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Abstract: The coronavirus disease 2019 (COVID-19) represents a global concern of public health
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its clinical manifestations
are characterized by a heterogeneous group of symptoms and pictures (ranging from asymptomatic to
lethal courses). The prevalence of conjunctivitis in patients with COVID-19 is at present controversial.
Although it has been reported that only 0.9% developed signs of conjunctivitis, other report indicates
that up to 31.6% of hospitalized patients had conjunctivitis. Considering the widespread use of topical
ophthalmic medications (e.g., eye drops) by the general population, for various reasons (e.g., artificial
tears, anti-glaucoma medications, topical antibiotics, etc.), the existence of their side effects as
antiviral action should be investigated in-depth because it could possibly explain the aforementioned
controversial data and represent a potential antiviral treatment for SARS-CoV-2 replication/diffusion
on the ocular surface. Here, we discuss and elucidate the antiviral side effect of many eye drops
and ophthalmic ointments commonly used for others purposes, thus showing that these secondary
effects (not to be confused with the ‘adverse effects’) might be of primary importance in a number of
viral infections (e.g., those for which there is no validated treatment protocol), according to a drug
repurposing approach. Some active ingredients or excipients described here have activity against
other types of viruses, thus suggesting potential broad-spectrum applications.

Keywords: coronavirus disease 2019 (COVID-19); coronavirus; severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2); eye drop; therapy; treatment; antiviral; repurposing; drug; ocular surface

1. Introduction

The coronavirus disease 2019 (COVID-19) represents a global concern of public health that quickly
spread around the world in early 2020 [1,2]. The origin of this disease is infectious, being caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its clinical manifestations are
characterized by a heterogeneous group of symptoms and pictures (ranging from asymptomatic to
lethal courses).

Ocular involvement of COVID-19 and the potential role of the eye as a transmission route of
SARS-CoV-2 have been previously described by several authors [3]. Accordingly, the detection of
specific cell-surface receptors on the ocular surface, called angiotensin converting enzyme 2 (ACE2),
and proteins promoting the binding between the virus and the host cell, named transmembrane protease
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serine 2 (TMPRSS2), is of considerable importance for understanding the presence of SARS-CoV-2 at
eye level [3].

Apart from the problem of interpersonal transmission of COVID-19 through conjunctiva and
the relative issues on the presence and replication of the virus at the level of human tears and ocular
surface epithelia, the appearance of conjunctivitis in COVID-19 may be presumed to be not uncommon
on the basis of inherent ocular tropism of other viral upper respiratory tract infections (adenovirus
being the most common). Although the eyes are not the main transmission routes of SARS-CoV-2 [4],
conjunctivitis can be the first presenting symptom of COVID-19, before the appearance of other
symptoms, such as cough and fever [5–7].

The prevalence of conjunctivitis in patients with COVID-19 is, at present, controversial. Although it
has been reported that only 0.9% of patients developed signs of conjunctivitis [8], another report
indicates that up to 31.6% (12 cases out of 32 patients) of hospitalized patients had conjunctivitis [9].

Considering the widespread use of topical ophthalmic medications by the general population for
various reasons (e.g., artificial tears, anti-glaucoma medications, topical antibiotics, etc.), the existence
of side effects as an antiviral action should be investigated in-depth because it could possibly explain
the aforementioned controversial data and represent a potential antiviral treatment for SARS-CoV-2
replication/diffusion on the ocular surface.

Here, we discuss and elucidate the antiviral side effect of many eye drops and ophthalmic ointments
commonly used for others purposes, thus showing that these secondary effects (not to be confused with
the “adverse effects”) might be of primary importance in a number of viral infections (in particular,
those for which there is no validated treatment protocol), according to a drug repurposing approach.

2. Drug Repurposing Approach: Potential Antiviral Action of Drugs in Eye Drops and
Ophthalmic Ointments

An attractive alternative strategy of drug discovery is that of the drug repurposing approach,
which eliminates the high costs and the time required for the de novo drug development. This is
possible through the identification (sometimes accidental or fortunate) of some side effects (which are
different from the adverse effects) of existing and available (approved) drugs. A famous example in
ophthalmology is represented by bevacizumab (Avastin®, Roche, Genentech, South San Francisco, CA,
USA) for wet age-related macular degeneration (original indication: colorectal cancer). Despite the
fact that specific antivirals for SARS-CoV-2 are in development, the drug repurposing approach may
suggest additional therapeutics for the ongoing pandemic.

For example, drugs that have demonstrated efficacy in vitro and in animal studies may be included
in a panel of broad-spectrum antivirals for emerging viruses. This may be particularly useful in
countries under emergency and for healthcare workers, for whom an extension of treatment options is
very important during an epidemic.

Several researchers have identified and analyzed the antiviral activity of drugs found in various
eye drops and ophthalmic ointments, including coronaviruses.

In this article, we summarize different classes of drugs with antiviral activity that have a
repurposing potential (Table 3). Some active ingredients or excipients described here have activity
against other types of viruses, thus suggesting potential broad-spectrum applications. Clearly,
none of the therapies reported in the present article are suggested for clinical use outside a clinical
experimental setting.

In our analysis, seven main categories of drugs contained in topical ophthalmic preparations
were considered for their widespread use among patients (excipients, antiseptics, artificial tears,
anti-glaucoma medications, antibiotics/antifungals, antiallergic eye drops, and anti-inflammatory
ophthalmic preparations).
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Table 1. A panel of broad-spectrum antivirals in topical eye medications from the drug repurposing approach.

Original Indication Repurposing Potential as Antiviral Note

Benzalkonium Chloride (BAK)
(0.015–0.05%) Preservative (Detergent)

e.g., DNA (HSV-2, CMV, Adenovirus, BK Virus) and
RNA (RSV, Enterovirus, Norovirus, Porcine Epidemic

Diarrhea) Viruses

Controversial Results for SARS-Cov-2
(See Text)

Chlorobutanol Preservative (Detergent) e.g., HBV -

Sodium Perborate (And Related
Hydrogen Peroxide) Preservative (Oxidative) Broad Antiviral Effect -

Stabilized Oxychloro Complex (SOC)
(Purite®, Bio-Cide International Inc.,

Norman, OK, USA)
Preservative (Oxidative) Broad Antiviral Effect

Balancing Antimicrobial Efficacy and
Toxicity of Currently Available Topical

Ophthalmic Preservatives

Methyl Paraben Preservative (Chelating Agent) Antiretroviral Effect -

Citric Acid Preservative (Chelating Agent)/Buffering
Agent

e.g., Coxsackievirus, Herpesviruses, Porcine Epidemic
Diarrhea Virus (Coronavirus) -

Thimerosal Preservative (Organomercurial) e.g., Pseudorabies Virus Removed from Ophthalmic Preparations
for Toxic Effects

Disodium-Ethylene Diamine
Tetra-Acetate (EDTA) Buffering Agents e.g., Porcine Epidemic Diarrhea Virus (Coronavirus) -

Phosphate-Buffered Saline Buffering Agents e.g., Porcine Epidemic Diarrhea Virus (Coronavirus) -

Sodium Bicarbonate Buffering Agents e.g., Calicivirus -

Boric Acid Buffering Agents e.g., White Spot Syndrome Virus (WSSV) -

Povidone Iodine (<0.76% Free Iodine) Antiseptic Agent SARS-Cov-2 and Others In Suspension Tests and Contact Times of
5 Min

Sodium Hypochlorite (At Least 0.21%) Antiseptic Agent e.g., MHV -

Chlorhexidine Antiseptic Agent e.g., Coronaviruses Modest Antiviral Action

Hexamidine Antiseptic Agent e.g., Coronaviruses Weak Antiviral Action

Polyhexamethylene Biguanide (PHMB) Antiseptic Agent e.g., HIV, Herpesviruses, HPV -

Phenolic Compounds Antiseptic Agent Broad Antiviral Effect Weak Antiviral Action

High Molecular Weight Hyaluronic Acid Artificial Tear Coxsackievirus, Influenza Virus, HSV-1, Porcine
Parvovirus (Coronavirus)

Mild Inhibition Of HSV-1 and Porcine
Parvovirus

Trehalose Artificial Tear e.g., EMC Virus -

Carbopol Artificial Tear e.g., HSV-1/HSV-2, HZV -
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Table 2. A panel of broad-spectrum antivirals in topical eye medications from the drug repurposing approach.

Original Indication Repurposing Potential as Antiviral Note

Lactoferrin Artificial Tear e.g., HIV, CMV -

Chamomile Oils Artificial Tear (Vegetal Extract) e.g., Herpesviruses -

Echinacea Purpurea Artificial Tears (Vegetal Extract) e.g., HSV-1 -

Rubus Fruticosus (Blackberry) Artificial Tears (Vegetal Extract) e.g., HSV-1 -

Ginkgo Biloba Artificial Tears (Vegetal Extract) e.g., Influenza A H3N2, HBV, Porcine Parvovirus
(Coronavirus) -

Centella Asiatica Artificial Tears (Vegetal Extract) e.g., HSV-1, Vesicular Stomatitis Viruses (VSV) -

Foeniculum Vulgare Artificial Tears (Vegetal Extract) e.g., Bluetongue Virus -

Aloe Vera Artificial Tears (Vegetal Extract)
e.g., SARS-CoV, CMV, Enterovirus 71, Japanese

Encephalitis Virus, Herpesviruses, Influenza A Virus,
Haemagglutinating Viruses

Aloe Emodin is an Anthraquinone and a
Variety of Emodin Present in Aloe Latex,

An Exudate From the Aloe Plant. In
Some Cases, Aloe Emodin is Obtained and
Studied After Extraction from the Isatis

Indigotica

Glycerol Artificial Tears (Excipient) e.g., HIV-1 -

L-Carnitine Artificial Tears (Excipient) e.g., HIV-1 -

Ozonated Oils Artificial Tears (Excipients) e.g., Plant Viruses, Coronavirus
Presumed Antiviral Action on

SARS-Cov-2 Based on Oxidation of
Specific Viral Receptors in Cellular Plants

Zinc Artificial Tears (Excipient)/Astringent
Eye Drops SARS-Cov-2

Blocking of Viral Replication by
Inhibiting SARS-Cov-2 Polymerase

Activity

Acetylcysteine Artificial Tears (Antioxidant) e.g., HIV-1 -

Vitamin A Artificial Tears (Antioxidant) e.g., Norovirus -

Vitamin C Artificial Tears (Antioxidant) e.g., Herpesviruses -

Vitamin D Artificial Tears (Immunomodulator) e.g., HCV By Improving Innate or Therapeutic
Antiviral Response to Various Viruses

Chloroquine Artificial Tears (Immunomodulator) SARS-Cov-2, Retroviruses, Flaviviruses, And
Coronaviruses

Inhibition of the Ph Linked Steps of Viral
Replication

Timolol Maleate Anti-Glaucoma Eye Drops e.g., HSV-1 -

Dorzolamide Anti-Glaucoma Eye Drops e.g., Influenza Viruses -

Brinzolamide Anti-Glaucoma Eye Drops e.g., H3N2, H1N1, Avian H5N2, H7N1 Influenza
Viruses -
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Table 3. A panel of broad-spectrum antivirals in topical eye medications from the drug repurposing approach.

Original Indication Repurposing Potential as Antiviral Note

Azithromycin Antibiotic SARS-Cov-2 Infection -

Tetracyclines Antibiotic SARS-Cov-2 Infection -

Fluoroquinolones Antibiotic e.g., Influenza Virus, Polyomavirus BK -

Aminoglycosides Antibiotic e.g., Influenza A Virus, Japanese Encephalitis Virus -

Chloramphenicol Antibiotic e.g., Herpetic Stomatitis, Herpes Labialis -

Colistin Antibiotic e.g., Mycobacteriophage D29 -

Fusidic Acid Antibiotic e.g., HIV, JC Virus -

Itraconazole Antifungal e.g., Parechovirus A3 (Picornaviridae), Influenza Virus -

Posaconazole Antifungal e.g., ParechovirusA3 (Picornaviridae) -

Amphotericin B Antifungal e.g., Vesicular Stomatitis Virus, HSV-1, HSV-2, Sindbis
Virus, Vaccinia Virus -

Ketotifen Fumarate Anti-Allergic e.g., Dengue Virus Controversial Results for Herpesviruses
(See Text)

Chlorcyclizine Anti-Allergic e.g., HCV, Filoviridae (Ebola Virus, Marburg Virus and
Cuevavirus) -

Chlorpheniramine Anti-Allergic e.g., Influenza A Virus -

Diphenhydramine Anti-Allergic e.g., Filoviridae (Ebola Virus, Marburg Virus and
Cuevavirus) -

Flavonoids Anti-Allergic/Artificial Tear e.g., HSV-1, Polio-Virus Type 1, Respiratory Syncytial
Virus (RSV) Broad Effect on Eye Disease (See Text)

Cyclosporine Anti-Allergic e.g., HCV, Flavivirus, Influenza Virus Broad Effect on Inflammatory Eye
Disease (See Text)

Indometacin Non-Steroidal Anti-Inflammatory Drugs
(NSAIDs) e.g., HSV-1 -

Bromfenac Non-Steroidal Anti-Inflammatory Drugs
(NSAIDs) e.g., HSV-1 -

Different types of active ingredients and excipients commonly contained in ophthalmic preparations that show antiviral side effects against various viruses (in addition to their primary use).
These substances can have a broad-spectrum action, possibly including inhibition of replication/diffusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the ocular
surface. Abbreviations were as follows: Herpes simplex virus (HSV); Herpes simplex virus type 1 and/or 2 (HSV-1 and/or HSV-2); Herpes zoster virus (HZV); Cytomegalovirus (CMV);
Hepatitis B virus (HBV); Hepatitis C virus (HCV); Human immunodeficiency virus (HIV); Human papillomavirus (HPV); BK virus: this infectious agent is a member of the polyomavirus
family (it was first isolated in 1971 from the urine of a kidney transplant patient; initials B.K.); John Cunningham virus (JC virus or Human polyomavirus 2); Mycobacteriophage D29:
this infectious agent is a Cluster A mycobacteriophage, belonging to the Siphoviridae family of viruses (notable for its ability to infect M. tuberculosis); Mouse hepatitis virus (MHV);
Encephalomyocarditis virus (EMC).H(X)N(Y): Influenza A viruses. Based on two proteins on the virus surface, i.e., hemagglutinin (H) and neuraminidase (N), these infectious agents are
classified into different subtypes: H1N1 (the common cause of human influenza and generally associated with the Spanish flu), H3N2 (commonly associated with swine flu or seasonal
H3N2 flu), H5N2 or H7N1 (generally associated with avian influenza virus or bird flu virus). e.g., -exempli gratia.



J. Clin. Med. 2020, 9, 2441 6 of 16

3. Literature Review

A review of the literature for original articles published up to 23 May 2020 was conducted,
utilizing Pubmed, Web of Science, Embase, Google Scholar, and Scopus Databases, using the terms
“antiviral” and each of the following words relating to a number of topical ophthalmic medications
(Bolean operator ‘AND’): “artificial tear”, “antiseptic”, “antibiotic”, “anti-glaucoma”, “antiallergic”,
“anti-inflammatory”, “preservatives”, ”buffering agents”, “excipients”, and “antimicrobials”, without
any limitation. In addition, manual screening was performed on the reference list of recovered studies
for any additional research.

Four independent investigators (P.E.N., L.M., P.G., M.B.) carried out the research. The duplicates
have been removed. All titles and abstracts of all citations were analyzed individually. Full texts of the
articles deemed potentially eligible were obtained and assessed individually for eligibility.

From 2138 articles retrieved using these searches, we selected 94 papers for our review. In particular,
studies that did not focus on the antiviral effect of substances commonly contained in topical ophthalmic
preparations for different purposes and documents without new insights into a repurposing potential
were excluded.

4. Preservatives and Buffering Agents (Excipients)

A level of antimicrobial activity is provided by most eye drops and ophthalmic ointments
through the use of preservatives, e.g., in association with artificial tears, anti-glaucoma medications,
miotics, anti-inflammatories (nonsteroidal anti-inflammatory drugs, anti-allergics, corticosteroids),
or antimicrobial formations (antibacterials, antifungals, antivirals). These chemical additives permit a
reduction of ocular infections due to contaminated bottles and a prolonged efficacy of active ingredients
or other excipients (i.e., maintaining their functionality and decreasing their biodegradation). For these
purposes, oxidants (which deactivate the intracellular enzymes of the microbes and/or alter their
nucleic acids, as well as other proteins and lipid components), detergents or surfactants (which
non-specifically damage cell membranes), metabolic inhibitors, and chelating agents are commonly
used in eye drops [10].

The most widely used preservatives in the market are benzalkonium chloride (BAK; a detergent
frequently used in concentration varying from 0.015% to 0.05%), sodium perborate (an oxidative
agent that acts by forming hydrogen peroxide), chlorobutanol (detergent), methyl paraben (chelating
agent), and stabilized thimerosal (organomercurial). In addition, although disodium-ethylene diamine
tetra-acetate (EDTA) and phosphate-buffered saline are not considered as preservatives, they are often
included in the formulations of the eye drops as buffering agents [10].

Although an antiviral effect is theoretically possible with all the aforementioned preservatives,
those that have so far proven a potential efficacy are as follows: sodium perborate (and related
hydrogen peroxide), stabilized oxychloro complex (Purite, an oxidative agent), citric acid (chelating
agent/buffering agent), sodium bicarbonate (buffering agent), and boric acid (buffering agent) [11–14].

Counterintuitively, incongruous data concern quaternary ammonium salt derivates
(e.g., BAK) [13,15–19]. In fact, although the latter are generally considered to have virucidal
activity against all lipid enveloped viruses [13], some authors claim their inefficiency against
SARS-CoV-2 [15,17,19]. In this sense, a question that remains unanswered is as to whether intact
RNA alone is an infectious agent, in particular after the COVID-19 virus has lost its envelope due
to surfactant-mediated destruction (similar to non-enveloped viruses) [15,17]. Moreover, BAK is a
preservative surfactant widely used in eye-drop formulations, but it has many issues regarding its
capacity to alter the corneal epithelium, thus potentially increasing permeability of compounds (as
active ingredients) and/or infectious agents through this anatomical barrier [11].

On the other hand, thimerosal has been removed from most of the eye drops for its toxic effects on
ocular surface epithelia [10].
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5. Antiseptic-Disinfectant Agents

Disinfectants represent chemical agents mainly used to inactivate or destroy microorganisms on
inert surfaces. On the contrary, antiseptics destroy microorganisms on living tissue. Given the lack of
specific antiviral treatments for COVID-19, a deeper knowledge of the potential efficacy of available
antiseptic disinfectants on viruses is very desirable. Clearly, the time of exposure, the concentration,
and the formulation of chemicals are all factors influencing the antiviral action of each agent.

In general, several antiseptic disinfectants are currently recommended to prevent environmental
transmission of the COVID-19 virus. Nevertheless, enveloped viruses, such as SARS-CoV-2, are not
easily inactivated by different antiseptic disinfectants, such as quaternary ammoniums compounds,
hexamidine, phenolic compounds, or chlorhexidine [17].

With regards to the formulations available for ophthalmological use, the most common and
potentially interesting are those based on povidone iodine and sodium hypochlorite. Of note, some
authors demonstrated that, in suspension tests and for contact times of 5 min, povidone iodine (>0.75%
free iodine) can inactivate SARS-CoV-2 infectivity in ~4 log10 or more [changes in viral load can be
reported as a logarithmic change (in powers of 10) in copies of a specific virus in a defined space], as
recommended by the European Standard [19–21]. Additionally, sodium hypochlorite (at least 0.21%)
has shown efficacy against mouse hepatitis virus (a species of coronavirus) and, consequently, should
also be able to inactivate SARS-CoV-2 [19].

The other disinfectants include peroxides and peracids, which promote the production of free
radicals that oxidize essential nucleic acids, lipids, and proteins that lead to virucidal activity (e.g., 0.5%
hydrogen peroxide with an exposure time of 1 min) [19–22].

6. Artificial Tears

Considering that the prevalence of dry eye disease ranges from 5 to 50% in the general population,
it is presumable that this category of eye drops is among the most used by patients. It is interesting
to note that a number of substances contained in these formulations (excluding preservatives and
buffering agents) are endowed of antiviral action. In particular, we would like to recall the following
substances: high molecular weight hyaluronic acid, trehalose, carbopol, and lactoferrin, as well as
chamomile oils or extracts of Echinacea purpurea, Rubus fruticosus (blackberry), Aloe vera (i.e., its exudates
of aloe emodin), Ginkgo biloba, Centella asiatica, and Foeniculum vulgare (Fennel) [23–39].

Other ingredients presumed to have mild virucidal action are glycerol, l-carnitine, and ozonated
oils (O3-Oil) [40–44].

Curiously, excipients commonly classified as antioxidants, i.e., acetylcysteine, vitamin A, vitamin
C (ascorbate), have been shown a variable grade of antiviral action [41,45–48]. Of note, vitamin D has
been shown to improve innate or therapeutic antiviral response to various viruses [49,50].

Overall, artificial tears have been shown to possess several mechanisms of antiviral action against
a wide range of DNA or RNA viruses [23–50]. Interestingly, some polymer constituents (e.g., high
molecular weight hyaluronic acid) and natural extracts (e.g., Ginkgo biloba) have even shown that they
can inhibit some viruses belonging to the Coronaviridae family (e.g., porcine parvovirus). In addition,
some electrolytes contained in artificial tears with the function of maintaining the ocular surface
homeostasis can also have an antiviral effect. For example, zinc (0.25%), which is used as an excipient
or in astringent eye drops, has shown that it can inhibit SARS-CoV-2 polymerase activity, blocking
viral replication [51].

Considering the large market of this category of eye drops, in particular those based on hyaluronic
acid, it is possible to presume that their use may play an important role in protecting the ocular surface
from viral infections in a variable number of patients.

On the other hand, topical application of chloroquine may also have a repurposing potential.
Chloroquine is an anti-malarial drug with immunomodulatory functions that has demonstrated an
antiviral effect through the inhibition of the pH linked steps of viral replication of various viruses
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(e.g., retroviruses, flaviviruses, and coronaviruses), including SARS-CoV-2. In eye drops, chloroquine
has been recently used at a concentration of 0.03% in patients with dry eye [52].

7. Anti-Glaucoma Eye Drops

Glaucoma is the leading cause of global irreversible blindness. Present estimates of global
glaucoma prevalence are not up-to-date and focus mainly on European ancestry populations. The global
prevalence of glaucoma for the population aged 40–80 years is 3.54% and rises progressively by age.

Some drugs used for glaucoma have been shown to affect the clinical course of viral infections.
For example, latanoprost has been associated with herpes virus keratitis, potentially increasing the
severity and recurrence of the disease [53,54]. Similar behavior has been observed with tafluprost,
bimatoprost, and travoprost [55–57].

Conversely, timolol maleate acts as an antiviral agent and it is used in the treatment of viral
infections, such as herpes simplex infections [58].

Of interest, dorzolamide showed antiviral action against oseltamivir-resistant influenza by an in
silico screening, specifically targeting mutant viral neuraminidase [59]. Brinzolamide also showed to
be a moderate inhibitor of viral growth of the H3N2 virus and H1N1 influenza viruses and a weak
inhibitor of avian H5N2 and H7N1 influenza viruses [60].

Overall, glaucoma drugs may have a synergistic action against viral infections, both for the
active ingredients and excipients, but careful monitoring should be suggested for patients treated with
prostaglandin analogues.

8. Antibiotics and Other Antimicrobials

An antibiotic is a type of antimicrobial agent used to fight and prevent bacterial infections.
They can kill and/or inhibit the growth of bacteria. A limited number of antibiotics also have antiviral
activity, since viruses do not have cell walls that can be attacked by antibiotics (but a protective protein
coat) and cannot reproduce on their own, as bacteria do, having to colonize healthy cells and reprogram
them to create new viruses.

Categories of antibiotics with antiviral potential include macrolides (e.g., azithromycin, which
demonstrated activity against SARS-CoV-2), tetracyclines (tetracycline, doxycycline, minocycline,
which have been proposed in the treatment of COVID-19), fluoroquinolones (e.g., ciprofloxacin,
levofloxacin, ofloxacin, which have shown efficacy against polyomavirus BK and influenza virus),
aminoglycosides (e.g., on Japanese encephalitis and influenza A virus infection), chloramphenicol
(e.g., on human Herpesviridae family), Colistin (polymyxin E, for example on mycobacteriophage
D29 infection),and fusidic acid (e.g., on human immunodeficiency virus and John Cunningham virus
infection) [61–70].

Even some antifungals (which are rarely used in ophthalmology) can have a virucidal effect
(e.g., amphotericin B, itraconazole, posaconazole) [71–73].

9. Antiallergic Eye Drops

Allergic eye diseases are another group of pathologies that are very frequent in the general
population [74]. It is estimated that around 20% of the world’s population has an allergic disease,
of which up to 60% has ocular involvement [75]. For these reasons, antiallergic eye drops represent
a large percentage of all eye drops used by patients. The most severe chronic forms, e.g., atopic
keratoconjunctivitis, can be debilitating, particularly when associated with a significant tear film
dysfunction [76]. Complex responses of the immune system are implicated in the activation and
maintenance of these chronic or recurrent inflammatory diseases [77]. Consequently, they may require
prolonged treatments with anti-inflammatory agents in the most severe cases.

Surprisingly, several antihistamines, such as chlorcyclizine, chlorpheniramine,
and diphenhydramine, have demonstrated antiviral action against hepatitis C virus (HCV),
filoviruses (consisting of Ebola virus, Marburg virus, and Cuevavirus), and Influenza A virus



J. Clin. Med. 2020, 9, 2441 9 of 16

infection [78–80]. Of note, ketotifen fumarate has proven to attenuate dengue virus infection [81].
Controversial results of antihistamines in antiviral effects appear to be associated with herpes simplex
virus (HSV) infection [82].

A group of Flavonoids, plant polyphenols that give flavor and color to vegetables and fruits, has
recently gained importance in the pharmaceutical field through its beneficial effects in the prevention
or treatment of different ocular diseases, including allergic eye disorders, dry eye disease, diabetic
retinopathy, macular degeneration, and cataracts [83,84]. In particular, antiviral effects have been
observed against HSV-1, polio-virus type 1, and respiratory syncytial virus (RSV).

Some topical immunomodulators, such as cyclosporine (also used in dry eye therapy), have also
shown antiviral action against HCV, Flavivirus and influenza virus [85–87].

10. Anti-Inflammatory Ophthalmic Preparations

Another interesting category of drugs contained in ophthalmic preparation is that of active
substances in reducing inflammation with a broad spectrum of other effects. These drugs are commonly
subdivided in two categories: non-steroidal anti-inflammatory drugs (NSAIDs) and steroids. Generally,
these eye drops, or ophthalmic ointments, are used to depress or prevent various types of eye
inflammations (e.g., during peri-surgical period or for uveitis) or to control ocular pain (e.g., discomfort
symptoms after cataract surgery).

Interestingly, some NSAIDs have shown antiviral action. However, a short premise is necessary to
understand their function. With regards to the control of recurrences of HSV, latent HSV activation is
generally associated with an increase in prostaglandins (PG), which presumably suppress the inhibitory
effect of interferon (IFN) on replication HSV. In this sense, indometacin and bromfenac has proven to
inhibit HSV-1 replication as they depress PG levels without altering IFN levels [88,89]. On the contrary,
steroids may adversely influence, by suppressing the overall inflammatory response, the processes
acting to inhibit herpetic viruses. Nevertheless, a short course of topical steroids (e.g., dexamethasone)
may be useful for patients with acute, presumed, and aspecific viral conjunctivitis [90–92].

11. Discussion and Conclusions

Although systemic and topical (eye drops/ophthalmic ointments) antiviral medications have been
utilized in a small number of cases by different authors, no specific antivirals are currently available for
SARS-CoV-2 associated conjunctivitis. Overall, this pathology of the ocular surface still leaves many
questions unanswered [3], being associated with some controversial and unclear data.

First, a patient with this conjunctivitis as an earlier symptom may have a negative conjunctival
sac SARS-CoV-2 test, but also the opposite may be observed. According to a recent meta-analysis on
1167 patients, the overall rate of conjunctivitis appears to be 1.1% (13/1149), of which 3% (6/195) and
0.7% (7/954) was found in severe and non-severe forms of COVID-19, respectively [93]. Nevertheless,
an increasing number of conjunctivitis case reports are continuously appearing in literature.

Second, SARS-CoV-2 conjunctivitis has been described as a mild follicular conjunctivitis otherwise
indistinguishable from other viral causes [94]. In addition, other features of ocular surface involvement
include unilateral or bilateral bulbar conjunctiva hyperemia alone or in association with chemosis,
follicular reaction of the palpebral conjunctiva, watery discharge, epiphora, and mild eyelid edema.

Another unresolved question is whether conjunctivitis is directly related to virus infection or
represents an allergic immune response to the virus [95].

Generally, viral conjunctivitis (of unknown origin) does not require treatment, although antibiotics,
steroids, and artificial tear drops are often prescribed to relieve inflammation signs and symptoms.
Most medicines currently available for the treatment of viral conjunctivitis are directed against herpes
and adenovirus infections, and infectious diseases of the eye caused by RNA viruses (such as influenza,
RSV, or coronavirus) lack targeted antiviral medications. Skevaki et al. recommend the use of
oseltamivir, ganciclovir, and other drugs for treatment and prevention during the onset of conjunctivitis
symptoms or a history of eye contact [96].
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According to Zhou [97], the rarity of viral conjunctivitis in SARS-CoV-2 infection may exist in three
interpretations. Firstly, the expression of the ACE2 protein on conjunctival epithelial cell membranes is
much less than that in human lung and kidney tissues [8,9]. Secondly, the binding capability of the
ACE2 protein on conjunctival epithelial cells to SARS-CoV spike protein is much lower than that in
lung tissues [98]. Thirdly, the protective effect of the antimicrobial agents in tears, including lactoferrin
and secretory IgA, and constant tear rinsing on the ocular surface, which could eliminate the viruses,
dropped onto the ocular surface and into the nasal cavity through the nasolacrimal duct [3].

However, the present study shows that a large proportion of ophthalmic preparations, utilized for
different ocular diseases, contain substances with an intrinsic, broad spectrum, antiviral activity, which
has already been used clinically in the past for other (non-COVID-19) viral infections. In particular,
here we want to emphasize the potential usefulness of artificial tears and iodine/sodium hypochlorite
eye drops to promote the reduction of viral load on the ocular surface by removing the virus or by
means of a direct virucidal action.

A very interesting aspect to note is that a large portion of these eye drops, or ophthalmic ointments
are registered as over-the-counter (OTC). As such, they can be easily and widely purchased by patients
without the need for a prescription or an ophthalmological consultation. For example, artificial tears
are not only sold in pharmacies, but they are often found in supermarkets or optical stores.

Clearly, the use of any eye drops (e.g., saline solution) may also facilitate the reduction of viral
load through the washing of infectious agents [99]. Accordingly, the excretion of elements present
in human tears towards the lid skin occurs not only in overflow conditions due to a large volume,
but also because of a mechanism related to the characteristics of high fluid dynamics (turbulence of
the meniscus) [100,101]. Of note, the volume of a drop obtained from a bottle of ophthalmic solution
generally ranges from 25 to 70 µL, while the ocular surface may contain much less liquid [102]. For all
these reasons, each administration of eye drops implies a wash-out of any substances above the
epithelia of the ocular surface.

As a comparison, a different concept is that concerning ophthalmic ointments. In fact, the latter
do not favor the washing of infectious agents but can release drugs for a long time. This aspect can be
advantageous if the substance has an antiviral effect (a presumably common situation), while in the
case of steroid ointments, for example, it could be very disadvantageous with detrimental effects on
the ocular surface epithelia (e.g., following herpes virus infection).

It is possible that a fraction of patients affected by COVID-19 regularly use any type of these topical
medications, suggesting an alternative explanation for the limited detection of viruses in tears and on
the ocular surface observed in some series of COVID-19 patients. Specific studies might enlighten on
this hypothesis.

At present, the drug repurposing approach is widely used to identify potential therapies for
different diseases. In recent years, it has gained a lot of popularity in the scientific community for
the ability to reuse drugs already available for various diseases beyond their original indication.
This approach is based on the principle that different diseases share overlapping molecular pathways
and various drugs have multiple protein targets [103]. The advantages of reusing approved drugs in
this way include reducing costs, time, and risks associated with the experimental phases of de novo
drugs [104]. Clearly, the drug development approach (e.g., regarding virus-specific vaccines or small
molecules) is inadequate to immediately address the problems associated with a pandemic such as
COVID-19. The concept of redefining the potentiality of existing drugs is one that most quickly meets
the needs of a population under a health emergency.

It should be noted that, if the use of such drugs re-proposed individually may be clinically
ineffective, their carefully evaluated combinations could benefit patients, which happened with human
immunodeficiency virus (HIV) during the 1990s [105]. In this sense, various eye drops simultaneously
contain several substances with antiviral action, e.g., active ingredients, buffering agents, preservatives,
or other excipients. In the future, one aspect that will determine the effectiveness of this drug
repurposing strategy will be the comparison, positive or negative, with the treatments developed
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specifically for COVID-19 (in particular, vaccines or drugs). In fact, a feature of these repurposed
drugs is their non-specificity for an infectious agent (e.g., SARS-CoV-2), which can become a significant
problem in the case of sudden drug resistance or more virulent strains. However, the discovery
of vaccines and antibodies generally takes up to a decade and may be slowed by the potential for
attenuated antigenicity of epitopes due to the genetic drift of the virus.

Overall, the results of this work strongly suggest that ophthalmic preparations represent a vast
reservoir of potential candidates for drug repurposing for use as antiviral therapeutics. Here, we
have analyzed only the main categories of substances contained in ophthalmic preparations with
re-profiling potential. However, there are also other groups of drugs, such as antihypertensives and
anticoagulants, which might unexpectedly give interesting results by topical application (e.g., ACE
inhibitors, or heparin sodium) [106–108]. In this sense, tea tree oil (TTO) is another therapeutic option
for viral infections, which is widely used in gel formulations to be applied on the eyelid skin (not
inside the eye). In several studies, TTO has demonstrated anti-viral action against HSV, Influenza virus
A/PR/8, and Tobacco Mosaic virus (a Tobamovirus that infects a wide range of plants) [109–111].

In addition, particular attention is recommended in the follow-up of glaucomatous patients treated
with prostaglandin analogues or uveitic patients under steroids, for which the use of lubricants is
particularly indicated for different reasons, e.g., limiting in situ virus replication and epithelial damage.

Clearly, all information reported in this article is not intended to guide clinical decisions, and any
potential therapy reported here should only be considered as a proposal to be evaluated in the context
of clinical trials.
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