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Abstract: Metformin has been used for decades in millions of type 2 diabetes mellitus patients. In this
time, correlations between metformin use and the occurrence of other disorders have been noted, as
well as unpredictable metformin side effects. Diabetes is a significant cancer risk factor, but unexpect-
edly, metformin-treated diabetic patients have lower cancer incidence. Here, we show that metformin
forms stable complexes with copper (II) ions. Both copper(I)/metformin and copper(II)/metformin
complexes form adducts with glutathione, the main intracellular antioxidative peptide, found at
high levels in cancer cells. Metformin reduces cell number and viability in SW1222 and K562 cells,
as well as in K562-200 multidrug-resistant cells. Notably, the antiproliferative effect of metformin is
enhanced in the presence of copper ions.

Keywords: metformin; copper complexes; diabetes; cancer; proliferation; protonation constants;
stability constants; glutathione; NMR

1. Introduction

Metformin (N,N-dimethylbiguanide; 3-(diaminomethylidene)-1,1-dimethylguanidine)
is an oral drug used daily as a first line treatment for type 2 diabetes mellitus (T2DM) by
at least 120 million patients worldwide [1]. Different mechanisms of metformin action
have been proposed at the cellular level. These include: the suppression of mitochondrial
respiration by inhibition of complex I [2]; the regulation of AMP-activated protein kinase
(AMPK) and the mechanistic target of rapamycin complex 1 (mTORC1) by multiple,
mutually nonexclusive mechanisms (independent from the inhibition of ETC and cellular
ATP level) [3]; and interaction with mitochondrial copper ions, which may suppress
mitochondrial function [4]. Nevertheless, the exact mechanisms of metformin therapeutic
action are still poorly understood.

Metformin and other biguanide derivatives were developed in the 1950s after the
finding that the blood glucose-lowering ingredient in goat’s rue is guanidine. Guanidine
and biguanide lead to liver damage, while metformin is a derivative with lower toxicity. In
half a century of use, numerous metformin side-effects have been noted [5].

Numerous observational studies show the co-occurrence of cancer and diabetes [6].
It is widely accepted that diabetes is a significant risk factor for different cancer types,
regardless of its connection to obesity [7–9]. The strongest correlation between diabetes and
cancer correlation has been observed in liver, breast, pancreas, colorectum, and endometrial
tumors. Metformin-treated diabetic patients seem to have a lower risk of cancer than those
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who use other therapeutics [10,11]. Since diabetes is an independent cancer risk factor,
diabetes treatment might reduce cancer risk [12]. However, it is still unclear if the cancer-
suppressing role of metformin is related to a direct preventive effect of the therapy or the
cancer–diabetes connection [12].

The association between metformin use and reduced cancer risk in patients with
diabetes was suggested in a pioneering observational study published in 2005, which
reported a 23% decrease in cancer risk with metformin use [13]. Since then, several
epidemiologic studies have provided additional evidence of lower cancer risk in diabetic
patients treated with metformin than in non-metformin subjects. Along with epidemiologic
studies, several meta-analyses have supported metformin use and reduced cancer risk
in diabetic patients with cancer [14,15]. In particular, reduced incidence of liver [16],
pancreatic [17], colorectal [18], breast [19], kidney [20], and lung cancer [21] have been
associated with metformin use. In addition, metformin was shown to be an effective
adjuvant drug for cancer patients, and could help patients with colorectal and prostate
tumors who are undergoing radical radiation therapy [22]. Several studies have shown
recently that metformin inhibits cancer invasion and migration, which could account for
the improvement of prognosis in cancer patients [23,24].

In recent years, interactions between either metformin or metformin complexed
with copper (copper/metformin) and nucleic acids have been investigated. Shahabadi
et al. [25] have shown that free metformin forms stable adducts with calf thymus DNA
(CT-DNA; Kb = 8.3 × 104 M−1) [25]. Shoair et al. [26] additionally proved that cop-
per(II)/metformin complexes bind to DNA through an intercalative mechanism. Moreover,
stable Cu(II)/metformin/DNA adducts had antioxidant and biomimetic catalytic activities
in in vitro tests.

Copper is a redox active metal and its chelates can be used in therapy as catalytic
metallodrugs. Possible catalytic reactions are: transfer hydrogenation, C-C bond cross-
coupling, and bond cleavage by hydrolysis or oxidation, among others [27]. For instance,
copper complexes with thiosemicarbazone derivatives leads to an oxidative cell damage in
human melanoma cells and oxidative damages of DNA, which arrest G2/M cell cycle [28].
Copper(II) complexes with 4-Chloro-3-Nitrobenzoic acid ligand intercalatively bound DNA,
and have and antiproliferative effect in human cancer cell lines, by inhibiting G0/G1-phase
cells and leading to apoptosis [29].

In order to understand the activity of metformin and its copper complexes at the cellu-
lar level, we studied Cu(II) complex formation with metformin. We present coordination
studies of copper (I)/metformin and copper (II)/metformin complexes in relation to glu-
tathione (GSH), which is a representative copper-binding peptide that exists at high levels
in cancer cells. Moreover, we show the effect of metformin and its copper complexes on
the proliferation, morphology, and viability of human colorectal adenocarcinoma, chronic
myelogenous leukemia, and adriamycin-resistant chronic myelogenous leukemia cells.

2. Materials and Methods
2.1. Reagents

Metformin, glutathione, D2O, NaOD, DCl, CuCl, CuCl2, CuSO4, NaOH, and HCl
were purchased from Sigma-Aldrich (Milano, Italy) and used without further purification.

A previously described method was used in the preparation of 0.1 M carbonate-free
KOH solution [11]. Metformin solutions were acidified with stoichiometric equivalents of
HCl. Metal solutions were prepared by dissolving the required amount of metal salt in pure
double distilled water containing a stoichiometric amount of HCl to prevent hydrolysis.
These solutions were standardized by the complexometric method with EDTA and proper
indicators.

2.2. Potentiometry-UV-Vis

Protonation and complex-formation equilibrium studies were carried out under the
same conditions described in previous publications [30,31]. The operating ligand concen-
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trations ranged from 5 × 10−4 to 4 × 10−3 M. Complex formation studies were carried out
using constant ligand concentration, and 1:1, 1:2, and 1:3 metal/ligand molar ratios. Com-
bined potentiometric–spectrophotometric measurements were performed for protonation
equilibria in the 200–400 nm spectral range and in the 400–800 nm spectral range for copper
(II) complexes, using 0.2 and 1 cm path lengths, respectively. Protonation and complex
formation data were analyzed using the Hyperquad and HypSpec2014 program [32].

2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
1H-NMR spectra were recorded for metformin and glutathione in combination with

CuCl and CuCl2. Metformin was dissolved in 800 µL at a 1:9 ratio of D2O:H2O, to make a
5 mM metformin solution. The pH of the solution was manually adjusted to the desired
pH (ranging from 2 to 12) with a 0.1 M NaOD and 0.1 DCl stock solution in 100% D2O.
All NMR experiments were performed on the 600 MHz Bruker spectrometer at 25 ◦C
(Karlsruhe, Germany). The NMR data were processed and analyzed by TopSpin software
(4.1.3, Bruker, Karlsruhe, Germany).

The Cu(II) and Cu(I) measurements were prepared through the stepwise addition
of a proper copper ion stock solution (0.01 M in 100% H2O for the samples in a 90:10
(v/v) H2O/D2O mixture) to the solution of metformin, giving metformin:Cu(II) and met-
formin:Cu(I) molar ratios of 1:0, 1:0.02, and 1:0.05 (for Cu(II) ions) and 1:0.5 (for Cu(I)
ions). For each metformin:Cu(II) and metformin:Cu(I) ratio, the pH was controlled and
adjusted to the range from 4 to 9 with 0.1 M NaOD and 0.1 M HCl stock solutions. The
same procedure was applied to glutathione, copper ion, and metformin experiments.

2.4. Cellular Studies
2.4.1. Cell Culture of SW1222, K562, and K562-200

Three cancer cell lines were used: SW1222, human colorectal adenocarcinoma (Merck,
Darmstadt, Germany); K562, chronic myelogenous leukemia; and an adriamycin-resistant
CML cell (K562/Adr200). K562/Adr200 is a recently developed cell line from the center of
excellence in genomic medicine research, KAU, which exhibits multidrug resistance [33].

SW1222 were cultured in DMEM (Gibco, New York, NY, USA) media supplemented with
10% fetal bovine serum (FBS) (Gibco, New York, NY, USA) and 1% penicillin/streptomycin
(Gibco, USA). Both K562 and K562/Adr200 were cultured in RPMI media (Gibco, New York,
NY, USA) supplemented with 10% FBS and 1% penicillin/streptomycin. The seeding density
for all the three cell lines was 1000 cells per well in 96 wells plates.

The following concentrations of metformin were used in media at DIV0: 20 µM, 1 mM,
5 mM, 10 mM, 15 mM, and 50 mM. From this experiment, the effective concentration that
inhibited the growth of ≥50% of the cells was determined. In the subsequent experiments,
copper sulfate (CuSO4) was added to cells with and without metformin at 5 µM, 100 µM,
400 µM, and 5 mM concentrations, to assess its effect on cells treated with or without
metformin. Both metformin and copper sulfate were prepared in sterile nuclease-free
water, then added to the media. The cells were maintained in culture for 72 h before any
further assessments were done.

2.4.2. Assessment of the Effect of Metformin on the Proliferation of Cancer Cell Lines in the
Presence and Absence of Copper Sulfate

To determine the effective concentration of metformin that inhibits the growth of more
than 50% of each of the three cancer cell lines, ATP production was assessed 72 h after drug
addition. A control sample of untreated cells was included in all experiments. The half-
maximal inhibitory concentration50 (IC50) of metformin was then calculated using Prism
9 software (8.0.0, GraphPad Prism, San Diego, CA, USA). Selected concentrations of the
drug that inhibited 50% or more of the cells were then used in the subsequent experiments
(i.e., 10, 15, and 50 mM). In the following experiments, copper sulfate (CuSO4) was added
in varying concentrations (5, 100, 400 µM, and 5 mM) to non-treated and treated cells with
metformin. The CellTiter-Glo® luminescent cell viability assay was used to determine
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levels of ATP release from each cell line after 72 h, according to manufacturer’s instructions.
ATP release was compared between cells treated with metformin and non-treated cells. In
subsequent experiments, the ATP release was compared between metformin-treated cells
in the absence or presence of CuSO4. The ATP release of cells treated with CuSO4 in the
absence of metformin was also assessed, as a control.

Cell viability was also assessed by using the live/dead viability/cytotoxicity kit
for mammalian cells, commercially available from Thermo Fisher Scientific (Waltham,
MA, USA). This assay relies on intracellular esterase activity in live cells that changes
Calcein into Calcein-AM, which then emits green fluorescence. Additionally, the kit
assesses the integrity of the plasma membrane. Ethidium homodimer-1 is internalized
through damaged membranes, leading to red fluorescence in dead cells that are detected
by fluorescence imaging.

2.4.3. Immunostaining of Actin Stress Fibers

To assess the effects on actin stress fiber organization and cell morphology, rhodamine
phalloidin was used. Cells were fixed in 4% paraformaldehyde 72 h post-treatment. Cells
were permeabilized for 5 min in prechilled 0.5% Triton × 100, 3 mM MgCl2, and 300 mM
sucrose, followed by washing with 1× DPBS. A blocking buffer composed of 5% fetal
bovine serum (FBS), 0.1% Tween 20, and 0.02% sodium azide was then added to the cells for
30 min. Rhodamine phalloidin was incubated for one hour after removing and discarding
the blocking buffer. Cells were subsequently washed with 1× PBS, and DAPI was added
for nucleic acid staining prior to fluorescence imaging.

3. Results and Discussion
3.1. Metformin Protonation Constants

The electronic structure of drugs determines their physicochemical properties, in-
cluding solubility and charge. This in turn determines their mechanism of action and,
thus, biological activity. Understanding drug structure helps to predict and understand
bioavailability, membrane interactions, and mechanisms of action in biological systems.

Metformin, hereafter referred also as Ligand (L), is a highly water-soluble molecule
(1.06 × 106 mg/L (miscible) at 25 ◦C [34]), but its physicochemical properties in water are
poorly understood. The pKa value and hydrophilicity of a molecule plays an important
role in its cellular activity. Protonation constants of metformin in water have been studied
by different techniques—such as potentiometry and NMR—giving distinct results (some
literature examples are shown in Table 1). Structural dynamics of protonated metformin
forms were recently also investigated by Raman scattering and theoretical calculations [35].

Here, we use 1H-NMR titration (Figure 1) and combined potentiometric-UV titration
(Figure 3) in changing pH conditions. Protonation constants were determined on the
basis of potentiometric-UV titration (Table 1), while 1H-NMR data revealed structural
changes in metformin upon deprotonation of nitrogen atoms. At pH 2, metformin is fully
protonated and the overall charge is equal to 3 (Figure 2). First dissociation occurs at acidic
pH and leads to a shift of NB, ND, and NE nitrogen (Figure 1A), as well as methyl protons
(Figure 1B). Of note, nitrogen protons can be observed in the condition of a 1:9 ratio of
D2O:H2O, and the intensity of the NE proton signal increases above pH 3.11, while the NB
and ND proton decreases. Moreover, the first dissociation leads to significant UV spectra
changes (Figure 3).

The second deprotonation occurs at slightly basic pH (Figure 2, Table 1) and leads to
the disappearance of nitrogen protons in the 1H-NMR spectrum (Figure 1A), while there
are no significant changes in the UV spectrum (Figure 3). Conversely, the last deprotonation
occurs at highly basic pH (Figure 2, Table 1) and lead to slight changes in the UV spectra
~200 nm (Figure 3), while no changes can be observed in the 1H-NMR spectrum (Figure 1).
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Figure 1. 1H-NMR spectra of metformin in different pD conditions. (A) 6.7–8.2 ppm range; (B) 2.9–3.0 ppm range. Proton
chemical shifts estimation is presented in Figure S3.

Figure 2. Speciation plot of metformin (L), calculated on the basis of protonation constants reported
in Table 1. The normalized chemical shifts of each proton overlap the speciation plots: (-NH) + and
�; (-CH3) #; protons (Scheme 1).

Scheme 1. Chemical structure of metformin (biguanide backbone shown in black). Letters A–E
denote nitrogen atoms that are referred to in the discussion section.
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Figure 3. UV spectra (A) and Molar absorptivity spectra (B) of metformin (L) calculated with
HysSpec2014 [32]. [L] 0.4 mM; path length 0.2 cm.

Table 1. Protonation constants of metformin at 25 ◦C, 0.1 M NaCl ionic strength, obtained using the HypSpec2014 [32] pro-
gram for combined potentiometric and spectrophotometric measurements and HypNMR [36] for 1H-NMR measurements.
NA = not applicable due to insufficient data.

Technique/Species
Experimental Data Literature Data

LH3 LH2 LH LH3 LH2 LH

Potentiometry
2.67(2) 8.00(1) 10.57(1)

- 2.79 [37] 11.02 [37]
- 2.90 [38] 11.10 [38]

UV - - -

NMR 2.8(1) NA NA - 3.1 [39] 13.8 [39]

Based on the results presented here, a new metformin dissociation model can be
proposed (Scheme 2). The lowest pKa (2.67) can be attributed to the NA proton, which leads
to a shift of adjacent methyl protons and NB and ND protons (Figure 1). A further increase
in pH leads to the second dissociation with a pKa value of 8.00, which could be assigned
to the proton of NB, NC, or ND. The exact proton position is hard to ascertain, and the
interconversion of different biprotonated forms may occur, and/or the proton is shared
between NB and ND atoms in the pH range of 3.6–7.3 (Figure 1). The last dissociation, with a
pKa value of 10.57, can be attributed to the terminal amine group (NE) and leads to the loss of
positive charge. The change of charge from +1 to 0 leads to minor changes in the UV spectra
(Figure 3), and no proton chemical shift can be observed due to absence of adjacent protons
or hydrogen bonds stabilizing proton positions in our 1H-NMR experimental conditions.

Previous literature reports only two protonation constants for metformin, although
Raman spectra recorded at pH 7 (and pD 7.4 in heavy water) are distinct from those
recorded at very acidic and basic pH [35]. Importantly, Raman scattering with theoretical
calculations by Hernandez et al. [35] supports the hypothesis of NB and ND protonation
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with proton sharing through intramolecular N-H . . . N hydrogen bonds (Scheme 2). Such
intramolecular hydrogen bonds could also explain the unusual presence of a nitrogen
proton signal in 1H-NMR in the condition of a 1:9 ratio of D2O:H2O. As shown by Bharatam
et al. [40], due to the presence of protic hydrogen, the most stable neutral form of metformin
in water is a tautomer in which protons of the NC group are formally transformed to NB, ND,
or NE. In addition, the presence of a delocalized π-electron system leads to a quasiplanar
structure of protonated forms, which could be further stabilized in biological systems by
interactions with aromatic residues of proteins/peptides and nucleic acids [35].

Scheme 2. Deprotonation scheme based on potentiometric-UV and 1H-NMR studies.

The determination of third protonation constant significantly influences the deprotona-
tion scheme of Metf in changing pH conditions, and further influences the metal complex
stability. Moreover, the presented here deprotonation sequence supports the previous
findings of Metf planar structure at physiological pH, which facilitates the Metf interaction
with biologically important molecules.

3.2. Copper Complexes

The biochemical and therapeutic activity of metformin is related to its electron distribu-
tion. For instance, the highly basic nature of metformin is due to electron delocalization [40].
Metformin, as with other biguanide derivatives, forms complexes with transition metal ions
(including copper (II) ions) [41], due to the localization of charge density on the terminal
nitrogens, which enhance the stability of the formed chelates [40].

Combined potentiometric-Vis titration in changing pH conditions (Figure 4) was used
to determine Cu(II)/metformin complex stoichiometry and cumulative stability constants
(Table 2), while ESI-MS measurements (Figure S1) were used to establish the stoichiometry
of Cu(II)/metformin complexes. Moreover, Cu(II)/metformin 1H-NMR titration with
growing metal-to-ligand molar ratio (Figure 5) and in changing pH conditions were used
to establish metal-binding sites in the formed chelate.

The potentiometric-Vis data show that [CuLH]3+ starts to form above pH 2 (Figure 4A),
while the formation of [CuL2H]3+ complexes above pH 4 leads to a hypsochromic shift in
the Vis spectrum (Figure 4B,C) due to the N(amine)→ Cu(II) transition. [CuL2]2+ is formed
above pH 5, after the dissociation of protons, and leads to hypsochromic and hyperchromic
shifts (Figure 4B,C) due to additional nitrogen participation in the metal coordination
core (the N(amine) → Cu(II) transition). The ESI-MS spectrum (Figure S1) showed the
formation of [CuLH−1]+ (C4H10N5Cu; 191.019 m/z), [CuL]+ (C4H11N5Cu; 192.026 m/z),
and [CuLCl]+ (C4H11N5CuCl; 192.026 m/z) complexes in the mass spectrometry conditions
(pH 4; 1:1 H2O:MetOH).

Table 2. Experimental metformin/Cu2+ complex cumulative formation constants at 0.1 M KCl
ionic strength and 25.0 ◦C calculated with HypSpec2014 [32] program for combined potentiometric-
spectrophotometric measurements. [L] = 4 mM; [Cu2+] = 2 mM. The experimental data are compared
with the literature data.

Technique/Species
Logβ (Experimental Data) LogK (Literature Data)

CuLH CuL2H CuL2 CuL CuL2

Potentiometry
17.87(5) 28.3(1) 22.20(7)

7.17 [42] 5.13 [42]
8.59 [38] 6.35 [38]

Vis - -
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Figure 4. (A) Distribution curves for Cooper (II) complexes with metformin calculated on the basis of stability constants
(Table 2) with the Hyss program [43]; (B) Vis spectra of Cooper (II) complexes with metformin and (C) molar absorptivity
spectra calculated with HypSpec2014 [32]. [L] = 4 mM; [Cu2+] = 2 mM; path length 1 cm.

Figure 5. 1H-NMR spectra of (A) Cu(II)/metformin titration; pH 7.4; (B) Cu(II)/metformin (0.05:1) pH titration.
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In the 1H-NMR experiments, the addition of paramagnetic Cu(II) to the solution
caused signal broadening due to the paramagnetic contribution of Cu(II) to the spin-
lattice relaxation (R1) rates of H protons. Figure 5A shows the results of metformin
titration with Cu(II) ions at fixed pH (7.4), while Figure 5B presents the chemical shifts
of Cu(II)/metformin complex protons in the pH range 4–9. The 1H-NMR spectrum of
metformin at pH 7.4 (Figures 1 and 5A) shows two signals, which can be attributed to
NE proton and methyl group protons. The addition of copper (II) ions to the metformin
solution leads to a broadening of the signal, suggesting complex formation in the vicinity
of protons.

At pH 4.0, nearly 100% of [CuLH]3+ complex is formed (Figure 4A) and in the 1H-
NMR spectrum of Cu(II)/metformin solution (Figure 5B), two signals attributed to NB,
ND and NE protons and one signal from methyl groups can be observed. At pH 5.0, all
tree signals are shifted upfield, while a further pH increase leads to drastic lowering of
amine proton signals and upfield shift of methyl protons. At pH 9.0 only the methyl
protons can be observed. Of note, the potentiometric-Vis titration does not show changes
in the complex stoichiometry in the pH range 7–9 (Figure 4), while 1H-NMR spectra
present proton translocation (Figure 5). Such phenomenon was previously studied by
X-ray crystalography of Cu(II)/metformin complexes in different pH conditions [44,45].

Among five known X-ray structures of Cu(II)/metformin, three include neutral met-
formin (CSD code: AJUHUJ, HIBPOX, and HIHDUX; Figure S2A–C) and the other two
structures were made under basic conditions (CSD code: EFIXUM and ETOFOI), where
NC has no proton (Figure S2D,E). Of note, structures AJUHUJ, HIBPOX, and HIHDUX are
perfectly planar, while in EFIXUM and ETOFOI structures, the planarity is perturbated.

It remains uncertain if metformin can bind Cu(I) and form adducts with biologically
important molecules such as peptides. In water, Cu(II) is more stable than Cu(I), while in
living organisms, Cu(I) is tightly bound by specific proteins to avoid potentially damaging
redox reactions. It is likely that metformin will be forced to interact with protein/amino
acid-bound copper ions, in particular with copper (I), and compromise the vast majority of
intracellular copper ions [2]. As shown by Repiscak et al. [2], NB and ND atoms have sp2-
hybridization, similar to that of imidazole in histidine, which means that π-backbonding
can occur and stabilize the oxidation state of Cu(I) by transferring electron density into the
π-orbitals of the ligand.

In a recent study of the antimicrobial activity of Cu(II)/metformin complexes, Olar
et al. [46,47] showed with cyclic voltammogram a [CuII(metformin)2]2+ reduction peak
(against Ag/AgCl electrode) at 320 mV and an oxidation peak at 490 mV, giving an
E1/2 of 405 mV, which lies in the range of the reduction potentials of copper-containing
enzymes [48].

Previous theoretical calculation studies by Repiscak et al. [2] showed that metformin
can form stable complexes both with Cu(II) and Cu(I). Importantly, the Cu(II) complexes
are more than 200 kcal/mol more stable than Cu(I) complexes due to stronger Coulomb
and orbital interactions.

GSH (Scheme 3) is a tripeptide composed of γ-glutamic acid, cysteine, and glycine,
with an intracellular concentration of 1–10 mM in mammalian cells [49]. Under normal
conditions, the majority of cellular GSH is present in a reduced form. Oxidation into GSSG
occurs under direct interaction with free radicals. GSH metabolism has a complicated role
in both cancer and antineoplastic therapy. While GSH is important in the detoxification
of carcinogens, its elevated state in many types of tumor may also increase resistance to
chemo- and radiotherapy [50–53].

Although metformin-metal complexes have been studied with numerous analytical
techniques, including NMR, EPR, and IR spectrometry and voltammetry, this work used
free copper ions, while in biological systems, copper ions are bound to proteins or peptides.
In our studies, we investigated complex formation of GSH both with Cu(I) and Cu(II),
and studied the interaction of the chelate with metformin (Figure 6). The characteristic
feature in the 1H-NMR spectrum is the broadness of each signal upon addition of copper
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ions. Cu(I) is a diamagnetic ion, and signal broadening is indicative of a slowing down of
the motion of the complex solution, probably due to the formation of polymeric species
(GS−-Cu(I)) and/or the exchange between complexes of differing stoichiometries [54].

Scheme 3. Chemical structure of GSH. Letters A–J are used for the assessment of protons in the dis-
cussion section. The chemical shift assignment can be compared with the literature data (Figure S3).

In solutions containing GSH and Cu(I) ions (Figure 5A), all signals of GSH are lowered
and additional signals (*) at ~3.5 and ~1.0 ppm appear, which show Cu(I)/GSH complex
formation. The addition of metformin to the complex solution leads to the lowering of all
signals and appearance of signal (�) at 2.88, which can be associated to free metformin.

The addition of Cu(II) ions into the solution of GSH leads to the broadening of all
signals and the appearance of new signals (*) at ~7.98 and ~2.98 ppm, suggesting metal
complex formation. The addition of metformin to the complex solution leads to the
lowering of all signals and appearance of signals (�) at 2.99 and 2.88 ppm, which can be
attributed to metformin complexed with copper and free metformin, respectively.

There is only one crystal structure of oxidized GSSG with copper (II) ions [55], where
copper (II) ions are coordinated by two deprotonated peptide nitrogens, the glutamic
amine nitrogen, and the glycinyl terminal carboxylate oxygen in an approximate planar
coordination, while the cysteinyl sulfur is bonded apically to form a square pyramid. In
our experimental conditions, glutathione is present in the reduced form (GSH) and the
1H-NMR chemical shift pattern for Cu(II) complex (Figure 6B) supports the coordination
scheme presented by Miyoshi et al. in the solid state [55]. The chemical shift pattern for
Cu(I) complex (Figure 6A) is slightly different and suggests greater involvement of the
glutamic amine nitrogen and deprotonated glycine peptide nitrogen. The signal lowering
of the copper/GSH complexes upon addition of Metf suggest the formation of ternary
Metf/copper/GSH complexes, but the exact structure of such adducts needs to be further
elucidated with additional studies.

The presented results show the formation of stable Cu(II)/metformin complexes,
which can form adducts with GSH, one of the main peptides involved in metal intoxica-
tion and antioxidative molecular mechanism. The metal complex formation of Metf and
interaction of copper/Metf complex with biologically active molecules could interfere with
regular molecular process in the cell, and lead to cell death.
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Figure 6. 1H-NMR spectra of (A) GSH; GSH:Cu(I) 1:0.2; GSH:Cu(I) 1:0.5; GSH:Cu(I):metformin 1:0.5:1; (B) GSH; GSH:Cu(II)
1:0.02; GSH:Cu(II) 1:0.05; GSH:Cu(II):metformin 1:0.05:1; at pH 7.4 and under argon conditions. The regions’ ppm without
signals were removed from the figure for simplicity.
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3.3. Metformin and Copper Anticancer Activity

Metformin has been found to exhibit anticancer activity against various tumor types.
Its activity may relate to either targeting of the adenosine monophosphate-activated pro-
tein kinase (AMPK) pathway with subsequent inhibition of mTOR signaling, or through
reducing insulinemia and glycemia. Copper is usually found in very high concentrations
in cancer tissues, since it promotes angiogenesis and many other important biological
processes.

In recent studies, Lu et al. [56] showed that metformin is cytotoxic to human gastric
cancer AGS cells. Their results demonstrated that metformin significantly reduced cell
viability at 20 mM for 12 h, in a concentration- and time-dependent manner. Metformin-
treated AGS cells also had morphological alterations, such as cell shrinkage, nuclear
condensation, membrane blebbing, and rounding. Thus, metformin suppressed AGS cell
growth via induction of apoptotic death. Additionally, Lu et al. [56] demonstrated that
metformin has no significant effect on the viability of normal colon CCD 841 CoN cells
and embryonic lung HEL 299 cells and 293 cells when used in a concentration range of
10–50 mM for 48 h. Contrasting data are also reported in literature, however [5].

In our study, we assessed the anticancer properties of metformin in vitro against
colorectal cancer (SW1222) and leukemia (K562) cell lines, and studied the effect of copper
(II) ions on the anticancer activity. Furthermore, we aimed to explore the potential of
metformin and its copper complexes as an anticancer agent, using the K562/Adr200
leukemic cell line, which exhibits multidrug resistance (MDR)—a major challenge in
chemotherapy.

Human colorectal adenocarcinoma (SW1222) (Merck, Germany), chronic myeloge-
nous leukemia (K562), and the adriamycin-resistant K562/Adr200 SW1222 cell line were
treated with 20 µM, 1 mM, 5 mM, 10 mM, 15 mM, and 50 mM of metformin [56]. Effects
were assessed after 72 h of culture. Immunostaining of SW1222 actin fibers and nuclei
showed shrinkage and rounding of cells as the concentration of metformin was increased
(Figure 7A,C). At 15 mM and 50 mM metformin, cell shrinkage and rounding was dramat-
ically increased (Figure 7B,C). Moreover, metformin induced the loss of stress fibers in a
large number of cells at the same concentrations (Figure 8C). Interestingly, both K562 and
K562-200 were more sensitive to the effect of metformin, showing a loss of actin stress fibers
at concentrations as low as 1 mM and 20 µM sequentially (Figure 7A, Figures S6 and S7).
Notably, 20 µM is close to the plasma concentration of metformin in T2DM patients [57].
Cell viability was measured by live/dead assay, measuring the luminescent signal, which
is proportional to ATP produced in viable cells. ATP from untreated SW1222 cells was
compared to cells treated with various doses of metformin. A significant difference was
found at 5, 10, 15 mM, and 50 mM (p values of p = 0.04, p = 0.05, p = 0.02 and, p = 0.006,
respectively) (Figure 7C). Similarly, K562 cells were also sensitive to metformin, with signif-
icant differences in the amount of ATP produced when comparing treated and non-treated
populations (Figure 7C). Interestingly, the effect of metformin on the MDR leukemic cell
line K562-200 was the strongest, as shown by the drastic inhibition of the ATP release as
metformin concentration increases. The P values were found to be p = 0.006 at 20 µM and
p < 0.001 at all the remaining metformin concentrations (Figure 7C). The IC50 for metformin
was accordingly calculated and found to be 15.6 mM for SW1222, 851.2 µM for K562, and
63.1 µM for K562-200 (Figure 7B). Live/Dead staining of cells in the three cell lines showed
a concentration dependent decrease in the proportion of live cells, which was more evident
in the MDR leukemic cell line K562-200 (Figure 8A,B, Figures S5–S7).

Three concentrations of metformin were selected for subsequent experiments based
on the observed effects on cell viability and proliferation: 10 mM, 15 mM, and 50 mM. To
test the effect of Cu(II) on the properties of metformin (Figure 9), copper (II) sulfate was
used in the following concentrations: 5 µM, 100 µM, 400 µM, and 5 mM [58]. To identify the
causative factor for the observed effect on the cells at every concentration, each experiment
included an untreated controls for both metformin and Cu(II).
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Figure 7. Effect of metformin on colorectal cancer cells (SW1222), leukemic cells (K562), and multidrug resistance (MDR)
leukemic cells (K562-200) (A) Immunostaining of actin fibers (orange) and nuclei (blue) of SW1222 (left) and K562-200
(right). The fluorescent images show differences in morphology between non-treated cells and cells treated with 15 mM
and 50 mM of metformin (scale bar 100 µm). (B) Half-maximal inhibitory concentration (IC50) of metformin for SW1222
(IC50 = 15.6 mM), K562 (IC50 ≈ 1 mM), and K562-200 (IC50 = 63 µM) cell lines. (C) Cell proliferation of SW1222, K562, and
K562-200 cells before and after treatment with different concentrations of metformin. ATP release (a measure of cell viability)
from SW1222, K562, and K562-200 cells treated with 0 µM, 20 µM, 1 mM, 5 mM, 10 mM, 15 mM, and 50 mM of metformin.

In 5 mM Cu(II), almost all cells died, regardless of metformin concentration. In the
absence of metformin, Cu(II) had only a slight negative impact on cell proliferation at
5 µM and 100 µM. However, at 400 µM, Cu(II) led to the inhibition of cell proliferation
in ≥50% of the cells in the three cell lines. Addition of 5 µM and 100 µM Cu(II) com-
bined did not have any noticeable effect on the properties of metformin, regardless of
the concentration. However, when 400 µM of Cu(II) was added with 10 mM metformin,
the resulting inhibition of cell proliferation was double that caused by metformin alone.
This was similar to the inhibition caused by 400 µM Cu(II) in the absence of metformin.
An exception was K562, where the normalized ATP percentages were 35.2% at 10 mM
metformin, 47.2% at 400 µM Cu(II), and 22.5% in metformin and Cu(II) combined at the
same concentrations. Furthermore, at 400 µM of Cu(II), inhibition of cell proliferation
caused by 15 mM metformin was increased by >40% in the three cell lines in comparison to
metformin alone. In SW1222, inhibition from metformin and Cu(II) combined was similar
to that of the Cu(II) alone. Interestingly, both of the leukemic cell lines did not grow as
well in metformin and Cu(II) combined than either alone. At 50 mM of metformin, the
addition of 400 µM copper (II) sulfate led to a considerable increase in the inhibition rate in
SW1222, K562, and K562-200 cell lines by 80%, 66%, and 39%, respectively, when compared
to 50 mM metformin in the absence of copper and 79%, 85.6%, and 77.6%, respectively,
when compared to copper in the absence of metformin. These results were confirmed by
observations from the fluorescent immunostaining.
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Figure 8. Effect of metformin on cell viability and actin fiber organization. (scale bar 100 µm) (A,B) Bright field images of
SW1222 and K562-200 (top), showing the appearance of apoptotic morphology in the presence of metformin at the selected
concentrations. Live/dead staining of SW1222 and K562-200 (bottom), showing a concentration-dependent decrease in cell
viability as the metformin concentration increases. (C) Confocal images showing the effect of metformin on actin fibers
organization and cell morphology in SW1222. Cell shrinkage and rounding was observed with increasing concentrations of
metformin.
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Figure 9. Effects of copper (II) on the anticancer properties of metformin. (A) ATP luminescence readings from SW1222,
K562, and K562-200 cell lines treated with metformin and copper, normalized against untreated cells. (B) Comparison
between the effects of either metformin, copper sulfate, or metformin and copper sulfate combined. (C) Fluorescent images
of SW1222 cells showing the effect of 15 mM metformin, 400 µM copper sulfate, or both combined. (scale bar 100 µm).

Our results suggest that metformin has anticancer potential against human colorectal
adenocarcinoma (SW1222) and chronic myelogenous leukemia (K562) cell lines. Moreover,
metformin also suppresses growth of the K562/Adr200 cell line, at concentrations that
match the plasma concentration of the drug in diabetic patients (20 µM) [57]. These results
confirm several previous studies showing the activity of metformin against different types
of cancer [59–61]). The anticancer effect of metformin was found here in cell viability assays
and in morphological changes observed in the cell microscopically. Moreover, we found
that the sensitivity of cancer cells to metformin varies greatly depending on the cancer
type [62]. The difference in the antiproliferative effect might be attributed to differences in
the actual mechanism of action of metformin that leads to this outcome, as described in
several studies [63–65].

We also assessed the effect of Cu(II) on the anticancer property of metformin. Among
metals, copper is known for its role as a cofactor in many biological pathways. More impor-
tantly, copper is also found to accumulate in tumors, and due to the selective permeability
of cancer cell membranes, this makes it an interesting metal in which to study the effects of
its complex formation with metformin [66–68].
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We found that Cu(II) at 400 µM led to enhanced antiproliferative effects of metformin
on three cancer cell lines. This effect is similar to a previous report of copper complexes
working as topoisomerase inhibitors and, thus, influencing DNA topology [69].

4. Conclusions

Metformin has been an economical first-line treatment in T2DM for decades. Life-
long metformin treatment in millions of diabetics has highlighted the numerous side
effects and correlations in the co-occurrence of other diseases, including cancer. There
is growing data suggesting the anticancer effects of metformin. Our work shows that
metformin has three protonation sites and can form stable complexes with copper (II) ions
in water. Moreover, Cu(II)/metformin and Cu(I)/metformin form adducts with GSH, an
intracellular anti-oxidative peptide, which accumulates at high levels in cancer cells.

In vitro cell cultures of the cancer cell lines SW1222, K562, and K562-200 (a multi-
drug resistant form of K562) confirmed the anticancer activity of metformin on three
cell lines representing two of the most common types of cancers worldwide (colorectal
cancer and chronic myeloid leukemia). Additionally, we showed antiproliferative effects
of metformin against K562/Adr200, an MDR leukemic cell line. Moreover, our data
show that Cu(II) might enhance the antiproliferative effect of metformin on cancer cells,
dependent on concentration. These findings may lead to new potential options in cancer
treatment. Future studies on the effects of combining Cu(II)− metformin with known
chemotherapeutic agents might lead to important findings related to cancer treatment.

Supplementary Materials: The supplementary materials are available online. Figure S1: ESI-MS
spectrum of metformin and Cu(II)/Metformin complexes. Enlargement boxes: Comparison of
signals of Copper/(metformin (=L) complexes with simulated spectra (Down). Figure S2: X-ray
structures AJUHUJ (A), HIBPOX (B), HIHDUX (C), EFIXUM (D) and ETOFOI (E) of Cu(II)/Metformin
complexes in different experimental conditions. Data available in CCDS database. Figure S3: 1H-
NMR spectrum and proton assigned of GSH according to SDBS database (https://sdbs.db.aist.
go.jp/sdbs/cgi-bin/cre_index.cgi, accessed on 9 July 2021). Figure S4: 1H NMR prediction of
metformin by Chemdraw. Figure S5: Anticancer effect of metformin on colorectal cancer (SW1222)
cells. (A) Live/dead staining of SW1222 cells treated with different concentrations of metformin.
The fluorescent images show live cells (green) and dead cells (red). (B) High resolution confocal
images of SW1222 showing actin fibers organization (red) and nucleus (blue). Scale bar (100 µm).
Figure S6: Anticancer effect of metformin on leukemic cell line (K562). (A) Live/dead staining of
K562 cells treated with different concentrations of metformin. The fluorescent images show live
cells (green) and dead cells (red). (B) High resolution confocal images of K652 showing actin fibers
organization (red) and nucleus (blue). Scale bar (100 µm). Figure S7: Anticancer effect of metformin
on MDR leukemic cell line (K562-200). (A) Live/dead staining of K562-200 cells treated with different
concentrations of metformin. The fluorescent images show live cells (green) and dead cells (red). (B)
High resolution confocal images of K652-200 showing actin fibers organization (red) and nucleus
(blue). Scale bar (100 µm). Figure S8: Anticancer effect of metformin on SW1222 cells in the presence
and absence of copper sulfate. Scale bar (100 µM). The fluorescent images show cells shrinking
and rounding with increasing concentrations of metformin with complete disappearance of actin
fibers at the highest concentration used. Figure S9: Anticancer effect of metformin on K562 cells in
the presence and absence of copper sulfate. Scale bar (100 µM). The fluorescent images show cells
shrinking and rounding with increasing concentrations of metformin with complete disappearance of
actin fibers at the highest concentration used. Figure S10: Anticancer effect of metformin on K562-200
cells in the presence and absence of copper sulfate. Scale bar (100 µM). The fluorescent images
show cells shrinking and rounding with increasing concentrations of metformin with complete
disappearance of actin fibers at the highest concentration used. Figure S11: Effect of copper on the
anticancer properties of metformin. Comparison between the effect on cancer cells of 10 mM (left)
and 50 mM (right) metformin in the absence and presence of different concentrations of copper
sulfate and the effect of copper sulfate on the same cells in the absence of metformin. (error bars
different color). Figure S12: X-ray structures of Cu(II)/GSSG complex 1. Data available in CCDS
database (https://www.ccdc.cam.ac.uk/structures/, accessed on 9 July 2021). Table S1: Effect of
Cu(II) on the anticancer properties of metformin.
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https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
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