D(Σ)∥qq + ι0(Σ), (7)

where ι0(Σ) is the indicator function of the non-negative cone, namely

ι0(Σ) =

{
0 if Σ ≥ 0,
∞ else.

Before showing the regularization property we need to first prove some auxiliary
results. The analysis of the model can be derived from the ones in [7, 24], however,
since some proofs are different, we report it here for the convenience of the reader.

We first recall the following result.

Lemma 1 ( [7]). Let {xj}j∈N be a sequence of elements of Rn and let q > 0. If the
∥xj∥qq are uniformly bounded, i.e., if there exists a constant c > 0 independent of j
such that

∥xj∥qq ≤ c ∀j ∈ N,

then ∥xj∥22 is uniformly bounded.

We can now show our first preliminary result.

Proposition 2. Let J be defined in (7), then J admits a global minimizer.

Proof. By definition J is lower semi-continuous and proper. Moreover, since
rank(D) = nN , it is easy to see that J is coercive. In fact, assume that the

sequence {Σj}j∈N is such that ∥Σj∥2F → ∞ as j → ∞, then, since rank(D) = nN ,

∥D(Σj)∥22 → ∞ as j → ∞. Consequently, ∥D(Σj)∥qq → ∞ as j → ∞ and thus

J (Σj) → ∞ as j → ∞.
Since J is proper, there exists Σ such that J (Σ) < ∞ and we can define

φ = inf
Σ∈Rn×N

J (Σ).

By lower semi-continuity of J , there exists a sequence {Σj}j∈N and M ≥ 0 such that

J (Σj) → φ as j → ∞ and J (Σj) ≤ M ∀j ∈ N. (8)

In particular, ∥D(Σj)∥qq ≤ M for all j ∈ N and, thanks to Lemma 1, there exists

M̃ such that ∥D(Σj)∥22 ≤ M̃ for all j ∈ N. Since rank(D) = nN , the sequence
{Σj}j∈N is uniformly bounded and, thus, it admits a convergent subsequence denoted
by {Σjk}jk∈N, with Σjk → Σ∗ as jk → ∞. We would like to show that Σ∗ is a
minimizer of J . The definition of φ yields

φ ≤ J (Σ∗) ≤ lim inf
jk→∞

J (Σjk) = lim
jk→∞

J (Σjk) = φ,

where the second to last equality follows from the lower semi-continuity of J and
the last one follows from (8). This shows that J (Σ∗) = φ, i.e., that Σ∗ is a global
minimizer of J which concludes the proof.

We are now in position to show our main result.
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Theorem 3. Let 0 < q ≤ 2 be fixed and {Bδj}j∈N be a sequence such that, for all
j ∈ N,

∥∥B−Bδj
∥∥
F
≤ δj. Assume that δj → 0 as j → ∞. Let {γj}j∈N be a sequence

of positive real numbers such that

γj → 0 and
δ2j
γj

→ 0 as j → ∞.

Denote by Jj the functional

Jj(Σ) =
1

2

∥∥M(Σ)−Bδj
∥∥2
F
+

γj
q
∥D(Σ)∥qq + ι0(Σ)

and, for all j ∈ N, let
Σj ∈ argmin

Σ
Jj(Σ).

Then there exists a convergent subsequence of {Σj}j∈N, denoted by {Σjk}jk∈N, such
that

Σjk → Σ∗ as jk → ∞
and

Σ∗ ∈ argmin{∥D(Σ)∥qq : M(Σ) = B, Σ ≥ 0},
assuming that this set is not empty.

Proof. First let us observe that, thanks to Proposition 2, the sequence {Σj}j∈N is well
defined.

Since Σj is a global minimizer of Jj , we have that for all Σ it holds

Jj(Σj) ≤ Jj(Σ).

In particular, let Σ† ∈ argmin{∥D(Σ)∥qq : M(Σ) = B}, then

Jj(Σj) ≤ Jj(Σ
†).

Recalling that M(Σ†) = B and that
∥∥B−Bδj

∥∥
F

≤ δj , for all j ∈ N, we have that
there exists j0 such that, for all j > j0, it holds

1

2

∥∥M(Σj)−Bδj
∥∥2
F
+

γj
q
∥D(Σj)∥qq ≤ 1

2

∥∥M(Σ†)−Bδj
∥∥2
F
+

γj
q

∥∥D(Σ†)
∥∥q
q

≤ 1

2
δ2j +

γj
q

∥∥D(Σ†)
∥∥q
q

≤ C,

where C is a constant independent of j, where the last inequality follows from the fact
that δj , γj → 0 as j → ∞, and we observed that ι0(Σj) = ι0(Σ

†) = 0. In particular,
we have that, for all j > j0, ∥D(Σj)∥qq ≤ C. Thanks to rank(D) = nN and Lemma 1,

we have that ∥Σj∥F ≤ C̃ for a certain constant C̃. Since the sequence {Σj}j∈N is
uniformly bounded (for j > j0), it admits a converging subsequence {Σjk}jk∈N and
let Σ∗ denote its limit. We first show that M(Σ∗) = B.

0 ≤ 1

2
∥M(Σ∗)−B∥2F ≤ lim inf

jk→∞

1

2

∥∥M(Σjk)−Bδjk
∥∥2
F

≤ lim inf
jk→∞

1

2

∥∥M(Σjk)−Bδjk
∥∥2
F
+

γjk
q

∥D(Σjk)∥
q
q + ι0(Σjk)

≤ lim inf
jk→∞

δjk
2

+
γjk
q

∥∥D(Σ†)
∥∥q
q
+ ι0(Σ

†) = 0,
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i.e., M(Σ∗) = B. We now show that Σ∗ minimizes ∥D(Σ∗)∥qq. Recall that
∥∥D(Σ†)

∥∥q
q

is minimum, thus

1

q

∥∥D(Σ†)
∥∥q
q
≤ 1

q
∥D(Σ∗)∥qq ≤ lim inf

jk→∞

1

q
∥D(Σjk)∥

q
q + ι0(Σjk)

≤ lim inf
jk→∞

1

2γjk

∥∥M(Σjk)−Bδjk
∥∥2
F
+

1

q
∥D(Σjk)∥

q
q + ι0(Σjk)

= lim inf
jk→∞

1

γjk
Jjk(Σjk)

≤ lim inf
jk→∞

1

γjk
Jjk(Σ

†)

= lim inf
jk→∞

1

2γjk

∥∥M(Σ†)−Bδjk
∥∥2
F
+

1

q

∥∥D(Σ†)
∥∥q
q
+ ι0(Σ

†)

≤ lim inf
jk→∞

δ2jk
2γjk

+
1

q

∥∥D(Σ†)
∥∥q
q
+ ι0(Σ

†) =
1

q

∥∥D(Σ†)
∥∥q
q
.

We have shown that ∥D(Σ∗)∥qq =
∥∥D(Σ†)

∥∥q
q
. Moreover, since the non-negative cone

is a closed set it is obvious that Σ∗ ≥ 0, this coupled with the fact that M(Σ∗) = B,
concludes the proof.

4. Minimizing algorithm

We wish now to discuss how to compute a solution of (6). Consider the minimization
problem

argmin
Σ,Ξ

1

2

∥∥M(Σ)−Bδ
∥∥2
F
+

γ

q
∥D(Ξ)∥qq +

β

2
∥Σ−Ξ∥2F + ι0(Σ), (9)

where β > 0 is a fixed parameter. Obviously, if β is large enough, the solutions of
(6) and (9) are the same. This reformulation is commonly performed in optimization
so that the alternating minimization algorithm can be used. By applying alternating
minimization to solve (9), we obtain the following iterations

Σ(k+1) = argmin
Σ

1

2

∥∥M(Σ)−Bδ
∥∥2
F
+

β

2

∥∥∥Σ−Ξ(k)
∥∥∥2
F
+ ι0(Σ)

Ξ(k+1) = argmin
Ξ

γ

q
∥D(Ξ)∥qq +

β

2

∥∥∥Σ(k+1) −Ξ
∥∥∥2
F
.

(10)

The convergence of the iterations in (10) is guaranteed by the results in [21]. In
particular, it holds the following

Theorem 4. Let Σ(k) and Ξ(k) denote the iterates defined in (10), then

(Σ(k),Ξ(k)) → (Σ∗,Ξ∗) as k → ∞,

where (Σ∗,Ξ∗) is a stationary point of the functional in (9) that depends on the initial

guess Ξ(0). Moreover, if β is large enough (possibly β = ∞), Σ∗ = Ξ∗ = Σ̂, where Σ̂
is a stationary point of the functional in (6) that depends on Ξ(0).

Remark 1. Note that, since the minimized functional in (9) is non-convex it might
have multiple global and local minima. Moreover, it may have several saddle points.
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However, in general, determining the global minimum of a non-convex function is a
NP-hard problem. Therefore, in optimization theory, is usually considered a good
enough result determining a stationary point of the minimized functional. Indeed,
our numerical results show that the proposed approach is able to provide accurate
reconstructions

4.1. Implementation details

In the following, we detail how to numerically solve the two minimization subproblems
in (10) at each iteration.

For the solution of the Σ subproblem in (10) let us first observe that we can write

M(Σ) = [M(σ1), . . . ,M(σN )],

where M(σj) is a column vector. We can then rewrite the subproblem as

Σ(k+1) = argmin
Σ

N∑
j=1

[
1

2

∥∥M(σj)− bδ
j

∥∥2
2
+

β

2

∥∥∥σj − ξ
(k)
j

∥∥∥2
2
+ ι0(σj)

]
,

where bδ
j and ξ

(k)
j denote the jth column of Bδ and Ξ(k), respectively, and σj is the

jth column of Σ. Thus, we can write

σ
(k+1)
j = argmin

σ

1

2

∥∥M(σ)− bδ
j

∥∥2
2
+

β

2

∥∥∥σ − ξ
(k)
j

∥∥∥2
2
+ ι0(σ), j = 1, . . . , N,

i.e., the Σ subproblem decouples in N independent one-dimensional subproblems.
This problem can be rewritten as

σ
(k+1)
j = argmin

σ

1

2

∥∥∥∥∥
[
M(σ)√

βσ

]
−

[
bδ
j√

βξ
(k)
j

]∥∥∥∥∥
2

2

+ ι0(σ), j = 1, . . . , N. (11)

Observe that every σ
(k+1)
j subproblems are independent and thus can be solved in

parallel. For the solution of the σ
(k+1)
j , we consider a slight modification of the

algorithm proposed in [11–15, 17]. Here we outline the algorithm and describe the
modifications we made.

Let us first consider the following non-linear least-squares problem for a single
column M(σj) and bδ

j of M(Σ) and Bδ, respectively, i.e.

min
σ

1

2

∥∥M(σ)− bδ
j

∥∥2
2
+ ι0(σ). (12)

We solve problem (12) by the Guass–Newton method.
We denote by r(σ) = M(σ)−bδ

j the complex residual vector as a function of the
conductivity σ. At each step of the iterative algorithm we minimize the 2-norm of a
linear approximation of the residual and compute σ(l+1) = σ(l) + q(l), where

q(l) = argmin
q

∥∥∥r(σ(l)) + J(σ(l))q
∥∥∥
2
, (13)

and J(σ(l)) is the Jacobian matrix of the function r computed in σ(l).
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Being the residual function r complex-valued, we solve problem (13) by stacking
the real and imaginary part of the residual as follows (see [14])

r̃(σ) =

[
Re(r(σ))
Im(r(σ))

]
∈ R2m, J̃(σ) =

[
Re(J(σ))
Im(J(σ))

]
∈ R2m×n.

In the same way we set r̃ and J̃ , we rearrange the vectors M and bδ, and we denote

them by M̃ and b̃δ, respectively. So, we replace (13) by

min
q

∥∥∥r̃(σ(l)) + J̃lq
∥∥∥
2
, (14)

with J̃l = J̃(σ(l)), and the iterative method becomes

σ(l+1) = σ(l) + αlq
(l) = σ(l) − αlJ̃

†
l r̃(σ

(l)),

where J̃†
l is the Moore–Penrose pseudoinverse of J̃l and αl is a damping parameter

which ensures the convergence. This parameter is determined by coupling the Armijo–
Goldstein principle [2] to the positivity constraint σ(l+1) ≥ 0 (see [12,15]) so that∥∥∥r̃(σ(l))

∥∥∥2
2
−
∥∥∥r̃(σ(l) + αlq

(l))
∥∥∥2
2
≥ 1

2
αl

∥∥∥J̃lq(l)
∥∥∥2
2

with σ(l+1) ≥ 0 (15)

is verified. The analytical expression of the Jacobian matrices with respect to the
electrical conductivity and the magnetic permeability were computed in [15] and [12],
respectively, where it has also been proved that the computation of the analitical
expression of the Jacobian matrices is faster than their finite difference approximations.

It is well known that the minimization problem (14) is extremely ill-posed,

meaning that the matrix J̃l is severely ill-conditioned. In order to overcome this
difficulty, we apply the generalized truncated singular value decomposition (GTSVD),

as in [11,12,14,15,17], for stably computing an approximation of J̃†
l . We introduce a

regularization matrix L̂ ∈ Rp×2n (p ≤ 2n), whose null space approximately contains

the sought solution [28]. Under the assumption N (J̃l)∩N (L̂) = {0}, problem (14) is
replaced by

min
q∈S

∥Lq∥22 , S = {q ∈ R2n : J̃T
l J̃lq = −J̃T

l r̃(σ(l))}. (16)

Note that, thanks to the assumption above on the null spaces of J̃l and L̂, the solution
of (16) is unique. Very common choices for L are the discretization of the first or second
derivative operators.

Let the generalized singular value decomposition (GSVD) [20] of the matrix pair

(J̃l, L̂) be

J̃l = UΣJZ
−1, L̂ = V ΣLZ

−1,

where U and V are matrices with orthonormal columns ui and vi, respectively, Z
is a non-singular matrix with columns zi, and ΣJ , ΣL are diagonal matrices with
diagonal entries ci and si, which are the singular values of J̃ and L̂, respectively.
Under the assumption that m = 2mρmhmω < 2n, common in the generality of cases,
the truncated GSVD (TGSVD) solution q(l) (see [22] for details) can be written as

q
(l)
GSVD = −

p∑
i=p−ℓ+1

uT
i r̃

(l)

ci−2n+κ
zi −

2n∑
i=p+1

(uT
i r̃

(l)) zi, (17)
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where ℓ is fixed, κ = rank(J̃l), ℓ = 1, . . . , κ + p − 2n is the regularization parameter,
and r(l) = r(σ(l)).

The resulting regularized damped Gauss–Newton method reads

σ(l+1) = σ(l) + αlq
(l)
GSVD,

with ℓ fixed and αl determined at each step as in (15).
We now apply this algorithm to our specific case. In particular, we have to solve

(11). We apply the previously described procedure to the following function getting

M̂(σ) =

[
M̃(σ)√

βσ

]
, Ĵ(σ) =

[
J̃(σ)√
βI

]
, (18)

where I is the identity matrix. We remind here that M̂ is not a complex valued
function anymore since we already stacked the real and imaginary parts of M and J .

Let σ
(k,l)
j be an approximation of σ

(k+1)
j . Denote by Ĵl the Jacobian of M̂ in

σ
(k,l)
j and consider the GSVD of the pair {Ĵl, L̂}

Ĵl = Û Σ̂J Ẑ
−1, L̂ = V̂ Σ̂LẐ

−1.

Let

r̂(l) = M̂(σ
(k,l)
j )−

[
bδ
j

ξ
(k)
j

]
=

[
M(σ

(k,l)
j )− bδ

j√
β(σ

(k,l)
j − ξ

(k)
j )

]
,

then we compute, analogously to (17),

q
(l)
GSVD = −

p∑
i=p−ℓ+1

uT
i r̂

(l)

ci−2n+κ
zi −

2n∑
i=p+1

(uT
i r̂

(l)) zi,

leading to the iteration

σ
(k+1,l)
j = σ

(k,l)
j + αlq

(l)
GSVD,

where αl is determined by the Armijo-Goldstein rule so that∥∥∥r̂(l)∥∥∥2 − ∥∥∥r̂(l+1)
∥∥∥2
2
≥ 1

2
αl

∥∥∥Ĵlq(l)
GSVD

∥∥∥2
2

and σ(k,l+1) ≥ 0.

We now move to the Ξ subproblem. To solve this problem we consider the
majorization-minimization algorithm proposed by Huang et al. in [25] and furtherly
developed in [5, 8, 9]. We briefly describe the algorithm presented in [25]. To simplify
the computations we consider a modified version of the D operator, namely we impose
reflexive boundary conditions to the discretization of the Laplacian. In this way the
obtained matrix has an exploitable structure that helps in the computations. In detail,
with abuse of notation, we write

L =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 .
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Thanks to the structure of L the matrix D, which is defined by D = L⊗I+I⊗L, is the
sum of a block Hankel with Hankel blocks matrix, a block Toeplitz with Hankel blocks
matrix, a block Hankel with Toeplitz blocks matrix, and a block Toeplitz with Toeplitz
blocks matrix. We recall that Toeplitz matrices are matrices that are constant on the
diagonals and Hankel matrices are matrices that are constant on the anti-diagonals.
Since [−1 2 − 1] is symmetric, if C denotes the discrete cosine transform matrix, we
have that

D = CTΛC, (19)

where Λ is a diagonal matrix. The diagonal elements of Λ are computed as the cosine
coefficients of the first column of D; see [27] for more details.

We now describe the Majorization-Minimization (MM) procedure that we use for
solving the Ξ subproblem. Let us first rewrite the minimization problem in (10) as
follows

vec(Ξ(k+1)) = argmin
ξ

1

2

∥∥∥ξ − σ(k+1)
∥∥∥2
2
+

γ

qβ
∥Dξ∥qq , (20)

where σ(k+1) = vec(Σ(k+1)). The MM algorithm generates a sequence of vectors ξ(k,l)

that converges to an approximate solution of (20). Firstly, if q ≤ 1, we need to smooth
the q-norm so that it is differentiable. Let ε > 0 be a small constant, then, for x ∈ Rn,
it holds

∥x∥qq =

n∑
j=1

|xj |q ≈
n∑

j=1

(
x2
j + ε2

)q/2
=: ∥x∥qq,ε .

Note that the function x 7→ ∥x∥qq,ε is differentiable everywhere. We consider the
smoothed problem

vec(Ξ(k+1)) = argmin
ξ

1

2

∥∥∥ξ − σ(k+1)
∥∥∥2
2
+

γ

qβ
∥Dξ∥qq,ε = argmin

ξ
Ĵε(ξ). (21)

As pointed out in [8], the solutions of (20) and (21) are extremely similar and this
substitution does not have any negative effect.

Let ξ(k,l) be an approximate solution of (21). We first construct a quadratic

tangent majorant of Ĵε in ξ(k,l) that majorizes it, i.e., a quadratic function Q(ξ, ξ(k,l))
such that

• Q(ξ, ξ(k,l)) ≥ Ĵε(ξ) for all ξ;

• Q(ξ(k,l), ξ(k,l)) = Ĵε(ξ
(k,l));

• ∇Q(ξ(k,l), ξ(k,l)) = ∇Ĵε(ξ
(k,l)).

In [25] the authors provide two different choices for the construction of such a

functional, here we considered the so-called fixed approach. Denote by ũ(l) = Dξ(k,l),
then we compute the vector u(l) as

u(l) = ũ(l)

(
1−

(
(ũ(l))2 + ε2

ε2

)q/2−1
)
,

where all the operations are meant element-wise. It is possible to see that the function

Q(ξ, ξ(k,l)) =
1

2

∥∥∥ξ − σ(k+1)
∥∥∥2
2
+

γεq−2

2β

(
∥Dξ∥22 − 2⟨u(l), Dξ⟩

)
+ c,
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where c is a constant independent of ξ, is a quadratic tangent majorant; see [25] for
a derivation. An improved approximation of the solution of (21) can be obtained as

the unique minimizer of Q(ξ, ξ(k,l)), i.e.,

ξ(k,l+1) = argmin
ξ

1

2

∥∥∥ξ − σ(k+1)
∥∥∥2
2
+

γεq−2

2β

(
∥Dξ∥22 − 2⟨u(l), Dξ⟩

)
= argmin

ξ

1

2

∥∥∥∥[ I√
ηD

]
ξ −

[
σ(k+1)

√
ηu(l)

]∥∥∥∥2
2

,

where η = γεq−2

β . Writing the normal equation yields

(I + ηDTD)ξ(k,l+1) = σ(k+1) + ηDTu(l).

Using the factorization (19) we get

CT
(
I + ηΛTΛT

)
Cξ(k,l+1) = σ(k+1) + ηDTu(l).

Thus, we can compute ξ(k,l+1) as

ξ(k,l+1) = CT
(
I + ηΛTΛ

)−1
C(σ(k+1) + ηDTu(l)),

where the inversion is well-defined since η > 0. These computations can be performed
fairly inexpensively, since the system to solve is a diagonal one and the application of
the n × n cosine matrix can be performed in O(n log n) operations by means of the
dct algorithm.

We summarize all the computations in Algorithm 1.

5. Numerical examples

In the numerical tests illustrated in this section we consider both synthetic and
experimental data. The two-dimensional representation of the electrical conductivity
is determined under the assumption that the magnetic permeability is the one of the
free space, i.e., µ ≡ µ0.

Throughout this section, we show the effectiveness of our method and we compare
the results obtained from the algorithm presented in this paper with those obtained by
applying the method described in [14], i.e., by solving each one-dimensional problem
independently and then “stacking” the obtained solutions.

All the computations are performed on an Intel(R) Xeon(R) Gold 6136 CPU @
3.00GHz computer with 128Gb of RAM memory and 32 cores, running the Debian
GNU/Linux operating system and Matlab R2020b.

5.1. Synthetic data

In the first test we consider two different configurations of the FDEM device. We
show that the proposed algorithm is able to reconstruct an accurate approximation of
the electrical conductivity for both devices. In out second test we report the solution
obtained by varying the dimensions of the problem discretization for one configuration.

We generate the data matrix Bexact of a chosen dimension m×N and we simulate
the presence of noise in the data, by letting

e =
δ√
m

∥Bexact∥2F w,
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Algorithm 1: Parallel alternating minimization for the solution of (9)

input: Bδ, Ξ(0), γ > 0, β > 0, 0 < q ≤ 2, ℓ ≪ nN , ε > 0, σ0 > 0.

1 η = γεq−2

β ;

2 for k = 0, 1, 2, . . . do
3 parfor j = 1, . . . , N
4 σ(k,1) = σ01;
5 for l = 1, 2, . . . do

6 Ĵl =

[
J̃(σ(k,l))√

βI

]
;

7 Compute the GSVD Ĵ = Û Σ̂J Ẑ
−1, L̂ = V̂ Σ̂LẐ

−1;

8 r(l) =

[
M(σ

(k,l)
j )− bδ

j√
β(σ

(k,l)
j − ξ

(k)
j )

]
;

9 q
(l)
GSVD = −

p∑
i=p−ℓ+1

uT
i r

(l)

ci−2n+κ
zi −

2n∑
i=p+1

(uT
i r

(l)) zi;

10 Find αl s.t.
∥∥r(l)∥∥2 − ∥∥∥∥∥

[
M
(
σ(k,l) + αlq

(l)
GSVD

)
− bδ

j√
β(σ(k,l) + αlq

(l)
GSVD − ξ

(k)
j )

]∥∥∥∥∥
2

≥ 1
2αl

∥∥∥Ĵlq(l)
GSVD

∥∥∥2
σ(k,l) + αlq

(l)
GSVD ≥ 0

;

11 σ(k,l+1) = σ(k,l) + αlq
(l)
GSVD;

12 σ(k+1) = σ(k,∞)

13 σ(k+1) = vec(Σ(k+1));

14 ξ(k,1) = σ(k+1);
15 for l = 1, 2, . . . do

16 ũ(l) = Dξ(k,l);

17 u(l) = ũ(l)

(
1−

(
(ũ(j))2+ε2

ε2

)q/2−1
)

;

18 ξ(k,l+1) = CT
(
I + ηΛTΛ

)−1
C(σ(k+1) + ηDTu(j));

19 vec(Ξ(k+1)) = ξ(k,∞);

where w is a vector with normally distributed entries having zero mean and unit
variance, and δ represents the noise level. The new data matrix is denoted by Bδ.

Test 1. This example concerns the reconstruction of a two-dimensional model
generated from 50 soundings along a 10 m straight line and 20 layers in detph. It is
characterized by an increasing change in conductivity (from 0 S/m to 1 S/m) occurring
at an increasing depth.

The synthetic data simulate an acquisition performed by both the Geophex
GEM-2 and CMD Explorer instruments, with two orientations of the coils and one
measurement height h = 1 m, i.e., the instrument is kept 1 m above the ground. We
consider a slice of the ground that is 10 meters wide. The first device, the Geophex
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GEM-2, works with an intercoil distance of 1.66 m (ρ = 1.66 m) and six different
frequencies f = 775, 1175, 3925, 9825, 21725, 47025 Hz, while the second one, the CDM
Explorer, measures with three different intercoil distances ρ = 1.48, 2.82, 4.49 m
and only one frequency f = 10 kHz. The data values are finally perturbed by
uncorrelated Gaussian noise with standard deviation δ = 10−2. Here, the choice of the
regularization parameter ℓ does not affect substantially the computed results. This is
due to the structure of the Jacobian matrix defined in (18). The matrix Ĵ is obtained
by stacking the Jacobian of M and a scaled identity matrix, therefore, the number of
the singular values does not change, but they do not decrease as rapidly as the one of J̃ .
Therefore, we set in all our experiments ℓ = 15. From our experience we observed that
a larger value of ℓ does not neither improve nor deteriorate the obtained approximate
solutions. In the algorithm described in [14] the Jacobian matrix of the problem
was very ill-conditioned and the results depended on the choice of the truncation
parameter. We have established a maximum number of 50 iterations, p = 2, q = 0.1,
the regularization parameter γ = 10−4, and σ0 = 0.1.

In the first row of Figure 1, we report the exact solution used to generate the
data using both the devices: Geophex - GEM 2 on the left, CDM Explorer on the
right. On the middle row, we report the reconstruction of the one-dimensional models
side by side in a pseudo two-dimensional fashion as in [14]. As we described above,
the method in [14] solves independently the N one-dimensional problems in (2). Then
the solution is visualized by stacking the one-dimensional reconstructions obtaining a
two-dimensional image. Finally, the obtained results by the algorithm presented in
this paper are depicted in the last row.

We can see that, for both the instruments configuration, the reconstruction of
the electrical conductivity obtained from the variational model described here is much
more accurate than the ones obtained by the method described in [14], in which there is
not lateral continuity in the results. This shows that the additional regularization term
in (3) significantly helps the reconstruction of an approximate solution. In Figure 2 we
report the reconstruction of a single sounding (the 16th column of the two-dimensional
synthetic model of Figure 1 for both the devices). We compare the one-dimensional
solution computed by the algorithm in [14] to the one obtained with the proposed
method. We can observe that the introduction of the regularization term allows us
to improve the accuracy of the reconstruction. Finally, we compute the Relative
Restoration Error (RRE) for each computed solution, defined by

RRE(Σ) =
∥Σ−Σexact∥F

∥Σexact∥F
,

whereΣexact denotes the exact solution of the problem. We report the obtained results
in Table 1. We can observe that the RRE obtained with our proposal is significantly
lower than the one obtained with the method proposed in [14].

Test 2. This example reports the results for different dimensions of the matrix
solution: 50, 100 and 200 soundings along a 10 m straight line and 20, 50 and 100
layers, respectively. In this case, the synthetic data is generated by the Geophex GEM-
2 (ρ = 1.66 m, f = 775, 1175, 3925, 9825, 21725, 47025 Hz) with two orientations
of the coils and one measurement height h = 1 m. We use the same parameters as in
the previous example.

In the first column of Figure 3, we report the reconstructions of Σ1 ∈ R20×50.
The second column depicts the reconstructions of Σ2 ∈ R50×100. The last column
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Reconstruction of the electrical conductivity from two devices configuration.
The first row represents the exact solution used to generate the data with both the
Geophex - GEM 2 (panel (a)) and the CDM Explorer (panel (b)). On the second
row, is reported the reconstruction of the one-dimensional models side by side in a
pseudo two-dimensional fashion (panels (c) and (d)). On the last row, the obtained
results by the algorithm presented in this paper are depicted (panels (e) and (f)). The
data values are corrupted by Gaussian noise with noise level δ = 10−2, the maximum
number of iterations is fixed at 50, p = 2, q = 0.1, and the regularization parameter
γ = 10−4.
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Figure 2: One-dimensional reconstruction of the two-dimensional synthetic model
generated in Figure 1. On the left, σ16 in the model generated by Geophex - GEM 2
(panel (a)). On the right σ16 in the model generated by CDM Explorer (panel (b)).
The exact solution is depicted by a black dotted line, the profile computed by the
method in [14] is reported with a red dashed line, and the profile obtained with our
method is shown by a blue solid line.
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(a)
(b) (c)

(d)
(e) (f)

(g)
(h) (i)

Figure 3: Reconstruction of the electrical conductivity from data generated by the
Geophex - GEM 2. The first row reports the exact solutions, the second row shows
the reconstructions obtained with the method in [14], and the third row collects the
approximate solution computed by our algorithmic proposal. Each column reports the
results obtained with different examples. In the first column we consider Σ1 ∈ R20×50,
in the second column Σ2 ∈ R50×100, and in the third column Σ3 ∈ R100×200. The
data values are affected by Gaussian noise with noise level δ = 10−2, the maximum
number of iterations is equal to 50, p = 2, q = 0.1, and the regularization parameter
γ = 10−4.

increases the dimension of the exact solution to Σ ∈ R100×200. In all the experiments
the right-hand sides are affected by Gaussian noise with δ = 10−2, the maximum
number of iterations is equal to 50, p = 2, q = 0.1, the regularization parameter
γ = 10−4, and σ0 = 0.2.

From the visual inspection of the reconstructions in Figure 3 we can observe that
the proposed model is able to capture more accurately the structure of the soil in all
proposed examples. Moreover, we can see that, since the reconstruction is not obtained
by simply stacking one-dimensional vectors, the approximate solutions computed by
our proposal are smoother than the ones obtained with the method described in [14].
This is confirmed by the values of the RRE reported in Table 1.

5.2. Experimental data

In this section, we consider an experimental data set collected with a multiconfigu-
ration EMI device at the Molentargius Saline Regional Nature Park, located east of
Cagliari in southern Sardinia, Italy. The dataset was first studied in [14]; see [14] for
a description of the geographical location of the test site.

As described in [14], the CDM Explorer (ρ = 1.48, 2.82, 4.49 m and f = 10 kHz)
was used to collect the EMI data along a 200 m straight-line and was carried at 0.9
m of height above the ground, providing three simultaneous measurements for each
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Table 1: Relative Restoration Error (RRE) obtained in all the considered examples
on synthetic data with the algorithm proposed in [14] and our proposal.

Example Method RRE

Test 1
Geophex

[14] 0.55439
Algorithm 1 0.37832

Explorer
[14] 0.41573
Algorithm 1 0.35842

Test 2

20× 50
[14] 0.28644
Algorithm 1 0.25646

50× 100
[14] 0.65784
Algorithm 1 0.36258

100× 200
[14] 0.93571
Algorithm 1 0.36258

(a) (b)

Figure 4: Reconstruction of the electrical conductivity from real data collected at
Molentargius Saline Regional Nature Park in Cagliari by the CDM Explorer. The
panel on the left reports the reconstruction obtained with the method in [14], and the
right one collects the approximate solution computed by our algorithmic proposal. In
both panels we consider Σ ∈ R50×401 and a maximum number of iterations equal to
103. In panel (a) we use the first derivative operator as the regularization matrix,
while in panel (b) we fix p = 2, q = 0.1, and we set the regularization parameter
γ = 10−4.

orientation of the device. The data were collected in continuous mode, with a 0.5 s
time step, first using the horizontal orientation and then the vertical one. With the aim
of having the same number of equally spaced measurement points, the authors of [14]
merged the data by spatially resampling at 0.5 m intervals from a common starting
point. This allowed to set up a dataset consisting of a series of 401 depth soundings
with six complex (quadrature and in-phase components) measurements each, suitable
for recovering the soil electrical conductivities in order to reconstuct the water table.
The data set is available at the web page http://bugs.unica.it/cana/datasets/.

In Figure 4, we compare the results obtained by the method described in [14]
where we used the first derivative operator as the regularization matrix, with the ones

http://bugs.unica.it/cana/datasets/
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(a) (b)

Figure 5: Plot of the first 100 soundings of the reconstructions in Figure 4.

computed by Algorithm 1 setting p = 2, q = 0.1, and the regularization parameter
γ = 10−4. In both cases the maximum number of iterations has been fixed to 103. We
discretize the soil with 50 layers leading to a reconstruction Σ ∈ R50×401.

From a graphic examination of the reconstructions in Figure 4, we can observe
that the proposed method (Figure 4(b)) is able to capture more accurately the
structure of the soil, avoiding any “splicing”. On the other hand the reconstruction
obtained with the algorithm in [14], shown in Figure 4(a), is “spliced” in several points,
that are highlighted in Figure 5. Moreover, we can observe that both reconstructions
have the same shape and structure, showing the water table interface, even if it is not
easy to identify its exact depth.

We remark here that in these experiments, the same starting model was adopted
for both of the reconstructions but still, there is an important dependence on the
initial solution of the iterative method, also in our optimization algorithm.

6. Conclusions

In this paper we have proposed a non-linear model for the inversion of FDEM
data. Although the two-dimensional problem can be seen as a sequence of “stacked”
independent one-dimensional problems, the proposed model couples them. This
allows us to exploit the “horizontal” information to largely improve the quality of
the computed solution avoiding the “splicing” that occurs when we deal with noisy
data.

We were able to show that the outlined minimization problem has a solution,
albeit non-unique, and that it induces a regularization method. We provided an
algorithm for the solution of the problem and showed its performances on some
synthetic and real data. From these experiments we were able to show that our
method reliably computes accurate solutions even when compared with state-of-the-
art method like the one in [14].

Matters of future research include an efficient implementation exploiting Krylov
subspaces. Moreover, we plan on using the Alternating Direction Multiplier Method
(ADMM) and its accelerations (see, e.g., [4,6,19]) for efficiently computing a solution
of (3).
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