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Abstract

During the last decade, the problem of consensus in Multi-Agent Systems (MASs) has
been studied with special emphasis on graph theoretical methods. Consensus can be
regarded as a control objective in which all the agents in a network converge to (or agree
“upon”) a common value. This is achieved through a given control strategy usually
referred to as consensus algorithm. The consensus problem in MASs becomes more
challenging in the presence of agents that can join and leave the network, hence the
so-called “open” multi-agent systems. This topic is recent in the scientific literature and
quickly gaining attention. Thus, this dissertation is motivated by this topic, focusing
on the consensus problem on the median consensus value and the average consensus in
open multi-agent systems.

Hence, this thesis is first devoted to designing a novel distributed open average con-
sensus protocol for multi-agent systems. The distributed algorithm tracks the average
of the agents’ state despite the time-varying size and composition of the network. The
research activity consists of the design and formal characterization of the convergence
properties of the algorithm. The results have been corroborated by numerical simula-
tions.

As for the second part of the research activity, the characterization of the conver-
gence properties of a distributed algorithm to compute and track the median value of a
set of numbers in open multi-agent systems has been proposed. A continuous time for-
mulation is considered where the state variables of the agents track with zero error the
median value of a set of time-varying reference signals given as input to the agents in a
time-varying, undirected network topology. The performance of the proposed protocol
is considered in the framework of open multi-agent systems by proposing join and leave
mechanisms, i.e., the scenario where agents may join and leave the network during the
protocol execution. One notable feature of consensus on the median value is the robust-
ness of the median value, as opposed to the average value, with respect to abnormal or
outlier state values. Non-smooth Lyapunov theory is employed to provide convergence
guarantees and simple tuning rules to adjust the algorithm parameters.

Apart from studying open multi-agent systems, this dissertation also proposes a dis-
tributed scheme for transforming any connected interaction graph with a possible non-
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integer average degree into a connected approximately random k-regular graph which
is independent of the degree of the initial graph. in more details, we define some local
graph transformation rules (consisting of rules for cutting, adding, and moving edges)
and provide a distributed implementation. In the resulting process, a random regular
graph is obtained while the agents observe and modify only the local structure of the
network. As such, the network achieves high expansion ratios and algebraic connectiv-
ity, which provide robustness to various structural and functional perturbations.
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Chapter 1
Introduction

1.1 Motivation

A Multi-Agent System (MAS) is a large set of dynamical systems which interact within
a network. Many real systems in nature and human society can be modeled as multia-
gent systems, thus in the last two decades cooperative systems have received compelling
attention in different research fields such as physics sciences, mathematics, economic
science, and engineering. One of the most heavily investigated problems in multi-agent
systems is the consensus problem, i.e., the design of a distributed control strategy to
drive the state variables of each agent to the same value. Inspired by the natural oc-
currence of flocking and formation, many researchers have focused their work on the
synchronization, consensus, and coordination of dynamic multi-agent systems [1, 2].
When it comes to examples in engineering, MASs are also used to model several net-
works of systems such as multi-robot systems [3,4], sensor networks [5,6], networks of
energy storage systems [7], and so on which interact over a communication or sensing
network. One of the most fundamental features of these examples is that agents can
login (join) and logout (leave) the network. However, in the literature on multi-agent
systems only few papers have addressed this scenario.

In the past decade, the consensus problem has been investigated from several differ-
ent perspectives. Most early papers on multi-agent systems address consensus and syn-
chronization problem without considering the presence of a leader node, so all nodes are
commanded to converge toward a not prescribed common evolution. Consensus proto-
cols which converge to the minimum, maximum, median and average value [8–10] are
examples of this method. Synchronization, in the sense of cooperative tracking, has
been then studied by adding a leader, the so-called leader-following consensus that im-
poses the desired behaviour to a group of agents to achieve the command trajectory (e.g.,
see [11, 12]. Other perspectives on consensus problems include finite-time consensus,
where the state variables of networked multi-agent systems are said to reach the desired
value if there exists a finite convergence rate. Finite-time consensus has been studied
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2 CHAPTER 1. INTRODUCTION

in [10, 13, 14], just to mention only a very small sample of this huge literature. In [8]
the problem of exact average consensus over time-varying digraphs was investigated by
employing an additional variable to keep track of the state changes of each agent. The
protocol in [9] guarantees perfect average consensus despite a variety of challenging
scenarios, including possible packet drops in the communication links, and imprecise
knowledge of the network. In [10], consensus on the median value is achieved in finite
time under static communication graphs and it is shown that the considered algorithm
is resilient with respect to both outliers and uncooperative agents if a graph theoretical
condition based on k-connectivity is satisfied.

Most existing literature on multi-agent systems has studied the consensus problem
by considering networks where the set of agents does not change. Thus, motivated in
this thesis, we firstly design a novel discrete-time distributed open average consensus
protocol to let each agent track the time-varying value of the average initial state of the
agents in a scenario where agents can join and leave the network during the protocol
execution. Then, we focus on the problem of dynamic consensus of a network of agents
corresponding to continuous-time systems wherein the state variables of the agents track
with zero error the median value of a set of time-varying reference signals given as
input to the agents under a time-varying, undirected network topology. Furthermore, we
analyse the performance of the protocol in the framework of open multi-agent systems
by considering join and leave events, i.e., the scenario where agents may join and leave
the network during the protocol execution.

1.2 Related literature

A recent development in control and systems theory considers open-multi-agent systems
as networks of coupled dynamical systems that can login and logout from the network,
thus change the number of state variables during the transient and steady-state behavior
of the multi-agent system. Recent works of the still limited literature on the topic can
be found in [15–23]. In particular, the authors in [15] dealt with a class of discrete-time
dynamic average consensus algorithms wherein a group of agents can track the average
of their reference inputs. They showed the proposed algorithm is robust to the dynamic
change of communication topologies as well as the joining and leaving (or failure) of
nodes, albeit, stability analysis was not performed on the open scenario. A discrete time
average consensus algorithm for open multi-agent systems has been analyzed in terms
of three scale-independent quantities under the assumption that departure and arrival
occurred at pre-determined times [16]. Successively, the authors have extended [16] by
considering agents that can login and logout at random times, wherein the network size
was fixed, i.e., each departure of an agent is instantaneously followed by an arrival [17].

This issue has then been investigated in [18], where the main idea is to achieve
consensus on the maximum value of the state of the agents by using randomized gossip
interactions between them. Additionally, novel definitions of stability along with an
open proportional dynamic consensus algorithm have been reported for open multi-
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agent systems in [19] and [20] wherein agents estimate the time-varying average of a
set of reference signals. Another consensus problem of discrete-time open multi-agent
systems with stochastic interactions controlled by a Bernoulli process is studied in [21].
Finally, decentralized optimization algorithm in this setting is receiving attention, such
as in [22] where time-varying objective functions are considered, and in [23] where the
stability of decentralized gradient descent is analyzed and it is shown that decentralized
gradient descent is stable when agents/functions change over time if their objectives are
sufficiently smooth.

1.3 Possible applications

MAS is applied to several real systems networks such as multi-robot systems, sensor
networks, energy storage systems, etc., interact with their environment and accomplish
actions to reach their goals. Some of these real applications can be found in [4–7, 24].
The authors in [4] formulated a general distributed coordination problem in multi-robot
systems. In [7, 24] the problem of voltage and frequency restoration in microgrid sys-
tems is addressed in a multi-agent fashion where the generators’ local controllers play
the role of cooperative agents communicating over a network. The qualitative analy-
sis of Java-based multi-agent platforms for wireless sensor networks (WSN) proposed
in [5, 6] to facilitate the decision for choosing a given agent platform to develop and
optimize agent-based WSN applications. Several other real-world applications can be
described with the multi-agent system framework. It is worth noting that one of the most
significant features of these applications is that agents can join and leave the network.
Therefore, the consensus algorithms proposed in this dissertation can be implemented
in these real applications.

1.4 Structure and topics of the thesis

We organise this dissertation into six chapters. In Chapter 1, we firstly present the in-
troduction of the multi-agent systems to the reader, which is useful to describe different
real-world scenarios. Then, we provide the motivation and the related literature. Lastly,
we include a brief outline of the research activities in this thesis. We outline the mathe-
matical background and useful properties from other authors for later use in Chapter 2.
The rest of this dissertation covers the following main topics

In Chapter 3, we study the problem of discrete-time average consensus in Open
Multi-Agent Systems (OMAS), where agents may join and leave the network at any
time. Distributed algorithms to achieve average consensus in networks have been widely
investigated [25–31]. For average consensus on static (i.e., time-invariant, fixed) di-
graphs, [27, 30] justify that a balanced and strongly connected topology is necessary
and sufficient to guarantee convergence. Weight-balanced digraphs are essential in
distributed averaging. The Authors in [32] propose distributed algorithms over static
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topologies to solve the weight balancing problem when the weights were arbitrary non-
negative real numbers. Given a general strongly connected digraph, [33], considers how
to find corresponding weight-balanced digraphs, and proposes two algorithms to achieve
this goal by selecting the out-edge weights to balance the in-degrees and out-degrees.
The authors in [34] design an asynchronous broadcasted gossip algorithm to calculate
the (possibly weighted) average of the initial measurements of the nodes in the network
and show that the broadcast gossip algorithm converges almost surely to a consensus
value, which is in expectation equal to the desired average of initial measurements. A
recent overview on event-triggered average consensus and control of multiagent sys-
tems can be referred to [35]. It should be pointed out that most of the existing literature
on average consensus works considers static networks where their composition remains
unchanged throughout the whole process. Hence, in Chapter 3 we focus on the prob-
lem of discrete-time average consensus in open multi-agent systems, where agents may
join and leave the network at any time. To address this problem, we propose a novel
Distributed Open Average Consensus Protocol (DOACP) to track with a bounded er-
ror the time-varying value of the average of the agents’ state. We also provide a novel
convergence analysis to address a time-varying number of state variables. Finally, we
present numerical simulations to corroborate the theoretical analysis.

In Chapter 4, we focus on Dynamic Consensus on the Median Value in Open Multi-
Agent Systems. Although the literature on the open multi-agent systems topic is limited,
the literature on dynamic consensus is rich. One of the early works on the topic is [36],
which uses Laplacian feedback and provides as inputs to the agents the derivative of a
set of reference signals. A high order continuous-time dynamic average consensus pro-
tocol is then reported in [37]. The requirement on precise initialization of the algorithm
makes it not robust to initialization errors or changes in the network composition. To
guarantee robustness with respect to initial errors, [25, 38, 39]propose alternative dy-
namic average consensus algorithms whose convergence is guaranteed that the graph
representing the network topology is connected, static and balanced. Other notable
mentions in the consensus literature are [40–42] (the so called ratio consensus) to solve
consensus on unbalanced digraphs by exploiting the ratio of two state variables that per-
form linear state updates with appropriate, distinct, initialization. The proposed method
in this chapter is based on a discontinuous local interaction rule. We refer to [43–45] for
an exhaustive tutorial on how to study discontinuous gradient flows and discontinuous
feedback systems by means of non-smooth Lyapunov theory.

The algorithm we present converges in finite time. Approaches that obtain consensus
in finite time can be found in [46–52]. In particular, in [46],[47] and [48] the propose
approaches are capable of tracking with zero error the average value of time-varying
smooth reference signals with bounded derivatives, in finite time on static undirected
graph topologies. The dynamic average consensus protocol in [46] gurantees perfect
tracking in finite time using one-hop communication, but it suffers from the limitation
of not being robust to initial conditions. The protocol in [47] converges to zero error in
finite time and is also robust to initial conditions, however it requires two-hop commu-
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nication. The protocol in [48] uses one-hop communication, but the error synchronizes
to zero exponentially, rather than in finite time. In [53] using continuous local interac-
tions, finite time consensus is studied for single integrators and second order systems
with unknown non-linear dynamics. It is worth noting that, most averaging approaches
in large scale networks suffer from a considerable limitation: the presence of even a
single outlier value within the considered data may affect the network behavior. This is
a strong motivation to pursue consensus strategies on robust statistics such as the me-
dian as opposed to the average. In [54] and [55], to overcome the drawbacks of average
consensus, the authors proposed algorithms to solve the consensus on the median value
of a set of numbers. In more detail, in [55], consensus on the median value is achieved
in finite time under static communication graphs and it is shown that the considered
algorithm is resilient with respect to both outliers and uncooperative agents if a graph
theortical condition based on k-connectivity is satisfied. In [54], a robust distributed
consensus on the median value is proposed in the presence of matching perturbations
to the agents dynamics. In contrast to this paper, in Chapter 4 we consider a dynamic
consensus problem in continuous time where the state variables of the agents track with
zero error the median value of a set of time-varying reference signals given as input to
the agents in a time-varying, undirected network topology. Then, we consider the per-
formance of the protocol in the framework of open multi-agent systems by proposing
join and leave mechanisms, i.e., scenarios where agents may join and leave the network
during the protocol execution. We characterize the finite-time convergence properties
and tracking error of the considered protocol in the case of inputs with bounded vari-
ations. One notable feature of consensus on the median value is the robustness of the
median, as opposed to the average, with respect to abnormal or outlier values of inputs
which represent the outcome of a measurement or estimation process, thus significantly
increasing the robustness of the estimation for large scale networks. We use non-smooth
Lyapunov theory to provide convergence guarantees and simple tuning rules to adjust
the algorithm parameters.

In addition to studying the topic of open multi-agent systems, this dissertation ad-
dresses the problem of robustness improvement of multi-agent systems against pertur-
bations such as failures, noise, or malicious attacks. The robustness of a multi-agent
network to perturbations strongly depends on the structure of the corresponding graph,
thus in recent years, graph-theoretic analysis of networked systems has attracted interest
many researchers. One of the basic concepts of graph theory in mathematics and com-
puter science is connectivity, which is a noteworthy measure of its resilience as a net-
work. A graph calls a Q-connected graph if node connectivity or edge-connectivity be
greater or equal to Q. Indeed, Q is the minimum number of nodes or edges that need to
be cut in order to transform a connected graph into two or more components. Generally,
high-connectivity graphs are more robust against their component failure. Connectivity
can also be characterized by the second-smallest eigenvalue of the Laplacian matrix of
graph that is named the algebraic connectivity of the graph. The magnitude of this value
reflects how well connected the overall graph is, and has been used in analysing the
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robustness and synchronizability of networks. If the algebraic connectivity of a graph is
small, it is more likely to be disconnected by removing only a few edges (or nodes).

The connectivity of a graph can be increased by adding more edges to the graph.
However, adding more edges to a graph is not practically appropriate. Since each edge
is considered to reflect some communications, sensing, or a physical link between the
corresponding nodes, then more edges entail more resources. In addition, increasing
many edges may lead to higher vulnerability to the cascading failures such as epidemics.
Therefore, in real-world systems, having a small number of edges (i.e., sparsity) is
important. Hence, researchers were motived to present a decentralized protocol for
transforming any connected interaction graph into a connected random regular graph
[56–58]. A regular graph is a graph where is well connected yet sparse whose each node
has the same number of neighbors and a regular graph with nodes of degree k is called a
k-regular graph or regular graph of degree k. Furthermore, selecting a graph uniformly
at random from the set of all k-regular graphs is entitled to a random k-regular graph. In
more detail, in [56] and [57], to robustify multi-agent systems against perturbations, the
authors proposed algorithms where any graph with an integer average degree, m ∈ N,
was transformed into a random k-regular graph while the protocol in [58], rewires any
graph with a possible non-integer average degree of m into a random k-regular graph
for some k ∈ [m,m+2].

It is worth noting that, k-regular random graph built by the aforementioned works is
dependent on the average degree of the initial graph. Thus, in Chapter 5, we design
a distributed scheme for transforming any connected interaction graph with a possi-
ble non-integer average degree into a connected approximately random k-regular graph
which is independent of the degree of the initial graph. Hence, the network is well
connected with a relatively small number of links that leads to improved robustness of
networks. Finally, we provide numerical simulations to demonstrate the effectiveness
of the proposed solution.



Chapter 2
Mathematical Background

This chapter is structured as follows. In Section 2.1, we give some basics on notation.
After that, in Section 2.2, we illustrate preliminaries of graph theory in open MASs. We
provide multi-agent modeling of dynamical systems in Section 2.3. Finally, in Section
Section 2.4 for later use we present some useful properties of other literature

2.1 Nomenclature

Let R and N express, respectively, the sets of real and positive integer numbers. Given
a matrix A ∈ Rn×n, its transpose is denoted by AT . The generic element (i, j) of matrix
A is denoted as ai j. A matrix A is said to be a nonegative matrix if all its elements
satisfy ai j ≥ 0. A nonnegative matrix is called row-stochastic if A1 = 1 where 1 is a
column vector with all unitary elements of appropriate dimension. If the matrix is also
column-stochastic, i.e., 1T A = 1T then matrix A is called a doubly stochastic matrix. In
this thesis we denote the cardinality of a generic set S as |S| and the Euclidean norm of
a vector S as ||S||2.

2.2 Network topology in open MAS

Let G(t) = (V (t),E(t)) be a connected time-varying undirected graph, where t ∈ N is
a time index, V (t) is a time-varying set of integer numbers which represents agents
logged in the network at time t and E(t) ⊆ { V (t)×V (t)} is the set of edges repre-
senting information exchange between agents. Each agent is represented by an integer
i ∈ V (t). There exists an edge between agents i and j if (i, j) ∈ E. Let Ni(t) = { j ∈
V (t) : (i, j) ∈ E(t)} be the set of neighbors of agent i, i.e., agents that share an edge
with agent i. The time-varying degree of each node is defined as the cardinality of its
neighborhood, ∆i(t) = |Ni(t)| where | · | denotes the cardinality of a set. We denote
by n(t) = |V (t)| the number of agents logged in the network at time t. Let us define

7



8 CHAPTER 2. MATHEMATICAL BACKGROUND

by R(t) = V (t)∩V (t + 1), D(t) = V (t) \V (t + 1) and A(t) = V (t + 1) \V (t), respec-
tively, the sets of remaining nodes that belong to both V (t), and V (t + 1), departing
nodes that belong to V (t) but not to V (t +1) and arriving nodes that belong to V (t +1)
but not to V (t). We also define the edge sets EA(t) = {(i, j) : i ∈V (t)\D(t), j ∈ A(t)}
representing the edges added to the graph by arriving agents at time t and set ED(t) =
{(i, j) : i ∈V (t)\D(t), j ∈ D(t) or i, j ∈ D(t)} representing edges removed from the graph
by departing agents.

2.3 Multi-agent modeling of dynamical systems

A dynamical system is a physical system whose states are represented by the points of
a set. These states evolve with time according to a deterministic law, specified by a
differential or difference equation. For clarity, we present the state-space representation
of a dynamical system in the block diagram 2.1, which models a physical system as a set
of state variables, (x(t) or (x(k)), input, (u(t) or u(k)), and output (y(t) or y(k)) signals
related by first-order differential equations (continuous-time) or difference equations
(discrete-time). We use the term dynamical system to refer to either continuous-time or
discrete-time dynamical systems.

OutputInput

Figure 2.1: State-space representation of a dynamical system.

2.3.1 Discrete-time dynamical system

A discrete dynamical system is a dynamical system whose state evolves over state space
in discrete time steps according to a law. A dynamical system evolving in discrete-time
is described by:

x(k+1) = f
(
x(k),u(k)

)
, k ∈ N (2.1)

where x(k) is the current state of the system, and x(k+1) is the state of the system after
one interval of time has passed. By iterating the above calculation multiple times, we
can find subsequent states of the system. f : X → X is a map and the k-th iterate of map
f is the n-fold composition f n = f ◦ . . .◦ f , and hence the system can also be modeled
by x(k+1) = f k(x(0)).
2.3.2 Continuous-time dynamical system

A continuous dynamical system is a dynamical system whose state evolves over the
state space continuously over according to a fixed rule. A dynamical system evolving in
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continuous-time is modeled by:

ẋ(t) = Φ
(
x(t),u(t)

)
, t ∈ R (2.2)

where x(t) represents the current state of the system, which identifies the one parameter
family of maps Φ(t,x(t)) : X → X for t ∈ R, solutions to the initial value problem.

2.4 Useful properties

For later use, we provide the following useful properties:

Definition 2.4.1: Finite-Time Consensus

The state variables xi(t) ∈ R, i ∈ V (t), of a networked multi-agent system are
said to reach finite-time consensus if there exists a real value T ∈ (0,∞) and a real
function c(t) : R→ R such that

xi(t) = c(t), ∀i ∈V (t), ∀t ≥ T. (2.3)

Function c(t) is the time-varying consensus function.

Consider the dynamical system

ẋ(t) = f (x(t)), x(t) ∈ Rn, x(0) = x0 ∈ Rn, (2.4)

where f (x(t)) : Rn → Rn, is defined almost everywhere, i.e., it is defined for every
x(t) ∈ Rn \W , where W is a subset of Rn of measure zero. Furthermore, f (x(t)) is
measurable in an open region Q ⊂ Rn and for all compact sets D ⊂ Q there exists a
constant AD such that ∥ f (x(t))∥ ≤ AD almost everywhere in D.

If the differential equation (2.4) has discontinuous right-hand side, following [59] we
understand the corresponding solution in the so-called Filippov sense as the solution of
an appropriate differential inclusion, as explained in the next definition.

Definition 2.4.2: Filippov Solution

A vector function x(·) ∈ Rn is called a Filippov solution of (2.4) on [t0, t1] if
x(·) is absolutely continuous on [t0, t1] and, for almost all t ∈ [t0, t1], satisfies the
differential inclusion

ẋ ∈ K(x)≜
⋂

δ>0

⋂
µ(N)=0

co{ f (B(x,δ )\N, t)} , (2.5)

where
⋂

µ(N)=0 denotes the intersection over all sets N of Lebesgue measure zero,
co{·} denotes the convex hull and B(x,δ ) is a ball of radius δ centered at x.
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If f (x) is measurable and locally bounded then the corresponding set-valued map is
upper semicontinuous, compact, convex valued and locally bounded so that the differ-
ential inclusion (2.5) possesses a Filippov solution for each initial condition x0. The
reader is referred to [44] for a comprehensive tutorial on the topic.

We now recall the definition of Clarke’s Generalized Gradient [60].

Definition 2.4.3: Clarke’s Generalized Gradient

Let V (x) : Rn → R be a locally Lipschitz continuous function. Its Clarke’s gen-
eralized gradient ∂V (x) is defined as

∂V (x)≜ co
{

lim
i→∞

∇V (xi)|xi → x,xi /∈ ΩV ∪N
}
,

where ∇V denotes the conventional gradient, xi ∈ Rn represents a point of an
infinite succession which converges to x ∈ Rn as i grows to infinity, ΩV is a set
of Lebesgue measure zero which contains all points where ∇V (x) does not exist,
and N is an arbitrary set of measure zero.

The Clarke’s generalized gradient coincides with the standard gradient at the points
where the standard derivative of the scalar function exists. Further details and examples
of computation can be found in [43, 44, 60]. Next, we recall the definition of set-valued
Lie derivative.

Definition 2.4.4: Set-valued Lie derivative

Given a locally Lipschitz function V (x), where x ∈ Rn is governed by the differ-
ential inclusion ẋ ∈ K(x), the set-valued Lie derivative of V (x) at x is

L̃ V (x) = {a ∈ R|∃v ∈ K(x) such that ζ · v = a,∀ζ ∈ ∂V (x)} . (2.6)

The set-valued Lie derivative allows the study of the evolution of a Lyapunov func-
tion along the Filippov solutions of the dynamical system according to the next theorem.

Theorem 2.4.1: Evolution along Filippov solutions [60]

Let x(t) : [t0, t1] → Rn be a Filippov solution of (2.5). Let V (x(t)) be a locally
Lipschitz and regular function. Then d

dt (V (x(t))) exists a.e. and d
dt (V (x(t))) ∈

L̃ V (x(t)) a.e.. ■

A generalization of the extended Lyapunov theorem for non-smooth analysis appro-
priate for the study of consensus problem is the following ([43],[55]).
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Theorem 2.4.2

Let M = span(1n) be the subspace spanned by vector 1n. Consider a scalar
function V (x(t)) : Rn → R, with V (x(t)) = 0 ∀x ∈ M and V (x(t)) > 0 ∀x ̸∈
M. Let x(t) : R → Rn and V (x(t)) be absolutely continuous on [t0,∞) with
d
dt (V (x(t))) ≤ −ε < 0 a.e. on {t|x(t) ̸∈ M}. Then, V (x(t)) converges to 0 in
finite time and x(t) reaches the subspace M in finite time as well. ■

As first step in the analysis, it is worth mentioning that since the corresponding right-
hand side is uniformly bounded [44], there exists a Filippov solution to (4.1) for every
initial condition of (4.1)
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Chapter 3
Average Preserving Discrete-time
Consensus

3.1 Introduction

In this chapter, we address the problem of discrete-time average consensus in Open
Multi-Agent Systems (OMAS), i.e., multi-agent systems that are subject to arrivals and
departures of agents. To solve this problem, we propose a novel Distributed Open Av-
erage Consensus Protocol (OACP) to track with a bounded error the time-varying value
of the average of the agents’ state. We present a novel convergence analysis to address
a time-varying number of state variables. Lastly, we provide numerical simulations to
confirm the theoretical analysis.

The structure of this chapter is as follows: In Section 3.2 we present the main con-
tributions. Then, we detail the statement of the problem in Section 3.3. After that, we
discuss the proposed algorithm in Section 3.4. We provide the convergence analysis
in Section 3.5. In Section Section 3.6 we carry out numerical simulations. Finally, in
Section Section 3.7 we discuss concluding remarks and future research directions.

3.2 Main contributions

The main contribution of this chapter is a novel distributed open average consensus pro-
tocol which tracks the average of the agents’ initial state despite the time-varying size
and composition of the network. We provide a formal convergence analysis and derive
bounds on the convergence error during the join and leave process by using an appro-
priate Lyapunov functional. The results are corroborated by numerical simulations.

13
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3.3 Problem statement

We consider a discrete-time open MAS with topology represented by an undirected
graph G(t) = (V (t),E(t)) where the agents have dynamics described by:

xi(t +1) = xi(t)+ui(t) i ∈V (t), xi(ti0) = x̄i, (3.1)

where xi(t) ∈ R represents the agent’s state at time t, ti0 is the instant of time at which
agent i joins the network and ui(t) ∈ R is a control protocol.

Our objective is to design a discrete-time distributed control protocol ui for agents
as in eq. (3.1) to let each agent track the time-varying value of the average of the initial
state of the agents c(t) currently logged in the network at time t, i.e.,

c(t) =
1

n(t) ∑
i∈V (t)

x̄i, (3.2)

where the time-varying number of agents n(t) is unknown to the agents themselves.
The value of c(t) changes in time due to the departing and arriving agents. Note that the
standard discrete-time consensus protocol would be biased in this open scenario because
each arriving and departing agent changes permanently the consensus value due to its
past influence to the network.

3.4 Proposed open average consensus protocol

In this section, we present the open average consensus protocol (OACP), which is stated
in detail in Algorithm 1.

First, let us introduce some preliminary definitions. To each edge (i, j) it is associated
a weight wi j, the so-called Metropolis weights [61], defined as:

wi j(t) =


1

1+max
{

∆i(t),∆ j(t)
} , (i, j) ∈ E(t)

− ∑
j∈Ni(t)

wi j(t), i = j

0. otherwise

(3.3)

Let matrix W (t) have elements wi j as in (3.3) and let P(t) = I+W (t). It can be easily
verified that matrix P(t) is a doubly stochastic matrix by construction.

We now introduce an auxiliary state variable zi j(t) ∈ R for each edge (i, j) ∈ E(t)
and z ji(t) for ( j, i) ∈ E(t) in the network. Therefore, we define as the state of each
generic agent i the set of state variables

{
xi,zi j : (i, j) ∈ Ni

}
.

The basic ideas behind Algorithm 1 are as follows: i) When an agent i ∈V (t) leaves
the network at time t, all its states and edges are removed from the network. Further-
more, all the state variables of its neighbors are updated according to eq. (3.5). All its
neighbors j which are not leaving consider their auxiliary state variable z ji(t) (see eq.
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Algorithm 1: Open average consensus protocol (OACP)
Initialize:

G(0) = (V (0),E(0)) ;
xi(0) = x̄i, ∀i ∈V (0);
zi j(0) = 0, ∀(i, j) ∈ E(0);
t = 0.

• At each time t graph G(t) = (V (t),E(t)) is updated as follows:

V (t +1) = (V (t)∪A(t))\D(t),
E(t +1) = (E(t)∪{(i, j) : i ∈ A(t)})\{(i, j) : i ∈ D(t)} .

• At each time t each agent i executes a local state update with its neighbors j ∈ N(t) as
follows:

if
(
Agent i departs form the network, i.e., i ∈ D(t)

)
then

Remove the agent’s state and its edges from the network.
end
if
(
Agent i arrives in the network, i.e., i ∈ A(t)

)
then

Update edge weights according to Eq. (3.3), set xi(t) = x̄i and zi j(t) = 0 for all j ∈ Ni(t), set

xi(t +1) = xi(t), ∀i ∈ A(t). (3.4)

end
if
(
Agent i remains in the network, i.e., i ∈ R(t)

)
then

Update edge weights according to Eq. (3.3), set

xi(t +1) = xi(t)+ ∑
j∈Ni(t)\D(t)

wi j(t)
(
x j(t)− xi(t)

)
− ∑

j∈Ni(t)∩D(t)
zi j(t), (3.5)

and
zi j(t +1) = zi j(t)−wi j(xi(t)− x j(t)), ∀ j ∈ Ni(t). (3.6)

end

(3.6)) and add it to their state, (see eq. (3.5)). By this strategy we are able to remove the
past influence on the consensus value of the departing agent from the network. ii) When
an agent arrives in the network (thus sharing at least one edge with an agent already
connected to the network), according to Algorithm 1, all edge weights are updated in
accordance with eq. (3.3) and its state is initialized as follows:

xi(t) = x̄i (3.7)

where x̄i ∈ R is the state value of the agent at the instant of joining the network.
We consider the following two assumptions on the network topology.

Assumption 3.4.1

Graph G(t) is undirected and connected for all t ≥ 0. ■
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Assumption 3.4.2

There exists nmax ∈ (0,∞) : n(t)≤ nmax, ∀t ≥ 0. ■

Note that we assume that there exists a finite value for nmax for analysis purposes,
but this value is unknown to the agents.

3.5 Convergence analysis

In this section, we discuss the convergence properties of Algorithm 1. In particular, we
show that the state of each agent i ∈V (t) tracks the average of x̄i in the open scenario.

The convergence analysis is presented in three parts.
Part 1: We prove that the sum of all state variables of the agents is equal to the sum

of all the initial states x̄i at any time, i.e, ∑i∈V (t) xi(t) = ∑i∈V (t) x̄i.
Part 2: We show that the state variables of the agents converge exactly to the average

value of the initial state of the agents if no agent joins or leaves.
Part 3: We prove that when agents join or leave the network, the time-varying aver-

age of the initial states can be tracked with a bounded error by the MAS with no bias,
i.e., if agents stop joining or leaving the network, it converges exactly to the average of
the initial states, erasing the influence on the consensus value of the agents who left the
network.

- Part 1. The next theorem formally proves the first part of the convergence results,
namely that the sum of all state variables in the network at time t is, thanks to Algorithm
1, are always equal to the sum of the initial states of the agents connected to the network
at the same instant of time.

Theorem 3.5.1

Consider agents that join or leave the network arbitrarily while executing Algo-
rithm 1. If the time-varying graph G(t) is connected for all t ≥ 0, then

∑
i∈V (t)

xi(t) = ∑
i∈V (t)

x̄i, ∀t ≥ 0. (3.8)

Proof of Theorem 3.5.1 Let us compute ∑
i∈V (t+1)

xi(t + 1) by replacing (3.5) into it,

namely,

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)\D(t)

{
xi(t)+ ∑

j∈Ni(t)\D(t)
wi j(t)

(
x j(t)− xi(t)

)
− ∑

j∈Ni(t)∩D(t)
zi j(t)

}
+ ∑

i∈A(t)
xi(t). (3.9)
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According to (3.7) when an agent joins the network it is initialized as xi(t) = x̄i, thus
Eq. (3.9) can be recast as:

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)\D(t)

{
xi(t)+ ∑

j∈Ni(t)\D(t)
wi j(t)

(
x j(t)− xi(t)

)
− ∑

j∈Ni(t)∩D(t)
zi j(t)

}
+ ∑

i∈A(t)
x̄i. (3.10)

Then, we can rewrite (3.10) as:

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)\D(t)

xi(t)+ ∑
i∈A(t)

x̄i + ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)\D(t)
wi j(t)

(
x j(t)− xi(t)

)}
− ∑

i∈V (t)\D(t)
∑

j∈Ni(t)∩D(t)
zi j(t). (3.11)

Exploiting the advantage of the symmetry of interactions, we can get:

∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)\D(t)
wi j(t)

(
x j(t)− xi(t)

)}
= 0. (3.12)

Thus, according to (3.12), Eq. (3.11) can be rewritten as:

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)\D(t)

xi(t)+ ∑
i∈A(t)

x̄i − ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}
.

(3.13)
Let us rewrite the last term of Eq. (3.13) as:

∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}
= ∑

(i, j)∈ED(t)
zi j(t). (3.14)

Then, Eq. (3.13) can be recast as:

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)\D(t)

xi(t)+ ∑
i∈A(t)

x̄i − ∑
(i, j)∈ED(t)

zi j(t). (3.15)

Additionally, it can be justified that the summation of auxiliary state variables zi j(t)∈R
over all edges of departing nodes are equal to the summation of states of the departing
nodes, i.e.,

∑
(i, j)∈ED(t)

zi j(t) =− ∑
i∈D(t)

xi(t). (3.16)

Hence, we can write Eq. (3.15) as:

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)\D(t)

xi(t)+ ∑
i∈A(t)

x̄i + ∑
i∈D(t)

xi(t). (3.17)
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Finally, Eq. (3.17) can be recast as:

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)

xi(t)+ ∑
i∈A(t)

x̄i. (3.18)

Taking into account xi(0) = x̄i for all i ∈V (0) and according to Eq. (3.18), it holds:

∑
i∈V (1)

xi(1) = ∑
i∈V (0)

xi(0)+ ∑
i∈A(0)

x̄i,

∑
i∈V (1)

xi(1) = ∑
i∈V (0)

x̄i + ∑
i∈A(0)

x̄i = ∑
i∈V (1)

x̄i,

∑
i∈V (2)

xi(2) = ∑
i∈V (1)

x̄i + ∑
i∈A(1)

x̄i = ∑
i∈V (2)

x̄i,

∑
i∈V (t+1)

xi(t +1) = ∑
i∈V (t)

x̄i + ∑
i∈A(t)

x̄i = ∑
i∈V (t+1)

x̄i.

Thus for t ≥ 0 we can write the following result

∑
i∈V (t)

xi(t) = ∑
i∈V (t)

x̄i, (3.19)

thus proving the theorem. ■

To carry out the convergence analysis for Algorithm 1 we now study the so-called
error dynamics of the agents with respect to the desired convergence value.

Proposition 3.5.1

Consider a MAS which executes Algorithm 1. Let us call the error ei(t) = xi(t)−
c(t) as disagreement value. According to Algorithm 1 when an agent joins the
network at time t it holds xi(t) = x̄i. Then, the error dynamics of remaining and
arriving agents can obtain as follows:

ei(t +1) =ei(t)+ ∑
j∈Ni(t)\D(t)

wi j(t)
(
e j(t)− ei(t)

)
− ∑

j∈Ni(t)∩D(t)
zi j(t)

+ c(t)− c(t +1), i ∈ R(t). (3.20)

ei(t +1) = x̄i(t)− c(t +1), i ∈ A(t). (3.21)

Proof of Proposition 3.5.1 The disagreement error for agent i is:

ei(t) = xi(t)− c(t) (3.22)
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Thus, the time-shift of the disagreement error yields as:

ei(t +1) = xi(t +1)− c(t +1). (3.23)

Now, by substituting Eq. (3.5) into (3.23), we can obtain:

ei(t +1) =xi(t)+ ∑
j∈Ni(t)\D(t)

wi j(t)
(
x j(t)− xi(t)

)
− ∑

j∈Ni(t)∩D(t)
zi j(t)− c(t +1) (3.24)

By adding to the right hand side of Eq. (3.24) the term ±c(t), one can get the
updating error dynamics of remaining agents, i.e., i ∈ R(t) as follow:

ei(t +1) =xi(t)− c(t)+ ∑
j∈Ni(t)\D(t)

wi j(t)
(
x j(t)− xi(t)

)
+ c(t)− c(t +1)− ∑

j∈Ni(t)∩D(t)
zi j(t), (3.25)

Then, by noting that x j(t)−xi(t) = x j(t)−c(t)−xi(t)+c(t) = e j(t)−ei(t), it holds:

ei(t +1) =ei(t)+ ∑
j∈Ni(t)\D(t)

wi j(t)
(
e j(t)− ei(t)

)
+ c(t)− c(t +1)− ∑

j∈Ni(t)∩D(t)
zi j(t). (3.26)

On the other hand, according to Algorithm 1 the initial state of arriving agents, i.e.,
i ∈ A(t) is xi(t) = x̄i. Hence, one can obtain the error dynamics of arriving agents as:

xi(t +1)− c(t +1) =x̄i − c(t +1), (3.27)
ei(t +1) =x̄i − c(t +1). (3.28)

This concludes the proof. ■

- Part 2: The next theorem shows that the state variables of the agents executing
Algorithm 1 converge exactly to the average value of the initial state of the agents if no
agent joins or leaves the network. The result of the next theorem is an adaptation of a
popular result of convergence for discrete-time average consensus to our scenario [62].

Theorem 3.5.2

Consider a MAS executing Algorithm 1. Let G(t) be an undirected graph with
a doubly stochastic matrix P(t) = I +W (t). Assume that no agent arrives or
departs to the network since an instant of time t. Then, the state of the agents
exponentially converges to c(t), i.e.

∥xi(t)− c(t)∥ −→ 0 ∀i as t −→ ∞ (3.29)
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Proof of Theorem 3.5.2 Let us define the disagreement value:

ei(t) = xi(t)− c(t), i ∈V (t). (3.30)

Thus, the time-shift of the disagreement error yields as:

ei(t +1) = xi(t +1)− c(t +1). (3.31)

According to Eq. (3.5) and assuming no agent arrives or departs to the network (namely,
c(t +1) = c(t) and ∑

j∈Ni(t)∩D(t)
zi j(t) = 0 , the following disagreement dynamics can be

deduced:

ei(t +1) = xi(t)+ ∑
j∈Ni(t)

wi j(t)
(
x j(t)− xi(t)

)
− c(t), (3.32)

Then, by noting that x j(t)− xi(t) = x j(t)− c(t)− xi(t)+ c(t) = e j(t)− ei(t), one can
get:

ei(t +1) = ei(t)+ ∑
j∈Ni(t)

wi j(t)
(
e j(t)− ei(t)

)
(3.33)

Moreover, we can write the compact form of disagreement dynamics as follow:

e(t +1) =P(t)e(t) (3.34)

where e(t) is a vector whose elements are taken from the set {ei(t) : i ∈V (t)}.
Now consider the next Lyapunov function:

V (t) = ∑
i∈V (t)

ei(t)2, (3.35)

so that the time-shift of V (t) takes this form:

V (t +1) = ∑
i∈V (t)

ei(t +1)2. (3.36)

By replacing (3.33) into (3.36), it yields:

V (t +1) = ∑
i∈V (t)

(
ei(t)+ ∑

j∈Ni(t)
wi j(t)

(
e j(t)− ei(t)

))2
. (3.37)
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Then we can recast (3.37) as follows:

V (t +1) = ∑
i∈V (t)

(
ei(t)2 +2ei(t) ∑

j∈Ni(t)
wi j(t)

(
e j(t)− ei(t)

)
+
(

∑
j∈Ni(t)

wi j(t)
(
e j(t)− ei(t)

))2
)

= ∑
i∈V (t)

ei(t)2 + ∑
i∈V (t)

2ei(t) ∑
j∈Ni(t)

wi j(t)
(
e j(t)− ei(t)

)
+ ∑

i∈V (t)

(
∑

j∈Ni(t)
wi j(t)

(
e j(t)− ei(t)

))2
(3.38)

Now let us compute ∆V (t) as:

∆V (t) = V (t +1)−V (t) = ∑
i∈V (t)

2ei(t) ∑
j∈Ni(t)

wi j(t)
(
e j(t)− ei(t)

)
+ ∑

i∈V (t)

(
∑

j∈Ni(t)
wi j(t)

(
e j(t)− ei(t)

))2

= ∑
i∈V (t)

∑
j∈Ni(t)

2ei(t)wi j(t)
(
e j(t)− ei(t)

)
+ ∑

i∈V (t)

(
∑

j∈Ni(t)
wi j(t)

(
e j(t)− ei(t)

))2
. (3.39)

Now, we can note that the first part of (3.39) can be expressed as:

2e(t)TW (t)e(t). (3.40)

We can also recast the second part of equation (3.39) as:

e(t)TW (t)TW (t)e(t). (3.41)

Hence, since W (t) =W (t)T and from (3.40) and (3.41), we can rewrite (3.39) as:

∆V (t) =−e(t)T(−2W (t)−W (t)2
)

e(t) (3.42)

Finally, by noting that:

−2W (t)−W (t)2 =−2W (t)−W (t)2 + I − I

= I −
(
I +W (t)

)2

= I −P(t)2, (3.43)

we can rewrite (3.39) as:

∆V (t) = −e(t)T (I −P(t)2)e(t)
= −(I −P(t)2)∥e(t)∥2.

(3.44)
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According to Corollary 2 in [62], we can write:

||P(t)e(t)||2 < µ
2
2 ||e(t)||2 (3.45)

where µ2 is the second largest eigenvalue of matrix P(t). Note that for a connected
undirected network, it can be computed as µ2 = 1−λ2(W ). Hence, from eq. (3.45), we
can recast eq. (3.44) as:

∆V (t) ≤−(1−µ2
2 )||e(t)||2. (3.46)

Taking into account that P(t) is a primitive and doubly stochastic matrix for all times,
it derives that 0 < µ2 < 1. Consequently, it proves V (t) exponentially converges to zero
and thus condition (3.29) is in force. This concludes the proof. ■

- Part 3. In the next theorem we prove that when agents join or leave the network,
the time-varying average of the initial states can be tracked with a bounded error. Note
that the changes of the consensus value is assumed to be bounded at each time step.

Theorem 3.5.3

Consider a MAS of n(t) agents under the OACP presented in Algorithm 1. Let
the communication topology graph G(t) be characterized by a doubly stochastic
matrix P(t) = I +W (t) that satisfies Assumptions 3.4.1 and 3.4.2. Let µ2(t) be
the second largest eigenvalue of matrix P(t). Then, let e(t) be the disagreement
vector with elements taken from the set {ei(t) : i ∈ V (t)}. The norm of the
disagreement vector is monotonically decreasing if

∥e(t)∥2 ≥ Ψ =
(B+∥Z(t)∥2)(1+

√
1+ρ +ρ

|A(t)|B2

(B+∥Z(t)∥2)2 )

ρ
, (3.47)

where |c(t)− c(t +1)| ≤ B, ρ = max(1−µ2(t)2) and

∥Z(t)∥2
2 = ∑

i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}2
. (3.48)

Note that Z(t) ̸= 0 only at times t where a node departs, in all other cases Z(t)= 0.

Proof of Theorem 3.5.3 Let us consider the following Lyapunov function:

V (t) = ∑
i∈V (t)

ei(t)2, (3.49)

so that the time difference of V (t) correspondingly takes the form:

V (t +1) = ∑
i∈V (t+1)

ei(t +1)2 = ∑
i∈(V (t)

⋃
A(t))\D(t)

ei(t +1)2

= ∑
i∈V (t)\D(t)

ei(t +1)2 + ∑
i∈A(t)

ei(t +1)2. (3.50)
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Computing ∆V (t) = V (t +1)−V (t), yields:

∆V (t) = ∑
i∈V (t)\D(t)

ei(t +1)2 + ∑
i∈A(t)

ei(t +1)2 − ∑
i∈V (t)

ei(t)2. (3.51)

By substituting the error dynamics of remaining agents in (3.26), into (3.51), it yields:

∆V (t) = ∑
i∈V (t)\D(t)

{
ei(t)+ ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)
− ∑

j∈Ni(t)∩D(t)
zi j(t)+ c(t)− c(t +1)

}2
+ ∑

i∈A(t)
ei(t +1)2 − ∑

i∈V (t)
ei(t)2.

(3.52)

Then, we can write:

∆V (t) = ∑
i∈V (t)\D(t)

ei(t)2 + ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}2

+ ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}2
+ ∑

i∈V (t)\D(t)

(
c(t)− c(t +1)

)2

+2 ∑
i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
−2 ∑

i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)∩D(t)
zi j(t)

}
+2 ∑

i∈V (t)\D(t)

{
ei(t)

(
c(t)− c(t +1)

)}
−2 ∑

i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
+2 ∑

i∈V (t)\D(t)

{(
c(t)− c(t +1)

)
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
−2 ∑

i∈V (t)\D(t)

{(
c(t)− c(t +1)

)
∑

j∈Ni(t)∩D(t)
zi j(t)

}
+ ∑

i∈A(t)
ei(t +1)2 − ∑

i∈V (t)
ei(t)2. (3.53)
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By adding ± ∑
i∈D(t)

ei(t)2 to (3.53), one can concludes:

∆V (t) =− ∑
i∈D(t)

ei(t)2 + ∑
i∈A(t)

ei(t +1)2 + ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}2

+ ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}2
+ ∑

i∈V (t)\D(t)

(
c(t)− c(t +1)

)2

+2 ∑
i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
−2 ∑

i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)∩D(t)
zi j(t)

}
+2 ∑

i∈V (t)\D(t)

{
ei(t)

(
c(t)− c(t +1)

)}
−2 ∑

i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
+2 ∑

i∈V (t)\D(t)

{(
c(t)− c(t +1)

)
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
−2 ∑

i∈V (t)\D(t)

{(
c(t)− c(t +1)

)
∑

j∈Ni(t)∩D(t)
zi j(t)

}
. (3.54)

It can be noticed that the term

∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}2

+2 ∑
i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
.

have the same structure as (3.44). Let P(t) denote the weight matrix of the network at
time t. Let PD(t) denote a matrix representing the weights of the network graph at time
t where the edges corresponding to departing nodes and the departing nodes have been
removed. It follows that the essential spectral radius of PD(t) is strictly less than the
essential spectral radius of matrix P(t) which is strictly less than 1. Thus, it holds:

−e(t)T (I −PD(t)2)e(t)≤−ρe(t)T e(t), (3.55)

with ρ = max(1−µ2(t)2). Where µ2(t) is the second largest eigenvalue of matrix PD(t)
and is different for every graph. However, since PD(t) is a primitive matrix for all times
and there is a maximum number of nodes according to Assumption 3.4.2, it derives that
0 < µ2(t)< 1. Consequently, it follows that 0 < ρ < 1 and Eq. (3.54) can be rewritten
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as:

∆V (t)≤− ∑
i∈D(t)

ei(t)2 −ρ ∑
i∈V (t)\D(t)

e2
i (t)2+ ∑

i∈A(t)
ei(t +1)2

+ ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}2
+ ∑

i∈V (t)\D(t)

(
c(t)− c(t +1)

)2

−2 ∑
i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)∩D(t)
zi j(t)

}
+2 ∑

i∈V (t)\D(t)

{
ei(t)

(
c(t)− c(t +1)

)}
−2 ∑

i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
+2 ∑

i∈V (t)\D(t)

{(
c(t)− c(t +1)

)
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
−2 ∑

i∈V (t)\D(t)

{(
c(t)− c(t +1)

)
∑

j∈Ni(t)∩D(t)
zi j(t)

}
. (3.56)

By considering |c(t)− c(t +1)| ≤ B, we can rewrite (3.56) as:

∆V (t)≤− ∑
i∈D(t)

ei(t)2−ρ ∑
i∈V (t)\D(t)

e2
i (t)+ ∑

i∈A(t)
ei(t +1)2+ ∑

i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}2

+B2 −2 ∑
i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)∩D(t)
zi j(t)

}
+2B ∑

i∈V (t)\D(t)
ei(t)

−2 ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
+2B ∑

i∈V (t)\D(t)
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)
−2B ∑

i∈V (t)\D(t)
∑

j∈Ni(t)∩D(t)
zi j(t).

(3.57)

Exploiting the symmetry of interactions since we have an undirected graph, it holds:

∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
= 0. (3.58)
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Thus, we can write (3.57) as:

∆V (t)≤− ∑
i∈D(t)

ei(t)2−ρ ∑
i∈V (t)\D(t)

e2
i (t)+ ∑

i∈A(t)
ei(t +1)2 + ∑

i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}2

+B2 −2 ∑
i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)∩D(t)
zi j(t)

}
+2B ∑

i∈V (t)\D(t)
ei(t)

−2 ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t) ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
−2B ∑

i∈V (t)\D(t)
∑

j∈Ni(t)∩D(t)
zi j(t) (3.59)

Now let us define Z(t) ∈ R|R(t)| as a vector whose elements are taken from the set
{ ∑

j∈Ni(t)∩D(t)
zi j(t) : i ∈V (t)\D(t)}. Hence, one concludes that:

∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)

}2
= ||Z(t)||22 (3.60a)

By using the following property:

q

∑
i=i0

a2 ≤
( q

∑
i=i0

|a|
)2

(3.60b)

one gets:

∥Z(t)∥2
2 ≤
{

∑
i∈V (t)\D(t)

∑
j∈Ni(t)∩D(t)

|zi j(t)|
}2

(3.60c)

From Eq. (3.14), we can recast (3.60c) as:

∥Z(t)∥2
2 ≤
(

∑
(i, j)∈ED(t)

|zi j(t)|
)2

(3.60d)

Then, according to (3.60d) and (3.16) the upper bound of ∥Z(t)∥2 can be yield as:

∥Z(t)∥2 ≤ ∑
i∈D(t)

|xi(t)| (3.60e)

It should be noted that when the state of agents converge to the consensus value,
namely xi(t) = x j(t), the term xi(t)−x j(t) goes to zero, then it results that the auxiliary
state variable z ji(t) converges to the finite value, see eq. (3.6). Consequently, it yields
∥Z(t)∥2 be bounded.
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Moreover, we can write:

−2 ∑
i∈V (t)\D(t)

{
ei(t) ∑

j∈Ni(t)∩D(t)
zi j(t)

}
≤

2

{(
∑

i∈V (t)\D(t)
ei(t)2

) 1
2 ×
(

∑
i∈V (t)\D(t)

(
∑

j∈Ni(t)∩D(t)
zi j(t)

)2
) 1

2
}

= 2
(

∑
i∈V (t)\D(t)

ei(t)2
) 1

2 ||Z||2 (3.61)

we also write:

−2 ∑
i∈V (t)\D(t)

{
∑

j∈Ni(t)∩D(t)
zi j(t)× ∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)}
≤

2

{(
∑

i∈V (t)\D(t)

(
∑

j∈Ni(t)∩D(t)
zi j(t)

)2
) 1

2

×
∣∣∣ ∑

i∈V (t)\D(t)
∑

j∈Ni(t)\D(t)
wi j(t)

(
e j(t)− ei(t)

)∣∣∣}= 0

(3.62)

Hence, according equations (3.58) and (3.60), we can rewrite (3.59) as:

∆V (t)≤− ∑
i∈D(t)

ei(t)2 −ρ ∑
i∈V (t)\D(t)

e2
i (t)+ ∑

i∈A(t)
ei(t +1)2 + ||Z||22 +B2

+2
(

∑
i∈V (t)\D(t)

ei(t)2
) 1

2 ||Z||2 +2B
(

∑
i∈V (t)\D(t)

ei(t)2
) 1

2
+2B||Z||2. (3.63)

Then, by noting that −ρ ∑
i∈D(t)

ei(t)2 ≥ − ∑
i∈D(t)

ei(t)2 and ∑
i∈V (t)\D(t)

ei(t)2 ≤ ∑
i∈V (t)

ei(t)2,

Eq. (3.63) can be recast as:

∆V (t)≤−ρ ∑
i∈V (t)

e2
i (t)+ ∑

i∈A(t)
ei(t +1)2 +||Z||22 +B2 +2

(
∑

i∈V (t)
ei(t)2

) 1
2 ||Z||2

+2B
(

∑
i∈V (t)

ei(t)2
) 1

2
+2B||Z||2. (3.64)

Now, If we let ∑
i∈V (t)

e2
i (t) = ∥e(t)∥2

2 = Π
2 and ||Z||2 = Γ, we find that:

∆V (t) =−ρΠ
2 +2(B+Γ)Π+(B+Γ)2 + ∑

i∈A(t)
ei(t +1)2. (3.65)

By substituting (3.21) into (3.65), one can obtain that:

∆V (t)≤−ρΠ
2 +2(B+Γ)Π+(B+Γ)2 + ∑

i∈A(t)
(x̄i − c(t +1))2. (3.66)
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Then, assuming {|x̄i − c(t +1)| ≤ B : i ∈ A(t)}, finally ∆V (t) can be concluded as:

∆V (t)≤−ρΠ
2 +2(B+Γ)Π+(B+Γ)2 + |A(t)|B2. (3.67)

Since ρ , B, Γ and |A(t)| are strictly positive, we have:

−ρΠ
2 +2(B+Γ)Π+(B+Γ)2 + |A(t)|B2 = 0 (3.68)

Then, we can obtain the solution of (3.68) as:

Π =
−2(B+Γ)±

√
4(B+Γ)2+4ρ

(
(B+Γ)2+|A(t)|B2

)
−2ρ

=
(B+Γ)(1±

√
1+ρ+ρ

|A(t)|B2

(B+Γ)2
)

ρ
.

(3.69)

Thus, if ∥e(t)∥2 = Π ≥
(B+Γ)(1+

√
1+ρ+ρ

|A(t)|B2

(B+Γ)2
)

ρ
, then ∆V (t) < 0. This concludes the

proof. ■

Corollary 3.5.1

Now, we show that when the set of agents changes, the value of the considered
Lyapunov function (3.49) how much can be changed.
Let at time t̂ the leave event only occurs. From (3.69) and taking account into
A(t̂) is empty, we can obtain

∥e(t̂)∥= (B+Γ)(1+
√

1+ρ)

ρ
(3.70)

Thus, according to (3.49) we can write

V (t̂)≤ (B+Γ)2(1+
√

1+ρ)2

ρ2 (3.71)

If, instead, agents join the network, in accordance with (3.69) the following rela-
tion can be yield:

∥e(t̂)∥=
B(1+

√
1+ρ +ρ

|A(t)|B2

B2 )

ρ
(3.72)

Hence, it results that:

V (t̂)≤
B2(1+√1+ρ +ρ

|A(t)|B2

B2

)2

ρ2 (3.73)
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Remark 3.5.1

It should be remarked that by Theorem 3.5.3 the consensus value of the MAS has
no bias, and due to the result in Theorem 3.5.3 the disagreement error is bounded,
thus if agents stop joining or leaving the network for a sufficiently long time, the
state of the network converges exactly to the average of the initial states of the
agents, erasing the influence on the consensus value of the agents who left the
network.

3.6 Numerical simulations

In this section, two numerical examples are conducted to evaluate the efficiency of the
proposed algorithm. In the first scenario, we consider a multi-agent system consisting
of 6 agents that interact over a network by a random graph. The initial information
states xi(0) are selected uniformly at random in the interval [0,6]. Simulations were
performed in the MATLAB® environment. The time evolution of the state variables are
depicted in Figure 3.1. It can be seen from this figure that the state of agents converge
to the average of initial information states.

0 10 20 30 40
0

2

4

6

Figure 3.1: Time evolution of the network state xi(t) for all i ∈V (t).

In the second example, we consider an open multi-agent system where simulation
starts with the same communication topology of the first scenario, then at t = 100 sec
an agent leaves the network. Moreover, at t = 200 sec an agent joins the network with
initial state equal to 4. It is obvious from Figure 3.2 when an agent leaves the network,
the trajectories of all agents that interact on the network, track successfully the average
value of their information at the instant of joining.
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0 50 100 150 200 250 300
0

2

4

6

Figure 3.2: Time evolution of the network state xi(t) for all i ∈V (t) during the join and leave events.

Furthermore, as expected, when an agent arrives in the network, the state of agents
remains at the desired consensus value. Figure 3.3 depicts time evolution of the sum
of the state of agents during the join and leave events. It can be seen from this figure,
the condition (3.8) is always established. The time evolution of Lyapunouv function

0 50 100 150 200 250 300
12

14

16

18

20

22

Figure 3.3: The summation of the state of agents ∑i∈V (t) xi(t) during the join and leave events.

V (t) is shown in Figure 3.4. It is clear from Figures 3.4-3.6 that V (t) is monotonically
decreasing as long as ∥e(t)∥ ≥ Ψ(t), whereas if the norm of e(t) is less than Ψ(t), the
Lyapunov function may increase or decrease. As a conclusion, the proposed algorithm
offers robustness against the join and leave events and the system always achieves aver-
age consensus. However, the agreement value is depending on the information states at
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the instant of adding the network.
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Figure 3.4: Time evolution of the Lyapunov function V (t) = ∑i∈V (t) ei(t)2.
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Figure 3.5: Time evolution of the norm of error ||e(t)||.

3.7 Conclusions

In this chapter, we considered the problem of average discrete time consensus in an
open multi-agent system under a switching network topology. This problem solved by
designing a novel distributed open average consensus protocol that guarantees that the
state variables of the agents track the average of their initial state despite a network with
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Figure 3.6: Time evolution of the threshold value Ψ(t).

time-varying size and composition. Future works will focus on the addition of resilience
with respect to faults or malicious agents to the proposed method.



Chapter 4
Dynamic Consensus on the Median
Value

4.1 Introduction

This chapter deals with the problem of dynamic consensus of a network of agents cor-
responding to continuous-time systems wherein the state variables of the agents track
with zero error the median value of a set of time-varying reference signals given as in-
put to the agents under a time-varying, undirected network topology. Furthermore, the
performance of the protocol in the framework of open multi-agent systems is analysed
by considering join and leave events, i.e., the scenario where agents may join and leave
the network during the protocol execution. The finite-time convergence properties and
tracking error of the considered protocol are characterized in the case of inputs with
bounded variations. One remarkable property of consensus on the median value is the
robustness of the median, as opposed to the average, with respect to abnormal or outlier
values of inputs which represent the outcome of a measurement or estimation process,
thus significantly increasing the robustness of the estimation for large scale networks.
We provide convergence guarantees and simple tuning rules to adjust the algorithm pa-
rameters by employing non-smooth Lyapunov analysis.

The chapter is organized as follows: In Section 4.2 we present the contributions of
this chapter. The problem statement is given in Section 4.3. In this section we also
introduce the dynamic consensus algorithm. In Section 4.4 we characterize the con-
vergence properties of the algorithm in both dynamic and open scenarios by exploiting
non-smooth Lyapunov tools. In Section Section 4.5 we provide numerical simulations.
Finally in Section 4.6 concluding remarks and future perspectives are discussed.

33



34 CHAPTER 4. DYNAMIC CONSENSUS ON THE MEDIAN VALUE

4.2 Main contributions

The main contributions of this work are as follows: i) We characterize the performance
of a variant of the local interaction rule in [55] to solve a dynamic consensus problem
on the median value. ii) We consider the case in which the network topology is time-
varying and connected at all times as opposed to time-invariant. iii) We show that if the
reference signals of the agents have a bounded derivative, even if the median value is
not unique due to their even number, then the average of median values is continuous
and is tracked in finite time by the agents. iv) We consider an open-multi-agent scenario
where agents join and leave the network and characterize the convergence properties
of the method. v) We show that in the open scenario the time-varying median value is
discontinuous, and the approach is able to track it with bounded error.

4.3 Problem statement and dynamic consensus algorithm

In this subsection, we consider a continuous-time open MAS with the network topology
represented by an undirected graph G(t) = (V (t),E(t)) where the agents have dynamics
described by:

ẋi(t) =−λ ∑
j∈Ni(t)

sign
(
xi(t)− x j(t)

)
−α sign(xi(t)−ui(t)) , (4.1)

where xi(t) ∈R is the state of the i-th agent and ui(t) is a local reference signal given as
input, which represents a measurement or, more generally, an exogenous time-varying
information. λ and α are the tunable protocol constant gains. Moreover, the sign func-
tion in (4.1) for y ∈ R , is denoted as:

sign(y) =

 1, if y > 0,
0, if y = 0,
−1, if y < 1.

(4.2)

When an agent joins the network at time t it holds:

xi(t) =
1

|Ni(t)| ∑
j∈Ni(t)

x j(t). (4.3)

When an agent leaves the network, its state variable and incident edges are removed
from the system.

In the following, we formalize the definition of median value.

Definition 4.3.1: Median value

The median value of a set of real numbers is a number which is greater than half
of the numbers in the set and smaller than the other half. The median value is not
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uniquely defined when the cradinality of the set is even. Let us compactly define
u(t) = [u1(t), . . . ,un(t)], as the vector set of reference signals at time t and then
let

χ(t) = argminū(t)∈U (t) ∑
j∈V (t)

|u j(t)− ū(t)|, (4.4)

where U (t) is the set of all entries of vector u(t). If the number of agents at time
t is odd, then the solution of (4.4), i.e., the median value, is unique and set χ(t)
is a singleton. On the other hand, if at time t the number of agents is even, then
χ(t) contains two solutions, both with minimum objective value. By averaging
the elements of set χ(t) we define the (unique) m-value m(u(t)) of vector u(t) as

m(u(t)) =
1

|χ(t)| ∑
ξr∈χ(t)

ξr, (4.5)

where |χ(t)| denotes the cardinality of the set. We also define the so-called
median interval M (u(t)) as

M (u(t)) =
[

min
ξr∈χ(t)

ξr, max
ξr∈χ(t)

ξr

]
. (4.6)

Any number inside the median interval M (u(t)) is a median value.
We also define by LM(t) the time-varying length of the median interval

LM(t) = max
ξr∈χ(t)

ξr − min
ξr∈χ(t)

ξr. (4.7)

Clearly LM(t) = 0 if the number of agents is odd at time t.

To clarify the above definitions, consider the following example.

Example 4.3.1

In the first example, let us consider the number of agents, n, is odd and equal to 5
with

U (t) = {u1 = 3,u2 = 5,u3 = 6,u4 = 7.5,u5 = 8}.
According to (4.4), the solution of χ(t) is a singleton, and is equal to χ(t) =
{u3} = {6}. Hence, it results that m(u(t)) = 6. Moreover, from (4.6) and (4.7)
the median interval and the length of the median value are obtained 6 and 0,
respectively.
Now let us assume the number of agents is odd, and is equal to 6 with

U (t) = {u1 = 3,u2 = 5,u3 = 6,u4 = 7,u5 = 8,u6 = 9}.

In accordance with the definition of χ(t), we can find two solutions
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as χ(t) = {u3 = 6,u4 = 7}. Thus, median value is m(u(t)) = 6.5.In
addition, Median interval and Length of the median interval are
computed as M (u(t)) =

[
minξr∈χ(t) ξr,maxξr∈χ(t) ξr

]
= [6,7] and

LM(t) = maxξr∈χ(t) ξr −minξr∈χ(t) ξr = 7−6 = 1.

In this chapter, our objective is to verify that the proposed local interaction in (4.1)
enables the state of agents to track the time-varying median value of reference signals
m(ui(t)) in finite-time under both the frameworks of time-invariant network and time-
varying network, i.e., the case where agents may join and leave the network as time goes
by. To this aim, we will firstly indicate that the state of agents reaches c(t) in finite time
in both close and open scenarios, i.e.,

∥xi(t)− c(t)∥ −→ 0 ∀i ∈V (t), ∀t ≥ T. (4.8)

Then, we will show if the composition of network is time-invariant (time-varying), the
time-varying median value of reference signals m(ui(t)) can be tracked with zero error
(with bounded error) by the state of agents in finite time, namely,

∥c(t)−m(ui(t))∥ −→ 0 ∀i ∈V (t), ∀t ≥ T2. (4.9)

In this chapter, we make the following assumption which is common in the dynamic
consensus literature.

Assumption 4.3.1

All reference signals have bounded derivative, namely

∃ Π ∈ R+ : |u̇i(t)| ≤ Π ∀i ∈ V (t). (4.10)

The above assumption directly leads to the next result.

Proposition 4.3.1

If Assumption 3.2.1 holds, then

|ṁ(u(t))| ≤ Π. (4.11)

Proof of Proposition 4.3.1 Let ϒ(t) = {i ∈ V (t) : ui(t) = ξr, ξr ∈ χ(t)}. By eq. (4.5)
it follows that ṁ(u(t)) = 1

|ϒ(t)| ∑i∈ϒ(t) u̇i(t), and by Assumption 4.3.1

|ṁ(u(t))|=

∣∣∣∣∣ 1
|ϒ(t)| ∑

i∈ϒ(t)
u̇i(t)

∣∣∣∣∣≤ 1
|ϒ(t)| ∑

i∈ϒ(t)
Π = Π. (4.12)

■

We also assume that the input signals satisfy the following assumption.
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Assumption 4.3.2

There exists B ∈ R+ such that, for all t ≥ 0, it holds

max
i∈V (t)

(ui(t))− min
i∈V (t)

(ui(t))≤ B. (4.13)

Furthermore, we consider the following three assumptions on the network topology
and on the way it may change.

Assumption 4.3.3

Graph G(t) is undirected and connected for all t ≥ 0 and the set of instants of
time in which G(t) changes is of measure zero.

Assumption 4.3.4

There exists a minimium dwell time ∆τ separating two consecutive instants in
which agents join or leave the network.

Assumption 4.3.5

There exists nmax ∈ (0,∞) : |V (t)| ≤ nmax, ∀t ≥ 0.

4.4 Finite-time convergence properties

In this section, the convergence properties of the states of a set of agents following pro-
tocol (4.1) are characterized. In particular we want to indicate that using the proposed
protocol (4.1), the consensus conditions (4.8) and (4.9) can met at a finite time for both
fixed and time-varying networks. To this aim, we first demonstrate in Theorem 4.4.1,
the consensus condition (4.8) is verified in a finite-time T1. In particular, T1 is a function
of the tuning parameters α and λ of the proposed local interaction rule (4.1). Then,
we prove in Theorem 4.4.2 that the consensus condition (4.9) can be satisfied with zero
error in a finite-time T2 > T1 despite a switching network topology if no agent departs
or arrives the network. Moreover, Theorem 4.4.3 proves that condition (4.9) can be
obtained with bounded error in a finite-time T3 in the framework of open scenario.

The first main result of this chapter is now outlined.

Theorem 4.4.1

Consider the network dynamics (4.1) along with a time-varying graph G(t) sat-
ifying Assumption 4.3.3. Agents may join or leave the network according to
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Assumptions 4.3.4 and 4.3.5. Let the tuning parameters satisfy 0 < α < 2λ

nmax
.

Then, the consensus condition (4.8) is achieved in a finite time T upper bounded
as:

T ≤ T1 =

max
i∈V (t)

xi(0)− min
i∈V (t)

xi(0)

µ2 , µ
2 = 2

(
2λ

nmax
−α

)
. (4.14)

Proof of Theorem 4.4.1 [55] has been already mentioned a non-smooth Lyapunov func-
tion to prove finite-time convergence for a version of protocol (4.1) where inputs are
constants, the network topology is static and agents may not leave or join the network.
Here, we extend the proof in [55] to account for a switching network topology, dynamic
inputs and a scenario of open multi-agent systems. To this aim, let us consider the
following non-smooth Lyapunov function

V1(x(t)) =

∑
i∈Imax(t)

xi(t)

|Imax(t)|
−

∑
i∈Imin(t)

xi(t)

|Imin(t)|
, (4.15)

where the sets of Imax(t) and Imax(t) are defined as follows:

Imax(t) = {k ∈V (t) : xk = max
i∈V (t)

xi(t)},

Imin(t) = {k ∈V (t) : xk = min
i∈V (t)

xi(t)}.

By Assumptions 4.3.3 and 4.3.4, the instants of time at which graph G(t) changes define
a set of measure zero, i.e., there can be an infinite but countable number of such instants
of time. Therefore, since the derivatives of the state variables in (4.1) are bounded
for almost all t, it follows that the state trajectories of (4.1) are absolutely continuous.
Thus, also the sets Imax(t) and Imin(t) may change cardinality only at isolated instants of
time. It follows that these time instants can be disregarded in the non-smooth Lyapunov
analysis while evaluating the generalized gradient of V1(x(t)).

First, let us present the obtained set-valued generalized time-derivative d
dt (V1(x(t))

in [55] using the definition of Clarke’s generalized gradient on the non-smooth Lya-
punov function, wherein G (t) is fixed and the set of agents does not change.

Following [55], owing on the local Lipschitz continuity of V1(x(t)), we can write

d
dt

(V1(x(t)) = lim
h→0

V1(x(t)+hẋ(t))−V1(x(t))
h

. (4.16)

By substituting (4.15) into (4.16), it holds:

d
dt (V1(x(t)) = lim

h→0


∑

i∈Imax

xi(t)+hẋi(t)

h|Imax|
−

∑
i∈Imin

xi +hẋi(t)

h|Imin|
−

∑
i∈Imax

xi(t)

h|Imax|
+

∑
i∈Imin

xi(t)

h|Imin|

 ,

(4.17)
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Then by referencing the discontinuous collective dynamics (4.1) and due to the sym-
metry of interactions, (4.17) can be yielded as:

d
dt (V1(x(t))) ∈

1
|Imax| ∑

i∈Imax

(
−α SIGN(xi(t)−ui(t))− ∑

j∈Ni(t)\Imax

λSIGN
(
xi(t)− x j(t)

))
− 1
|Imin| ∑

i∈Imin

(
−α SIGN(xi(t)−ui(t))− ∑

j∈Ni(t)\Imin

λSIGN
(
xi(t)− x j(t)

))
(4.18)

In accordance with the definition of set Imax, we note that there exists every agent j in
the set Ni\Imax such that if the network does not reach at consensus then xi(t) > x j(t)
∀i∈ Imax, which implies that SIGN

(
xi(t)− x j(t)

)
= 1 ∀i∈ Imax. Likewise, one concludes

that SIGN
(
xi(t)− x j(t)

)
=−1 ∀i ∈ Imin, where the set-valued function SIGN for y ∈ R

is defined as follow:

SIGN(y) ∈

 1, if y > 0,
{−1,1}, if y = 0,

−1, if y < 0.
(4.19)

Therefore, the following estimate can be derived by (4.18)

d
dt (V1(x(t)))≤ 2α − λ

|Imax| −
λ

|Imin| . (4.20)

Moreover, if the network is not in the consensus state then |Imax| = p < n and |Imin| ≤
n− p. Hence, (4.20) can be recast as follows:

d
dt

(V1(x(t)))≤ 2α − nλ

p(n− p)
. (4.21)

By taking p = n
2 , the upper bound is reached and finally, (4.21) can be rewritten as:

d
dt

(V1(x(t)))≤−µ
2 (4.22)

where µ2 is the strictly positive constant computed in [55] and equal to µ2 = 2
(

2λ

n −α

)
.

The above estimate straightforwardly yields the finite-time convergence of V1(x(t)) to
zero, which in turns implies that the finite time consensus condition (4.14) is achieved.

Now, we show that when the set of agents changes, the value of the considered non-
smooth Lyapunov function (4.15) does not change.

Let one agent join the network at time t+ = t + ε where ε > 0 is arbitrarily small.
According to (4.3), it joins with a state value equal to the average of its neighbours, i.e.,
inside the convex hull spanned by their states. Thus, we can write:

max
i∈V (t+)

xi(t) = max
i∈V (t)

xi(t), min
i∈V (t+)

xi(t) = min
i∈V (t)

xi(t)
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Therefore, the value of the Lyapunov function (4.15) does not change, i.e., V1(x(t+)) =
V1(x(t)). If, instead, an agent leaves the network, it is straightforward to verify that the
Lyapunov function may decrease in value and V1(x(t+))≤ V1(x(t)). Now, by integrat-
ing the generalized time derivative (4.22) in an interval of time from which we remove
all sets of instants of measure zero corresponding to changes in the network topology,
or agents that join or leave the network, and considering that when these events occur
they do not increase the value of function V1(x(t)), it holds:

V1(x(t)) = V1(x(0))+
∫ t

0

d
dt

(V1(x(t)))dt ≤ V1(x(0))−µ
2t. (4.23)

In [55] the parameter µ2 was estimated to be µ2 = 2
(

2λ

n −α

)
. In this work the num-

ber of agents is time-varying, therefore we extend the same result by estimating its value
as µ2 = 2( 2λ

nmax
−α) based on Assumption 4.3.5. Thus, by Theorem 2.4.2, V1(x(t)) con-

verges to zero in finite time and from (4.23) we can compute a maximum finite transient

time which is equal to T1 =

(
max

i∈V (t)
xi(0)− min

i∈V (t)
xi(0)

)
/µ2. ■

The next theorem proves that the dynamic consensus function c(t) converges in finite
time and tracks with zero error the median value m(u(t)) despite a switching network
topology if no agent joins or leaves the network.

Theorem 4.4.2

Consider the network dynamics (4.1) along with a time-varying graph G(t) with n
agents satisfying Assumption 4.3.3. Let the tuning parameters, under Assumption
4.3.1, satisfy nΠ < α < 2λ

n and let the consensus condition (2.3) be in force
starting from time t = T . Then, there exist T2 ≥ T such that

c(t) ∈ M (u(t)), ∀t ≥ T2, (4.24)

where M (u(t)) denotes the time-varying median interval which contains the me-
dian value (4.5) of the set of reference signals and

T2 ≤
|c(T )−m(u(T ))|+LM(T2)

α

n −Π
+T. (4.25)

Proof of Theorem 4.4.2 By assumption, the consensus condition (2.3) is in force for
all t ≥ T . Consider the Lyapunov function

V2(x(t),u(t)) = |c(t)−m(u(t))|, t ≥ T. (4.26)

In the following, to simplify our notation we omit the dependence of V2(x(t),u(t)) from
x(t) and u(t) and refer to it as V2(t) instead. It is worth to note that due to (2.3) all
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agents hold the same state value c(t), and therefore the average state value is given by
c(t), i.e.,

c(t) =
∑i∈V (t) xi(t)

n
, t ≥ T. (4.27)

The generalized gradient of V2(t) takes the form:

∂V2(t) = SIGN(c(t)−m(u(t))). (4.28)

By (4.27), the time varying consensus function c(t) obeys the discontinuous differen-
tial equation ċ(t) = ∑i∈V ẋi(t)

n , thus

ċ(t) =−
∑
i∈V

α sign(xi(t)−ui(t))

n
+

λ ∑
j∈Ni(t)

sign
(
xi(t)− x j(t)

)
n

. (4.29)

Due to the symmetry of local interactions resulting from the undirected nature of the
considered graph G(t), it is ∑i∈V λ

(
∑ j∈Ni(t) sign

(
xi(t)− x j(t)

))
= 0, therefore (4.29)

straightforwardly simplifies as

ċ(t) =−
∑
i∈V

α · sign(xi(t)−ui(t))

n
. (4.30)

The Filippov solutions of (4.30) are governed by the differential inclusion [60]

ċ(t) ∈ −1
n

α ∑
i∈V

SIGN(xi(t)−ui(t)) . (4.31)

Let
Iup(t) = {k ∈V : xk(t)< uk(t)}, (4.32)

Idown(t) = {k ∈V : xk(t)> uk(t)}, (4.33)

Iequal(t) = {k ∈V : xk(t) = uk(t)}. (4.34)

Clearly, the sets Iup(t), Idown(t) and Iequal(t) are disjoint, and their union forms the set
V , thus

|Iup(t)|+ |Idown(t|)+ |Iequal(t)|= |V |= n (4.35)

By definition, the next relations hold:

SIGN(xi(t)−ui(t)) = −1, ∀i ∈ Iup(t), (4.36)
SIGN(xi(t)−ui(t)) = 1, ∀i ∈ Idown(t). (4.37)

Therefore, by (4.36) and (4.37) one manipulates (4.31) as follows:

ċ(t) ∈− α

n

(
|Idown(t)|− |Iup(t)|+ ∑

i∈Iequal(t)
SIGN(xi(t)−ui(t))

)
. (4.38)
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The set-valued Lie derivative of V2(t) takes the form:

L̃ V2(t) = SIGN(c(t)−m(u(t)))ċ(t)−SIGN(c(t)−m(u(t)))ṁ(u(t)). (4.39)

We notice that, by assumption, it is

xi(t) = c(t), ∀i ∈ V , ∀t ≥ T, (4.40)

and by definition, c(t) < ui(t), ∀i ∈ Iup(t) and c(t) > ui(t), ∀i ∈ Idown(t). Having in
mind the definition of the median value, the next implication holds:

|Idown(t)|= |Iup(t)| =⇒ c(t) ∈ M (u(t)). (4.41)

Therefore, we concentrate on the case in which |Idown(t)| ≠ |Iup(t)|. When |Idown(t)| ≠
|Iup(t)|, two cases may occur

Case 1 :
∣∣|Idown(t)|− |Iup(t)|

∣∣> |Iequal(t)|, (4.42)

Case 2 :
∣∣|Idown(t)|− |Iup(t)|

∣∣≤ |Iequal(t)|, (4.43)

which will be treated separately.
Case 1. When relation (4.42) is in force, it holds:

∑
i∈Iequal(t)

α SIGN(xi(t)−ui(t)) ∈ [−α|Iequal(t)|,α|Iequal(t)|]. (4.44)

Without loss of generality we consider the case |Idown(t)|> |Iup(t)| and thus inequality
(4.42) becomes |Idown(t)|− |Iup(t)|> |Iequal(t)| (the same derivation can be carried out
for the case |Idown(t)|< |Iup(t)|). Then, we consider the value of each term in eq. (4.38)
thus yielding the next estimate:

α

∣∣∣∣∣∣|Idown(t)|− |Iup(t)|+ ∑
i∈Iequal(t)

SIGN(xi(t)−ui(t))

∣∣∣∣∣∣≥ α
(
|Idown(t)|− |Iup(t)|− |Iequal(t)|

)
.

(4.45)

Denote
k(t) = |Iup(t)|+ |Iequal(t)|. (4.46)

By substituting eq. (4.46) into eq. (4.35), it follows that:

|Idown(t)|= n− k(t). (4.47)

Now substituting (4.46) into |Idown(t)| > |Iup(t)|+ |Iequal(t)|, it holds that |Idown(t)| >
k(t). Since |Idown(t)| and k(t) are integer numbers, then |Idown(t)| ≥ k(t) + 1. Thus,
since the smaller lower bound of |Idown(t)| occurs for n odd, it holds

k(t)≤ n−1
2

. (4.48)
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In light of Eq. (4.46) and Eq. (4.47), the right hand side of eq. (4.45) can be rewritten
as:

α
(
|Idown(t)|− |Iup(t)|− |Iequal(t)|

)
= α (n−2k(t)) . (4.49)

Since the right hand side of Eq. (4.49) is a decreasing function of k(t), its minimum
subject to the constraint in Eq. (4.48) is obtained when k(t) = n−1

2 . Thus, it holds
α (n−2k(t))≥ α(n−2n−1

2 ) = α and by virtue of (4.45), one derives that:

α

∣∣∣∣∣∣|Idown(t)|− |Iup(t)|+ ∑
i∈Iequal(t)

SIGN(xi(t)−ui(t))

∣∣∣∣∣∣≥ α. (4.50)

Additionally, (4.42) and (4.44) also imply that:

sign

|Idown(t)|− |Iup(t)|+ ∑
i∈Iequal(t)

SIGN(xi(t)−ui(t))

= sign(|Idown(t)|− |Iup(t)|) .

By exploiting the definition of the median value, and considering (4.40) and (4.42)
one derives the following implications:

|Idown(t)|< |Iup(t)| ⇐⇒ c(t)< infM (u(t)), (4.51)
|Idown(t)|> |Iup(t)| ⇐⇒ c(t)> supM (u(t)). (4.52)

Relations (4.51) and (4.52) imply in turn that for |Idown(t)| ̸= |Iup(t)|

sign(|Idown(t)|− |Iup(t)|) = sign(c(t)−m(u(t))) . (4.53)

Therefore, under Assumption 4.3.1, by Proposition 4.3.1, and by eq.s (4.39), (4.50) and
(4.53), it holds max

ξ∈L̃ V2(t)
ξ ≤ −α

n + Π. Thus, since d
dt (V2(t)) ∈ L̃ V2(t), unless

c(t) ∈ M (u(t)) (i.e., V2(t)≤ LM) it holds

d
dt

(V2(t))≤−α

n
+Π. (4.54)

Thus, in Case 1, the finite time achievement of condition c(t) ∈ M (u(t)) is guaranteed
by analogous developments as those made in the proof of Theorem 4.4.1, with a finite
transient time satisfying (4.25).

Case 2. This case may only happen in the event that more than one agent holds the
same value of their corresponding reference signal, ui(t), and additionally this value
corresponds to the median value. We now prove that if condition (4.43) holds then
c(t) ∈ M (u(t)). Define

kup(t) = |Iup(t)|−n+1, kdown(t) = |Idown(t)|. (4.55)

Thus
|Iequal(t)|= (kup(t)− kdown(t))−1. (4.56)



44 CHAPTER 4. DYNAMIC CONSENSUS ON THE MEDIAN VALUE

Relation (4.43) yields the two inequalities:

|Iup(t)|− |Idown(t)| ≤ |Iequal(t)| if |Iup(t)|> |Idown(t)| (4.57)
|Idown(t)|− |Iup(t)| ≤ |Iequal(t)| if |Iup(t)|< |Idown(t)| (4.58)

By substituting (4.55), and (4.56) into (4.57) it yields

|Iup(t)| ≤
n
2

(4.59)

Since we are investigating the case |Iup(t)|> |Idown(t)|, it derives from (4.59) and (4.55)
that kdown(t)< n

2 . Thus, if |Iup(t)|> |Idown(t)| then the set Iequal(t) contains the index of
at least one agent whose state belongs to the median interval M (u(t)) (or is equal to
the median value m(u(t)) if n is odd). It follows that, since the network is at consensus,
all agents in set Iequal(t) have state value equal to the median value.

By applying similar considerations to (4.58) one can derive the same result which
implies that c(t) ∈ M (u(t)).

To evaluate the convergence time, let us write down the inequality

V2(t) = V2(T )+
∫ t

T

d
dt

(V2(t))dt ≤ V2(T )+
∫ t

T

(
−α

n
+Π

)
dt

= V2(T )−
(

α

n
−Π

)
(t −T ).

By letting V2(t)≤ LM(t), for t = T2 it holds V2(T )−
(

α

n −Π
)
(T2−T )≤ LM(T2), thus

T2 ≤
V2(T )−LM(T2)(

α

n −Π
) +T =

|c(T )−m(u(T ))|−LM(T2)
α

n −Π
+T. (4.60)

■

Next, we consider the case where agents join and leave the network according to
Assumptions 4.3.4 and 4.3.5.

Theorem 4.4.3

Consider the network dynamics (4.1) along with time-varying graph G(t) satisfy-
ing Assumption 4.3.3. Assume that agents join and leave the network according
to Assumptions 4.3.4 and 4.3.5. Let the tuning parameters, under Assumption
4.3.1, satisfy nmaxΠ < α < 2λ

nmax
and let the consensus condition (2.3) be in force

starting from time t = T . Under Assumption 4.3.2, there exists T3 such that

|c(t)−m(u(t))| ≤ B, ∀t ≥ T3, (4.61)
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where B ≤
(

α

nmax
−Π

)
∆τ and

T3 ≤

max{|c(T )−m(u(T ))|−B,0}(
α

nmax
−Π

)
∆τ −B

∆τ +T. (4.62)

Proof of Theorem 4.4.3 According to Assumption 4.3.4 there exists a minimum dwell
time ∆τ between two consecutive join or leave events. Consider two instants of time,
t ′ where |V (t ′)| = n(t ′), and t ′′ = t ′+∆τ where |V (t ′′)| = n(t ′′). Thus for t ∈ (t ′, t ′′)
there is at most one agent that either joins or leaves the network at the isolated instant
of time t̂ ∈ (t ′, t ′′). Thus, we can apply the results of Theorem 4.4.2 and disregard the
isolated instant t̂ in the Lebesgue integration of the Lyapunov function. In particular, by
Assumption 4.3.5 (maximum number nmax of agents in the network), it holds d

dt (V2(t))≤
− α

nmax
+Π. By Assumption 4.3.4, |n(t ′′)−n(t ′)| ≤ 1. Now, we compute the variation of

V2(t) at time t̂ when the join or leave event occurs. It holds V2(t̂+)−V2(t̂) = |c(t̂+)−
m(u(t̂+))| − |c(t̂)−m(u(t̂))|. Since c(t̂+) = c(t̂), because agents join with state value
equal to the average of their neighbors and the consensus condition is enforced for all
t ≥ T , we can write V2(t̂+)−V2(t̂) = |c(t̂)−m(u(t̂+))|−|c(t̂)−m(u(t̂))|. Furthermore,
by Assumption 4.3.2, it holds |m(u(t̂+))−m(u(t̂))| ≤ B. Thus c(t̂)−m(u(t̂+))≤ c(t̂)−
m(u(t̂))+B and

|V2(t̂+)−V2(t̂)| ≤ ||c(t̂)−m(u(t̂))+B|− |c(t̂)−m(u(t̂))||
≤ ||c(t̂)−m(u(t̂))|+B−|c(t̂)−m(u(t̂))||
= B. (4.63)

We now integrate the Lyapunov function during an interval of length equal to the dwell
time ∆τ by taking into account (4.54) and (4.63) and disregarding the set of instants of
time of measure zero in which graph G(t) changes, according to Assumption 4.3.3. It
holds

V2(t ′+∆τ) = V2(t ′)+
∫ t̂

t ′

d
dt

(V2(t))dt +V2(t̂+)−V2(t̂)+
∫ t ′+∆τ

t̂+

d
dt

(V2(t))dt

≤ V2(t ′)+
(
− α

nmax
+Π

)
(t̂ − t ′)+B+

(
− α

nmax
+Π

)
(t ′+∆τ − t̂+).

(4.64)

Since t̂+− t̂ = 0, it holds V2(t ′+∆τ)≤ V2(t ′)−
(

α

nmax
−Π

)
∆τ +B. If we consider time

t ′ = T as the initial instant of time in which consensus is enforced, then there exists
k ∈ N+ such that

V2(T + k∆τ)≤ V2(T )− k
((

α

nmax
−Π

)
∆τ −B

)
. (4.65)
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Thus, if B ≤
(

α

nmax
−Π

)
∆τ then there exists k′ and T3 ≤ k′∆τ +T such that by letting

V2(T3)≤ B, it holds V2(T )− k′
((

α

nmax
−Π

)
∆τ −B

)
≤ B, thus

k′ ≥ max{V2(T )−B,0}(
α

nmax
−Π

)
∆τ −B

=
max{|c(T )−m(u(T ))|−B,0}(

α

nmax
−Π

)
∆τ −B

. (4.66)

and T3 ≤ k′∆τ +T. ■

Remark 4.4.1

According to Theorem 4.4.3 a procedure to tune the parameters of the proposed
protocol to guarantee the achievement of dynamic consensus in finite time in the
open scenario with bounded error is simply to choose a sufficiently large α so
that α > nmaxΠ, then choose a sufficiently large λ so that λ > nmaxα .

4.5 Simulation results

In this section we present two numerical tests. In the first one, we consider a network
of 5 agents connected by a random graph. We choose the tuning gains of the proto-
col according to Theorem 4.4.1 as λ = 90, α = 8 and the initial states of the agents
are choosen uniformly at random in the interval [0,2]. We considered reference signals
equal to ui(t) = aisin(2π fit) with coefficients chosen uniformly at random in the inter-
vals ai ∈ [0,2], fi ∈ [0,0.05]. In Figure 4.1, the reference signals and their median value
are shown.
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Figure 4.1: Reference signals ui(t) and their median value m(u(t)) .
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Figure 4.2 shows the consensus value of the agents, which can be seen to track, after
a finite transient time (approximately 0.03 seconds, less than the analytical upper bound
of T1 = 0.16 seconds), the median value of the reference signals, starting at time t = 0.6
seconds.
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Figure 4.2: Time evolution of the network state x(t) and the median value m(u(t)) .

In the second test, we consider the scenario of an open multi-agent system. The sim-
ulation starts with 9 agents at the consensus state on the median value m(u(t)) of their
reference signals, then at t = 10 an agent joins the network with initial state according
to (4.3) and u10(t) = 1.3sin(2π0.048t +0.9). Furthermore, at t = 18 sec a second agent
joins the network, and finally at t = 27 sec an agent leaves the network. It can be seen in
Figures 4.3 and 4.4 that when agents join or leave the network the median value of the
reference signals changes. In Figure 4.4, it is shown that the state of the agents remains
at the consensus state and at bounded distance from m(u(t)) during the join and leave
events.

4.6 Conclusions

In this chapter, we considered the dynamic consensus problem on median value in an
open multi-agent system under a switching network topology. The considered protocol
is shown to track with zero error in finite-time the median value of a set of time-varying
reference signals with bounded variations. Furthermore, it is shown that when agents
join and leave the network with an appropriate dwell time, the consensus value tracks
with bounded error the median value. Future works will investigate discrete-time ver-
sions of the proposed approach and its resilience with respect to faults or malicious
agents.
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Figure 4.3: Reference signals ui(t) and their median value m(u(t)).
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Figure 4.4: Time evolution of the network state x(t) and the median value m(u(t)).



Chapter 5
Distributed heuristics for
self-organizing k-regular random
graphs

5.1 Introduction

In this chapter, we present a novel distributed algorithm to reshape any connected graph
with a possible non-integer average degree into a connected approximately random k-
regular graph which is independent of the degree of the initial graph. More specifically,
we define some local graph transformation rules and provide a distributed implementa-
tion. In the resulting process, a random regular graph is obtained while the agents ob-
serve and modify only the local structure of the network. As such, the network achieves
high expansion ratios and algebraic connectivity, which provide robustness to various
structural and functional perturbations.

The outline of this chapter is as follows: In Section 5.2 we give the contributions of
this chapter. In Section 5.3 we present needed background on some graph theory and
definitions. In Section 5.4 we provide a distributed implementation and an analysis of
the resulting dynamics. In Section 5.5 we build some simulation results to demonstrate
the performance of the proposed solution. Finally, Section 5.6 concludes this chapter.

5.2 Main contributions

The robustness of a multi-agent network to perturbations such as failures and noise
largely depends on the corresponding graph. In many applications, networks are desired
to have well-connected interaction graphs with relatively small number of links. One
family of such graphs is the random regular graphs. Thus, refs. [56–58] motived to
design a decentralized protocol for transforming any connected interaction graph into

49
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a connected random regular graph. In more detail, in [56] and [57], to robustify multi-
agent systems against perturbations, the authors proposed algorithms where any graph
with an integer average degree, m ∈ N, was transformed into a random k-regular graph
while the protocol in [58], rewires any graph with a possible non-integer average degree
of m into a random k-regular graph for some k ∈ [m,m+2]. However, k-regular random
graph built by the aforementioned works is dependent on the average degree of the
initial graph. Thus, we motivated to design a distributed scheme for transforming any
connected interaction graph with a possible non-integer average degree into a connected
approximately random k-regular graph which is independent of the degree of the initial
graph. Hence, the network is well connected with a relatively small number of links that
leads to improved robustness of networks.

5.3 Preliminaries

Let G = (V,E(t),A(t)) be an undirected graph, where V = {1, . . . ,N} is a set of nodes
(agents), E(t) ⊆ {V ×V} is the time-varying set of edges, given by unordered pairs of
nodes, and A(t) = (ai j)N×N represents a weighted adjacency matrix. In detail, aii=0,
ai j ≥ 0, and ai j > 0 if and only if the link (Vi,Vj) ∈ E(t). The Laplacian matrix L =

(li j)N×N is denoted as li j =−ai j, i ̸= j, and lii =∑
N
k=1 aik for all i. An undirected graph is

connected when it has at least one node, and there is a path between every pair of nodes.
A path is a sequence of nodes such that an edge exists between any two consecutive
nodes in the sequence. Two nodes in an undirected graph are said to be adjacent if they
are joined by an edge. We refer to the set of nodes adjacent to any i ∈ V node, as its
1-hop neighborhood, N1

i (t), defined as:

N1
i (t) = { j|(i, j) ∈ E(t)} (5.1)

Furthermore, we define a set of neighbors of each neighbor of node i as 2-hop neigh-
borhood, N2

i (t). For any node i, the number of nodes in its 1-hop neighborhood is called
its degree, di(t), i.e.,

di(t) = |N1
i (t)| (5.2)

where |N1
i (t)| denotes the cardinality of the set. Let us define dmin(G(t)), dmax(G(t)),

and d̄(G(t)) for any graph G(t) as the minimum, the maximum, and the average degrees,
respectively. Moreover, we denote the difference of the maximum and the minimum
node degrees in a graph as the degree range, f (G(t)), i.e.,

f (G(t)) = |dmax(G(t))− k|+ |k−dmin(G(t))| (5.3)

where k ∈ N is a desired value.
Before presenting the proposed algorithm, we provide the following definitions.
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Definition 5.3.1: Algebraic connectivity

The second-smallest eigenvalue of the graph Laplacian is called as the algebraic
connectivity of the graph (also known as Fiedler value or Fiedler eigenvalue),
λ2(G(t)).

Definition 5.3.2: k-regular graph [57, 58]

A regular graph is a graph where each node has the same number of neighbors;
i.e. every node has the same degree or valency. A regular graph with nodes of
degree k is known k-regular graph or regular graph of degree k.

Definition 5.3.3: Approximately k-regular graph [57, 58]

An approximately k-regular graph is a graph where all nodes except one node
have a degree equal to k. As the number of nodes goes to infinity, almost every
k-regular graph and approximately k-regular graph have an algebraic connectivity
arbitrarily close to λ2(G) = k−2

√
k−1 for k ≥ 3.

Definition 5.3.4: Random k-regular graph (approximately k-regular graph)
[57, 58]

A graph that is picked uniformly at random from the set of all k-regular graphs
(approximately k-regular graph) with N nodes is named a random k-regular graph
(approximately k-regular graphs) of order N.

5.4 Distributed formation of random regular graph

In this section, we present the proposed distributed implementation of the algorithm
which transforms any connected graph into a k-random regular graph by adding, re-
moving and moving links.

The basic ideas behind Algorithm 2 are as follows: At each iteration, each node i
which is chosen randomly checks its degree di(t) and according to the value of itself the
candidate rule is picked as follows:

1. Rule 1 ( r = r1): This rule is intended for cutting edges so that if di(t) ≥ k+ 1,
then i randomly finds a node from its one-hop neighborhood, s ∈ N1

i (t), such that
the degree of node s should be greater than k. If s exists, then the link between i
and s should be removed.

2. Rule 2 (r = r2): This rule is considered to add edges so that if di(t) < k , then i
chooses a node from its 2-hop neighborhood, z ∈ N2

i (t) with degree less than k. If
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Algorithm 2: Distributed Implementation
1: Initialize: G(0) = (V,E(0))
2: Choose: k ∈ N
3: At each time t graph G(t) = (V,E(t)) is updated as follows:
4: for each i ∈V do
5: if di(t)> k) → r = r1 then
6: i picks a random s ∈ N1

i | ds(t)> k
7: if s exists then
8: E(t) = E(t)\ (i,s)
9: end if

10: else if di(t)< k) → r = r2 then
11: i picks a z /∈ N1

i (t),z ∈ N2
i (t) | dz(t)< k

12: if z exists then
13: E(t) = E(t)∪ (i,z)
14: end if
15: end if
16: if di(t)≥ k) → r = r3 then
17: i picks a random j ∈ N1

i (t) | d j(t)≥ k
18: if j exists then
19: i picks a random h ∈ N1

i (t)\{ j}
20: j picks a random f ∈ N1

j (t)\{i}
21: if ((d f (t)< k),(i, f ) /∈ E(t)) then
22: E(t) = (E(t)\{(i, j)})∪{(i, f )}
23: else if ((i, f ) /∈ E(t),( j,h) /∈ E(t)) then
24: E(t) = (E(t)\{(i,h),( j, f )})∪{(i, f ),{( j,h)}
25: end if
26: end if
27: end if
28: end for

z exists, then a link is formed between i and z.

3. Rule 3 (r = r3): This rule consists of two parts which is considered to move edges
so that if di(t) ≥ k, then i randomly finds a node from its one-hop neighborhood,
j ∈ N1

i (t), such that the degree of node j should be greater than or equal to k. If
j exists, then both i and j choose one neighbor, h ̸= j ∈ N1

i (t) and f ̸= i ∈ N1
j (t),

uniformly at random. If degree node f is less than k and there is not a link between
f and i, then Part 1 of Rule 3 (r3) is executed by rewiring f to i and removing the
link between j and i. Otherwise, If neither f nor h are linked to both i and j, then
Part 2 of Rule 3 (r3) is executed by rewiring h to j, f to i and removing the link
between i and h, and the link between j and f .
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Proposition 5.4.1

If graph G(t) is connected at every time t, then during the execution of Algorithm
2, function f (G(t)) in Eq. (5.3) is monotonically non-increasing and if f (G(t))
has a value strictly greater than one, then there always exist some nodes with the
value degree different from the average degree, so by applying at least one of the
rules of the algorithm the value of function f (G(t)) can decrease.

Proof of Proposition 5.4.1 In accordance with the algorithm at each iteration, if any
graph has the function f (G(t)) greater than one, the following cases can be occurred:

1. At each instant of time if the degree of the picked node which is chosen ran-
domly, di(t), is greater than k, then following cases can happen:

(a) Rule 1 can be executed.
(b) Rule 2 cannot be executed.
(c) Rule 3 (Part 1) can be executed.
(d) Rule 3 (Part 2) can be executed.

Suppose Rule 1 is implemented. When Rule 1 is triggered, since the degree of node
i and its one-hop neighborhood which is called s are strictly greater than k, the
edge between these two nodes are removed. Therefore, the degree of nodes i and
s is definitely reduced. If by chance the degree of one of these two nodes is the
maximum degree, then dmax(G(t)) will be decreased. On the one hand, this rule
has no effect on the minimum degree. Therefore, from Eq. (5.3) function f (G(t))
decreases.
Consider Rule 3 (Part 1) is executed. When this case is occurred, since the degree
of node i is strictly greater than k, the degree of node j is greater or equal to k and
the degree of node f is less than k, it eliminates the edge between nodes i and j
and rewires a link between i and f . Thus, the degree of node i does not change,
the degree of node j decreases and node f increases. By the chance If node j and
node f have maximum and minimum degrees respectively, then function f (G(t))
will be decreased.
Now, presume Rule 3 (Part 2) is executed. When this case happens, since the
degree of node i is strictly greater than k, the degree of node j is greater or equal
to k and the degree of nodes f and h is greater or equal to k, it rewires h to j, f to
i, and removes the edges between i and h and between j and f . Hence, the degree
of none of these nodes change which follows dmax(G(t)) and dmin(G(t)) remain
the same value as before. Since this part of Rule 3 does not affect dmax(G(t)) and
dmin(G(t)), then according to Eq. (5.3) function f (G(t)) does not change.

2. At each instant of time if the degree of the selected node which is chosen ran-
domly, di(t), is less than k, then the following cases can occur:
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(a) Rule 1 cannot be executed.
(b) Rule 2 can be executed.
(c) Rule 3 (Part 1) cannot be executed.
(d) Rule 3 (Part 2) cannot be executed.

Suppose Rule 2 is executed. When this Rule is triggered, since the degree of node i
and its 2-hop neighborhood which is named z is strictly less than k, a link is formed
between these two nodes. Accordingly, the degree of nodes i and z is certainly in-
creased. If by chance the degree of one of these two nodes is the minimum degree,
then dmin(G(t)) will be increased. Since this rule has no effect on the maximum
degree, subsequently according to Eq. (5.3) function f (G(t)) will be decreased.

3. At each instant of time if the degree of the picked node which is chosen ran-
domly, di(t), is equal to k, then the following cases can be occurred:

(a) Rule 1 cannot be executed.
(b) Rule 2 cannot be executed.
(c) Rule 3 (Part 1) can be executed.
(d) Rule 3 (Part 2) can be executed.

Consider Rule 3 is executed. As mentioned in case 1, the implementation of this
rule cannot increase function f (G(t)).

4. At some instant of times no rule may be executed on some nodes
If the degree of the selected node which is chosen randomly, di(t) is greater than k
and none of its neighbors have a degree greater or equal to k, then no rule executes
on this node which follows dmax(G(t)) and dmin(G(t)) do not change. Moreover,
if the degree of the picked node which is chosen randomly di(t) is less than k and
none of its 2-hop neighbors have a degree less than k so no rule implements on this
node which follows dmin(G(t)) and dmax(G(t)) remain the same value as before.
No change in the maximum and minimum degree implies that f (G(t)) does not
change. Thus, it is shown that none of the cases results in an increase in function
f (G(t)). As a result, the statement of the proposition is proved.

■

Next we discuss how Algorithm 2 ensures that an initial connected graph converges to
a k-regular graph.

Theorem 5.4.1

Let G(0) = (V,E(0)) be an initial connected graph and it is assumed that the
graph stays connected during the iterations, under the execution of the proposed
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algorithm after sufficient number of iterations, the graph almost surely converges
to a connected approximately random k-regular graph such that k ∈ N.

Proof Sketch of Theorem 5.4.1 It is worth mentioning that in Algorithm 2, the se-
quence of graphs can be investigated as a Markov chain stochastic process in which
the graph at time t + 1 depends only on the graph at time t and not the graphs before
t. In other words, the next graph is only a function of current graph. Let us define a
Markov chain over the finite state space, G, consisting of set of connected graphs with
n nodes. The state space G is also considered to be the union of two disjoint sets, as
follows

G=

{
Ḡ ⇒ {G(t) ∈G|di(G)∼= k ∀i ∈V}
G̃ ⇒ G\Ḡ

where Ḡ is the set of regular graphs whose the degree of all nodes is equal to k or just
degree of a node is different from k and other nodes have degree equal to k. G̃ represents
the set of non-regular graphs.

We are now ready to prove, each connected graph G(t) ∈ G̃ converges to the set of
k-regular graphs, Ḡ, and remains in this set. Let G(0) = (V,E(0)) ∈ G̃ be an initial
connected graph which is assumed to remain connected during the iterations with a
certain value of f (G(t)) greater than one. By executing the proposed algorithm the
following two cases can be occurred on the graph:

1. The maximum or/and minimum degree of the graph changes

2. The maximum or/and minimum degree of the graph does not change

At the beginning process since function f (G(t)) is greater than one, then there exists
at least one node which can be picked randomly by the proposed algorithm, and related
rule can be executed in accordance with its degree. This process can be done for each
node i ∈ V . As proved in Proposition 5.4.1, applying the proposed algorithm on the
graph G(t) leads the maximum and minimum degree of the graph change to become
close to k, which results in reducing function f (G(t)) in the value such that at time t +1
function f (G(t + 1)) is less than f (G(t)) at time t. If there is no node and the graph
does not belong to Ḡ, then Rule 3 (Part 2) can be executed for sufficient number of
times such that at some points, nodes can be found that once selected reduce the value
of f (G(t)). In fact, reducing function f (G(t)) via the proposed protocol continues until
one of the following cases can be occurred.

1. Minimum degree is reached k after sufficient number of iterations, but maxi-
mum degree is still greater than k.
In this case, the graph has definitely one of the following structures:
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(a) The degree of a set of nodes are greater than k and other nodes have the
degree equal to k.
Let us consider the graph G(t) has many nodes with degree greater than k
and less than k. As mentioned before, the maximum degree and minimum
degree can become closer to k via execution of the proposed algorithm. Now,
suppose minimum degree is reached k after sufficient number of iterations,
but maximum degree is still greater than k. In this case there are one or more
nodes whose their degrees are greater than k. If there is a number of nodes
of degree greater than k, then Rule 1 and Rule 3 (Part 2) just can be executed
which follows the degree of those nodes decrease until the degree of two nodes
are still greater than k while other nodes have the degree equal to k. In this
state, since two nodes have degree greater than k, links can remove or move
which results in the degree of these two nodes (if these two nodes have the
same degree greater than k) or one of these two nodes (if these two nodes have
different degrees greater than k) be equal to k as the other nodes.Thereafter,
there will be no node that can change maximum and minimum degree of graph,
it means that the algorithm is stuck and the value of the function f (G(t)) does
not change.Therefore, graph coverages to a connected random k-regular or
approximately k-regular graph.

(b) The degree of an agent is greater than k and other nodes have the degree
equal to k.
Assume the graph G(t) has many nodes with degree greater than k and less
than k. As mentioned before, the maximum degree and minimum degree can
become closer to k via execution of the proposed algorithm. Now, suppose
minimum degree is reached k after sufficient number of iterations, but max-
imum degree is still greater than k. In this case there are certainly one or
more nodes whose their degrees are greater than k. If there is only one node
of degree greater than k, then Rule 3 (Part 2) just can be executed that leads
links can just be moved. Therefore, the degree of no node changes. Since the
number of nodes are possibly large and only degree of one node is different
from k, the graph is approximately a k-regular graph.

2. Maximum degree k is reached after sufficient number of iterations, but mini-
mum degree is still less than k.
In this case, the graph has definitely one of the following structures:

(a) The degree of a number of nodes are less than k and other nodes have the
degree equal to k.
Let us assume that the graph G(t) has many nodes with degree greater than
k and less than k. As mentioned before, the maximum degree and minimum
degree can become closer to k via execution of the proposed algorithm. Now,
suppose maximum degree is reached k after sufficient number of iterations,
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but minimum degree is still less than k. In this case there are one or more
nodes whose their degrees are less than k. If there are a number of nodes of
degree less than k, then just Rule 2 and Rule 3 can be executed which follows
the degree of those nodes increases until the degree of two nodes are less than
k and other nodes have the degree equal to k. In this state, according to the
proposed algorithm Rule 2 and Rule 3 can be executed that leads to the degree
of all nodes is equal to k (if these two nodes have the same degree less than k)
or the degree of an agent is k−1 and other agents have degree equal to k (if
these two nodes have different degrees less than k). Therefore, graph surely
reaches a k-regular graph or approximately a k-regular graph.

(b) The degree of an agent is less than k and other nodes have the degree
equal to k.
Let us consider the graph G(t) has many nodes with degree greater than k and
less than k. As explained before, the maximum degree and minimum degree
can become closer to k via execution of the proposed algorithm. Now, sup-
pose maximum degree is reached k after sufficient number of iterations, but
minimum degree is still less than k. In this case there are one or more nodes
whose their degrees are less than k. If there is only one node of degree less
than k, then firstly just Rule 3 can be executed. If Rule 3 (Part 1) is executed,
It means that the node with degree less than k is node f and nodes i and j
have degree equal to k, then it may result two nodes or one node with degree
less than k, and other nodes have degree equal to k. In this state, according
to the proposed Algorithm 2, Rule 2 and Rule 3 can be executed that leads to
the degree of all nodes is equal to k (if these two nodes have the same degree
less than k) or the degree of an agent is k− 1 and other agents have degree
equal to k (if these two nodes have the different degree less than k). Therefore,
graph surely reaches a k-regular graph or approximately a k-regular graph.

3. Maximum degree and minimum degree reach k simultaneously after sufficient
number of iterations.

In this case, the graph has definitely the following structure:

(a) The degree of two nodes are equal to k + 1 and k − 1 respectively, and
other nodes have the degree equal to k.
In this state, just Rule 3 can be executed. If Rule 3 (Part 1) is executed, then it
means that Node f has degree equal to k−1 and the degree of Node j is k+1
which implies the degree of these two nodes is equal to k as the other nodes.
Therefore, graph converges to a k-regular graph.

■
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Proposition 5.4.2

By executing the Algorithm 2, the graph G(t) cannot get stuck, if the maximum
and minimum degree of the graph is different from k. Therefore, the maximum
and minim degree of the graph will change to reach to k.

Figure 5.1: (Left) Initial interaction graph with 8 nodes and k = 3; (Right) The graph is updated when
Rule 2 is implemented and an edge is formed between nodes 1 and 7; (Down) The graph is disconnected
when Rule 1 is executed and the link between nodes 2 and 4 is removed.

Example 5.4.1

It should be noted that the execution of Algorithm 2 can disconnect any graph
with non-zero probability if the initial graph has few nodes and choose a small
k. The following example shows that the execution of Algorithm 2 graph can be
disconnected.
In Fig. 5.1 (Left), we consider the number of agents to be 8 and k = 3. Then, by
executing of the algorithm, the following results hold:

1. When i = 1, the degree of node 1 is less than k, then according to Algorithm
2, Rule 2 (r = r2) should be executed, which provides a link between Node 1
and one of its 2-hop neighbourhoods with degree less than k (node 7). This
step is shown in Fig. 5.1 (Right) .

2. For i = 2, the degree of node 2 is more than k, so Rule 1 (r = r1) is executed.
In accordance with this rule, i finds a node from its one-hop neighborhood
such that the degree of node should be greater than k. Thus, node 4 is
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selected and the link between node 2 and node 4 is removed that leads the
graph will be disconnected. This process is depicted in Fig. 5.1 (Down).

Conjecture 5.4.1

If the graph has high algebraic connectivity and the number of nodes and desired
k are sufficiently high, then with high probability the graph connectivity is main-
tained under the algorithm 2. In fact, by giving a certain number of nodes possibly
large as k goes to infinity, the probability of getting the graph disconnected goes
to zero.

Figure 5.2: Initial interaction graph with an average degree of 3.1.

5.5 Simulation studies

In this section, we present some simulation results to evaluate the effectiveness of our
proposed algorithm and the algorithm proposed in [58]. The scenarios under test con-
sists of a connected initial graph G(0) with N = 100 agents and d̄(G(0) = 3.1 which is
depicted in Fig. 5.2 .

In the proposed distributed protocol, we consider k = 4 which leads the graph con-
verges to a connected 4-regular graph and since d̄(G(0)) = 3.1 the graph is expected to
become either a random 4-regular graph or a random 5-regular graph when the proposed
algorithm in [58] is used. The obtained results are shown in Figs. 5.3 -5.9. It is clear
from Fig.5.3 and Fig.5.4 that the initial interaction graph reaches a random 4-regular
graph by the proposed algorithm 2 and algorithm in [58].

Time evolution of the proposed algorithm 2 average degree and average degree in
[58] are shown in Fig. 5.5. It is evident from Fig. 5.5 that the proposed protocols
in this chapter and in [58] guarantee the achievement of a connected 4-regular graph.
However, these results show that the algorithm presented in this work is much faster
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Figure 5.3: Random 4-regular graph generated by the proposed algorithm
.

Figure 5.4: Random 4-regular graph generated in [58].

than the algorithm proposed in [58]. Fig. 5.6 illustrates time evolution of degree range
in this chapter and in [58]. It can be seen from these figures that function f (G(t)) is not
increasing during execution of the algorithm which is described in Algorithm 2 while
this function is incremental at some time steps using the proposed algorithm in [58].
The time evolution of the algebraic connectivity throughout this simulation is depicted
in Fig. 5.7. As predicted from random 4-regular graphs, the algebraic connectivity
converges to least k − 2

√
k−1 = 4− 2

√
3−1 by algorithm presented in this chapter

and the proposed algorithm in [58]. Finally, time evolution of the maximum degree and
minimum degree under Algorithm 2 and the proposed algorithm in [58] are displayed
in Fig. 5.8 and Fig.5.9

5.6 Conclusions

In this chapter, we presented a novel distributed algorithm to transform any connected
graph into a connected approximately random k-regular graph. The obtained network
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Figure 5.5: (Up) Time evolution of the proposed algorithm average degree; (Down) Time evolution of
average degree in [58].

under the proposed algorithm was independent of the degree of the initial graph. More-
over, the robustness of the obtained network to perturbations such as failures, noise, or
malicious attacks improved by locally adding or removing some edges.
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Figure 5.6: Up) Time evolution of the proposed algorithm degree range; (Down) Time evolution of degree
range in [58].
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Figure 5.7: Up) Time evolution of the proposed algorithm algebraic connectivity; (Down) Time evolution
of algebraic connectivity in [58].
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Figure 5.8: Up) Time evolution of the proposed algorithm maximum degree; (Down) Time evolution of
maximum degree in [58].
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Figure 5.9: Up) Time evolution of the proposed algorithm minimum degree; (Down) Time evolution of
minimum degree in [58].
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Chapter 6
Conclusion and future work

6.1 Conclusion

In this concluding remarks, we review the contributions of this thesis. This thesis mainly
dealt with the problem of coordination of open multi-agent systems. To solve the prob-
lem, two novel different consensus algorithms were presented in this dissertation. In
Chapter 3, we studied the average discrete time consensus problem in an open multia-
gent system under a switching network topology. This problem was solved by designing
a novel distributed open average consensus protocol. By using Lyapunov analysis We
proved that when agents join or leave the network, the time-varying average of the ini-
tial states can be tracked with a bounded error by the MAS with no bias, i.e., if agents
stop joining or leaving the network, it converges exactly to the average of the initial
states. We also provided numerical simulations to verify the performance of the pro-
tocol. Whereas in Chapter 4, we focused on the problem of dynamic consensus of a
network of agents corresponding to continuous-time systems wherein the state variables
of the agents track with zero error the median value of a set of time-varying reference
signals given as input to the agents under a time-varying, undirected network topology.
Furthermore, we analysed the performance of the protocol in the structure of open net-
works by considering join and leave events, i.e., the scenario where agents may join
and leave the network during the protocol execution. The finite-time convergence prop-
erties and tracking error of the considered protocol were characterized in the case of
inputs with bounded variations. We employed non-smooth Lyapunov analysis to pro-
vide convergence guarantees and simple tuning rules to adjust the algorithm parameters.
Finally, we built numerical simulations to corroborate the theoretical results. Besides of
the coordination of open multi-agent systems problem, in Chapter 5 we designed a dis-
tributed algorithm consisting of rules for cutting, adding, and moving edges to transform
any connected interaction graph with a possible non-integer average degree into a con-
nected approximately random k-regular graph. It concluded that such graphs have the
algebraic connectivity bounded away from zero regardless of the network size. Hence,

67
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it is not possible to disconnect a large part of the resulting graph by removing a small
number of nodes or edges. Furthermore, by improving the algebraic connectivity, the
proposed method enhances the robustness of networks to perturbations such as failures,
noise, or malicious attacks. Some simulation results were also presented in the chapter
to demonstrate the performance of the proposed method,

6.2 Future work

The future research directions can be divided into two parts: (i) extension of consen-
sus approaches in the framework of open multi-agent systems (ii) extension of self-
organizing k-regular random graphs.

One possible idea for the proposed average consensus is to consider the problem
of dynamic average consensus in the open scenario, in which the state variables of the
agents can track the average value of a set of time-varying reference signals given as
input to the agents. Another idea is to focus on the addition of resilience concerning
faults or malicious agents to the proposed method. A possible extension for the current
median consensus is to investigate the discrete-time version of the proposed approach.
The next exciting extension would be to remove Assumption 4.3.4 and consider that
more than one agent can either join and leave the network at the isolated instant time.
Note that in this case, we need to improve the proof of Theorem 4.3.3. Subsequent
activities will also be targeted to relaxing the assumed restrictions on the communication
topology by covering, e.g., directed and possibly delayed communications.

As for the extension of self-organizing k-regular random graphs, one possibility
would be to analyse the performance of the protocol in the framework of open mul-
tiagent systems by proposing join and leave mechanisms, i.e., the scenario where agents
may join and leave the network during the protocol execution. Another possible step
could be to extend the proposed algorithm for directed graphs.
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