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Abstract

This paper presents a purely dynamic economic-environmental growth
model with a S-shaped production function and a pollution external-
ity. We �rst outline the role of the saving rate in inducing/suppressing
the multiplicity of equilibria. The second part of the paper is devoted
to global analysis. We prove that the system of dynamic laws implied
by our model undergoes a Bogdanov-Takens (BT) singularity in spe-
ci�c regions of the parameter space. Assuming social preferences are
in favor of the green steady state, there are two qualitatively sepa-
rated regions in the parameter space, one at which the economy in
laissez-faire is able to reach the green steady state and one where
only appropriately devised choices of the saving rate and of the frac-
tion of abated pollutants can put the economy on a path converging
to the green steady state.
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1 Introduction

This paper considers a purely dynamical growth model �a la Solow where pol-
lution creates a negative production externality. Our model di¤ers from ex-
isting literature in that the production function is convex-concave S-shaped,
instead of being of the standard Cobb-Douglas type. Production functions
of this kind can be regularly found in growth models (cf., inter al., Skiba,
1978), where the fading e¤ects of economies of scale has to be taken into
account.
We show that the system, in speci�c regions of the parameter space, gives

rise to two steady states, one with high capital and pollution (the "dirty"
steady state) and one with low capital and pollution (the "clean" or "green"
steady state). Assuming that social preferences are in favor of the green
steady state irrespectively of economic cost, we shed light on characteristics
of policy action able to push the economy out of the dirty steady state and
put it on a path converging to the green steady state.
Of course, information on this issues can be achieved only if local analy-

sis is abandoned in favor of a more global perspective. In this regard, we
show that our model, in speci�c regions of the parameter space, undergoes
a Bogdanov-Takens bifurcation, a powerful mathematical tool for simplify-
ing highly non-linear dynamical systems. What is interesting for us in this
phenomenon is that a given dynamic system, undergoing a BT singularity,
can be placed in correspondence with a simple planar system whose global
unfolding is known in every aspect.
It is not the �rst time in the economic literature that the properties of

the BT singularity are exploited. In a R3 ambient space, we can cite Bella
and Mattana (2014) and Bosi (2019). An application in R2 can be found in
Benhabib et al. (2001). However, we are not aware of contributions where
the BT singularity is used to derive detailed policy implications.
The rest of the paper develops as follows. In Section 2, we present the

model and obtain the associated 2-dimensional vector �eld. In Section 3, we
study the long-run properties of this vector �eld. We particularly focus on
the region of the parameters space such that the dynamics admits multiple
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steady states. Section 4 is devoted to the conditions required for the system
to undergo the BT bifurcation. Moreover, we address the main point of the
paper and derive policy implications from our analysis. Numerical examples
are throughout provided. A brief conclusion reassesses the main �ndings of
the paper. The Appendix provides all calculations and necessary proofs.

2 The Model

Consider the purely dynamical economic-environmental growth model

_kt = sf (kt) d (pt) (1� �)� �kkt (S)
_pt = � (1� u) f (kt)� �ppt

The �rst equation in system S models the evolution of physical capital, _kt,
where no exogenous technological progress is introduced. s 2 (0; 1) represents
the (�xed) fraction of the produced output that goes to capital investments,
namely the saving rate; f (kt) is an implicit production function with f 0 (kt) >
0; d (pt) is an implicit-form damage function with d0 (pt) < 0, which depends
on the level of the pollutant; � is the share of production that is paid out to
the Government as an environmental tax, which is aimed at abate emissions.
Finally, �k 2 (0; 1) measures the physical capital linear depreciation rate.
The second equation in system S describes the evolution of pollution, _pt.1

Production generates emissions which increase linearly the stock of pollution.
� > 0 measures the degree of environmental ine¢ ciency of economic activ-
ities. The abatement activities reduce a share u 2 (0; 1) of emissions, thus
1 � u represents unabated emissions. For the sake of simplicity, in a model
that already includes non-linearities and non-convexities, the depreciation of
pollution, that is the self-cleaning capacity of the environment, is assumed
to be proportional to the stock of pollution, �ppt.2

The formulation of the model is in line with the literature reviewed in
1In the integrated models literature the word �pollution�generally means greenhouse

gases. We instead interpret it in the broader sense of �undesired by-product�of economic
activity.

2The linear depreciation of pollution, that is the self-cleaning capacity of the environ-
ment, is a gross simpli�cation, since, as remarked in some literature (see, for example,
Mäler et al., 2003) depreceation is likely to be stock dependant, that is �p = �p(pt). As
an example, the oceans absortion rate of carbon dioxide, depending strongly on the stock
of carbon dioxide itself, can be mentioned.
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Xepapadeas (2005) and, on another perspective, can also be considered a
stripped-down variant of Nordhaus (1992, 2008) DICE model.
To proceed with our analysis, two further steps are required. We �rst no-

tice that system S can be written in a more convenient form. Environmental
taxation has been taken into account via the parameter � : the tax revenue is
Tt = �sf (kt), therefore proportional to saved production. We assume that
the Government maintains a balanced budget at any point in time, so Tt is
totally devoted to sustain abatement activities, A(t) which aimed to abate a
share u of pollution. The associated cost is At = C (u) sf (kt), where C(u) is
the cost function. By equating Tt = At, and assuming that the cost function
takes the suitable form

C (u) = 1� (1� u)�

proposed by Bartz and Kelly (2008), we conclude that

� = 1� (1� u)�

where � � 1.
To the purposes our this paper, we now provide explicit forms for the

production and damage functions f (kt) and d (pt). As for the production
function f (kt), we notice that, in the majority of the contributions in the
economic-environmental literature proposes standard Cobb-Douglas forms.
This paper shall conversely treat the case of a convex-concave S-shaped

production function (cf. Skiba, 1978) of the form

f (kt) =
�1k

q
t

1+�2k
q
t

(2)

where �1 > 0; �2 > 0 and q > 1 are parameters determining the position of
the in�ection point and the width of the transition from low and high value
of kt.
Many explicit damage functions have been proposed in the economic-

environmental literature (see Bretschger and Pattakou, 2019, for a recent
survey on the topic). Henceforth, we shall assume that the damage function
d (pt) takes the form

d (pt) = (1 + bpt)
�1 ; b > 0 (3)

as in La Torre et al. (2015). The formulation implies that the (negative)
pollution externality on production is null when pollution is absent. It also
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implies that production falls non linearly when pollution increases.

3 Long-run equilibria and local stability

In this subsection we study the long-run equilibrium and present local analy-
sis results. Consider �rst the following version of system S

_kt =
sk2t (1�u)

(1+k2t )(1+bpt))
� �kkt (M)

_pt =
�(1�u)k2t
1+k2t

� �ppt

obtained by considering the explicit forms in (2) and (3) and the simplifying
parametric assumptions

�1 = �2 = 1; q = 2; " = 1 (4)

A steady state of the system is any solution of the pair (k; p) that satis�es
the following relationships

_kt = 0 (5.1)

_pt = 0 (5.2)

We �rst observe that the pair (k�; p�)o = (0; 0) is an equilibrium point.

Remark 1 Since we are only interested in interior solutions, we shall not
consider this equilibrium in the rest of the paper.

The following statement can be proved.

Proposition 1 (Conditions for fold bifurcation). Let s, the saving rate, be
the bifurcation parameter. Then, there exists a critical value

ŝ =
2�k
p
�p[b�(1�u)+�p]
�p(1�u) (6)

such that, if

1. s > ŝ(�k; �p; �; b; u), system M possesses two steady states, one with
"low" capital and pollution

(k�; p�)low � P �low =
�
1
2

�ps(1�u)�
p
�

�k[b�(1�u)+�p] ;
�(1�u)k�2low
(k�2low+1)�p

�
(7.1)
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and one with "high" capital and pollution

(k�; p�)high � P �high =
�
1
2

�p s(1�u)+
p
�

�k[b�(1�u)+�p] ;
�(1�u)k�2high
(k�2high+1)�p

�
(7.2)

2. s = ŝ(�k; �p; �; b; u), system M possesses two coincident steady states
(coalescence equilibrium)

(k�; p�)ce � P �ce =
�
1
2

�p s(1�u)
�k [b(1�u)+�p] ;

�(1�u)k�2ce
(k�2ce+1)�p

�
(7.3)

3. s < ŝ(�k; �p; �; b; u), systemM does not admit a steady state.

Proof. Solving (5.1) and (5.2) gives the coordinates of the steady states in
(7.1), (7.2) and (7.3) depending on the value of the discriminant

� = �p
�
�ps

2(1� u)2 � 4b�2k�(1� u)� 4�2k�p
�

which vanishes for the critical value of the saving rate in (6). Since d�
ds
=

2�2p(1� u)
2s > 0 the statements in proposition are implied.

For a more immediate policy identi�cation, we shall name P �low as the
"green" or "clean" steady state, whereas P �high shall be referred to as the
"dirty" steady state.
It is interesting here to observe that in our model the following occurs.

Remark 2 Consider the case the economy has two steady states. Then, in
the long-run, capital and pollution are complements.

We provide now a parametric example giving rise to two steady states,
starting from baseline parameter values.

Example 1 Set �k at the standard value of 0:05. In Figure 1, we depict
the set of the remaining parameters (�p; b; u) such that ŝ, namely the critical
value of the saving rate giving rise to the coalescence equilibria, is between
zero and one. In Figure 1, the bigger the dots the higher ŝ. Notice that the
region with plausible values of ŝ is mainly located bottom left in the Figure,
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namely in correspondence of small b, small u and high �p.

Figure 1. Parameters combinations implying s=ŝ with �k=0:05

Set now (�p; b; u) = (0:02; 0:01; 0:5) as in La Torre et al. (2015). Thus,
ŝ �= 0:2236. At ŝ �= 0:2236, the coalescence equilibrium has coordinates
P �ce

�= (0:8944; 11:1111). In Figure 2, we depict the nullclines in the phase
space (k; p) for s = ŝ in panel (b), and for small deviations of the saving rate
around ŝ �= 0:2236. Speci�cally, in panel (a) we use s = 0:2232, whereas in
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panel (c) we have s = 0:2240

Figure 2 (a)

s=0:2232

Figure 2 (b)

s=0:2236

Figure 2 (c)

s=0:2240

Notice that the very high sensitivity of the bifurcation to deviations in the
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saving rate. Namely, very small deviations of this parameter with regard to
its critical value imply large distances of the two equilibria, both in terms
of k� and p�. We leave the comments regarding the direction of the �ow in
Figure 1 to the next Subsection.

3.1 Stability Analysis

The local stability properties of a given steady state can be described in
terms of the signs of the invariants of the Jacobian matrix, J, evaluated at a
hyperbolic equilibrium point.
Let Tr(J) and Det(J), be the Trace and Determinant of J, respectively.

Explicit formulas can be found in Appendix 1. The following statements can
be proved.

Proposition 2 Recall Proposition 1. Assume s > ŝ. Then systemM has a
dual steady state. P �low, the green steady state, is always a saddle equilibrium,
whereas P �high, the dirty steady state, is always a non saddle equilibrium.

Proof. By standard arguments, the results on stability are obtained by
evaluating the invariants of J at the two equilibrium points. In Appendix
A.1, we show that at P �low, Det(J) < 0. Therefore, P

�
low is always a saddle

equilibrium. In the case of P �high, we conversely have Det(J) > 0. The
statements in Proposition are therefore implied.

4 Global analysis

In this section, we discuss the application of the Bogdanov-Takens (BT) bi-
furcation to systemM. The theorem allows us to detect a particular type
of global phenomenon, namely, the homoclinic bifurcation, by which orbits
growing around the non-saddle steady state collide with the saddle steady
state. The interesting point is that a given dynamic system, undergoing a
BT singularity, can be placed in correspondence with a simple planar sys-
tem whose global unfolding is known in every aspect. Implications are very
relevant for us: as shown hereafter, when the economy is in proximity of a
BT singularity, the details of appropriate policies able to push the economy
away from the dirty steady state towards the green steady state can be fully
devised.
Consider the following preliminary result.
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Proposition 3 (SystemM may undergo the BT bifurcation). Recall Propo-
sition 1. Let s = ŝ(�k; �p; �; b; u). Then Det(J) = 0. Let furthermore

~u = ~u(�k; �p; �; b; ŝ(�k; �p; �; b; u)) =
2�p

2

b�(�k��p)

be the value of the abated emissions which satis�es Tr(J) = 0. Substituting
~u into ŝ(�k; �p; �; b; u), we obtain

~s = b�k�(�k��p)
�2p

q
1 + 2�p

�k��p

Then, since technical non-degeneracy conditions are also met, at (s; u) =
(~s; ~u) systemM undergoes the BT bifurcation. The set of the parameters at
which (~s; ~u) 2 (0; 1)2 is not empty.

Proof. The application of the Bogdanov-Takens theorem to systemM follows
the detailed discussion in Kuznetsov (2004). For the satisfaction of the non-
degeneracy conditions see Appendix A:2:
Interestingly, we observe that

Remark 3 The BT singularity can only occur for �k � �p > 0.

We study now the region of the parameters (�p; �; b) such that (~s; ~u) 2
(0; 1)2 for standard values of �k. In Figure 3, panels (a), (b), (c), the bigger
the dots the higher ~s, whereas in panels (d), (e), (f), the bigger the dots the
higher ~u.
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Figure 3. Regions of the parameter space giving rise to (~s;~u)2(0;1)2
(a) (d)

(b) (e)

(c)
(f)
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Some interesting characteristics of the subregion of the parameter space
at which the BT bifurcation orccurs are the following. We �rst notice that
high �k typically means relative high values of ~s with regard to ~u; the converse
applies for low values of �k.
Consider now the following Corollary of Proposition 3.

Corollary 1 (Existence of a simple planar system topologically equivalent to
systemM). Recall Proposition 3. Assume the economy is su¢ ciently close to
the BT singularity. Then systemM is topologically equivalent to the system

_w1 = w2 (Z)
_w2 = �1 + �2w2 + w

2
1 + �w1w2 � = �1

The unfolding parameters, �1 and �2, are function of � = s� ~s and � = u� ~u
satisfying

�1 = D1��D2� (8.1)

�2 = D3��D4� (8.2)

where Di, with i = 1:::4, are intricate combinations of the original parameters
of the model.

Proof. In Appendix A.3 we have detailed all necessary steps. See also
Wiggins (1990), p. 321-330.
The results in Corollary 1 are of great help for our analysis: the global

analysis of systemM can be based on a simple planar system whose unfolding
(depending on the sign of �) is completely known.
Consider the following details of the dynamics implied by system Z.

Proposition 4 (Unfolding of system Z). Recall Proposition 3 and Corol-
lary 1. Assume � = +1. Then, for � and � su¢ ciently small, there exists a
smooth curve N that originates at (�1; �2) = (0; 0) and has a local represen-
tation given by

N � f(�1; �2) : �1 = ��22; �2 > 0g
such that:

� above the curve N , the non-saddle steady state is a source. There also
exists a family of heteroclinic connections leading from the non-saddle
steady state to the saddle steady state;
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� below the curve N , the non-saddle steady state is a sink.

Proof. See Wiggins (1990), p. 321-330, for details.
To use the knowledge of system Z for our purposes, we need �rst to

establish the sign of the coe¢ cients. Our computations lead to the following
result.

Lemma 1 (Signs of the coe¢ cients of the planar system Z). Our compu-
tations show that � = +1: Furthermore, for all combinations of the triplet
(�p; �; b) (for realistic �k) implying (~s; ~u) 2 (0; 1)2, sign(D1) < 0 whereas
sign(D2) = sign(D3) = sign(D4) > 0.

Proof. The sign of the coe¢ cient � can be easily obtained by applying
the algorithm of Borisov and Dimitrova (2011) to our case. As shown in
Appendix A.2, we obtain sign(�) = +1. To establish the signs of the various
Di, we have repeated the numerical simulations made in Figure 3 and found
thatD1 < 0 for all combinations of the parameters (�p; �; b) such that (~s; ~u) 2
(0; 1)2 for standard values of �k and sign(D2) = sign(D3) = sign(D4) > 0.

4.1 Policy induced heteroclinic orbits

The results provide an innovative framework in which it is possible to discuss
several crucial policy issues. First of all, we are in the position of understand-
ing conditions under which an equilibrium path approaching the green steady
state exists.
Secondly, in the case an equilibrium path approaching the green steady

state exists, we can distinguish economic conditions for which laissez-faire is
su¢ cient for a market economy to reach the green steady state, from those
economic conditions at which this result can be only achieved by appropriate
policy interventions.
Finally, in the case policy interventions are required to push the economy

on the equilibrium path approaching the green steady state, we can uncover
important details on the characteristics of these policies.
It is important to point out the following limitation of our analysis.

Remark 4 Since system Z derives from a purely dynamical economic-environmental
growth model, we cannot develop welfare considerations and only assume that
social preferences are in favor of the green steady state whatever is the eco-
nomic cost.
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Assume again � = s� ~s and � = u� ~u are su¢ ciently small.

Proposition 5 (Heteroclinic orbits in laissez-faire). Assume the economy
belongs to the region above the N curve. Assume furthermore the economy
suddenly changes its preferences and is willing to reach the green steady state.
Then, the perfect-foresight representative agent identi�es a pair (k0; p0) on
the unidimensional stable manifold of the green steady state such that the
economy escapes the dirty steady state and approaches the green steady state.
The set of parameters at which this phenomenon occurs is not empty.

Proof. Recall Proposition 4. Consider the case s and u are chosen so that
(�1; �2) are above the critical N curve. Then, by Proposition 4, we know that
there is a heteroclinic connection going from the non-saddle to the saddle
steady state. The rest of the Proposition follows. Example 2 below will show
that this phenomenon can happen for parameter values inside the admissible
region.
These statements are complemented by the following.

Proposition 6 (Policy-induced heteroclinic orbits). Assume the economy
belongs to the region below the N curve. Assume furthermore that the econ-
omy suddenly changes its preferences and is willing to reach the green steady
state. Then, a su¢ ciently high increase of the abatement share u pushes the
economy above the N curve. Then, again, the perfect-foresight representa-
tive agent identi�es a pair (k0; p0) on the unidimensional stable manifold of
the green steady state such that the economy escapes the dirty steady state
and approaches the green steady state. The set of parameters at which this
phenomenon occurs is not empty.

Proof. Consider the case s and u are chosen so that (�1; �2) are below the
critical N curve. Then, by Proposition 4, we know that there are no paths
leading to the green steady state. Consider however, substituting (8.1) and
(8.2) into the N curve, solving for � and substituting back into the formula
for �2.

3 We obtain

��2 =
1
2

p
D2
1+4D3(D2D3�D1D4)��D1

D3

3Notice that the solutions for � are two, one positive and one negative. Since, in our
case, the dual steady states requires s > ŝ, and therefore a positive � we have neglected
the negative solution.
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whose derivative with regard to � gives

@��2
@�
= D2D3�D1D4p

D2
1+4D3(D2D3�D1D4)�

Therefore, recalling from Lemma 2 the signs of the various Di, we see that
@��2
@�
> 0. An example below will show that this phenomenon can happen for

parameter values inside the admissible region.
These results are innovative in the �eld: public intervention can appro-

priately calibrate its instruments (in our model, the saving rate and the
abatement share) to induce market responses such that the policy objective
is reached.
We close this Section by discussing a numerical example giving rise to a

heteroclinic orbit.

Example 2 Set (�k; �p; �; b) = (0:05; 0:02; 0:93; 0:03). Then (~s; ~u) 2 (0:1598; 0:0442)
and D1 = �12:4865, D2 = 848:5521, D3 = 0:4380, D4 = 0:0732. By Propo-
sition 1, we know that for a dual steady state, � = s � ~s > 0. Consider the
case of � = s� ~s = 0:0011. Using the formula of the local represention of the
curve N in Proposition 4, we know that if � = u� ~u = 0:0002, the economy
is exactly on the curve N . Let now set � = 0:0094. Then, since @��2

@�
> 0, we

know that the economy belongs to the region above the curve N . In Figure 4,
we depict the heteroclinic orbit going from the dirty steady state to the green
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steady state.

Figure 4. The heteroclinic connection

We complement the analysis by showing that a wrong policy may push
the economy below the curve N . If this happens, P �high becomes a sink and
the economy remains trapped around the dirty steady state, as shown in
Figure 5 for the same parameter values used in the Example above.
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Figure 5. P �high when the economy is below the curve N

5 Concluding remarks

This paper sheds light on the role of �scal policy in models where multiple
long-run equilibria emerge because of the presence of pollution externalities.
Results are based on a purely dynamical growth model �a la Solow with a
S-shaped production function and where pollution is modeled through a non
linear damage function. The saving ratio and the ratio of abated emissions
are naturally used as policy variable.
We �rst outline the role of the saving rate in inducing/suppressing the

multiplicity of equilibria. In particular, we �nd that there exists a speci�c
level of the saving rate such that the system of dynamic laws implied by our
model either has: (i) no steady states, (ii) one steady state, and (iii) two
steady states, one with lower levels of capital and pollution (the "green" or
"clean" steady state) with regard to the other (the "dirty" steady state). By
means of the local analysis, we also �nd that, in the case of a dual equilibrium,
the green steady state is always a saddle, whereas the dirty steady state is
always a non-saddle rest point.
The second part of the paper is devoted to global analysis. We �rst

prove that the system of dynamic laws implied by our model undergoes a
Bogdanov-Takens (BT) singularity in speci�c regions of the parameter space.
The usefulness of this phenomenon lays on the possibility of putting in cor-
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respondence a highly non linear system with a simple planar system whose
global unfolding is known in every aspect. The main results are as follows.
Assuming social preferences are in favor of the green steady state, there are
two qualitatively separated regions in the parameter space, one at which the
economy in laissez-faire is able to reach the green steady state and one
where only appropriately devised choices of the saving rate and of the frac-
tion of abated pollutants can put the economy on a path converging to the
green steady state.

Appendix

A.1. Local stability analysis

The Jacobian matrix of the systemM, evaluated at the steady state is

J =

"
2s(1�u)k�

(1+k�2)2(bp�+1)
� �k � sbk�2(1�u)

(1+k�2)(bp�+1)2

2� (1�u)k�
(1+k�2)2

��p

#
(A.1)

Therefore
Tr(J) = 2s(1�u)k�

(1+k�2)2(bp�+1)
� �k � �p (A.2)

Det(J) = 2s(1�u)k�
(1+k�2)2(1+bp�)

h
��p + � b(1�u)k�3

(1+k�2)(1+bp�)

i
+ �k�p (A.3)

We can now proceed to evaluate the signs of Det(J) at the green and
dirty steady states. We report here only the �nal stage of a number of
algebraic manipulation performed with Maple 18. The complete sequence of
commented Maple is available from the authors upon request.
We start by considering the green steady state. We �nd that

Det(J)P �low
= C[s (1� u) �p

�
�ps

2(1� u)2 � 4�2k [b� (1� u) + �p]
	
+

�
p
�
�
�ps

2(1� u)2 � 2�2k [b� (1� u) + �p
	
]

Where the positive constant Clow reads as

Clow =
2�k�p

s (1� u) [
p
�� �ps(1� u)]2
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In the formula for Det(J)P �low , if

p
�
�
�ps

2(1� u)2 � 2�2k [b� (1� u) + �p
	
> s (1� u) �p[�ps2(1� u)2�4�2k [b� (1� u)+�p]

(A.4)
then Det(J)P �low < 0.
By recalling from the proof in Proposition 1 in the main text that

� = �p
�
�ps

2(1� u)2 � 4b�2k�(1� u)� 4�2k�p
�

(A.4) reduces to

�ps
2(1� u)2 � 2�2k[b� (1� u) + �p] > s (1� u)

p
�

Further, we now divide both members by s2(1� u)2�p. After some simple
algebra we get

1� 2�2k[b� (1�u)+�p]
s2(1�u)2�p

>

r
1� 4�2k[b� (1�u)+�p]

s2(1�u)2�p
(A.5)

Now, consider the following scaling

t =
�2k[b�(1�u)+�p]
s2(1�u)2�p

(A.5) can be written as
1� 2t >

p
1� 4t

Taking the square of both members it is easy to show that the last inequality
is true whenever 0 < t < 1=4. Reversing the substitution we get

0 <
�2k [b� (1�u)+�p]
s2(1�u)2�p

< 1
4

which is exactly the condition for the existence of a dual steady state. As a
consequence, when there exist two steady states, Det(J)P �low < 0.
Now it is the turn of Det(J)P �high. Repeating the steps above, we �nd

now that

Det(J)P �high
= Chigh[s (1� u) �p

�
s2(1� u)2�p � 4�2k[b� (1� u) + �p]

	
+

+
p
�
�
s2(1� u)2�p � 2 �2k [b� (1� u) + �p]

	
]
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Where the positive constant Chigh reads as

Chigh =
2�k�p

s (1� u) [
p
�+ �ps(1� u)]2

Contrarily to what happens in P �low, Det(J)P �high is now positive. Indeed,
the term

s (1� u) �p
�
s2(1� u)2�p � 4�2k[b� (1� u) + �p]

	
= s(1� u)� > 0

while the term

s2(1� u)2�p � 2 �2k [b� (1� u) + �p] = � + 2�2k [b� (1� u) + �p] > 0

when � > 0, namely when there exists a dual steady state.

A.2. Existence of the BT singularity

In order to detect the BT bifurcation in planar systems, Borisov and Dim-
itrova (2011) outline an easy-to-check algorithm based on Kuznetsov (2004).
We need �rst to perform the coordinate change

~k = k � k�ce
~p = p� p�ce
� = s� ~s
� = u� ~u

SystemM becomes

_~k =
(~s+�)(1�~u��)(~kt+k�ce)

2

[1+b(~pt+p�ce)]
h
1+(~kt+k�ce)

2
i � �k

�
~kt + k

�
ce

�
(A.6)

_~p =
�(1�~u��)(~kt+k�ce)

2

1+(~kt+k�ce)
2 � �p (~pt + p�ce)

Now the system is in the form

_x = f(x; �); x 2 R2; � 2 R2
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where x =
�
~k; ~p
�
and � = (�; �). In primis the algorithm checks if there

are regions in the parameter space such that the point (~kt; ~pt) = (0; 0) is a
bifurcation point with a double zero eigenvalue at (�; �) = (0; 0). As shown
in Proposition 3, this happens at

u = ~u =
2�2p

b�(�k��p) ; s = ~s =
b�k�(�k��p)

�2p

q
1 + 2�p

�k��p

which may occur inside the admissible parameter space.
Secondly, the algorithm checks if a(0)b(0) 6= 0, where a(0) and b(0) are

certain quadratic coe¢ cients (generated by the algorithm itself). The algo-
rithm shows that

a(0) = � �k(�p+�k)�
2
p

�k��p
1r

�2p(�p+�k)
�k��p

b(0) = � �2k��2p
�k�p

r
�2p(�p+�k)

�k��p

As a consequence, a(0)b(0) 6= 0:
Finally, the map (x; �)! (f(x; �); T r(fx(x; �)); Det(fx(x; �))) must be reg-
ular at (x; �) = (0; 0). Since the determinant of the map is

�1
2

�2p(�k��p)2

�p+�k

r
�2p(�p+�k)

�k��p

the conditions is satis�ed.
As a consequence of the steps above, system M is a candidate for the

onset of a BT singularity.
Moreover the algorithm gives

sign(�) = sign
�
�p (�p + �k)

2� = +1
A.3. Transformation of systemM into normal form

The procedure requires 5 steps.
Step 1. Consider system A.6 and perform the second order Taylor expansion
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on
�
~k; ~p; �; �

�
. We obtain

"
_~k
_~p

#
= J

�
~k
~p

�
+B (�; �)

�
~k
~p

�
+

24 F1 �~k; ~p; �; ��
F2

�
~k; ~p; �; �

� 35 (A.7)

where J contains the �rst order terms, while the matrix B and the vector

F =

�
F1
F2

�
group the second order terms among which B collects the ones

linearly dependent on
�
~k; ~p
�
. In our case we have

J =

"
2~s(1�~u)k�ce

(1+k�2ce )
2(1+bp�ce)

� �k � ~s(1�~u)k�2ce b
(1+bp�ce)

2(1+k�2ce )
2�(1�~u)k�ce
(1+k�2ce )

2 ��p

#

B =

"
2(�~u+�~s)k�ce

(1+bp�ce)(1+k
�2
ce )

2 � (� ~u+� ~s)bk�2ce
(1+bp�ce)

2(1+k�2ce )
2��k�ce
(1+k�2ce )

2 0

#
F1 = 1

1+k�2ce

�
~s(1�~u)
1+bp�ce

� ~s (1�~u) k�2ce
(1+bp�ce)(1+k

�2
ce )
� 4k�2ce (1�~u)~s (bp�ce+~s )

(1+bp�ce)
2(1+k�2ce )

2

�
~k2 +

1
1+k�2ce

�
�k�ce(2 bp�ce ~s (1�~u)+2 ~s (1�~u))b

(1+bp�ce)
3 + 2k�3ce (1�~u)~s (b+k�ce)

(1+bp�ce)
2(1+k�2ce )

2

�
~k~p+

+ ~s (1�~u)k�2ce b
(1+bp�ce)

3(1+k�2ce )
~p2 � k�2ce

(1+bp�ce)(1+k
�2
ce )
��

F2 = 1
1+k�2ce

�
� (1� ~u)� � (1�~u)k�2ce

1+k�2ce
� 4�(1�~u)k�2ce

(1+k�2ce )
2

�
~k2

Step 2. To get the normal form discussed in Corollary 1, we need to perform
the similar transformation of variables�

w1
w2

�
= T

�
~k
~p

�
where

T =

�
0 0

J(1; 1) J(1; 2)

�
is the transformation matrix which transforms A.7 into�

_w1
_w2

�
=

�
0 1
0 0

� �
w1
w2

�
+M (�; �)

�
w1
w2

�
+

�
~F1 (w1; w2)
~F2 (w1; w2)

�
(A.8)

22



where
M = T�1BT

and �
~F1 (w1; w2)
~F2 (w1; w2)

�
= ~F = T�1F

�
T

�
~k
~p

��
In particular, if we rename the entries of the Jacobian matrix as J(i; j) = Jij,
for i; j = 1::2, then we have

M =

"
(2�(1�~u)+2 ~s (1��))k�ce

(1+bp�ce)(1+k
�2
ce )

2 � (�(1�~u)+~s (1��))bk�2ceJ11
(1+bp�ce)

2(1+k�2ce )
� (�(1�~u)+~s (1��))bk�2ceJ12

(1+bp�ce)
2(1+k�2ce )

�J11 (2�(1�~u)+2 ~s (1��))k�ce
J12 (1+bp�ce)(1+k

�2
ce )

2 + 2� (1��)k�ce
J12 (1+k�2ce )

2 +
J211(�(1�~u)+~s (1��))bk�2ce
J212(1+bp

�
ce)(1+k

�2
ce )

(�(1�~u)+~s (1��))bk�2ceJ11
(1+bp�ce)

2(1+k�2ce )

#

~F1 =

1
(1+k�2ce )

�
~s(1�~u)�
(1+bp�ce)

� ~s (1�~u) k�2ce
(1+bp�ce)(1+k

�2
ce )

2 + 2
k�2ce (�2 bp�ce ~s (1�~u)�2 ~s (1�~u))

(1+bp�ce)
2(1+k�2ce )

2

�
w21+�

�k�ce (2bp
�
ce ~s (1�~u)+2 ~s (1�~u))b
(1+bp�ce)

3 + 2
k�2ce(bk�3ce ~s (1�~u)+bk�ce ~s (1�~u))

(1+bp�ce)
2(1+k�2ce )

2

�
(J11w21+J12w1w2)

(1+k�2ce )
+

~s (1�~u) k�2ce b2(J11w1+J12w2)2

(1+bp�ce)
3(1+k�2ce )

� k�2ce��
(1+bp�ce)(1+k

�2
ce )

~F2 = 1
1+k�2ce

�
� (1� ~u)� � (1�~u)k�2ce

1+k�2ce
� 4�(1�~u)k�2ce

(1+k�2ce )
2

�
w21

Step 3. To simplify the nonlinear parts in A.8, we follow Gamero et al.
(1991). Hence, A.8 can be rewritten as�

_w1
_w2

�
=

�
0 1
0 0

� �
w1
w2

�
+M (�; �)

�
w1
w2

�
+

�
0

a2w
2
1 + b2w1w2

�
(A.9)

where

a2 = �1
2
@2 ~F2(w1;w2)

@w21

b2 = @2 ~F2(w1;w2)
@w1@w2

+ @2 ~F1(w1;w2)

@w21

Step 4. At this stage, Wiggins (1990) shows that system A.9 is similar to�
_w1
_w2

�
=

�
0 1
�1 �2

� �
w1
w2

�
+

�
0

a2w
2
1 + b2w1w2

�
(A.10)

where �
�1
�2

�
=

�
D1 D2

D3 D4

� �
�
�

�
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given

D1 = 2 J11(1�~u)k�ce
J12(1+bp�ce)(1+k

�
ce)

2 � J211(1�~u) bk�2ce
J12(1+bp�ce)

2(1+k�ce)

D2 = 2 J11~s k�ce
J12(1+bp�ce)(1+k

�2
ce )

2 � 2�k�2ce
J212(1+k

�2
ce )
� J211~s bk

�2
ce

J12(1+bp�ce)
2(1+k�2ce )

D3 = 2 (1�~u)k�ce
(1+bp�ce)(1+k

�2
ce )

2

D4 = 2~sk�ce
(1+bp�ce)(1+k

�2
ce )

2

Since ���� D1 D2

D3 D4

���� = 4�(1�~u) k�2ce
J12(1+k�2ce )

4(1+bp�ce)

does not vanish, the versal deformation satis�es the transversality condition.
Step 5. Finally, Wiggings (1991) shows that A.10 can be further transformed
into

_w1 = w2

_w2 = �1 + �2w2 + a2w
2
1 + b2w1w2 +O

�
j � j3

�
and rescaled to obtain the system

_w1 = w2

_w2 = �1 + �2w2 + w
2
1 � �w1w2
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