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Exploiting All Programmable SoCs in Neural Signal Analysis: a
Closed-Loop Control for large-scale CMOS multielectrode arrays

Giovanni Pietro Seu, Gian Nicola Angotzi, Fabio Boi, Luigi Raffo, Luca Berdondini1 and Paolo Meloni1

Microelectrode array (MEA) systems with up to several thou-
sands of recording electrodes and electrical or optical stimulation
capabilities are commercially available or described in literature.
By exploiting their sub-millisecond and micrometric temporal
and spatial resolutions to record bioelectrical signals, such emerg-
ing MEA systems are increasingly used in neuroscience to study
the complex dynamics of neuronal networks and brain circuits.
However, they typically lack the capability of implementing real-
time feedback between the detection of neuronal spiking events
and stimulation, thus restricting large-scale neural interfacing to
open-loop conditions.
In order to exploit the potential of such large-scale recording
systems and stimulation, we designed and validated a fully recon-
figurable FPGA-based processing system for closed-loop multi-
channel control. By adopting a Xilinx Zynq R©-All-Programmable
System on Chip that integrates reconfigurable logic and a dual-
core ARM-based processor on the same device, the proposed
platform permits low-latency pre-processing (filtering and detec-
tion) of spikes acquired simultaneously from several thousands
of electrode sites. To demonstrate the proposed platform, we
tested its performances through ex vivo experiments on the mice
retina using a state-of-the-art planar high-density microelectrode
array that samples 4096 electrodes at 18kHz and record light-
evoked spikes from several thousands of retinal ganglion cells
simultaneously. Results demonstrate that the platform is able
to provide a total latency from whole-array data acquisition to
stimulus generation below 2 ms. This opens the opportunity to
design closed-loop experiments on neural systems and biomedical
applications using emerging generations of planar or implantable
large-scale MEA systems.

I. INTRODUCTION

Microelectrode arrays (MEAs) have been used in neuro-
science since the very early 80s to study the mechanisms
underlying the dynamics of neural networks and brain circuits
[1]. Thanks to major technological advancements occurred in
this field in the last decade, CMOS-based MEAs capable of
simultaneously record from thousands of densely integrated
sensing electrodes are nowadays increasingly used to monitor
the electrical activity of large neuronal populations with fine
spatio-temporal resolution either in vitro or, more recently,
in vivo [2]. Furthermore, these devices can integrate in the
same chip both recording and stimulating electrodes or can
be combined with external electrical or optical stimulation,
thus enabling to perturb neural systems for studying their
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response dynamics by resolving the spiking activity of large
number of neurons and mapping bioelectrical signals with an
unprecedented spatial and temporal detail as in [3]–[5]. When
delivered in open-loop conditions, however, such perturbations
pose several limitations in interfacing neural systems. For
instance, by being complex dynamical systems, stimuli elicit
very different responses in each trial as resulting from the
interaction of the stimulus with the ongoing neuronal activity
and history-dependent network state. To achieve stable re-
sponses, or to modulate them predictably, stimulation settings
would need to adapt to the dynamics of the neural network.
This poses the need for efficient real-time processing plat-
forms enabling the creation of closed-loop systems to control
stimulation on the basis of the detected neural activity from
large arrays of recording electrodes. Such closed-loop systems
allow to perform real-time model estimation and dynamic
characterization of neural networks properties [6]. State-of-
the-art platforms and acquisition chips designed for processing
of MEA-acquired signals show significant improvements with
respect to the past, in terms of number of real-time processed
parallel channels, sampling frequency, signal-to-noise ratio,
latency and accuracy of the real-time algorithms, as described
in [7] and [8]. However, MEA technology advances go even
faster, resulting in devices able to sense signals coming from
up to 65 000 electrodes [9]. Many of the currently available
CMOS-MEA acquisition systems developed for in vitro elec-
trophysiology, enable simultaneous sampling of around 1 to
4 thousands of channels, usually at 18-25 kSamples/s per
channel with 12-bit precision, such as the 3·Brain BioCam X,
the Multi Channel Systems CMOS-MEA5000-System or the
Maxwell MaxOne Single-Well MEA. The real-time process-
ing of the resulting data rate (around 1 Gbps) represents a
challenging and computation-intensive task [10]. Moreover,
the technological approach of adopting CMOS technology to
realize MEAs with a large number of recording electrodes has
been recently adopted for brain implantable probes [11], [12].
In this context, most promising studies about brain-machine in-
terface systems adopt a closed-loop paradigm, which requires
the system to be able to acquire data and to generate feedback
stimuli with low and controlled latency [13]–[15].

However, dealing with closed-loop configurations using
CMOS-MEAs introduces tighter constraints when design-
ing pre-processing systems for a large number of recording
electrodes. A key complex objective is to limit the latency
associated with the execution of the overall loop, to improve
responsiveness. Reaching this goal is not trivial, since the
processing chain includes computation-intensive tasks, such
as band-selective filtering of acquired signals and detection
of meaningful neural spiking events. Moreover, the system
needs also some degree of reconfigurability in order to target
different setups and experiments. Nevertheless, the overall pro-
cessing kernel exposes a significant degree of parallelism that
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TABLE I: Comparison with state-of-the-art processing systems for MEAs
Reference Hafizovich [23] Novellino [19] Venkatraman [28] Biffi [25] Wallach [21] Newman [22] Müller [26] Cong [30] Park [27] This work

Year 2007 2007 2009 2010 2011 2013 2013 2014 2017 2017
Hardware FPGA + PC PC PC FPGA + DSP PC PC FPGA IC + µProcessor FPGA AP-SoC
Input ch 128 32 16 64 60 64 126 8 128 4 096

Sampling freq. 20 kHz 10 kHz - 25 kHz 16 kHz 25 kHz 20 kHz 33 kHz 32.5 kHz 18 kHz
Resolution 8 bit - - 12 bit 12 bit 16 bit 8 bit 13 bit 16 bit 12 bit

Proc. tasks 2 DF+SD SD DF+SD+SS SD+DT+SS SD DF+SD+SS DF+SD+DT SA DF+SD+SS DF+SD+DT
Latency 2 ms 4 ms 15 ms - <1ms 7.1 ± 1.5 ms <1 ms - - <2 ms

Stimulating ch 128 8 - - 2 64 42 32 8 16

can be exploited to achieve high throughput and low latency
in the time-scale of a spiking event of few milliseconds.

To face this challenge, modern heterogeneous FPGAs in-
tegrating specialized hardware blocks, such as DSP slices,
are a very promising target technology for applications with
this kind of requirements. In this work, to implement a real-
time processing system, we targeted the Xilinx Zynq R© All
Programmable SoC (AP SoC) family which integrates on the
same chip the software programmability of an ARM-based
processor with the hardware reconfigurability of an FPGA,
to enable key analytics and hardware acceleration while in-
tegrating CPU, DSP, ASSP, and mixed signal functionality
on a single device. The implemented system presents a tight
coupling between the two subsystems available in the Zynq
platform. The programmable logic is in charge of performing
the computationally intensive data crunching tasks, such as
band-selective filtering and detection of meaningful events
on the acquired neural traces. The two ARM cores in the
processing system are instead dedicated to respectively run
a Linux-based operating system and a bare-metal program.
The former permits an effective user interface and network
connectivity while the later allows for implementation of
closed-loop control algorithms. The elaboration system was
implemented on a low cost Zynq device and tested in ex vivo
experiments on the mouse retina by involving the analysis
of the spiking activity recorded from thousands of retinal
ganglion cells responding to light stimuli. As presented in
this work, the reached performances in terms of processed
channels, latency and degree of reconfigurability are a clear
demonstration that AP SoCs are the perfect target technology
to develop CMOS-MEA systems with real-time elaboration
capabilities. This paper is organized as follows: the section
II presents an overview of existing works for the elaboration
of MEA-acquired signals. Our experimental setup and our
processing system are instead presented in section III and
IV respectively. The obtained performances are presented and
discussed in section V before the conclusions.

II. RELATED WORK

Many different closed-loop technologies have been pre-
sented in literature to selectively perturb complex neuronal cir-
cuits with the aim of achieving fine and real-time control over
their electrical activity. Such technologies find applications
not only in basic neuroscience, to study how complex neural
circuits are connected and how information is passed through
complex networks [16], but are relevant also in the field
of neural prosthesis for therapeutic interventions [17] and/or
to restore sensory pathways [18]. Within this framework,
previously presented works targeted different processing archi-
tectures as elaboration hardware, from simple software running
on desktop PCs, to FPGA or integrated circuit implementations
and there are also some works developed in analogue electron-
ics. In the following, the most relevant published works are

2Table I also summarizes processing tasks executed by each system:
DF=Digital Filter, SD=Spike Detection, DT=Dynamic Threshold, SS=Spike
Sorting, SA=Spectrum Analysis

shortly presented.
For in vitro experiments, for many years the preferred target
technology to develop closed-loop neuro-interfacing systems
has been the desktop PC for its simplicity [19]–[22]. Novellino
et all. in [19], for instance, presented a neuro-robotic system
that connects a neural network with a mobile robot. For the
purpose, neural data was recorded from 32 sensing electrodes
and simultaneously processed by a desktop PC, which also
took care of the control response sent through a home made
8-channel stimulus generator. Two more desktop PCs were
used to control the other parts of the experimental setup.
In [20] the desktop PC was used to run a Simulink based
xPC target application. With this system authors were able
to control a MEA featuring 60 electrodes which could be
used both for recording and for stimulation. When a specific
property of a spike train was detected a stimulus was sent
with a minimum achieved latency under a ms, but only for
predefined stimulating electrodes and waveforms. Instead, the
system took about 10 ms to change the stimulating electrodes
and waveform. In [21] they used this system to implement
a closed-loop technique to control the response of neurons
and to characterize their input-output relationships. The work
presented in [22] was focused on a low cost approach. Authors
developed the open-source system called NeuroRigther which
allows to design sophisticated closed-loop experiments by
maintaining a low input-output latency. Specifically, when
targeting a 64 channels MEA the minimum achieved latency
with this system was of 7.1 ± 1.5 ms.
Other approaches targeted hardware-embedded approaches us-
ing FPGAs in order to implement real-time elaboration and
low-latency feedback control [23]–[27]. The work in [23]
used both a FPGA and a desktop PC to achieve low-latency
closed-loop capabilities and a CMOS-MEA chip with 128
bidirectional electrodes for acquisition and stimulation. The
FPGA was used to simultaneously acquire data coming from
all the 128 channels and to perform events detection. An event
was detected when at least a spike was present in a segment of
the input signal. Multiple spikes in the same segment form a
single event. The PC, relieved from all the computational load
needed for events detection, achieved a total latency of 2 ms to
generate the closed-loop stimuli. Other works in [24] and [25]
were instead focused on real-time processing of multielectrode
array signals, but were not designed to achieve closed-loop
capabilities. Featuring complex elaboration tasks they are able
to simultaneously process in real-time 256 and 64 channels
respectively. Even though these systems are implemented to
work in real-time, no information was given about latency.
The work in [26] is instead a good example of FPGA used
to implement a closed-loop system. The FPGA here was in
charge of spike detection and stimuli generation, it was able
to process data coming from 126 channels simultaneously,
while generating stimuli on 42 different output channels in
less than 1 ms. Finally, a more recent closed-loop FPGA
implementation, presented in [27], was shown to be capable
not only of doing real-time spike detection but also spike
sorting of 128 input channels simultaneously.
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Fig. 1: Schematic block diagram of the experimental setup.

Other recent works were instead focused on in vivo experi-
ments due to the increasing interest in adopting closed-loop
system to study and interface neural circuits [28]–[31]. In
[28] the processing was implemented on a desktop PC. The
system was able to generate feedback stimulation in response
to the neural activity recorded from 16 electrodes implanted
in barrel cortex of an awake rat within 15 ms. Similarly,
the work described in [29] exploited a microcontroller for
in vivo experiments on behaving small laboratory animals
aiming at closing the loop from 8 recording channels and
as many as possible stimulating sites. The works in [30],
[31] presented more elaborated processing architectures. In the
former, the processing was handled by an integrated circuit
and in the latter by an analog circuit. In both works the
system control and closed-loop decision was done using a
microprocessor. They were able to process in real-time 8
and 16 channels, respectively. Finally, as reviewed in [32],a
number of works exploiting optogenetic stimulation have been
recently introduced, thus indicating the need to close the loop
not only with stimuli delivered by on-chip electrodes but also
with externally triggered light-stimulation systems.

To the best of our knowledge, all the previously presented
systems were developed for recording devices with a small
number of electrodes and are thus limited to the processing of
a low number of sensing electrodes. As a result they can only
be used to target very local and confined neural circuits. By
targeting the use of large-scale CMOS-MEA devices capable
of simultaneously record from thousands of electrodes, our
work, conversely, is conceived to advance the limitations of
the state-of-the-art in the field of processing systems connected
to MEAs. In Table I, we present a direct comparison of our
work with other implementations presented in literature.

Summarizing, our system:
• is the first effort that exploits the heterogeneous process-

ing architecture of modern All-Programmable SoCs, to
improve flexibility while keeping up with very high data-
rates;

• increases by more than one order of magnitude the
number of parallel recording channels processed in real
time, while guaranteeing a closed-loop latency lower than
2 ms;

• provides a high degree of reconfigurability/adaptability to
target different acquisition systems and different stimulus
generators.

To assess the system functionalities, we built an experimen-
tal setup targeting data acquisition from a commercially avail-
able high resolution neural recording platform, the BioCam X
from 3Brain AG. By using active CMOS-MEA devices with

4 096 recording sites, such platform can indeed be used to
map neural activity on large-field of views of several square
millimeters, with submillisecond resolution (sampling up to
18kHz), in different in vitro and ex vivo experimental models.

III. SYSTEM ARCHITECTURE OVERVIEW

Fig.1 shows the experimental setup that we built in order to
validate the performance of the proposed real-time processing
system. Four main modules can be identified:

• Acquisition unit: it consists of a commercial, large-scale
sensing, CMOS based Microelectrode Array platform for
label-free in vitro electrophysiology;

• Stimulation unit: it can be any commercially available or
custom made stimuli generator that accepts Transistor-
Transistor Logic (TTL) digital inputs to deliver preloaded
stimulus.

• Real-time Processing unit: it is the core of this work
and will be described in detail in section IV. Briefly,
it is implemented on a ZedBoardTM development kit
and, by exploiting the embedded Xilinx Zynq R©-7000 All
Programmable SoC, it permits real-time processing of
the acquired neural data as well as implementation of
user programmable closed-loop algorithms while keeping
timing consistency among all subsystems;

• Offline Processing unit: consists of a desktop workstation
that is used for real-time data visualization and storage
for further offline processing.

The two different data flows forming the closed-loop system
are detailed hereafter.

A. Forward data flow
In the proposed system neural data are acquired by a

BioCAM X platform that permits whole array recordings
with submillisecond resolution (sampling rate up to 18kHz)
from 4 096 active sites integrated on CMOS-MEA planar
devices. The chip types used are the 3·Brain HD-MEA Stimulo
when electrical stimulation is involved, otherwise the HD-
MEA Arena. The amplified and digitalized signals (12-bit
of resolution) are continuously sent through a Camera Link
communication protocol to the Zynq-based Processing unit
for real-time elaboration of the 4 096 raw neural traces and
extraction of features that might be meaningful for closed-
loop experiments. For each of such neural traces, the system
implements a bank of programmable filters that allow to
separate spiking signal events (from 300 Hz to 3 400 Hz) from
low-frequency signal oscillation (up to 300 Hz). The resulting
data traces are processed by an event detection module whose
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output can be finally used for closing the loop by means of user
defined decision algorithms running on one of the two ARM
processors that are available on the Xilinx Zynq R©-7000 All
Programmable SoC. For verification purposes, the Real-time
Processing unit also produces a time synchronization signal
that is sampled by the BioCAM X and forwarded together
with the neural signals through the Camera Link interface.
Such signal provides a timing reference that can be used to
compare the spikes detected online on the FPGA with those
detected offline. By using another Camera Link connection,
the raw data is sent to the Offline Processing unit where a
data acquisition software, the BrainWave X (from 3Brain AG),
running on a PC allows for online visualization and storage
of the acquired raw data. Finally, the Zynq-based Real-time
Processing unit also features Ethernet-based connectivity; thus,
it can be connected to a local LAN or to the Internet in order
to be remotely re-programmed at any time, to change the
HW/SW configuration or to adjust experimental parameters.
The Ethernet-based connectivity is also used to communicate
the online results to the Offline Processing unit.

B. Feedback data flow
The proposed system can be used by neuroscientists in

different experimental paradigms requiring the use of either
electrical [33] or optical stimuli [34] for closing the loop. As
previously stated, in fact, any commercial or custom made
stimulus generator can be part of our architecture, provided
that it accepts TTL digital input triggers to deliver preloaded
stimuli. In current implementation, electrical stimuli can be
delivered using 16 channels of the commercial Plexon PlexS-
tim Electrical Stimulator System. Such electrical stimulator,
in fact, permits to selectively send preloaded electrical stimuli
of arbitrarily user-defined waveforms to a selected channel,
upon detection of a TTL trigger on the correspondent digital
input, within 1µs input-output latency. The so produced stimuli
are delivered to biological tissues through the 16 stimulation
electrodes available in the HDMEA Stimulo. Similarly, visual
stimulation of the retina can be achieved by delivering light-
stimulation images by using a DLP system, in our case the
Texas Instrument DLP R© LightCrafterTM Evaluation Module
which can display high-speed light pattern sequences.

IV. ZYNQ-BASED REAL-TIME PROCESSING UNIT

The core of the proposed system is the Real-time Processing
unit, whose schematic block diagram is depicted in Fig.2. It
consists of three major parts: I) Programmable Logic & Hard-
wired Blocks, II) a Zynq Processing System and, III) a DDR
Memory. These parts are tightly coupled and their synergy is
used to achieve high performance and low latency, exploiting
parallel processing, and flexibility through interaction between
software and reconfigurable hardware.

A. Programmable Logic & Hardwired Blocks
The programmable logic and the hardwired blocks (DSPs,

Block RAMs) are used to implement different functional
Intellectual Property (IP) cores, connected to each other in a
dataflow fashion. The input data, received from the BioCAM X
through a Camera Link interface, is de-serialized and inter-
preted in order to extract the incoming samples, based on
the rules of the proprietary communication protocol used by

the 3·Brain acquisition platform. In the subsequent blocks,
the raw data is filtered by a bank of programmable digital
filters and then a spike detection algorithm based on either
hard or dynamic thresholding is performed to detect neural
activity, as detailed respectively in section IV-A2 and IV-A3.
The filtered data, together with the information about the
detected spikes (time stamp and channel identifier), are finally
temporarily stored in the DDR memory where they can be
accessed by the Zynq Processing System. Furthermore, the
programmable logic also re-routes the raw input samples to
the Offline Processing unit using a Camera Link protocol, for
real-time data visualization, permanent storage and, possibly,
offline processing.

1) I/O Data Interface
This module is used to interface the Zynq board with the

BioCAM X and with the PC. At each clock cycle, the 28-
bit data words received from the BioCAM X are de-serialized
and decoded according to the Camera Link communication
protocol: 4bits are used as control signals to discriminate when
data are valid and when a full frame of 4 096 samples is
acquired; the 24 remaining bits represent data samples (12-
bit each) from two of the 4 096 available recordings channels.
More in detail, as shown in Fig.3, the input interface is
composed of four serial data links and a synchronization clock.
The serial data links have a serialization factor of 7 which
means that for each clock cycle 7 data bits are transfered for
each link. The synchronization clock is used by the Clock
Manager block to generate 2 different clocks, phase aligned
to each other and aligned to the input clock. One of such clocks
(7× the input clock frequency) serves the Serdes blocks which
are used to sample the input data while the other is used to
sample the output 28bit data resulting from the de-serialization
process. Given the very high input bandwidth (about 1Gbit/s),
which results in very fast data transitions, synchronization with
the Camera Link clock (operating at 50MHz) is mandatory
for correct data recovery. For this reason, with the aim of
implementing data sampling in the middle of the time interval
between two data transitions, the module also integrates a
Calibration module, which permits variable time shifting of
the input clock, and a Deskew module integrated in each
data line, which keeps adjusting the individual data delay
to perform runtime data alignment and compensate the skew
among different data lines. Finally, from the so produced 28-
bit data words, the module extracts the two 12-bit data samples
belonging to as many different channels among the 4 096
supported. The so produced data is routed into a bank of 32
stream channels, thus exploiting the full parallelism offered by
the proposed platform. For validation purpose and for possible
further offline signal processing, the setup also permits to store
all the acquired raw data. For the purpose, a Camera Link
Serializer integrated in the module converts the parallelized
data in its original form and sends it to the output Camera
Link interface connected to the Offline Processing unit.

2) Band-pass Filters (BPFs)
To preserve the fast spiking activity of single neurons while

removing line noise and low frequency signal components
resulting from the concurrent activity of a large neuronal
population (known as Local Field Potentials - LFP), the
incoming raw data is processed by a bank of digital filters,
each implementing a finite-impulse response (FIR) band-pass
filter. In current implementation the filters are designed with
cutoff frequencies respectively placed at 300 Hz and 3 400 Hz
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Fig. 2: Schematic block diagram of the Zynq-based Real-time Processing unit consisting of three major parts: Programmable
Logic & Hardwired Blocks, a Zynq Processing System and, a DDR Memory.

as suggested [35]. Also, to improve spike detection, the FIR
blocks feature linear phase response, thus avoiding signal dis-
tortions and preserving the shape of the spikes. To save FPGA
resources, each block operates in a time division multiplexing
fashion. More in detail, the architecture integrates 32 FIR
blocks, allowing to filter 4 096 input channels, partitioned
in groups of 128 channels for each block. We selected this
specific partitioning configuration among many options in
order to minimize resource usage, as detailed in [36]. Along
with the partitioning scheme, another relevant architectural
parameter of the FIR stage is the order of the filter (N):
a higher N indeed permits a better band-pass selectivity,
but reflects in higher resource usage and latency. Given the
application constraints, we chose a filter order of N = 63,
which revealed to be the best design point of our design space
exploration [36]. By using symmetric coefficients the number
of multiplications needed can be halved. The resultant run-
time workload required for filtering 4 096 input channels, with
a maximum sampling frequency fs of 18 kHz is then:

WLFIR = 4096 · 18 kHz · (N+1)
2 MAC/s ≈ 2.359 · 109 MAC/s

expressed in multiply and accumulate (MAC) operations per
second.

3) Spike Detection and Storage
The filtered samples are processed by a single block, which

performs the spike detection and storage tasks, as described
hereafter.

a) Spike Detection: Spikes are detected on the filtered
neural traces using an algorithm based on amplitude threshold
[37]. The choice for such threshold, however, is of mandatory
importance. The use of high thresholds, in fact, would lead to
a large number of missed spikes while false detections would
originate from noise crossing low thresholds. As proposed in
[38], a proper solution for this problem consists in computing
the amplitude of the threshold by estimating the standard
deviation of the noise σn = median |x|/0.6745, with x being
the filtered signal, and multiplying it by a constant α, typically
between 3 and 6, resulting in Thr = α · σn.
Furthermore, a convenient way to take into account multiple
signal and noise amplitudes which may change over time

Fig. 3: Schematic of the Camera Link De-serializer.

among the recording channels, is to dynamically and automat-
ically adjust the threshold by using a sliding window mecha-
nism which considers only a given number of recent samples.
Implementing such dynamic approach with the solution pro-
posed by Quiroga, however, has practical limitations since the
calculation of the median is computationally intensive; thus,
in our implementation, the threshold is evaluated using as σn
the exact value of the standard deviation of the signal.

σn =

√√√√√
M−1∑

k=0

x2i−k −

(
M−1∑
k=0

xi−k

)2

· 1

M

 · 1

M
(1)

In Eq.1 M is the size of the sliding window (4 096 samples
in current implementation, corresponding to a time interval of
about 228 ms), and xi is the i-th sample of the filtered signal.
To reduce the computational complexity of the proposed
algorithm, multiple optimizations were applied. More in detail:

• M is a power of 2, in this way the divisions are
implemented as bit-shifts;

• the sum terms in the equation 1 are updated considering
only the new acquired sample and the oldest one stored
in memory;

• σ2
n is used instead of σn to avoid calculating the square

root: a square value of the threshold is compared with a
square value of the the samples (already available).

The processing flow implemented in hardware to compute
Thr2 = α2 · σ2

n, where σn represents now the exact value
of the standard deviation of the signal, is reported in Fig. 4.
By doing such optimizations we achieved a workload of only
4 MAC operations per channel per input sample, resulting in a
total workload associated to the spike detection stage of about:

WLdetect = 4096 · 18 kHz · 4MAC/s ≈ 295 · 106 MAC/s

b) Storage: The filtered data samples as well as infor-
mation about detected spikes, including the time stamp and
the channel identifier, are saved in the DDR memory. Filtered
samples are used by the hardware module for dynamic and
automatic adjustment of the threshold, as previously described,
while detected spikes are used by the closed-loop decision
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Fig. 4: HW implementation of the spike detection algorithm.
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algorithm running on the ARM processor. In perspective, also
the filtered sample can be easily accessed by any user defined
software running on the ARM processor to perform further
analysis and operations. To better match with the processor
architecture, the filtered samples are stored as 16-bit wide data,
while each spike detection is saved as an 8-bit data flag. Thus,
the required input and output bandwidth can be evaluated
taking into account that, for each data sample, the system
requires two 16-bit data accesses (to update the threshold Thr2
as described previously) and one 8-bit data access (to write the
spike detection flag):

BW = 4096 · 18 kHz · (16 + 16 + 8) bits ≈ 3Gbit/s

As shown in Fig. 2, the storage module is connected to one of
the four AXI High Performance (HP) ports that are available in
the Zynq Processing System (PS) which permit direct access to
the DDR memory through a dedicated controller, without any
processor intervention. Being the HP ports 64-bit wide, and
considering a working frequency of 80 MHz, the bus allows for
a maximum bandwidth of around 5 Gbit/s, which is adequate
to meet the bandwidth requirements of the storage block.

B. ZYNQ processing system
The Zynq processing system integrates a dual-core

ARM CortexTM-A9 processor.
Our implementation adopts an Asymmetric Multi Processing
configuration of the two available ARM cores in order to
exploit the processing system for multiple functionalities.
Specifically, one core runs a Linux-based operating system,
devoted to housekeeping and interfacing with the external
environment while the second available core runs a bare-
metal application (i.e. without any operating system), which
performs the final elaboration steps required to implement the
closed-loop decision task. Both cores run a lightweight shared-
memory based API framework that allows for remote control,
configuration, synchronization and inter-process communica-
tion between softwares running on the two independent cores.

1) Linux Core
The operating system running on the first core allows the

system to feature a high-level user interface and network con-
nectivity. This core is also responsible of system initialization,
programmable logic clock configuration and management, and
of performing the bare-metal core management/communica-
tion tasks. Thanks to the networking support, the platform
allows to remotely update and manage both the programmable
logic hardware and the bare-metal program. Thus a partial or
full reconfiguration can be done at any time in order to handle
different experimental configurations.

2) Bare-metal Core
The bare-metal core has easy and real-time access to the

DDR memory, where filtered data and the occurrences of
detected spikes are saved. Thus, it is used to run user defined
decision algorithms implementing specific closed-loop exper-
imental paradigms. Interestingly, since such algorithms are
described using general-purpose programming languages (such
as C), they can be easily modified and adjusted by the final
user, thus making the proposed system architecture extremely
reusable and versatile. To respect real-time constraints, how-
ever, the bare-metal core must run the closed-loop algorithm
in a time frame of 1

fs
= 55.56µs. As the ARM cores work at

666 MHz frequency, the decision algorithm must be completed

TABLE II: Hardware utilization report
Task FF LUT BRAM DSP

Filtering 4 480 4 928 96 32
Spike Detection 11 431 15 163 14 28

Other 8 083 6 869 6 0
Whole System 23 994 (23%) 26 960 (51%) 116 (83%) 60 (27%)

within 37,000 cycles.
Finally the hardware is equipped with 512 MB of DDR3
memory, which is virtually shared by the two cores. Notice
that the amount of memory dedicated to the bare-metal core
is dependent on the specific workload to be executed within
the closed-loop decision algorithm and can be easily changed
during software development. In our experiments, we did not
notice any significant mutual interference between the memory
accesses performed by the two cores, impacting on the closed-
loop performance of the system.

V. RESULTS

To assess the possibility of the proposed programmable
SoCs solution to be employed as the real-time processing core
for closed-loop experimental paradigms, we implemented it
on a ZedBoardTM provided by Avnet and used it in ex vivo
experiments on mouse retina.

A. Hardware utilization
The target ZedBoardTM board integrates a Xilinx Zynq R©

Z-7020 All-Programmable SoC featuring 106 400 Flip-Flops
(FFs), 53 200 Look-Up Tables (LUTs), 140 Blocks RAM for
a total of 4.9 Mb of on-chip memory and 220 hardwired
DSP48E1 slices. Each DSP48E1 contain a 25x18 multiplier
and a 48-bit accumulator, meaning that running at 80 MHz
it can perform 80 · 106MAC/s. Thanks to the hardware
optimization focused on minimizing resource usage the whole
system fits the targeted FPGA device with the occupancy
rate summarized in Table II. More in detail, thanks to
time division multiplexing implemented in the FIR blocks,
the whole workload of the filtering stage, 2.359 ·109MAC/s,
takes just 32 DSPs with each one used at 92% of its per-
formance. For the threshold update and the spike detection,
with the relative low workload calculated in the previous
section, 295 · 106MA/s, the system uses instead 28 DSPs.
Comparing this with the performance offered by a DSP48E1,
results in a very low utilization factor of each DSP. This is
due to two major reasons. The first is that some multiplications

HD-MEA
BioCAMx

Zynq-based Real-Time Processing

Optical stimuli

Fig. 5: Experimental setup used for closed-loop ex vivo exper-
iments on mouse retina.
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Fig. 6: Representative raw data recorded by a single electrode of the CMOS-MEA from a retinal ganglion cell (top) and closed
up view showing a narrower time window (bottom). A) Black line represents the hard threshold used by both the online and
offline detection methods. Blue and red triangles respectively represent the spike occurrences detected online by the presented
system and offline by the Brainwave X detection tool. B) Black line represents the dynamic threshold that is derived from the
current noise standard deviation of the signal. In this case spike occurrences are marked as green triangles.

performed for the threshold update involve numbers that don’t
fit the 25x18 multiplier, resulting in the need of more DSP
for the same operations. The second reason is that, being
the DSPs the less used resource, we decided to waste DSP
cycles in order to minimize the routing and the control that
otherwise would have take much more LUTs and BRAMs.
The unused hardware resources can be perspectively used for
further processing in the future to increase performance and/or
to add functionalities. The scalability of the approach was
evaluated in a preliminary exploratory work in [36]. As we
can see from the table II, the performance of the configuration
presented here are limited by the amount of BRAM blocks
that are necessary to implement FIR filters and to buffer the
input samples, while only a small portion of DSP blocks are
utilized. It is worth to point out that the amount of BRAMs
needed is independent on the input sampling frequency, as long
as the filter order is the same. Thus, only the number of DSPs
are affected by an increasing of the input frequency, meaning
that the exact same architecture configuration presented here
can process the 4 096 channels with an input frequency up to
30 kHz, using 124 DSPs.
The resource that saturates at 30 kHz is the bandwidth to
the DDR memory fixed at around 5 Gbit/s by the AXI HP
port. However this limitation can be easily overcome by using
multiple blocks and thus multiple ports to access the DDR,
up to 4 ports are available. We find out that by using two
spike detection modules we can reach an input frequency up
to 40 kHz before saturating the hardware resources available in
the current device. If an even greater input sampling frequency
is needed or for increased number of input channels or when
a major filter order is required for a better accuracy, a bigger
device must be used, with more available BRAM blocks and

LUT. Similar bigger AP-SoCs are available on the market at
prices around 1Keuro.

B. Experimental validation on ex vivo mice retina
With the aim of validating the implemented hardware,

we performed experiments using retina whole-mounts on
4096 CMOS-MEAs subjected to controlled visual stimulation.
Specifically, we assessed all functionalities of the system, from
signal acquisition to stimulus triggers generation. By following
previously reported protocols [39]. Due to unavailability of
the last model of the BioCAM X, the experiments have been
executed with a previous version capable of sampling each of
the 4 096 electrodes at around 7 kHz. We dissected and isolated
adult mouse retinas after sacrificing the anesthetized animal
by cervical dislocation. All the experiments were performed
in accordance with the guidelines established by the European
Community Council (Directive 2010/63/EU of 22 September
2010). Experimental protocols were approved by the Italian
Ministry of Health. Once isolated, we faced the retina down
onto the HD-MEA device putting the retinal ganglion layer in
contact with its surface and leaving the photoreceptor layer ex-
posed. In order to maintain the tissue during the experiments,
a perfusion line, supplied by a peristaltic pump (1 ml/min),
ensured a constant flow of a media composed by AMESs
medium (Sigma - Merck KGaA, Darmstadt, Germany) with
1.9g/L of sodium bicarbonate equilibrated with carboxigen
(95%O2 and 5%CO2).

1) Open-loop system evaluation
To assess the capability of the system of detecting spikes

in real-time and to extract their waveforms, we recorded the
spontaneous neural activity of retinal ganglion cells (RGCs)
from a mouse retinal whole mount. In such experiment we
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Fig. 7: Results from a closed-Loop Experiment involving recordings from a mouse retinal whole mount and optical stimulation
delivered according to the mean firing rate measured on a time window of 50ms.

connected the system similarly to the configuration depicted
in Fig.1 but in an open-loop mode (i.e. without connection to
the stimulus generator). For each detected spike, we configured
the system to store on a text file the data samples within a
time window of 4ms centered around the threshold crossing.
In order to assess the capability of our system to effectively
perform real-time spike detection, we used as ground truth the
offline hard threshold algorithm available into the BrainWave
X acquisition software. In detail, we run the offline algorithm
on the raw data acquired by our acquisition system with the
same parameters used by our system for the online spike de-
tection (hard threshold set to −200µV, 2ms refractory period).
We obtained over 99% of coincidence (with a tolerance of
±500µs) between real-time and off-line detected spikes that
were recorded from the 4096 MEA channels. A representative
example of the results obtained with the online and offline hard
threshold detection on a single raw trace is shown in Fig. 6.A.
We also tested the real-time spike detection based on the dy-
namic threshold approach described in section IV-A3 (setting
for each channel Thr2 = 26 ·σ2

n). Results confirmed that also
in this case the system correctly detects the spiking events (see
Fig. 6.B. for a representative example).

2) Closed-loop system evaluation
A second experiment was designed to assess the closed-loop

performances of the system. The experiment was performed
on a mouse retinal whole mount by closing the loop to control
the optical stimuli generated by a DLP R© LightCrafterTM Eval-
uation Module. To validate the system we programmed a
closed-loop algorithm running in the bare-metal core. First,
we computed the mean firing rate (MFR) as the number of
occurrences of spikes detected in a block of N recording chan-
nels, within a sliding time window of user defined duration
(WINDOW SIZE) that is shifted for every new filtered sample
written in the DDR.

Second we provided a 1 s light stimuli, with a programmable
delay (STIM DELAY), each time the computed MFR was be-
low a user defined threshold MFR THR. Finally, for verifica-
tion purpose only, we stored temporal and spatial information
of each detected spike and triggered stimulus.

In Listing 1 we report the pseudo-code for the closed-
loop algorithm. The algorithm is executed for each new
input sample, without violating real-time constraints, since
its execution time requires less than 37,000 cycles on the
ARM core. The execution time does not depend on the sliding
window size, thus any MFR variation determined by any new
acquired sample may be monitored. Notice that any other
algorithm respecting the real-time constraint may be used,
enabling monitoring of variables changing much faster than
MFR. For example, if we reduce sliding window size to one
sample frame, the algorithm monitors Instantaneous Firing

Listing 1: Closed-loop code
1 for each block
2 {
3 spikes = 0
4 for each channel in block
5 {
6 if there is a spike
7 {
8 store channel_id and time
9 spikes++

10 }
11 }
12 MFR = MFR + spikes - spikes_memory[addr]
13 spikes_memory[addr] = spikes
14
15 if(MFR < MFR_THR)
16 {
17 store block_id and time
18 send stimulus
19 }
20 }
21 if(addr == (WINDOW_SIZE-1))
22 addr = 0
23 else
24 addr++



9

Rate (IFR).
In the current proof-of-concept implementation, the algo-

rithm manages up to 16 different stimuli, each one triggered
by the neural activity recorded from a separate block of 256
recording sites.

On the top side of Fig. 7 we show the raster plot resulting
from an experimental session in which we calculated the MFR
on a single block comprising N=4096 recording channels,
considering a sliding window of WINDOW SIZE=50 ms. We
delivered 1s of light stimulus (in yellow) when the MFR (green
line on the bottom side of the figure) was below the value of
MFR THR=15 spikes (represented by the horizontal red line),
without any delay (STIM DELAY=0ms). A strong response
is registered after around 100 ms from the onset of the optical
stimulus, and for the whole duration of the stimulation [40].

C. Assessment of real-time processing and latency
After the validation of the whole system, we evaluated the

responsiveness of the proposed solution, intended as the time
required to deliver an output stimulus in response to a specific
input event. Fig. 8 shows a timing diagram representing the
scheduling of the tasks executed by different modules. The
time duration of each task was first measured from HDL
simulation and successively verified after implementation by
using a counter connected to the processing system to evaluate
the execution time in terms of clock cycles. The system
implements a pipeline, synchronized with the sampling period
of the system, 0.056 ms (1/fs with fs = 18 kHz). Each task
lasts the time required for processing the data coming from a
whole input frame, which comprises 4096 channels.
The filtering is the first task to start as soon as a sample
is received. Even if such processing is very fast, thanks to
the exploited parallelism, all the filtered samples include an
intrinsic delay due to the phase response of the filter. In
detail, since we used a linear phase FIR filter, the group
delay is constant for all the frequencies and is equal to
N/ (2 · fs) = 1.75 ms (where N = 63 is the filter order). This
is the major contribution to the overall system latency and, if
necessary, can be reduced by lowering the FIR order. Filtered
data are subsequently processed for spike detection and any
detected event has to be stored. For the purpose, the spike
detection task requires the hardwired blocks to access the
DDR to read the last sample (in order to update the dynamic
threshold); however, it can start only after the block has
completed saving any information about the spikes detected in
the previous frame (WS task in the figure). Interestingly, the
spike detection task is so fast that its pace is determined by
the production of filtered samples rather than by its processing
time, thus its execution is completed shortly after the filtering
of the last channel. Once the detection is performed on all the
channels, the communication interface is used to write into the
DDR the information about any detected spike.
Finally, the closed-loop algorithm presented earlier is ex-
ecuted by the bare-metal core. The specific values of the
user programmable parameters in the algorithm do not affect
significantly the execution time. However, two different cases
requiring very different execution times can be identified, as
reported in Fig. 8. For the first version, the system does not
require to store information about detected spikes, resulting
in the execution time to be independent by the number of
detected spikes. In this particular version the total measured
input-output latency is of 1.861 ms. The second version,

conversely, stores the spatio-temporal information (i.e. the time
stamp and the channel identifier) of each detected spike for
further offline processing and verification. The execution time
of this second approach largely depends on the number of
detected spikes due to the overhead introduced for saving the
information in the external memory. In the figure, Case A
represents the situation with the maximum number of spikes
that can be processed in an iteration without violating the real-
time constraints. Case B, instead, considers the case when a
spike is simultaneously detected in each of the 4096 available
channels. Although the measured latency for this later case
is below 2 ms, the time required for the processing is larger
than the sampling period, resulting in real-time violation. Such
worst case scenario, however, is very unlikely and, given the
refractory period of a neuron being about 2 ms [41], it can
happen at most once every many iteration. From the Case A,
we can calculate the maximum firing rate that our application
can support. By being able to process 150 spikes/iteration, in
fact, this means that 2.7 millions spikes per second can be
processed while still meeting the real-time constraints. This
corresponds to all 4096 channels having a firing rate of around
660 spikes/s, which is larger than the maximum firing rate for
a neuron that is about 400-500 spikes/s [42]. Thus, in the long
run, the real-time constraints are always satisfied, even if an
iteration may take more time than the sampling period. Since
the closed-loop control executed on the ARM uses almost all
the available execution time, more complex algorithms may
require support from the programmable logic to comply with
the real-time constraints.

VI. CONCLUSIONS

This work presents a state-of-the-art acquisition and pro-
cessing platform that can be used in neuroscience to im-
plement closed-loop experiments involving neural recordings
from high-density CMOS-MEA devices with up to 4096
simultaneously recording electrodes. For such purpose the
platform was designed and implemented targeting full ex-
ploitation of a low cost Xilinx Zynq device that integrates
two ARM cores and FPGA logic. The system implementation
effectively exploits the synergy between programmable logic
and processing system in the Zynq, and utilizes less resources
than those available on the target mid-to-low end device. Thus,
also considering the size of other devices of the same family,
the proposed hardware architecture allows for scalability and
adaptivity, as the number of input channels, input sampling
frequency and filters’ order can be tuned according to a wide
range of use cases.
We presented results from the full system validation through
ex vivo experiments performed on mouse retina. Specifically,
we demonstrate that the platform is able of real-time process-
ing data coming from a 4 096-electrode MEA and permits
closed-loop stimulation and recordings with a maximum la-
tency of 1.86ms.
Interestingly, the system can also be used in experimental
paradigms that use of electrical instead of optical stimuli. For
now the system trigger preloaded stimuli from an external de-
vice but in future implementations stimuli might be generated
by the real-time hardware itself. Furthermore, the possibility
to easily modify the decision algorithms running on the bare-
metal core makes the proposed system an extremely powerful
tool for neuroscience studies and closed-loop experiments that
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exploit emerging generations of planar or implantable CMOS-
MEAs with a large number of recording electrodes.
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