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Abstract—A new methodology to estimate the growth stages of
agricultural crops using the time series of polarimetric synthetic
aperture radar (PolSAR) images is proposed. The methodology
is based on the complex Wishart classifier and both phenological
intervals and training areas are identified measuring the distances
among polarimetric covariance matrices obtained from the time
series of PolSAR data. Consequently, the computation of PolSAR
features, which is the main step of state-of-the-art methods, is
no longer needed, and the proposed approach can be applied
in the same way to any crop type. Experiments undertaken on
a dense time series of fully polarimetric C-band RADARSAT-2
images, collected at incidence angles ranging from 23◦ to 39◦, in
ascending/descending orbit passes, demonstrate that the proposed
methodology can be successfully applied to retrieve the phenolog-
ical stages of four different crop types. In addition, the effect of
combining beams corresponding to different sensor’s configura-
tions has been evaluated, showing that it affects the retrieval ac-
curacies. Validation with ground data shows the following: overall
accuracy is between 54% and 86%; producer’s accuracy (PA) and
user’s accuracy (UA) range between 21% and 100% and between
33% and 100%, respectively.

Index Terms—Agriculture, classification, phenology, polarime-
try, synthetic aperture radar (SAR).

I. INTRODUCTION

CROP phenology denotes the continuous evolution of agri-
cultural crops along the cultivation cycle, and it is gener-

ally subdivided into primary and secondary stages [1], [2].
Tracking phenological stages of crops is a matter of great

importance both for farmers, to trigger and plan farming activi-
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ties, and for those national/international authorities focused on
scheduling yield calendars for market predictions, regulation of
price, etc. Farming practices aimed at optimizing the crop yield,
such as fertilization, irrigation, and fungicide applications, rely
on timely information about the crop status. For instance, in the
case of cereals, nitrogen fertilizers are mostly applied during
the stem elongation stage [3], and therefore, this stage has to
be correctly identified. An important aspect concerns also pest
infestations and plant diseases, whose effects on crops depend
primarily on the growth stages at which attacks and infections
occur [4]. For instance, the final yield of wheat is strongly
affected by wheat midges only if they attack plants during the
flowering stage [4], while the barley yellow dwarf virus has a
great influence on cereal yield when plants are infected between
the early emergence and the booting stages [4]. Therefore, in
order to minimize the final yield losses, farmers need to detect
these stages to prevent such pests and infections.

Crop growth stages are conventionally detected by ground-
based monitoring activities. The latter, although providing ac-
curate stages identification, are both not cost-effective and very
difficult to be routinely implemented, especially for extensive
fields (e.g., the stem elongation stage in cereals is commonly
identified by cutting longitudinally the stems and analyzing
their extension [3]). Within this framework, the use of remote
sensing is essential: it allows a synoptic and continuous cover-
age of wide agricultural areas. In particular, synthetic aperture
radar (SAR) is a key tool since it ensures both day and night
almost all weather observations at fine spatial resolution. With
this respect, the sensitivity of polarization of electromagnetic
waves to the geometrical (size, shape, orientation, etc.) and
dielectric properties (biomass, water content, etc.) of the plants,
which vary as a function of crop type, growth stage, and crop
conditions, aroused a great interest in exploiting polarimet-
ric SAR (PolSAR) measurements for monitoring the growth
stages of crops. Spaceborne coherent PolSAR sensors, such
as RADARSAT-2 (C-band), TerraSAR-X (X-band), and the
most recently launched Sentinel-1 (S1) operating at C-band,
provide a revisit time (24 days for RADARSAT-2, 11 days for
TerraSAR-X, 12 days for S1-A, and 6 days when combining
S1-A and S1-B) which can be further reduced by combining
different beams and ascending/descending orbits (especially in
the case of RADARSAT-2). This represents a key advantage
for this application since a dense time sampling throughout
the growing season is necessary from the application point of
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view to provide updated information with enough refresh rate.
However, combining different beams, i.e., acquisitions with
different sensor configurations, may complicate the analysis
and exploitation of the data, as it will be pointed out later in
this paper.

Recent studies [5]–[20] have shown the potential of PolSAR
measurements to monitor the growth stages of agricultural
crops in a robust and efficient way. PolSAR-based approaches
have been proposed for crop phenology estimation [7]–[20],
where phenology retrieval is treated as a classification prob-
lem: crop growth stages are regarded as classes, and hence,
they are identified by means of classification algorithms. The
latter can be statical or dynamical [15]. In statical approaches,
the classification is applied to each PolSAR image, without
accounting for the time variable. As a consequence, for in-
stance, the phenology of a parcel may be classified as late
ripening at time tn and then as early germination at time tn+1.
This issue is solved by dynamical approaches, i.e., the ones
proposed in [14]–[16], where crop development is modeled as
a dynamical process and phenology estimation is framed in a
dynamical system context. In the literature, statical approaches
have been proposed in [7]–[13] and [17], and they basically
consist of two steps. In the first one, the behavior of PolSAR
features is physically interpreted in terms of the phenological
stages of the crop under study. Such an analysis allows se-
lecting a reduced set of features, i.e., the ones that result in
the less ambiguous identification of the phenological intervals
to be classified. In the second step, hierarchical trees and/or
simple decision planes are defined by thresholding manually
the evolution of the selected features and then used for the
final phenology classification. Those approaches present some
drawbacks. First, a wide number of PolSAR features (backscat-
tering coefficients at different polarization bases, correlations
and phase differences, decomposition outputs, etc.) must be
analyzed to choose the features that best perform for classifi-
cation purposes. More importantly, for a given crop type, the
methodology is tuned for a specific test area, and therefore, this
limits its operational use. An additional drawback of these ap-
proaches, recently discussed in [17] and [18], is the difficulty to
identify and define phenological intervals to be classified. Some
transitions between phenological stages are not well defined
in the space defined by the selected features, which, in turn,
will lead to poor performance of the estimation (classification)
algorithm.

In this paper, a novel statical approach is proposed to over-
come these drawbacks. It is based on a robust strategy which,
in turn, relies on the complex Wishart classifier, a well-known
supervised classification method for PolSAR imagery [21]. The
proposed methodology exploits distances among covariance
matrices derived from time series of PolSAR images to identify
both the phenological intervals to be estimated and, for each
interval, the training sets. Finally, these intervals are classified
by the complex Wishart classifier.

Therefore, in contrast to state-of-the-art studies, the proposed
methodology does not rely on specific PolSAR features, but
it is only based on the covariance matrices. This is of great
relevance since the whole polarimetric information contained
in these basic polarimetric matrices is exploited. As a con-

sequence, the computation and analysis of sets of PolSAR
features, as well as their physical interpretation, are no longer
needed and, contrarily to rule-based algorithms that need to
be tuned according to the crop type, in this case the same
classification algorithm, i.e., the complex Wishart classifier, are
used for all crops. A potential advantage of approaches based on
features, and not only on the covariance matrices and Wishart
distances, is the exploitation of other types of information, like
texture, which are not considered in this methodology. In ad-
dition, the proposed method encompasses the distance between
phenological classes, so some of the challenges in feature-based
works (e.g., one-to-many relation between temporal behavior
of crops and backscattering) are also valid for the proposed
scheme.

The proposed approach is tested over different crop types
that characterize an agricultural test site located near Barrax,
Spain, for which a dense time series of full-polarimetric C-band
RADARSAT-2 SAR images is available. Such a times series
is achieved by combining seven different beams (i.e., differ-
ent orbit passes and different incidence angles) acquired in
the framework of the European Space Agency (ESA) funded
Agricultural bio/geophysical retrieval from frequent repeat pass
SAR and optical imaging (AgriSAR) campaign, conducted in
that area in 2009, which provided ground information about the
crop phenological stages. Note that the same SAR and ground
data have been used in [6], [11], and [12] for phenology retrieval
and in [22] to analyze the sensitivity of the backscattering coef-
ficients to crop growth stages and soil conditions. In this paper,
four different crop types are analyzed: oat, barley, wheat, and
corn. Results show that the methodology successfully estimates
the phenological stages of the four crop types.

This paper is organized as follows. The basic theory concern-
ing the complex Wishart classifier is summarized in Section II.
In Section III, the proposed approach is detailed. A description
of the test site, ground truth, and SAR data is provided in
Section IV. The obtained results are shown and discussed in
Section V, and finally, in Section VI, conclusions are drawn.

II. COMPLEX WISHART CLASSIFIER

PolSAR measurements can be expressed in terms of the
multilooked polarimetric covariance matrix C which, assuming
reciprocity, is a 3 × 3 Hermitian and semidefinite positive
matrix [23]

C =
1

L
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†
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=
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where L is the number of looks, k = [Shh,
√
2Shv, Svv] is

the one-look Lexicographic target vector expressed in the hor-
izontal (h)/vertical(v) basis, Sxy is the complex scattering
coefficient with {x, y} = {h, v}, and 〈·〉 and † denote the spatial
averaging and the complex conjugate transpose, respectively.
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Under the hypothesis of fully developed speckle [23], it can
be shown that C follows a complex Wishart distribution [24]

pC(C) =
n3L|C|L−3 exp

[
−nTr(C−1

E C)
]

K(n)|CE |L
(2)

where CE = E[C, with E[·] denoting the ensemble average,
and K(L) = π3[Γ(L)Γ(L − 1)Γ(L− 2)], with Γ(·) and Tr(·)
denoting the gamma function and the matrix trace, respectively.

PolSAR data are largely exploited for land cover clas-
sification purposes. Among the several classification meth-
ods proposed, purely statistics approaches, e.g., [21], and
statistics/model-based approaches, e.g., [25], are adopted. In
this paper, the complex Wishart classifier [21] is exploited for
crop phenology estimation. This is a supervised classification
approach based on the Bayesian maximum likelihood classi-
fication criterion, which exploits the Wishart distribution of
C for classes discrimination. By assuming an equal a priori
probability for all of the classes, the distance between a given
pixel and the mth class ωm is derived from (2) as

d(C,CEm
) = ln |ĈEm

|+Tr
(
Ĉ−1

Em
C
)

(3)

where CEm
= E[C|C ∈ ωm] is the average covariance matrix

of all of the pixels belonging to ωm.
The supervised Wishart classification is summarized as fol-

lows: first, training areas have to be selected; then, CEm
is

evaluated by considering pixels within the selected training
areas; finally, classes discrimination is performed by assigning
a given pixel to the class ωm, based on the lowest distance
criterion

d(C,CEm
) ≤ d (C,CEu

) , ∀ωu 	= ωm (4)

with CEu
being the average covariance matrix of the pixels

belonging to class ωu.

III. METHODOLOGY

The methodology proposed to exploit the complex Wishart
classifier for crop phenology estimation is based on the covari-
ance matrices derived from the time series of PolSAR images
collected on the study area. Given N PolSAR images, available
over an agricultural region, the N multilooked 3 × 3 covariance
matrices, evaluated within the parcels of interest, are arranged
in a unique matrix termed as a mosaic and hereinafter referred
as NC. The nth mosaic tile corresponds to the matrix Cn rele-
vant to the nth datum of the time series. This simple mosaicking
operation allows treating parcel phenological stages as different
classes in a single image, i.e., NC. Hence, the complex Wishart
classifier is here used to discriminate these classes within NC.

Once NC is built, the proposed methodology foresees two
main steps: 1) the identification step, which consists of iden-
tifying the phenological intervals to be estimated, and 2) the
selection step, which consists of selecting training areas for
each interval (a training area corresponds to the whole parcel,
and hence, it is referred to as the training tile). These two steps
are based on the symmetric revised Wishart distance (SRWD)
dSRW [26], evaluated among mosaic tiles. The pairwise dSRW

Fig. 1. Google Earth photographs of the parcels analyzed in this study.

between the covariance matrix of the ith tile Ci and the
covariance matrix of the jth tile Cj is defined as

dSRW(Ci,Cj) =
1

2
Tr

(
CiC

−1
j +CjC

−1
i

)
− 3 (5)

which satisfies the conditions:dSRW(Ci,Cj)=dSRW(Cj ,Ci),
and dSRW(Ci,Ci) = 0. Both the identification and the selec-
tion steps will be detailed in Section V.

IV. TEST SITE, GROUND MEASUREMENTS,
AND SAR DATA

The test site is located near Barrax (Spain), which belongs to
the Albacete province and is on the La Mancha plateau at 700 m
above sea level.

Due to the presence of many agricultural fields, the Barrax
area has been often used as a test site for remote sensing
experiments, e.g., [22] and [27]. The proposed methodology is
tested over 29 agricultural fields monitored during the AgriSAR
2009 field campaign between the spring and autumn seasons: 3
oat parcels, referred as “O1,” “O2,” and “O3”; 4 barley parcels,
referred as “B1,” “B2,” “B3,” and “B4”; 13 wheat parcels,
referred as “W1,” “W2”. . .“W13”; and 9 corn parcels, referred
to as “C1,” “C2”. . .“C9.” These parcels are clearly visible in the
Google Earth photograph shown in Fig. 1.

Ground data relevant to the analyzed crops, available from
the AgriSAR 2009 field survey, are listed in Table I, and they
include crop phenology, irrigation schedule and harvest date
(provided only for some parcels), and row orientation (provided
only for some corn parcels). Unfortunately, further information
regarding soil moisture, soil roughness, row orientation, etc., is
not available. Regarding the phenological stages of the parcels,
ground measurements provided only rough information about
the time extent (defined by start and end dates) of each recorded
stage. Hence, in order to provide an agronomy-based descrip-
tion of the parcel phenology, we assign at the start/end dates
of each growth stage a numerical code according to the BBCH
scale (from Biologische Bundesanstalt, Bundessortenamt und
CHemische Industrie) [1], which ranges from 0 to 99. The
recorded growth stages, expressed in terms of the BBCH scale,
are also reported in Table I. Note that, regarding oat, barley,
and wheat, the seedling stage should refer to the plants leaf



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE I
GROUND DATA AVAILABLE FROM THE AGRISAR 2009 FIELD CAMPAIGN

TABLE II
CHARACTERISTICS OF THE RADARSAT–2 FQ BEAMS AND

ACQUISITION SEQUENCE. “A” STANDS FOR ASCENDING
AND “D” STANDS FOR DESCENDING

development (BBCH 10–19) [2]. Furthermore, it is important
to point out that, although the booting stage (BBCH 40–49) is
not recorded by ground measurements, to be consistent with the
growth of these crops, the end date of the stem growth stage is
coded as 49 (i.e., end of booting). Regarding corn, the seedling
stage should refer to the germination stage (BBCH 0–9) since,
according to the duration of the germination of corn [28], it lasts
five days for all of the parcels but C2 (where it lasts ten days).
Concerning the development stage, it should consist of the stem
elongation and heading stages, i.e., from BBCH 30 to 59.

It must be underlined that, except for some cases, the dura-
tion of the growing cycle of the parcels belonging to the same
crop type differs among parcels. In these cases, growing cycles
start on different dates, and parcels develop at different rates.

The PolSAR time series consists of seven Fine-Quad-Pol
(FQ) RADARSAT-2 beams, corresponding to 50 single-look
complex (SLC) images, collected over the Barrax area from
April 2, i.e., day of year (DoY) 92, to September 25 (DoY 268).
The characteristics of these beams, collected at AOIs rang-
ing from 23◦ to 39◦, are listed in Table II, where also the
acquisition schedule is reported. The combination of several
frames corresponding to different sensor configurations ensures
a dense time sampling (Table II) with the lower and largest time
gaps between acquisitions being one and six days, respectively.
However, mixing ascending and ascending passes collected at
different AOIs may have a significant influence on the polari-
metric response of the crops [29], [30], especially when images

TABLE III
SUBSETS OF RADARSAT-2 IMAGES UED FOR EACH PARCEL

are acquired on consecutive days, e.g., beams FQ20 (ascending
pass, AOI ≈ 39◦) and FQ6 (descending pass, AOI ≈ 25◦).

For each crop type, a specific subset of the available 50 im-
ages is used, which includes only those data acquired during the
cultivation cycle and up to two or three days before harvesting
(when the harvest date is provided). It is important to underline
that the seedling stage of oat, barley, and wheat occurs during
March, and it cannot be analyzed in this study (PolSAR acquisi-
tions are available from the beginning of April). The number of
images used for all of the parcels belonging to each crop type is
reported in Table III. Note that, unlike oat, different subsets of
images are used for parcels belonging to barley, wheat, and corn
crops due to the time extent of the growing cycles and beams
coverage.

Finally, data preprocessing consists basically of a few steps.
In the first step, SLC images of each beam are coregistered, by
choosing one image of the beam as master. In the second step,
covariance matrices are estimated from every SLC image by a
9 × 9 sliding boxcar filter. According to the characteristics of
the RADARSAT-2 FQ beams, such a window’s size results in
an equivalent number of looks (ENL) around 48 (see Table II),
which provides reliable estimates of the C matrix [23]. The
third step consists of geocoding all of these matrices to a
common Universal Transverse of Mercator grid that is defined
to have all of the geocoded products in the same reference grid,
regardless of their orbit pass. For geocoding, a 90-m resolution
Shuttle Radar Topography Mission digital elevation model is
used. The selected pixel spacing in the geocoded images is 5 m
in both coordinates.
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Fig. 2. Evolution of the co- and cross-polarized backscattering coefficients for
parcels O2, B1, W1, and C1.

V. EXPERIMENTS

In this section, experiments undertaken on the SAR data set
are presented and discussed. A brief description of the behavior
of the backscattering coefficients at linear polarizations (diago-
nal elements of C), evaluated along the cultivation cycle of oat,
barley, wheat, and corn parcels, is first provided in Section V-A.
Then, the proposed methodology is applied to estimate the
phenological stages of these parcels in Section V-B. It must be
noted that, since we do not have the same number of PolSAR
acquisitions for all of the parcels of the same crop type (see
Table III) and the latter do not exhibit the same phenology at
the same date, the backscattering coefficients, as well as the
pairwise SRWDs (5) between mosaic tiles, are analyzed as a
function of the BBCH scale associated with ground data. BBCH
codes at the radar acquisition dates are obtained by a linear
interpolation [7].

A. Backscattering Coefficients at Linear Polarizations

A complete description of the behavior of the backscattering
coefficients relevant to the analyzed crop types is provided
in [22], where the same data set is used. However, for the
sake of completeness, the evolution of the HH, VV, and HV
backscattering for parcels O2, B1, W1, and C1 is here reviewed
(see Fig. 2). In these plots, the mean values of the three
intensities, evaluated within each parcel, are shown, and each
beam is denoted by the orbit pass (“A” stands for ascending,
and “D” stands for descending) and the average AOI.

In the case of small-grain cereals, i.e., oat, barley, and wheat,
the radar response is dominated by the scattering from the soil
attenuated by plants throughout the growing season [31]–[33].
Accordingly, the HV intensity is mainly below −15 dB, which
is in agreement with the results reported in [34] for cereal crops
analyzed in different test sites. Regarding the backscattering
at copolar channels, the different behavior of the HH and VV
intensities before heading (BBCH 20–50) is due to the vertical
orientation of the stems, which significantly attenuates the VV

intensity with respect to the HH one. Note that the largest VV
attenuation occurs at heading (BBCH 50) for oat and barley and
at the start of booting (BBCH 40) for wheat. Then, the wheat
parcel exhibits an increase of the VV intensity, which could be
attributed to the development of the heads within the sheath
of the flag leaves. As the parcels approach ripening (BBCH
80), backscattering intensities increase due to the increasing
moisture content in the heads [35], [36]. Note that the VV
intensity exhibits the largest increase due to the progressive
drying of the stems, which reduces the attenuation at the VV
channel. Finally, at senescence (BBCH 90–100), an overall
decrease is experienced for these three parcels.

Regarding corn, the scattering from slightly rough/rougher
surface is the dominant scattering mechanism when the soil is
mostly bare, i.e., at BBCH < 15. Accordingly, the VV intensity
is slightly larger than the HH one, with HV being below
−20 dB. Then, up to BBCH 40, the emerging (large and
randomly oriented) corn leaves lead to similar increasing copo-
larized intensities and to a sharp increase of the cross-polarized
one. Finally, according to [35], the high plant biomass leads to
a saturation of the backscattering of all of the intensities from
BBCH 50 onward.

The analysis of the backscattering intensities demonstrates
that the latter carry on valuable information on the phenological
stages of the four crop types. However, this information is con-
taminated by disturbing parameters related both to the system
configuration (e.g., incidence angle) and scene properties (e.g.,
soil moisture and row orientation). For instance, in the case
of small-grain cereals, the backscattering analysis shows that,
before heading, the attenuation of soil backscattering caused
by the emerging tillers (BBCH 20–30) and then by the almost
vertical stems (BBCH 30–40) is more pronounced at larger
AOIs. This phenomenon can be clearly observed looking at
the VV backscattering of the barley parcel around BBCH 45.
One can note that the backscattering related to beam A23
is ∼5/6 dB larger than the one related to beam A39. Scene
properties, e.g., soil moisture and row orientation, can fairly
explain the unexpected behavior of the backscattering inten-
sities. For instance, the sharp increase of all of the intensities
observed around BBCH 24 for parcel O2 (beam A28) is likely
caused by the irrigation of the parcel (6.65 mm of water),
which occurred on the acquisition day. Moreover, for parcel
B1, irrigation has a strong impact also in the milking stage
(BBCH 70–80), which, for this parcel, results in VV and HV
backscattering significantly larger than the oat and wheat ones.
In this phenological range, parcel B1 received ∼111 mm of
water from irrigation, while parcels W1 and O2 were irrigated
with ∼58 and ∼89 mm, respectively. Hence, at these stages, the
backscattering of parcel B1 is likely affected by this irrigation.
In the case of corn, the large variation of the HV backscattering
at earlier stages is likely due to different soil moisture levels
related to the irrigation of the parcel. On the other hand, the
abrupt increase of the HH and VV backscattering levels for
beam D25 at ∼BBCH 14 is likely due to the row orientation of
the parcel with respect to the radar’s look direction of this beam.

Note, however, that to exactly quantify the effect of the
scene-related disturbing parameters, ground truth information,
which is not available in this data set, is needed.
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B. Phenology Estimation

The mosaic NC is specified for each crop type, leading
to four mosaics. Each mosaic tile contains regions of interest
(ROIs) relevant to the parcels shown in Fig. 1. Individual ROIs
are grouped despite if they are geographically separated.

For each crop type, once phenological intervals are identified,
the selection of training tiles, as well as the final Wishart clas-
sification, is undertaken independently for each parcel. Then,
once each pixel of the mosaic is assigned to a given class
according to (4), the parcel phenology is decided consider-
ing the mode, i.e., the most retrieved value, of the classified
pixels. Note that such a decision rule may result in errors
since different zones of a parcel may develop at different rates,
primarily due to differences in soil and moisture properties
across the field. However, this is a convenient way to work
according to the ground data, which are provided at parcel
level. Finally, results are validated by comparing the retrieved
phenological intervals with ground data. A confusion matrix is
built for each crop type, updating the diagonal (off-diagonal)
elements when phenology is correctly (wrongly) retrieved. It
must be underlined that training tiles are not considered in
the validation, and the confusion matrices are relevant to the
remaining mosaics tiles, referred as testing tiles.

To illustrate the proposed methodology, an example is con-
sidered, which refers to the oat parcel. In addition, the effect
of sensor configurations, i.e., incidence angle variability across
beams, two data sets are considered. The first one consists of
all of the beams collected at AOIs < 30◦, i.e., beams A23, D25,
and A28; the second one includes all the beams. In the case of
oat, the smaller set of beams results in a time series of N = 14
images (see Table III).

The identification step is undertaken, for each parcel, by
measuring the pairwise SRWDs (5) between mosaic tiles. The
SRWD allows identifying the intervals in an effective way since
those tiles characterized by lower distances are representative
of similar polarimetric response and hence are merged into
unique classes, thus defining the intervals. A threshold thr is
empirically set to identify the mth interval Im as the pheno-
logical interval that includes those Nm tiles that satisfy two
conditions: 1) the distance values between the first tile of Im
and the remaining Nm − 1 ones are below thr, and 2) the
distance values between the Nm + 1th tile and the remaining
N − 1 ones are above thr. Note that a maximum number of M
phenological intervals, which depend on the sensitivity of the
data to the parcel growth stages, can be identified.

As a matter of fact, the first interval I1 is determined by eval-
uating the distance vector d(1), which contains the distances
between the first mosaic tile and the remaining 13 ones, i.e.,
d(1)=[dSRW(1, 2), dSRW(1, 3), . . . , dSRW(1, 14)] (where, for
simplicity, we set dSRW(Ci,Cj)=dSRW(i, j)). The vectord(1),
which refers to the observed growing cycle (BBCH 20–99),
is plotted, for the three parcels, as a function of the BBCH
scale in Fig. 3(a). Setting an empirical threshold thr = 0.7
on these distances, it can be noted that: 1) in the range 20 ≤
BBCH ≤ 30, most of the values (∼93%) lie below thr, and
2) in the range BBCH > 30 (hereinafter referred as BBCH
30+), most of the values (∼93%) are above thr. Hence, I1 is
defined as 20 ≤ BBCH ≤ 30, and it includes the first N1 = 4

(N1 = 5) mosaic tiles for parcel O1 (parcels O2 and O3).
Then, in the next step, the vector d(2), i.e., the vector that
contains the distances between the first tile of the range BBCH
30+ (i.e., the N1 + 1th tile) and the remaining ones, is used to
identify I2, as shown in Fig. 3(b). In this case, setting thr =
0.4, in the range 30 < BBCH ≤ 41 (BBCH 30+), 100 (57)%
of the d(2) values lies below (above) thr. Accordingly, I2 =
30 ≤ BBCH ≤ 41. Similarly, the third interval is I3 = 41 ≤
BBCH ≤ 73 [see Fig. 3(c)], while the fourth and fifth intervals
are I4 = 73 ≤ BBCH ≤ 84 and I5 = BBCH84+, respectively
[see Fig. 3(d)]. Therefore, with respect to oat, M = 5 phenolog-
ical intervals are identified by analyzing only beams collected
at AOIs < 30◦.

The same rationale is applied to barley, wheat, and corn
parcels, and the following phenological intervals are identified:

• M = 3 intervals for barley [see Fig. 3(e)–(f)]: I1 =
20 ≤ BBCH ≤ 41, I2 = 41 < BBCH ≤ 71, and I3 =
BBCH 71+.

• M = 3 intervals for wheat [see Fig. 3(g)–(h)]: I1 =
19 ≤ BBCH ≤ 39, I2 = 39 < BBCH ≤ 75, and I3 =
BBCH 75+.

• M = 5 intervals for corn [see Fig. 3(i)–(l)], i.e., I1 =
BBCH≤20, I2=20<BBCH≤40, I3=40<BBCH ≤
60, I4 = 60 < BBCH ≤ 75, and I5 = BBCH 75+. In
this case, the behavior of d(1) is not the same for all
the parcels. In fact, parcels C1, C3, C5, and C9 exhibit
increasing distance values up to stage 40, while the re-
maining ones exhibit a flat evolution of d(1), with values
mostly below 1. Such a different behavior is likely due to
the row orientation of the parcels (see Table I).

Once phenological intervals are identified, the pairwise
SRWD is exploited to select training tiles for each interval.
For a given parcel, the training tiles of the mth interval Im are
identified by evaluating the distance between each Im tile and
the remaining N − 1 ones. A training tile refers to a subset of
tiles that belongs to Im and must satisfy two conditions: 1) the
distances between the training tile and this subset must be lower
than the distance between tiles belonging to the other phenolog-
ical intervals and the subset and 2) the size of the subset must be
the largest possible. Misclassifications arise when the training
tiles of the Im interval result in the lowest distances also for
other intervals. Note that, for each phenological interval, a
maximum number of training tiles have to be set. In this paper,
this number is set to 50% of the tiles included in each interval.
However, in practical cases, the proposed approach needs less
than 50% of the tiles. In fact, the smaller is the number of
training tiles, the smaller is the probability of misclassifications
with other intervals.

Finally, the complex Wishart classifier is applied to the
mosaic of every parcel of each crop type. The output of the
classification is shown in Fig. 4, whereas the confusion matrices
obtained using the testing tiles are reported, along with the
overall accuracy (OA), the producer’s accuracy (PA), the user’s
accuracy (UA), and the kappa coefficient, in Table IV. The best
performance is achieved for barley, where OA ∼86%, PA (UA)
is between 75% and 100% (80% and ∼92%), and kappa is
around 0.8. Regarding oat (wheat), OA is about 70 (61) %,
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Fig. 3. Behavior of the elements of the distance vectors d(1),d(2), . . ., for beams collected at AOIs < 30◦. (a)–(d) Oat. (e) and (f) Barley. (g) and (h) Wheat.
(i)–(l) Corn. Note that, for each plot, the mth interval Im and the corresponding threshold are annotated.

while for intervals I1, I2, I3, and I4 (I1 and I2), PA and UA
are larger than 40% (60%). The only exception is related to
intervals I5 (oat) and I3 (wheat), where a lack of accuracy is
experienced. Kappa is around 0.6 for oat and 0.36 for wheat,
respectively. In the case of corn, OA ∼54%, PA ranges from
∼21% to ∼90%, while UA varies between ∼33% and 75%.
Kappa is 0.42.

The next experiment consists of applying the proposed
methodology on the whole data set. The following phenological
intervals are identified:

• M = 6 intervals for oat: I1 = 20 ≤ BBCH ≤ 25,
I2 = 25 ≤ BBCH ≤ 30, I3 = 30 < BBCH ≤ 41, I4 =
41 < BBCH ≤ 73, I5 = 41 < BBCH ≤ 80, and I6 =
BBCH 80+.
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Fig. 4. Phenology maps obtained by applying the complex Wishart classifier
on beams collected at AOIs < 30◦ for: (a) oat, (b) barley, (c) wheat, and (d) corn
parcels. Phenological intervals refer to the BBCH scale reported in Table I.

• M = 5 intervals for barley: I1 = 20 ≤ BBCH ≤ 30,
I2 = 30 ≤ BBCH ≤ 41, I3 = 41 < BBCH ≤ 73, I4 =
73 < BBCH ≤ 80, and I5 = BBCH 80+.

• M = 3 intervals for wheat: I1 = 19 ≤ BBCH ≤ 39, I2 =
39 < BBCH ≤ 75, and I3 = BBCH 75+.

• M = 4 intervals for corn: I1 = BBCH ≤ 20, I2 =
20 < BBCH ≤ 40, I3 = 40 < BBCH ≤ 55, and I5 =
BBCH 55+.

It can be noted that, with respect to the previous experiment:
more intervals are identified for oat and barley; the same
three intervals are identified for wheat; the number of intervals
reduces to four when corn is considered. Consequently, the
exploitation of a denser time series, obtained by combining
different beams, does not result in an increased number of
intervals for wheat and corn. Such a result is due to the behavior
of the distance vectors (not shown here to save space) which,
exhibiting a large variability among the parcels, do not allow
setting thresholds for the identification of additional intervals.
This effect can be explained by considering that, when dealing
with wheat and corn, a number of parcels (in some cases located
far from each other) larger than the oat and the barley ones
are analyzed. As a consequence, including beams collected at
different orbits and larger AOIs results in a larger intrafield
variability related to the conditions of the parcels (i.e., different
growth rates, row orientation, etc.) and the soil (i.e., roughness
and moisture). Therefore, a denser time series achieved by com-
bining beams corresponding to different sensor’s configurations
and scene properties is not always advantageous.

Once training tiles are selected for each parcel, the Wishart
classifier is applied to classify the aforementioned phenological
intervals. Fig. 5 shows the output of the classifications, whereas
the confusion matrices, the specific accuracies, and kappa are
listed in Table V. With respect to the previous experiments,

TABLE IV
CONFUSION MATRICES OF THE RETRIEVED PHENOLOGICAL INTERVALS

OF THE ANALYZED CROPS FOR BEAMS COLLECTED AT AOIs < 30◦

the overall performances are degraded for oat and barley, while
they improve for wheat and corn. OA decreases ∼2% for oat
and ∼14% for barley, while it increases ∼15% (∼25%) for
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Fig. 5. Phenology maps obtained by applying the complex Wishart classifier
on the whole set of beams for: (a) oat, (b) barley, (c) wheat, and (d) corn parcels.
Phenological intervals refer to the BBCH scale reported in Table I.

TABLE V
CONFUSION MATRICES OF THE RETRIEVED PHENOLOGICAL INTERVALS

OF THE ANALYZED CROPS FOR THE AVAILABLE BEAMS

wheat (corn). This is due to the fact that, the larger is the
number of intervals identified, the larger is the number of
misclassifications to be expected.

VI. CONCLUSION

In this paper, a new methodology has been proposed to
exploit time series of PolSAR images for crop phenology
estimation. The methodology is based on the complex Wishart
classifier and exploits the whole covariance matrix for phenol-
ogy retrieval. Consequently, the extraction of further PolSAR
features is not necessary, and more importantly, the manual
identification of intervals and the definition of rules and thresh-
olds to interpret the evolutions of the features according to
phenology are mitigated.

The approach is tested on oat, barley, wheat, and corn crops
belonging to the Barrax agricultural area, where a data set that
consists of full-pol C-band RADARSAT-2 beams was collected
in 2009 with different sensor’s configurations (different orbits
and AOIs) together with ground truth. Note that short wave-
lengths, such as C-band ones, are of interest for this application
due to their strong interactions with small particles of crops. Ex-
perimental results demonstrate that the proposed methodology
estimates phenological intervals related to the four crop types
with OA between 54% and 86%, and PA (UA) values ranging
from 21% to 100% (from 33% to 100%).

The proposed methodology assumes that all changes ob-
served in the radar response along time are due to phenology. As
a result, other factors causing variations, either due to the radar
system (e.g., incidence angle) and to other scene properties
(e.g., soil moisture), affect the performance of this approach.
In an ideal case, a time series formed with a single radar beam
(e.g., exploiting TerraSAR-X and S1-A/B data, due to their
shot revisit time) and auxiliary knowledge of soil conditions
would be required to decouple radar variations from its different
causes and provide good phenology estimates.

However, in this study, we have analyzed the effect of the
incidence angle variability on the estimation performance by
applying the proposed methodology first on a subset of beams
whose incidence angle varies in a smaller range, and then on
the whole data set. Results show that, for a given crop type,
exploiting a denser time series, obtained by mixing of different
sensor configurations, may hamper the identification of the
phenological intervals to be estimated.

Future studies will be devoted at including the information pro-
vided by the time variable in this approach in order to conceive
a dynamical Wishart classifier for crop phenology estimation.
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