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1. ABBREVIATIONS 

 

2-AAF   2-acetylaminofluorene 

ANOVA  Analysis of variance 

BH   Benjamini-Hochberg 

DE   Differentially expressed 

DEN    Diethylnitrosamine 

Dio1   Deiodinase 1 

FC   Fold change 

FDR   False discovery rate 

FXR   Farnesoid X receptor  

G6PD   Glucose-6-phosphate dehydrogenase 

GAPDH  Glyceraldehyde 3-phosphatase dehydrogenase 

GFF/GTF  General Transfer Format 

GST-P   Placental form of glutathione-S-transferase 

HBV   Hepatitis B virus 

HCC   Hepatocellular carcinoma 

HCV   Hepatitis C virus 

IPA   Ingenuity Pathway Analysis 

IPA   Ingenuity Pathways Analysis 

Keap1   Kelch Like ECH Associated Protein 1  

Krt-19   Cytokeratin-19 

miRNA/miR  MicroRNA 

miRNA-seq  microRNA sequencing 

mRNA   Messenger RNA 

NASH   Non-alcoholic steatohepatitis 

NGS   Next generation sequencing 

Nqo1   NAD(P)H Quinone Dehydrogenase 1 
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Nrf2   Nuclear factor erythroid 2–related factor 2 

NSCLC  Non-small cell lung cancer 

OXPHOS  Oxidative phosphorylation 

PCA   Principal Component Analysis 

PCA   Principal component analysis 

PH   Partial hepatectomy 

PPP   Pentose phosphate pathway 

QC   Quality control 

qRT-PCR  Quantitative Reverse Transcription PCR 

RAS   Rat sarcoma virus 

R-H   Resistant-Hepatocyte 

RIDE   RNA Differential Expression 

RIN   RNA integrity number 

RNA-seq  RNA sequencing 

ROS   Reactive oxygen species 

RXR   Retinoid X receptor  

SD   Standard Deviation 

SDH   Succinate Dehydrogenase Complex  

SRA   Sequence Read Archive 

SRIDE   small RNA Differential Expression 

TH   Thyroid hormone 

THR   Thyroid responsive elements 

TSH   Thyroid stimulating hormone 

UMI   Unique molecular Identifier 

UTR   Untranslated region 
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2. ABSTRACT 

Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths 

worldwide. Despite the approval of new molecular targeted therapies, benefits from current 

therapies remain unsatisfactory. Thus, it is mandatory to find new and effective therapeutic 

treatment strategies to treat HCC. Recent studies revealed a status of severe local hypothyroidism 

in rat hepatic preneoplastic lesions, and in human HCCs, suggesting that this condition may 

represent a favorable event for HCC development. Accordingly, a short treatment with thyroid 

hormone (T3) caused the regression of pre-neoplastic lesions in a rat model of 

hepatocarcinogenesis.  

Thyroid hormones (THs) inhibit HCC through different mechanisms. To investigate whether 

microRNAs (miRs) play a role in the antitumorigenic effect of THs, by Next Generation 

Sequencing (NGS) we performed a comprehensive comparative miRNomic and transcriptomic 

analysis of hepatic preneoplastic lesions of rats subjected to the Resistant-Hepatocyte (RH) 

protocol and then exposed or not to a four-day treatment with triiodothyronine (T3). The most 

deregulated miRs were also analysed in HCCs generated by the same protocol, with or without 

T3. 

Analysis of the transcriptomics data can be tricky, and often requires substantial expertise in 

bioinformatics. Prior to the final analysis, the raw data needs to be processed through number of 

steps, thus resulting in a gene or miRNA expression quantification. Bioinformatic workflows are 

generally employed to automate these steps. A number of workflows are available to help the 

researchers preprocess their data.  However, many existing workflows have their own approach 

towards the analysis, or they are limited to specific studies. Here, we have implemented two 

automated, scalable, and reproducible Snakemake based pipelines called RIDE and SRIDE for 

performing transcriptome and microRNA analysis respectively.   

Result: Pathway analysis in preneoplastic nodules showed that Oxidative Phosphorylation and 

NRF2-mediated Oxidative Stress Response were the most deregulated pathways. These pathways 

were resulted to be reversed in preneoplastic nodules exposed to T3. Gene expression analysis 

showed that T3 also inhibited proline biosynthesis, which was up-regulated in preneoplastic 

lesions. With regard to microRNA, most downregulated miRNA in preneoplastic lesions have 

already been described to act as oncosuppressors, whereas, some of the differentially up-regulated 
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miRNAs have been shown to contribute substantially in carcinogenesis process. miRNA’s down-

regulated in preneoplastic nodules following T3 treatment targeted Thyroid hormone receptor- 

(THR), deiodinase, and oxidative phosphorylation pathways, while on the contrary, most 

upregulated miRNAs were those of targeting Nrf2 Oxidative Pathway, Glycolysis, Pentose 

Phosphate Pathway and Proline biosynthesis – all involved in metabolic reprogramming. Notably, 

while T3 exerted similar effects on gene expression in both preneoplastic nodules and HCCs, no 

change in the expression of these miRNAs regulated in preneoplastic lesions was found at the late 

stages. 

This study investigated the miRNA-mRNA networks elicited by T3 treatment in liver 

preneoplastic lesions. The identification of several miRNAs, so far never associated to T3, may 

improve our understanding of the key regulator events underlying the early stages of HCC 

development and help to design therapeutic strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  5 
 

3.INTRODUCTION 

3.1. Hepatocellular Carcinoma 

Primary liver cancer is the sixth most diagnosed cancer and is the third largest contributor 

to cancer mortality. Approximately, 906,000 new cases and 830,000 deaths were registered in the 

year 2020(Fig. 1). Hepatocellular carcinoma (HCC) is the most common form of liver cancer and 

accounts for ~90% of cases (1). Highest incidence and mortality rates are commonly observed in 

East Asia (China, Japan, Mongolia, North Korea, South Korea, and Taiwan) and Africa. 

Intermediate incidence rates are reported in countries of the Central Europe, while for Northern 

Europe, Middle East, Oceania and America the lowest incidence rates are registered. (2,3) 

 

 

Fig. 1: Primary liver cancer incidence rates throughout the world. (Data source: Globocan 2020). 
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3.2. Risk Factors 

The global incidence of HCC varies due to the variable prevalence of associated etiologies. The 

known risk factors for HCC are toxic (alcohol and aflatoxins), viral (chronic hepatitis B and 

hepatitis C), immune-related (primary biliary cirrhosis and autoimmune hepatitis) and metabolic 

(diabetes and non-alcoholic fatty liver disease, hereditary haemochromatosis) (4,5) 

Hepatitis B virus infection (HBV) 

Globally about 296 million people are living with chronic hepatitis B infection (6). HBV is a 

hepatotropic DNA virus that integrates its DNA in to the host genome, thus inducing both host 

chromosomal instability and insertional mutagenesis of HCC related genes (7). Among the 

individuals with chronic HBV infection, 15 to 40% progress to cirrhosis, thus leading to liver 

failure and liver cancer(8). HBV infection is passed down from person to person through blood, 

semen or other body fluids. Over the years, HBV vaccination programmes has dramatically 

reduced HCC incidence in some parts of Asia, however effective vaccination programmes are yet 

to be implemented (9,10).  

Hepatitis C virus infection (HCV) 

Hepatitis C virus (HCV), is a hepatotropic RNA virus which causes chronic liver disease. About 

58 million people have chronic HCV worldwide, with about 1.5 million new incidences being 

reported every year (11).  Unlike HBV, HCV does not integrate in to the host genome, therefore 

the risk of HCC is primarily limited to those who develop cirrhosis or chronic liver damage(12). 

Since it’s a bloodborne virus, major risk factors include exposure to blood from unsafe injection 

practices, unsafe health care, injection use and unscreened blood transfusion. Currently, there is 

not effective vaccine against hepatitis C. However, direct-acting antiviral (DAA) therapy can cure 

95% of people with HCV infection (11,13) 

Non-Alcoholic Fatty liver Disease (NAFLD) 

Non-alcoholic fatty liver disease (NAFLD) affects a third of the world's population. Globally, 25% 

of the general population is thought to be suffering from NAFLD, with the highest incidence rate 

in South America and Middle East (30.45% and 31.79% respectively) and lowest in Africa 

(13.48%) (14).  Primary causes of NAFLD are obesity and diabetes.  Not only they contribute to 
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the development of the disease, but are also independent risk factors for HCC (15,16). Other risk 

factors include genetic predisposition, which explains the variability in NAFLD phenotype and 

risk of progression. NAFLD can progress to non-alcoholic steatohepatitis (NASH), fibrosis, 

cirrhosis and to HCC. NAFLD associated HCC can be prevented by adopting healthy lifestyle, use 

of anti-fibrotic therapies and use of pharmacological therapy, such as statins and metformin 

(17,18). 

Alcohol 

Excessive alcohol intake results in fatty liver, acute/chronic hepatitis, cirrhosis and eventually 

leads to HCC(19). At present, there is a surge in the number of persons that have cirrhosis due to 

alcohol consumption or NASH. The incidence of alcohol induced liver carcinogenesis is highest 

in developed countries, especially in Europe and USA(20). In population-based study, the annual 

incidence of alcohol induced cirrhosis ranges from 1% to 2-3% in tertiary care referral centers and 

accounts for ~15-30% of HCC cases (21). Risk factor that initiates the alcohol-induced liver 

damage and the development of HCC include the amount of ethanol consumption, gender 

differences, coexistence of hepatitis virus, diabetes and obesity(22) . 

Age, sex, and other factors 

HCC has been associated with several sociodemographic characteristics, particularly in patients 

with cirrhosis. Aging is considered to be a strong risk factor, with the age specific incidence 

reported in individuals over 70 years of age (23). Additionally, the number of HCC cases has been 

predominantly seen in males, likely due to the differences in sex hormones and clustering of risk 

factors(1). Studies show that a higher incidence of HCC is reported among ethnic minorities or 

racial groups, particularly in Hispanics, when compared to white individuals. The high incidence 

rate in minorities might be partly due to the single nucleotide variation in PNPLA3 gene, which is 

linked to NASH associated HCC (24). 

3.3. Therapeutic strategies for HCC 

Over the years outcome of patients with HCC has substantially improved. Better outcomes can be 

attributed to earlier detection as a result of the wider implementation of surveillance programs, 

advances in effective treatments and better management of underlying liver disease (25). 

Treatment options largely depend on tumor stages and the expected benefits of major 



  8 
 

interventions, following the Barcelona Clinic Liver Cancer (BCLC) staging system (26–28) (Fig 

2). According to the guidelines, early-stage HCC patients are mostly preferred for transplantation, 

resection and local ablation, whereas patients at intermediate stages are preferred for locoregional 

treatments like transarterial chemoembolization (TACE) and those with advanced HCC (aHCC) 

receive systemic therapies (Fig. 2).  

 

 

 

 

 

 

 

 

 

Fig. 2 Based on the disease extension and liver function, the Barcelona Clinic Liver Cancer 

(BCLC) staging system consists of 5 stages. Local curative treatments (ablation, resection or 

transplantation, depending on the presence of portal hypertension, number of nodules and liver 

function) are given to the asymptomatic patients with low tumor burden and good liver function 

(BCLC 0/A). Asymptomatic patients with multinodular disease and adequate liver function 

(BCLC B) should receive chemoembolization and patients with portal thrombosis or extrahepatic 

spread (BCLC C) should be treated with systemic therapies.(12) 

The landmark success of Asia-Pacific and SHARP trial led to the approval of sorafenib, a 

multikinase inhibitor, as first-line targeted therapy for advanced HCC (26,29–31) . Over the past 

10 years, sorafenib has been the standard care for patients with unresectable HCC. Recently, 

several other multikinase inhibitors were approved as first line agents, such as Lenvatinib, 

Donofenib etc. Each of the drug demonstrated superior OS (Overall Survival) outcomes compared 

to sorafenib (32). 
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Sorafenib displays limited anti-tumor activity and both adaptive resistance and intrinsic resistance 

represents crucial challenge in the management of patients receiving first line treatment of HCC 

(33). Treatment options for patients with advanced HCC have greatly improved with the 

introduction of tyrosine-kinase inhibitors (TKI) and recently immune checkpoint inhibitors (ICI) 

(Fig. 3)(34,35) 

 

 

Fig. 3: Overview of the targeted agents approved for HCC. ATEZO (atezolizumab), BEV 

(bevacizumab), CAM (camrelizumab), LEN (lenvatinib), PEM (pembrolizumab), NIV 

(nivolumab), IPI (ipilimumab) (35) 

Drug resistance in HCC still remains challenging due to random mutations in target receptors as 

well as downstream pathways. ICIs have been shown to be an evolving novel treatment option in 

certain advanced solid tumors and have been recently approved for inoperable, advanced, and 

metastatic HCC. Unfortunately, a large cohort of patients with HCC fail to respond to 

immunotherapy (36). Researchers have applied different therapeutic strategies combining ICIs 

with other agents. Many of the strategies have obtained positive results in early clinical trials and 

are currently being tested in phase III trials. (Table 1).      
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Drug Targets Stage and 

conditions 

Phase Primary 

endpoint(s) 

ClinicalTrails.gov Study 

start 

Immunotherapy plus Anti-angiogenesis 

Atezolizumab plus 

Lenvatinib or 

Sorafenib 

PD-L1 + VEGFRs, 

FGFRs, PDGFR a, RET, 

KIT and RAF 

Advanced; Second-

line 

III OS NCT04770896 2021 

SHR-1210 plus 

Apatinib 

PD-1 + VEGFR-2 Advanced; First-

line 

III OS/PFS NCT03764293 2019 

CS1003 plus 

Lenvatinib 

PD-1 + VEGFRs. 

FGFRs, PDGFR a, RET 

and KIT 

Advanced; First-

line 

III OS/PFS NCT04194775 2019 

Durvalumab plus 

Bevacizumab 

PD-L1 + VEGFA High risk of 

recurrence; Second-

line 

III RFS NCT03847428 2019 

Atezolizumab plus 

Bevacizumab 

PD-L1+ VEGFA Locally advanced 

or metastatic First-

line 

III OS/PFS NCT03434379 2018 

Atezolizumab plus 

Cabozantinib 

PD-L1 + VEGFR, MET, 

RET, KIT and AXL 

Advanced; First-

line 

III OS/PFS NCT03755791 2018 

Pembrolizumab 

plus Lenvatinib 

PD-1 + VEGFRs, 

FGFRs, PDGFR a. RET 

and KIT 

Advanced; First-

line 

III OS/PFS NCT03713593 2018 

Nivolumab plus 

Sorafenib 

PD-1 + VEGFRs, KIT, 

PDGFRs, and RAF 

Locally Advanced 

or Metastatic; First-

line 

II MTD/ORR NCT03439891 2018 

Avelumab plus 

Regorafenib 

PD-L1 + VEGFR1-3, 

PDGFR-I3, FGFR1, 

KIT, RET and B-RAF 

Advanced or 

metastatic 

I/II RP2D/ORR NCT03475953 2018 

Nivolumab plus 

Cabozantinib 

PD-1 + VEGFR, MET, 

RET, KIT and AXL 

Locally Advanced; 

Neoadjuvant 

I AEs NCT03299946 2018 

Nivolumab plus 

Bevacizumab 

PD-1 + VEGFA Advanced or 

Metastatic 

I AEs/MTD or 

RP2D 

NCT03382886 2018 

Durvalumab plus 

Cabozantinib 

PD-L1 + VEGFR, MET, 

RET, KIT and AXL 

Advanced; Second-

line 

I MTD NCT03539822 2018 

Nivolumab plus 

Vorolanib 

PD-1 + VEGFR, 

PDGFR 

/ I RP2D NCT03511222 2018 

PDR001 plus 

Sorafenib 

PD-1 + VEGFRs, KIT, 

PDGFRs, and RAF 

Advanced; First-

line 

I AEs NCT02988440 2017 

Pembrolizumab 

plus Regorafenib 

PD-1 + VEGFR1-3, 

PDGFR-I3, FGFR1, 

KIT, RET and B-RAF 

Advanced; First-

line 

I AEs/DLTs NCT03347292 2018 

Durvalumab plus 

Ramucirumab 

PD-L1 + VEGFR2 Advanced or 

metastatic 

I DLTs NCT02572687 2016 

 

 
 



  11 
 

 

 

Inmunotherapy plus other 

agents 

      

IBI310 plus Sintilimab CTLA-4 + PD-1 Advanced; 

First-line 

III OS/ORR NCT04720716 2021 

Nivolumab plus Ipilimumab PD-1 + CTLA-4 Advanced; 

First-line 

III OS NCT04039607 2019 

Durvalumab plus 

Tremelimumab 

PD-L1 + CTLA-4 Advanced; 

First-line 

III OS NCT03298451 2017 

TSR-042 plus TSR-022 PD-1 +TIM-3 Locally 

advanced or 

metastatic 

II ORR NCT03680508 2018 

Pembrolizumab plus 

Bavitcodmab 

PD-1 + PS Advanced; 

First-line 

I/II ORR NCT03519997 2018 

Nivolumab plus MS-

986205 

PD-1 +1DO1 Advanced; 

First-line 

I/II AEs/ORR NCT03695250 2018 

Pembrolizumab plus 

Epacadostat 

PD-1 +1DO1 / I/II DLTs/ORR NCT02178722 2014 

Pembrolizumab plus 

INCAGN01876 plus 

Epacadostat 

PD-1 + 

GITR+IDO1 

Advanced I/II AEs/ORR NCT03277352 2017 

Nivolumab plus 

Galunisertib 

PD-1 + TβR1 Advanced; 

Recurrent 

I MTD NCT02423343 2015 

Nivolumab plus Avadornide PD-1 + 018N Unresectable I DLT/AB/OR

R 

NCT02859324 2016 

Pembrolizumab plus VSV-

IFNβ -NIS 

PD-1 + Oncolytic 

virus 

Refractory I ORR/AEs NCT03647163 2019 

Durvalumab plus 

Guadecitabine 

PD-L1 + DNMT Advanced; 

Metastatic 

I AEs/ORR NCT03257761 2018 

Pembrolizumab plus 

XL1888 

PD-1 + Hsp90 Advanced; 

Metastatic 

I RP2D NCT03095781 2017 

Pembrolizumab plus 

Vaccine 

PD-1 + Modified 

Vaccinia Virus 

Ankara Vaccine  

Expressing p53 

Unresectable

; 

Second-line 

I Tolerability NCT02432963 2015 

PDR001 plus NIS793 PD-1 + TGF-β Advanced I DLTs/PEs NCT02947165 2017 

Nivolumab plus SF1126 PD-1 + PI3K Advanced I DLT NCT03059147 2017 
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Table 1: Abbreviations: PD-1 programmed cell death-1, VEGFR vascular endothelial growth factor receptor, VEGF vascular endothelial growth factor, PD-L1 

programmed cell death ligand 1, FGFR fibroblast growth factor receptor, FGF fibroblast growth factor, PDGFR platelet derived growth factor receptor, CTLA-4 

cytotoxic T lymphocyte–associated antigen-4, TIM-3 T-Cell immunoglobulin and mucin domain-containing molecule 3, PS phosphatidylserine, IDO1 indoleamine 2,3-

Dioxygenase 1, GITR glucocorticoid-induced tumor necrosis factor receptor, TβRI transforming growth factor beta receptor 1, CRBN cereblon, DNMT DNA 

methyltransferase, Hsp90 heat shock protein 90, TGF-β transforming growth factor beta, PI3K phosphatidylinositol 3-kinase, mTOR mechanistic target of rapamycin 

kinase, VM vasculogenic mimicry, EGFR epidermal growth factor receptor, AR androgen receptor, STAT3 signal transducer and activator of transcription 3, OS overall 

survival, PFS progress free survival, MTD maximum tolerated dose, ORR objective response rate, RP2D recommended phase II dose, AEs adverse events, DLT dose 

limited toxicity, TTP time to progress, AA antitumor activity, RFS recurrence free survival 

Other combination 

Apatinib plus 

Capecitabine 

VEGFR-2 + 

DNA/RNA Synthesis  

Advanced II TIP NCT03114085 2017 

Temsirolimus plus 

Sorafenib 

mT0R+VEGFFts, KIT, 

PDGFRs, and RAF  

Advanced; 

First-line 

II TTP NCT01687673 2012 

Trametinib plus 

Sorafenib 

MEK 1/2 + VEGFRs, 

KIT, PDGFRs, and 

RAF  

Advanced I MID NCT02292173 2014 

CVM-1118 plus 

Sorafenib 

VM + VEGFRs, KIT, 

PDGFRs, and RAF  

Advanced II ORR NCT03582618 2018 

mFOLFOX plus 

Sorafenib 

DNA 

Synthesis+VEGFRs, 

KIT, PDGFRs, and 

RAF  

/ II TIP NCF01775501 2013 

Erlotinib plus 

Bevadzumab 

EGFR+VEGFA  Advanced; 

Second-line 

II PFS (16 W) NCT01180959 2011 

TRC 105 plus 

Sorafenib 

Endoglin+VEGFRs, 

10T, PDGFRs, and 

RAF 

/ I/II MTD/ORR NCT02560779 2016 

Enzalutamide plus 

Sorafenib 

AR + VEGFRs, 10T, 

PDGFRs, and RAF 

Advanced; First-

line 

I/II PFs NCT02642913 2015 

Napabucasin or 

Amcasertib plus 

Sorafenib 

STAT3, cancer 

sternness 

kinase+VEGFRs, KIT, 

Advanced; 

PDGFRs, and RAF  

First-line I/II RP2D/AB5JAA NCT02279719 2014 

ADI-PEG 20 plus 

FOLFOX 

Arginine+DNA 

Synthesis  

Advanced I/II ORR NCT02102022 2014 

FATE-NK1E0 plus 

Cetuximab or 

Trastuzumab 

NK cell 

immunothempy+EGFR 

or EGFR2  

EGFR1+ or 

HER2+; 

Advanced 

I DLT NCT03319459 2018 

Navitodax plus 

Sorafenib 

13d-2 + VEGFRs, KIT, 

PDGFRs, and RAF  
 

Relapsed or 

refractory 

I MTD/AS NCT02143401 2014 
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Benefits from present treatment options are still disappointing, as it extends the median life 

expectancy of patients by only few months. Thus, it is mandatory to find alternative treatment 

options. Several studies have reported aberrant THR expression and somatic mutations in human 

cancers, supporting the hypothesis that they might play a role in tumor development. Indeed, two 

independent case-control studies suggested that hypothyroidism represents a risk factor for human 

HCC (37,38) and a recent work showed that TR expression correlated with more progressed 

stages of non-alcoholic steatohepatitis (NASH), a well-known pro-tumorigenic condition (39). 

Experimental and clinical studies revealed a status of severe local hypothyroidism in rat hepatic 

preneoplastic lesions, and in human HCCs (40–42), suggesting that this condition may represent a 

favorable event for HCC development. Accordingly, T3 exogenous administration not only 

inhibited liver tumor formation but also induced regression of HCCs in vivo (43). The effect of T3 

has been attributed to several mechanisms, including its ability to induce mitophagy, 

differentiation and metabolic reprogramming of pre- and neoplastic cells (43–45). In particular, it 

was shown that T3 can induce a switch of preneoplastic hepatocyte gene expression profile 

towards the one of fully differentiated cells (43). 

3.4. Thyroid hormones (THs) and Thyroid Hormone Receptors (THRs) in HCC 

Thyroid hormones, 3,5,3’,5’-tetraiodo-L-thyronine (T4) and 3,5,3’-triiodo-L-thyronine (T3) are 

secreted by the follicular cells of the thyroid gland under control of the hypothalamic-pituitary 

axis. THs influence a variety of physiological processes, such as development, metabolism, cell 

growth and differentiation. The regulation of thyroid hormone begins at the hypothalamus. The 

hypothalamus releases Thyrotropin Releasing Hormone (TRH) that stimulates the pituitary gland 

to secrete the Thyroid Stimulating Hormone (TSH). TSH, in turn, stimulates the thyroid gland to 

release T3 and T4 and all this process is under control of a negative feedback loop (46). T4 

constitutes more than 80% of the secreted hormone in the blood stream. Once transported across 

the cell membrane of responsive cells by specific monocarboxylate anion transporters such as 

MCT8 and MCT10, T4 is converted in to T3 that represent the physiological active form of T4. 

This conversion takes place in peripheral organs, mainly liver and kidney, and is carried out by the 

selenoenzymes iodothyronine deiodinase I and II (Dio1 and Dio2).  
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Fig. 4 Mechanisms of activation and inactivation of thyroid hormones. This is accomplished by 

the selenodeiodinases type 1 (D1) and type 2 (D2). Deiodination at the 5 position on the inner ring 

is accomplished by type 3 (D3) and D1 (47) 

 

Dio1 is mainly expressed in kidney and liver, while Dio2 is expressed in pituitary gland, central 

nervous system, brown adipose tissue, uterus and placenta. Dio1 and Dio2 catalyze the outer ring 

5’-deiodination that can be viewed as the first step in the activation of the thyroid hormone T4. 

Conversely, type III deiodinase is responsible for thyroid hormone inactivation converting T4 in 

reverse T3 (r T3) and both T3 and r T3 in the inactive form 3,3’-diiodothyronine (T2). T2 is sulfo- 

and glucuronide-conjugated before excretion the bile (46). TH could be re-uptaken through an 

enterohepatic circulation in which the intestinal flora deconjugates some of these compounds (Fig. 

4) 

 

Although it has been proposed that rapid non-genomic mechanisms initiated at the cell membrane 

could be involved in mediating some actions of thyroid hormones (48) most of the effects of THs 

on cellular proliferation and differentiation are driven by the thyroid hormone nuclear receptors 

(THRs) THR and THR (). THRs belong to the steroid/thyroid 

superfamily of nuclear hormone receptors which act as modulators of gene expression through 
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their ability to recognize specific DNA sequences. THRs are encoded by two genes THRα 

(NR1A1) and THRβ (NR1A2) localized in human chromosomal regions 17q11.2 and 3p24.3, and 

rat chromosomal regions 10q3 and 15p16, respectively. The expression of THRs isoforms is tissue 

dependent and developmentally regulated. THRα1 is constitutively expressed at embryonic 

development, and THRβ is expressed toward the later stage of development (51). THRα1 and 

THRα2 are expressed at the highest levels in the brain; at lower levels in the kidneys, skeletal 

muscle, lungs, heart, testes, and liver. THRβ1 is expressed predominantly in the kidneys, liver, 

brain, heart, and thyroid. THRβ2 is mainly expressed in the brain, retina, and inner ears (52). Liver, 

where THRβ represents the most abundant isoform (53,54), is an important target organ of THs 

and growing evidence implicates THs and THRs in HCC development.  

 

3.5. THRs alterations in HCC 

Previous studies have published conflicting results regarding the activating mutations in THR 

genes, thus suggesting THR mutations might play an oncogenic role in HCC development. 

However, recent exome sequencing study from TCGA-LIHC data reported no mutation in TRα, 

whereas only 1 (0.3%) mutation for THRβ gene, further validating that THR mutations are 

virtually absent in human HCC. Furthermore, no THR mutation have been reported in 

experimentally induced HCCs which aimed at detecting THRs mutation in chemically induced rat 

HCC(41). 

Other than mutations, methylation profile of the THR could play a role in the carcinogenic process. 

Frequent hypermethylation of the TRβ promoter region has been reported in several human cancers 

(55–57). Nevertheless, methylation status of the THR promoter has not been reported in any of the 

independent or human HCC consortium studies.  

Different studies have shown the effect of miRNA in TH signaling. While there is little or no 

evidence regarding miRNAs regulating the TH transporters, strong evidence suggests the 

regulation of deiodinases by miRNAs. miR-224 and miR-383 have been shown to downregulate 

Dio1 expression in renal cancer, while miR-214 and miR-21 have been shown to target Dio3 

mRNA in mouse heart and hedgehog pathway-driven skin tumorigenesis respectively (58–62). 

Control of THRs expression levels by direct interaction of miRNA has also been described (Fig. 

5). Although there is no evidence of TRα regulation by miRNAs yet, several miRNAs have been 
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shown to influence TRβ expression. High levels of miR-21, -146a, -181a and -221, all predicted 

to target TRβ, were found in papillary thyroid cancer (PTC) patients, in association with low levels 

of TRβ transcripts (63); moreover, TRβ expression in human clear cell renal carcinomas (ccRCC) 

was inversely correlated with the levels of miR-204 (64). Similarly, miR-155 and miR-425 have 

been shown to decrease TRβ expression in ccRCC.(63)   miR-27a has been shown to regulate beta 

cardiac myosin heavy chain gene expression by targeting TRβ in neonatal rat ventricular myocytes 

(65).  However, although a number of studies showed that miRNAs may be involved in repressing 

TRβ expression (63–66), which are the miRs targeted by THRs and what is their role in normal 

and genetically-altered hepatocytes remain elusive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The mRNAs of DIO1, DIO3, and TRβ are targets of the indicated miRNAs. The thyroid 

hormones (T4,T3,T2), transporter proteins (MCT8 or OATPs), Deiodinases 1,2 and 3 (DIO1,2,3), 

retinoid X receptor (RXR), thyroid hormone response elements (TREs), corepressor (CoR) and 

coactivator (CoA) complexes (67).  
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3.6. MiRNA biogenesis 

MicroRNA’s are a class of small non coding RNAs that play important roles in the regulation of 

gene expression and protein translation. Since their discovery by Ambros and colleagues, 

microRNA’s have been identified as key regulators of complex biological processes such as 

development, differentiation, growth, apoptosis and metabolism(68–70). miRNAs have also been 

associated to many human diseases and are currently being pursued as clinical diagnostics and as 

therapeutic targets (71). 

miRNA biogenesis is a multistep process, and it involves specific cellular machinery. Inside the 

nucleus, it begins with the transcription of the primary transcript by RNA polymerase II in to 

primary miRNA (pri-miRNAs) (72,73). Pri-miRNAs, which are the double stranded hairpin 

structures are cleaved to produce precursor miRNA (pre-miRNA) through microprocessor 

complex, which comprises of Drosha and DiGeorge Syndrome Critical Region8 (DGCR8) (74–

77). The ~70 nucleotide pre-miRNA is exported in to the cytoplasm via Exportin5/RanGTP 

dependent manner and further cleaved to produce the ~20 nucleotide mature miRNA duplex (78–

80). The cleavage process is mediated by Dicer. Finally, one of the two strands is loaded in to the 

Argonaute (AGO) family of proteins to form miRISC (miRNA-induced silencing complex) 

complex.  miRNAs in the miRISC complex recognize the target mRNA and direct it for 

degradation and/or translation repression along with other RNA-binding proteins (Fig. 6) (81). 
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Fig. 6: Biogenesis of miRNAs. Pol II, RNA Polymerase II; pri-miR, primary miRNA; pre-miR, 

precursor miRNA; RISC, RNA-Induced Silencing Complex; 5′ or 3′UTR, 5′or 3′untranslated 

region; DGCR8, DiGeorge Syndrome Critical Region 8; (A)n, Polyadenylation. (82) 
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3.7. miRNA and HCC 

miRNAs have been shown to be dysregulated in various cancer types (83). Their roles have also 

been established in liver development, metabolism, inflammation, fibrosis, infection and tumor 

development (84). As miRNAs have been shown to be involved in important cellular functions, 

therefore it is unsurprising that miRNAs appear to be dysregulated in HCC, as shown in both 

human and animal studies. Mounting experimental evidence indicate that based on their expression 

pattern miRNAs may also act as tumor suppressors or oncogenes by directly or indirectly targeting 

the expression of key proteins in cancer related pathways (Table 2) (85). 

A tumor suppressor gene is defined as a gene which usually prevents tumor development or 

tumorigenesis. Common findings from HCC studies suggest that subset of miRNAs are 

significantly downregulated and may act as tumor suppressors. miR-122, a most abundant liver 

specific miRNA is downregulated in HCC tumor tissues and cancer cell lines, and overexpression 

of it has been found to suppress cell proliferation and induce apoptosis in HepG2 and Hep3B 

cells(86). Other miRNAs such as miR-199 and miR-206 have been shown to inhibit HCC 

proliferation and metastasis. miR-199 suppresses HCC growth by inhibiting p21-Activated kinase 

4, which is known to activate Raf/MEK/ERK kinase, whereas miR-206 inhibits tumor growth by 

targeting cell cycle regulatory protein CCND1, cMET and CDK6. Several other tumor suppressor 

miRNAs have been described (87–89). 

 

Several studies have also shown miRNAs to be oncogenic (OncomiR) (89). OncomiRs that are 

upregulated potentially target the tumor suppressor genes and important signaling pathways, thus 

regulating the cell proliferation and apoptotic process that is critical for HCC development. For 

example, miR-21 which is the most commonly overexpressed miRNA in cancer contributes to 

hepatic steatosis and cancer progression by modulating p53 and Srebp1c pathway via target HBP1 

(HMG-box transcription factor 1) (90). miR-224 acts as an oncomiR through the activation of 

AKT signaling (91). Another miRNA, miR-184 has been shown to upregulate cell cycle 

progression proteins c-Myc, cyclin D1and phosphorylated RB protein by targeting SOX7, thus 

increasing the HCC cell proliferation(92). 
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Table 2: List of oncomiR’s and suppressor miRNAs (89) 

 

 

 

 

 

 

OncomiRs Target(s) 

   miR-21 PTEN 

HBP1-p53-SREBP1C pathway 

   miR-93 PTEN, CDKN1A 

   miR-106b DAB2 (disabled homolog 2) 

   miR-184 SOX7 

   miR-221 p53 

p27 and/or DDIT4 

   miR-221/222 cluster BBC3 

   miR-224 AKT signaling 

Tumor suppressor miRNAs 
 

   miR-122 p53/MDM2 

   miR-148b WNT1 

   miR-193a-5p NUSAP1 

   miR-195 CDK6, CCNE1, CDC25A, and CDK4 

   miR-199a/b-3p PAK4/Raf/MEK/ERK pathway 

   miR-199a-5p HK2 

   miR-206 CCND1, cMET, and CDK6 

   miR-766-3p Wnt3a/PRC1 pathway 



  21 
 

3.8. Next generation Sequencing (NGS) 

Elucidation of the molecular mechanism underlying TR regulation in human HCC has resulted so 

far limited and inconclusive. Moreover, due to the limited possibility to identify and diagnose early 

stages of liver tumor development in humans, the precise sequence of molecular events involved 

in tumor initiation in not well defined. Since, most of the studies have focused on fully developed 

HCCs, molecular pathogenesis of HCC cannot be fully under stood.  

In this context, miRNAs have been demonstrated to play prominent role cancer development and 

progression. Very few studies have attempted to address the complete miRNA dysregulation 

profile in the early stages of tumor development. Among the recent techniques, transcriptomics 

has been extensively used and have proven to be a valuable tool for understanding cancer 

mechanisms and identifying important metabolic pathways deregulated in cancer. 

 

Next generation sequencing (NGS) has revolutionized the field of genomic research. Sequencing 

of the human genome in early 2000s has led to the increased interest in cheap and rapid sequencing 

technologies. Advancement in the field of genomics and decreased cost per mega base in NGS has 

brought swift advances to our understanding of evolution, cell biology and microbial environments 

(Fig. 7). It has enabled the researchers to better understand life at the molecular level. NGS has 

also enabled the researchers to decode the genetics of human disease as well as in the development 

of specific preventive, diagnostics and therapeutic strategies. Over the last decade, particularly in 

the field of cancer, it has had a profound impact on our understanding of cancer genomics. Two 

large consortia led the way in generating and analyzing NGS data from different cancer types. The 

Cancer Genome Atlas (TCGA) (93), predominantly using exome sequencing, and The 

International Cancer Genome Consortium (ICGC) (94), using whole genome sequencing, explored 

somatic mutations across thousands of cases from >30 cancer types. These consortia combined 

both sequencing approaches with transcriptional, methylation and protein analyses. NGS has 

allowed scientists to answer complex questions that were beyond the capacity of traditional DNA 

sequencing technologies. It has become an everyday tool of research. 
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Fig. 7: Sequencing cost per megabase 

 

3.9. Computational analysis of NGS Data  

With the rise of NGS data, computational analysis tools have dramatically increased during the past 

decade. Although the bioinformatics community has responded with novel tools and algorithms to 

process and interpret this data, many challenges still remain in the area of data management, 

analysis, security and privacy, ease of use, interpretability, and reproducibility of results.  

The ability to reproduce data and results is at the heart of science. The reproducibility of  scientific 

workflows and pipelines is a ubiquitous problem in science(95). It is particularly a major challenge 

in the areas that heavily rely on computation and data analysis, because of the dependency on 

heavy computationally intensive tasks and the number of software and system libraries. In recent 

years, irreproducibility has been a growing concern in the scientific community. Particularly in the 

field of genomics, scientists have called for rigorous strategies, good data management and best 

practices for the development and utilization of the computational workflow. International 

guidelines have been proposed to improve the Findability, Accessibility, Interoperability, and 

Reuse of digital assets (FAIR) by a consortium of researchers. FAIR guidelines describe the ideal 

way of storing and sharing research outputs, so that they can be easily accessed, understood 

exchanged, and reused. Initially developed for the academic world, these principles are gradually 

becoming a reference both at state and industry levels (96,97). 
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Analysis of the transcriptomics data can be tricky, and often requires substantial expertise in 

bioinformatics. Prior to the final analysis, the raw data needs to be processed through number of 

steps. Broadly these steps can be divided in to 3 main categories: 1) quality control 2) alignment 

and 3) quantification. Bioinformatic workflows are generally employed to automate these steps. A 

number of workflow managers are available to help the researchers preprocess their data. Recently, 

several standalone and web-based tools have been proposed as a solution to counter the 

reproducibility problem. Example of such tools in genomics include containerization of 

bioinformatic tools using docker and singularity, and workflow managers such as Nextflow, 

Snakemake, Galaxy, etc.  

Containerization method allows bundling of applications with all its dependencies using languages 

such as Python and R to the operating system itself. It has rapidly gained popularity among the 

scientist and researchers, and the way they develop, deploy and exchange scientific software (98). 

However, issues such as limited availability of tools, security, isolation and networking issues 

don’t make containerization the best choice for application deployment (99). Web based tools such 

as Galaxy offers graphical user interface (GUI) for constructing workflows for next-generation 

sequencing and gene expression data analysis. Nevertheless, using Galaxy with big data requires 

local installation, and analysis is only allowed with well-implemented tools. Installation of new 

tools can only be done by the users with admin privileges (100,101) .  

Two popular workflow management projects Snakemake (102) and Nextflow (103) are currently 

being used as alternatives to containers and web-based solutions. Written in Python and Groovy 

respectively, both offer flexibility of adding any tool, scalability, automatic parallelization of jobs, 

portability, support for Conda environment and extensive documentation.(104). They are 

emerging as a solid choice for developing scientific workflows.  

Here, we describe two automated, scalable, and reproducible Snakemake based pipelines called 

RIDE (RNA Differential Expression) and SRIDE (small RNA Differential Expression) for 

performing transcriptome and microRNA analysis respectively.  
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4. AIM OF THE STUDY 

Primary liver cancer is the sixth most commonly diagnosed cancer and is the third largest 

contributor to cancer mortality. Benefits from present treatment options are still disappointing, as 

they extend the median life expectancy of patients by only few months. Thus, it is mandatory to 

find alternative treatment options. Experimental and clinical studies revealed a status of severe 

local hypothyroidism in rat hepatic preneoplastic lesions, and in human HCCs, suggesting that this 

condition may represent a favorable event for HCC development 

Previous research conducted in our laboratory demonstrated that the reactivation of THR 

axis upon T3 treatment was associated with regression of preneoplastic and neoplastic lesions in 

the Resistant Hepatocyte rat HCC model, thus suggesting a therapeutic role of THR agonist for 

HCC.  

Based on this premise we performed a comprehensive and comparative miRNomic and 

transcriptomic analysis of hepatic preneoplastic lesions of rats. The aims of present study were the 

following: 

• Investigate mRNA expression in preneoplastic lesions without and after T3 treatment. 

• Analyze the miRNoma of preneoplastic lesions without and after T3 treatment.  

• Perform Integrative Analysis of miRNA-mRNA expression profiles and identify the 

modulated metabolic pathways. 

• Validate selected microRNA in cell lines transduced with THRB and with or without T3 

treatment. 

• Implement automated, scalable, and reproducible workflows for processing raw NGS data. 
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5. MATERIALS AND METHODS  

5.1. Resistant-Hepatocyte (R-H) model. All animal procedures were approved by the Ethical 

Commission of the University of Cagliari and the Italian Ministry of Health. Male Fischer F-344 

rats (100-125g) were purchased from Charles River (Milano, Italy). Animals were subjected to the 

Resistant-Hepatocyte (R-H) model of hepatocarcinogenesis, consisting of a single intraperitoneal 

dose of diethylnitrosamine (150 mg/kg body weight, DEN, Sigma,) followed by a brief (2 weeks) 

promoting procedure with 2-acetylaminofluorene (2-AAF, Sigma) and a two-thirds partial 

hepatectomy (PH). Rats were then switched to a basal diet all throughout the experiment and 

sacrificed ten weeks after DEN administration. One group of animals was fed a T3-supplemented 

diet (4 mg/kg of diet) for 4 days starting 5 weeks after 2-AAF withdrawal. Rats kept on a basal 

diet were used as a control group. Another group of animals exposed to the R-H protocol was 

maintained on basal diet for 10 months, a time when all rats developed HCC. Animals were then 

split into two groups; one group was fed T3 supplemented diet for 1 week while the other was kept 

on basal diet. Histologic classification of preneoplastic nodules and HCCs was performed as 

previously described. 

 

 

 

 

 



  26 
 

   

          A 

 

 

 

 

 

 

 

 

           B 

 

 

 

 

 

 

Fig. 8. Experimental Protocols. A) Rats were given a single dose of DEN (150 mg/kg bw) followed 

by a 2-weeks feeding of 2-acetylaminofluorene (0.02%) and a two-thirds partial hepatectomy 

(PH). Animals were then switched to a basal diet. Five weeks after 2-AAF withdrawal, one group 

of rats was fed a T3-supplemented diet (4 mg/kg of diet) for 4 days. Rats kept on a basal diet were 

used as a control group; B) Rats given a single dose of DEN and then exposed to 2-AAF + PH as 

in A and were switched to basal diet till 10 months from DENA. One group of animals was fed a 

T3-supplemented diet (4 mg/kg of diet) for 7 days prior to sacrifice. Rats kept on a basal diet were 

used as control group. 
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5.2. Histology and immunohistochemistry  

5.2.1. Tissue Preservation 

Immediately after the sacrifice, livers were cut in several pieces and preserved in different ways 

to carry out multiple analysis. For immunohistochemistry analysis, liver sections were fixed in 

10% formalin, embedded in paraffin and stored at room temperature (RT). Other sections were 

immediately frozen in liquid nitrogen-cooled isopentane and preserved at -80°C for future 

molecular analysis and cryosectioning. 

5.2.2. Hematoxylin and Eosin (H&E) staining 

4µm thick paraffin-embedded liver sections were deparaffinised in Bioclear (BioOptica, Milan, 

Italy) for 30 minutes and hydrated in a decreasing series of alcohol. Sections were then incubated 

in Carazzi Hematoxylin for 20 minutes and after several washes in tap water, stained in 1% 

acidified alcoholic eosin for 14 seconds. Sections were then dehydrated through ascending alcohol 

series, cleared with Bioclear, air-dried and then mounted using synthetic mounting and cover 

slipped.  

For cryosections, 6µm thick sections were used. Samples were previously fixed in 10% buffered 

formalin for 1-6 hour and washed in distilled water for 5 minutes (two washes). Following this, 

similar protocol was adopted as mentioned above. 

5.2.3. Glutathione S-transferase (GST-P) staining 

Formalin fixed sections of 4µm thickness were deparaffinized in Bioclear for 1 hour, followed by 

rehydration by immersing the slides in decreasing series of alcohol. Next, samples were washed 

twice in phosphate buffered solution (PBS), and blocking of unspecific antibody binding sites was 

performed in 10% normal goat serum (Abcam,ab7481) for 30 minutes at RT. Overnight incubation 

was performed with 1:1000  diluted rabbit anti-GSTP primary antibody (MBL, 311) at 4°C in 

humid chamber. Next day, to block endogenous peroxidase activity, slides were incubated in 0,5% 

hydrogen peroxide (31642, Sigma-Aldrich) in distilled water for 10 minutes, followed by 

secondary antibody incubation. Sections were incubated with anti-rabbit Horseradish Peroxidase 

(HRP) secondary antibody (A0545, Sigma-Aldrich) at 1:300 dilution for 40 minutes at RT. 

Positive binding reaction was visualized using 3.3’-diaminobenzidine (DAB) (Sigma-Aldrich) for 
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6 minutes at RT. Afterwards, slides were counterstained with Harris Haematoxylin Solution (Bio-

Optica), dehydrated through graded alcohols, cleared and coverslips were mounted with synthetic 

mounting media. 

Immunostaining was also performed in 6µm thick cryosections using the same protocol, apart from 

the clearance and rehydration steps, substituted by a 6-hour fixation in 10% buffered formalin 

followed by 15 minutes washing in distilled water. 

5.2.4. KRT-19 and NQO1 Staining 

4µm thick tissue sections were deparaffinized in Bioclear for 1 hour and rehydrated by immersing 

the slides in decreasing series of alcohol. Following two washes in PBS, antigen retrieval in 

Sodium Citrate Buffer was performed. Details regarding retrieval, primary and secondary antibody 

dilutions are reported in Table 3. 

Staining Retrieval Conditions  Primary antibody  Secondary antibody  

KRT-19 2X6 min MWO 

700W 

NBP100-687 (Novus-

Biologicals) 1:400 at  

4°C overnight 

incubation 

Dako anti-rabbit, 

(K4003) 

60min RT 

NQO1 4X5 min MWO 

700W 

Mouse (ab28947, 

Abcam) 1:100 

At 4°C overnight 

incubation 

Dako anti-rabbit, 

(K4003) 

60min RT 

 

Table 3. Details regarding retrieval, primary and secondary antibody dilutions used in the study. 

5.3. Laser-capture Micro-dissection (LMD) 

Sixteen-μm-thick serial frozen sections of rat livers were attached to 2-μm RNase free PEN-

membrane slides (11505189, Leica, Wetzlar, Germany). Microdissection (Leica, LMD6000) was 

preceded by a H&E and GSTP staining on serial sections. RNA and miRNA isolation. Total RNA 

was isolated with the mirVana miRNA isolation kit (cat.# AM1560, Life Technologies) from 3 

livers of untreated rats, and preneoplastic nodules from rats treated with T3 (6 nodules) or not 
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exposed to the hormone (5 nodules). As to HCC, miR expression was evaluated in 11 HCCs from 

rats subjected to 1-week T3 feeding or 10 HCCs from rats not exposed to the hormone. Gene 

expression analysis was also performed on some of the microdissected HCCs.  

5.4. Deep sequencing  

For RNA and miRNA sequencing experiments, indexed libraries were prepared using 100 νg of 

total RNA as starting material, with a TruSeq Stranded Total RNA Sample Prep Kit and QIAseq 

miRNA Library Kit (Illumina Inc.) respectively. RNA was quantified by Nanodrop 

spectrophotometer (Thermo Scientific) and its integrity was evaluated by Agilent Bioanalyzer 

2100 (Agilent Technologies, CA, USA). Only RNA samples with a RIN (RNA Integrity Number) 

≥ 7 were included for library preparation. Libraries were prepared according to manufacturer’s 

protocol.  Following, libraries were sequenced (single-end, 75 cycles) at a concentration of 8 

pM/lane on the HiSeq 3000 platform (Illumina Inc.) at the CRS4 (Center for Advanced Studies, 

Research and Development in Sardinia) facility.  

5.5. qRT-PCR 

 Gene expression was assessed in HCCs by qRT-PCR using specific Taqman probes 

(Nqo1,Rn00566528_m1; Gstp1, Rn00561378_gH; Dio1, Rn00572183_m1; Krt-19, 

Rn01496867_m1). Each sample was run in triplicate and gene expression analysis of 

Glyceraldehyde 3-phosphatase dehydrogenase (Gapdh) was used as reference gene. cDNA was 

synthesized using the TaqMan® MicroRNA Reverse Transcription Kit. qRT-PCR amplification 

was performed with the reverse transcription product, TaqMan® 2X Universal PCR Master Mix, 

No AmpErase ®UNG. miR primers used were: I-miR-185 TM:002271; hsa-miR-425-5p 

TM:001516; mmu-miR-140 TM:001187; hsa-miR-27a TM:000408; rno-miR-224 TM:464298. 

Probe mix was from Thermo Fisher Scientific. The endogenous control U6 (U6 snRNA 

TM:001973) was used to normalize miRNA expression levels.  

5.6. Cell cultures and in vitro experiments 

 HepG2 cell line was obtained from ATCC (Manassas, VA, USA). Mahlavu cells were a kind gift 

of Dr. N. Atabey; they were routinely cultured in essential aa supplemented-MEM and DMEM 

medium (Sigma-Aldrich; Saint Louis, MO, USA), respectively, in the presence of 10% fetal 

bovine serum P/S (100U/ml Penicillin, 8 100mg/l Streptamicin), and L-Glutamine (2mM) (Lonza, 
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Basel, Switzerland) and incubated at 37°C in a 5% CO2-95% air-humidified atmosphere. Cells 

were transduced with either a lentiviral vector expressing THRB gene (GeneCopoeia, cat. EX-

T9450-Lv186) or an empty lentiviral vector. Both cell lines were seeded in the presence or in the 

absence of 100 nM triiodothyronine (Sigma) for 48 hours. Analysis of miRNA expression was 

performed as described 11. Briefly, the expression of miR-140 (hsa-miR-140-3p, #002234), miR-

185 (has-miR-185-5p, #002271), miR-425(hsa-miR-425-5p, #001516), miR-421(has-miR-421, 

#002700) and miR-224 (hsa-miR-224-5p, # 483106_miR) in Mahlavu and HepG2 cells, was 

performed starting from equal amounts of total RNA/ sample (50ng) using the specific Taqman 

microRNA assay or TaqMan Advanced miRNA Assays kits (Applied Biosystems). MiRNA 

expression was calculated as fold change using the delta-delta CT method and RNU48 as 

endogenous control. miR-191-5p, consistently expressed in HepG2 cells was used to normalize 

miR-224-5p levels (105).  

5.7. Bioinformatic Analysis 

Implementation 

5.7.1. Snakemake as framework 

Snakemake is a python-based workflow management tool. Compared to other tools, Snakemake 

enables the user to conduct analysis that have all the properties of sustainability, transparency, 

reproducibility, and adaptability. Central idea of Snakemake is that workflows are segmented into 

several steps so-called rules. The output files from a rule are used as input for the next task in the 

workflow. Other features that make Snakemake an ideal choice for scientific workflow 

management is readability, portability, scalability, traceability, flexible package management and 

documentation. In order to obtain reproducible results, Snakemake rules are executed within 

isolated software environments created with Conda(106). Conda is an open-source package and 

environment management system that helps in creating independent virtual environments and 

installing specific versions of software packages and their dependencies. Upon execution of a 

Snakemake based pipeline, Conda package manager automatically downloads and deploys 

specified versions of software packages. 
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RIDE 

5.7.2. RIDE Pre-processing  

Raw FASTQ files are preprocessed by removal of 3’ adaptor using trim-galore tool (107).  

Remaining arguments were kept at default for processing the samples.  Adaptor free sequences are 

further processed for alignment and quality control. 

5.7.3. RIDE Quality Control  

Initial quality control steps include processing of raw and adapter trimmed samples using FASTQC 

(108). Additional quality control statistics such as mapped reads distribution, nucleotide 

composition bias, PCR bias and GC bias is collected by RseQC (109). All the statistics are 

summarized in to one html file with MultiQC tool (110). 

In order to comprehensively evaluate the quality of the RNA-seq data through RSEQC tool (109), 

the pipeline performs additional indexing and alignment using STAR (111). A genome index is 

created from the reference genome (available from https://genome-euro.ucsc.edu/cgi 

bin/hgGateway?redirect=manual&source=genome.ucsc.edu ) followed by mapping of the reads. 

Finally, the mapped bam file is indexed using samtools and piped in to quality control tools.  

 

5.7.4 RIDE Quantification 

RIDE pipeline quantifies the abundance of transcripts using Kallisto (112), a tool that utilizes the 

pseudoalignment method to match the reads to the reference transcriptome of known coding and 

non-coding transcript sequence. Indexing is performed on the reference transcriptome (available 

from   https://www.ensembl.org/index.html), followed by transcript quantification. Quantification 

of the paired end reads run on default Kallisto parameters, whereas, single end reads are processed 

using following parameter—“--single -b 30 -l 280 -s 80”, representing the number of bootstrap 

sampling 30, estimated average fragment length 280 and estimated standard deviation of fragment 

length 80. Fig. 9 shows a schematic representation of the RIDE workflow. 

 

 

 

 

https://genome-euro.ucsc.edu/cgi%20bin/hgGateway?redirect=manual&source=genome.ucsc.edu
https://genome-euro.ucsc.edu/cgi%20bin/hgGateway?redirect=manual&source=genome.ucsc.edu
https://www.ensembl.org/index.html
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Fig. 9. A Schematic workflow of RIDE 
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SRIDE 

5.7.5. SRIDE Pre-Processing  

Default preprocessing steps include UMI removal and trimming of adaptors. FASTQ files without 

UMI can also be analyzed by specifying the parameter in “config file”.  We used UMI-tools (113) 

, a software toolbox for  dealing with UMI containing raw FASTQ files. Currently, the workflow 

supports processing of reads prepared with QIAseq miRNA library kit. The mock sequence of a 

standard UMI containing read has been shown in Fig.10.  

Following UMI extraction, FASTQ files then undergo trimming using Trim -galore tool, which 

removes low quality bases and adapter sequences from the 3’ end of the reads. Clean reads are 

then ready for quality control and alignment.  

 

 

Fig 10. Mock Sequence of a raw miRNA read. 

 

5.7.6. SRIDE Quality Control 

The pipeline employs 3 quality control tools for the identification of low-quality and contaminated 

samples. Quality of the raw reads and trimmed reads is assessed using FASTQC (v0.11.3) tool 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Furthermore, each trimmed sample 

is characterized by profiling the sequencing quality, length, depth, and complexity using mirTrace.  

In addition to the quality control analysis, the pipeline can accurately detect samples with common 

sequencing contaminants and cross-clade contaminants using FastQ-Screen and mirTrace tools 

respectively.  

5.7.7. SRIDE Quantification 

The trimmed reads are then aligned using the ultrafast and memory-efficient short read aligner tool 

Bowtie. The default configuration of bowtie runs on parameters- “-v2 -m10 -a”, where 2 

mismatches in the bases are allowed and refrains bowtie from reporting any alignments for reads 

having more than 10 reportable alignments. “-a” in the parameter instructs Bowtie to report all 

valid alignments, subject to the alignment policy: -v 2. 
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The aligned reads from bowtie are piped in to samtools index followed by removal of the PCR 

duplicates using UMI-dedup tool. Currently, the deduplication step runs on one parameter, i.e—

“--method=unique”, which identifies group of reads that share the exact same UMI (if present)”. 

The statistics of the deduplication run is not collected in order to avoid excessive memory usage 

and crash. 

The final step of the pipeline involves counting of each miRNA aligned to the reference sequence. 

The aligned and deduplicated reads are counted using htseq-count tool: Given a GTF of GFF file 

containing a list of genomic features, the tool counts how many reads map to each feature. These 

counts are then further used for differential expression analysis. Fig. 11 shows a schematic 

representation of the SRIDE workflow 
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Fig. 11. A schematic workflow of SRIDE 
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5.7.8. Configuring and Running the Workflows 

RIDE and SRIDE are free, open source, and released under the GNU General Public License v3.0. 

Source code of both the pipelines are freely available at CRS4’s GitHub repository 

(https://github.com/solida-core). 

Both the pipeline automatically downloads and installs all the required dependencies. The user is 

only required to install Python (https://www.python.org/downloads/), Git(https://git-

scm.com/downloads), Conda (https://conda.io/projects/conda/en/latest/user-guide/install/index. 

html) and Snakemake (https://snakemake.readthedocs.io/en/v5.6.0/getting_started/installation 

.html) in their system. Additional information about the installation procedure can be accessed on 

their respective tutorial pages.  

 

5.7.9 Workflow Output 

We evaluated both the workflows using multiple sequencing datasets (both SE and PE) from 

different organisms as input. Here we provide snapshots from the summarized QC report generated 

after the successful execution of the workflows.  The MultiQC report provides a number of useful 

metrics which enable the users to identify any issues with the data and/or the parameters. It also 

alerts the users if there is a presence of contamination or systemic biases, etc. 

By default, counts file generated by the workflows are stored in “delivery” folder, however, it can 

be user modified to store them in different location. Log files are created for each step, including 

information about relevant software version and parameters used (wherever applicable). 

Additional statistics including the output from trimming tools, sequence quality, contamination 

etc. is merged in to single html file by MultiQC tool. The output can be accessed under the folder 

name ‘qc’. 

For SRIDE and RIDE workflows, FastQC checks the quality of the sequencing reads before and 

after trimming the raw FASTQ files. Users are required to check the metrics and decide whether 

further trimming is needed (Fig. 12 A). Trimming should not be performed if the quality of the 

reads is good enough since it would lead to the loss of information. 

For RIDE, the percentage of each read that are successfully (pseudo)aligned to the refence 

transcriptome using Kallisto tool can be visually analyzed in the final report. Low percentage of 

pseudoalignment indicates possible rRNA contamination or low-quality reads (Fig 12 C). 

https://conda.io/projects/conda/en/latest/user-guide/install/index
https://snakemake.readthedocs.io/en/v5.6.0
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Additionally, DNA contamination in the reads can be visualized from the metrics generated by 

ReSeQC read distribution tool. This tool calculates how mapped reads are distributed over 

genomic features. A good RNA seq experiment generally has as many exonic reads as possible 

(CDS_Exons). A large number of intronic reads could be indicative of DNA contamination in the 

sample or some other problem (Fig 12 D). 

For SRIDE workflow, the percentage of reads aligned to miRNA sequence can be accessed with 

mirTrace plot Low percentage of miRNA read alignment indicates tRNAs, rRNAs, and synthetic 

adapter sequence contamination (Fig 12 E). 
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(A)                                                                         (B) 

(C)                                                                       (D)          

 

 

 

 

 

 

Fig. 12. MultiQC report of raw reads. A) The mean quality value across each base position in the 

read. B) The average GC content of reads. A normal random library typically has a roughly normal 

distribution of GC content C) Kallisto transcript quantification of each sample. D) RSEQC sample 

read distribution E) mirTrace: (114) detected RNA categories of each sample. 
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5.7.10. Differential Expression Analysis 

For RNA-Seq, Kallisto transcript counts were converted to genes counts using the R package 

Txiimport (115), whereas, miRNA count table objects were directly imported in to the R Studio. 

DESeq2 package was used to perform statistical tests and differential gene/miRNA expression 

analysis between groups. Low abundance genes were filtered out, and only those having a mean 

raw count > 5 in more than 50% of the samples were included. Following normalization, count 

data were transformed for visualization using the rlog function of DESeq2 (116). Genes with fold 

change cutoff   ≥ 1.5 and miRNAs with fold change cutoff ≥ 1.4 along with Benjamini-Hochberg 

(BH) adjusted false discovery rate (FDR) < 0.05 were considered significant and were taken into 

consideration for further analysis.  

 

5.7.11. Visualization 

Heatmaps were generated using the pheatmap package in R.100% of the genes/miRNA’s were 

used for clustering and visualization purpose. Principal component analysis (PCA) plot was 

generated using the plotPCA function in DESeq2 package. Volcano plots were generated with 

EnhacedVolcano R package (117). 

5.7.12. Gene Set Enrichment, Pathway Analysis and miRNA target Filter 

In order to summarize high dimensional gene/miRNA expression data in terms of biologically 

relevant sets we utilized Ingenuity Pathway Analysis (IPA) tool (Ingenuity Systems, Mountain 

view, CA, USA). Differentially expressed genes and miRNA’s passing the cutoff value were 

uploaded and submitted for IPA core analysis. Core analysis was performed to identify 

significantly altered canonical pathways and disease and biological functions across the groups. 

Two distinct statistical analyses were performed during the core analysis. A right tailed fisher’s 

exact test was used to determine the probability that each biological function enriched in the dataset 

is statistically significant and not due to the chance alone (p < 0.05). Additionally, Z-score was 

calculated to provide predictions about upstream or downstream biological process. In the present 

study, -log(p-value) of 1.3 (corresponding to 0.05) and z score of ≥ 2 and ≤ -2 was considered for 

further analysis. 

For identifying the target genes of differentially expressed miRNA, microRNA Target filter 

module was used. Default settings were used while predicting the miRNA target. 
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5.7.13. Statistics  

Data are expressed as mean ± standard deviation (SD). Analysis of significance was done by 

Student’s t-test and by One-Way ANOVA using the GraphPad software (La Jolla, California). 

5.7.14. Data Availability 

The Source Code of miRNA and gene analysis workflows can be freely accessed at Github: 

https://github.com/solida-core/ride,https://github.com/solida-core/sride. The datasets supporting 

the conclusions of this article are available in the Sequence Read Archive (SRA) repository, 

BioProject ID PRJNA750113, http://www.ncbi.nlm.nih.gov/bioproject/750113. 
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6. RESULTS 

6.1. Effect of T3 on preneoplastic nodules obtained with R-H model 

Thyroid hormones have prominent effects on hepatic fatty acid, cholesterol synthesis and 

metabolism. Association between thyroid hormones and changes in body weight and liver weight 

has been reported in several studies (114). In order to analyze the effect of T3 on preneoplastic 

nodules, animals were subjected to R-H model of hepatocarcinogenesis. The model consisted of 

animals treated with single intraperitoneal dose of diethylnitrosamine followed by a brief 

promoting procedure with 2-AAF and a two-thirds partial hepatectomy. Rats were then switched 

to a basal diet all throughout the experiment and sacrificed ten weeks after DEN administration. 

One group of animals was fed a T3-supplemented diet for 4 days starting 5 weeks after 2-AAF 

withdrawal. Rats kept on a basal diet were used as a control group. Another group of animals 

exposed to the R-H protocol was maintained on basal diet for 10 months, a time when all rats 

developed HCC. Animals were then split into two groups; one group was fed T3 supplemented 

diet for 1 week while the other was kept on basal diet. Among the groups compared (Control, 

Nodules, Nodules+T3) 10 weeks after DENA (according to the R-H protocol), no significant 

change in body weight was observed (Fig. 13 A). T3 treatment for 4 days was associated with 

significant decrease in liver and liver to body weight ratio compared to T3 untreated ad control 

animals . (Fig 13 B, C) 

As described previously(118), treatment with T3 for a week induced a rapid and quantitatively  

important (ca 70%) regression of preneoplastic nodules when compared to untreated preneoplastic 

nodules. To investigate the molecular changes causing this regression we sacrificed the animals 4 

days after T3, a time when the number of preneoplastic lesions is still similar to that of untreated 

rats (Fig. 13 D, E) 
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(A)         (B)     (C)  

    

 

 

 

 

                                                                     (D) 

                  (E) 

 

 

     

 

Fig. 13 (A) Body weight; (B) liver weight; (C) liver weight/body weight ratio. Groups were 

compared using unpaired two-tailed Student’s t-test and non-parametric Mann–Whitney U Test. 

 * p < 0.05. (D) A representative picture of GSTP immunohistochemical staining of preneoplastic 

lesions of untreated (-T3) or 4-day T3 treated animals (+T3); E) Number of GSTP-positive 

Experimental Group GSTP-

positive 

nodules/cm2 

Nodules 27.5 

Nodules + T3 25.1 

+T3 -T3 
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preneoplastic nodules in rat livers subjected to the R-H protocol and then treated or not with T3 

for 4 days.  

6.2. Gene expression analysis and identification of most deregulated pathways in 

preneoplastic nodules obtained with R-H model 

Gene expression profiling was performed using NGS in the same samples used for miR-analysis. 

A total of 4599 differentially expressed genes (fold-change ≥ 1.5, FDR < 0.05) were identified in 

nodules vs. control livers: 2372 genes were up-regulated and 2227 were down-regulated. Similar 

to what was observed for miRNAs, unsupervised hierarchical cluster analysis stratified control 

livers and preneoplastic nodules into two separate groups (Fig. 14A) and PCA separated the 

samples according to two groups (Fig. 14B). Ingenuity pathway analysis (IPA) revealed that the 

top 5 most dysregulated pathways were LPS/IL-1-mediated inhibition of RXR function, 

FXR/RXR activation, Mitochondrial dysfunction, Nrf2-mediated oxidative stress response and 

Oxidative phosphorylation (Fig. 14C).  

To identify a possible correlation between miRNAs and genes differentially expressed in 

preneoplastic nodules vs. control livers, we investigated miRNAs potentially targeting genes 

dysregulated in our transcriptomic analysis using microRNA target filter module of IPA. Of 

particular interest was the finding that several miRNAs targeting genes involved in the most 

modified pathways (i.e. Nrf2 pathway and oxidative phosphorylation) were inversely regulated 

according to their target genes. Indeed, 29 miRs predicted to target genes involved in the strongly 

activated Keap1-Nrf2 pathway were down-regulated in preneoplastic nodules; conversely, 18 

miRs up-regulated in the nodules were reported to target genes involved in Oxidative 

phosphorylation, a pathway profoundly down-regulated in preneoplastic lesions (Fig. 15 A, B).  
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(A)                                                                          (B) 

 

 

                                                         (C) 

Fig. 14 A) Hierarchical clustering of genes in preneoplastic lesions (nodules), and control samples. 

Each row represents the expression of a gene and each column a sample. Red and green colors 

represent higher or lower mRNA expression levels (median-centered), respectively; B) PCA of 

genes in preneoplastic lesions (nodules), and control samples; C) Canonical pathway analysis in 

preneoplastic lesions (nodules), and control samples. 
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                                                                       (B) 

Fig. 15 A) IPA analysis of the Nrf2 oxidative stress response pathway and B) the Oxidative 

Phosphorylation pathway (OXPHOS) in the early steps of hepatocarcinogenesis. Hairpin loop 

structures represent miRNAs. (Red: Up-regulated, Green: Down-regulated). Edges connect 

miRNAs and putative target genes predicted by TargetScan/TarBase/miRecords and Ingenuity 

Expert Findings. 
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6.3. Effect of T3 treatment on gene expression profile of preneoplastic nodules 

To identify the potential transcriptional changes induced by T3 treatment in preneoplastic 

nodules, we performed transcriptomic analysis. A total of 2903 differentially expressed genes 

(fold-change 1.5, FDR < 0.05) were identified in T3-treated nodules, of which 1269 genes were 

up-regulated and 1634 were down-regulated. Unsupervised hierarchical cluster analysis stratified 

again untreated nodules and T3-treated nodules into two clearly distinct clusters (Fig. 16A) and 

PCA separated the samples according to the two groups (Fig. 16B). Disease and biological 

function analysis of the differentially expressed (DE) genes revealed remarkable enrichment in 

several functional categories that were reversed upon T3 treatment (Fig. 16C). Top 5 categories 

down-regulated upon T3 treatment were Growth of tumor, Cell movement, Migration of cells, 

Microtubule dynamics and Organization of cytoplasm. Differentially expressed genes were also 

categorized based on Canonical Pathways. The two most significantly dysregulated pathways upon 

T3 treatment were Oxidative Phosphorylation and NRF2-mediated Oxidative Stress Response, 

two pathways dysregulated, but in the opposite direction, in nodules vs. control livers (Fig. 16D).  
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(A)                                                                           (B) 

 

 

 

 

 

 

 

 

 

 

(C)                                                                            (D) 

Fig. 16. T3 modifies the global gene expression profile of preneoplastic lesions. A) Hierarchical 

clustering of genes in preneoplastic lesions untreated (nodules), or treated with T3 for 4 days 

(nodules+T3). Each row represents the expression of a gene and each column a sample. Red and 
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green colors represent higher or lower mRNA expression levels (median-centered), respectively; 

B) Principal component analysis (PCA) indicative of the variability of gene expression data in 

nodules of rats untreated or treated with T3 for 4 days; C) Top 20 diseases and functions identified 

by IPA core analysis in untreated nodules vs. control and T3-treated nodules vs. untreated nodules; 

D) Top 20 Canonical Pathways identified by IPA Core Analysis in untreated nodules vs. control 

and T3-treated nodules vs. untreated nodules. Color is determined by Z-score; the Z-score >2 and 

<-2 are considered meaningful. Blue color indicates suppressed disease /biological function or 

canonical pathways; orange indicates activated disease/biological function or canonical pathways. 

6.4. Analysis of miRNome in preneoplastic lesions 

Study design was organized to allow the comparison of small non-coding RNA and gene 

expression profiles in the same preneoplastic nodules from rats subjected to a single initiating dose 

of DEN followed by a promoting procedure (R-H model),(119) and then treated or not with T3 for 

4-days . We used NGS to determine the expression of small non-coding RNAs and protein coding 

genes.  

In accordance with previous studies performed with arrays,(43) unsupervised hierarchical 

cluster analysis stratified control livers and preneoplastic nodules into two clearly defined groups 

(Fig. 17A). Principal components analysis (PCA) separated the samples according to the two 

groups (Fig. 17B). Analysis of differentially expressed miRNAs evidenced that 88 miRNAs (cut 

off 1.4) were modified in their expression, with 49 of them being up-regulated. Notably, 13 among 

the 15 most down-regulated miRNAs have already been described to act as oncosuppressors in 

experimental or human HCCs, (120–127) whereas among the differentially up-regulated miRNAs 

some were similarly regulated in human HCC (miR-181, miR-183-5p, miR-421 and miR-21); 

(90,128–130) several miRNAs of uncertain function were never described in relation with liver 

cancer. 

MiR-224, the most up-regulated in the nodules (+254 fold vs. controls), was recently shown to 

target deiodinase 1 (Dio1), an enzyme expressed in  liver and kidney and needed for the conversion 

of T4 to T3, in rat hepatocytes and human renal carcinoma cells. (58,131). Moreover, at least two 

other miRs found up-regulated - miR-421-3p and miR-185-5p - were also predicted (Target Scan), 

but not experimentally validated, to target Dio1, further supporting the notion that local 

hypothyroidism can favour progression to HCC. (41) 
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(A)                                                                       (B) 

Fig. 17. A) Hierarchical clustering of miRNAs in preneoplastic lesions (nodules), and control 

samples. Each row represents the expression of a gene and each column a sample. Red and green 

colors represent higher or lower mRNA expression levels (median-centered), respectively; B) PCA 

of miRNAs in preneoplastic lesions (nodules), and control samples. 

6.5. Effect of T3 on microRNA profile of preneoplastic nodules.  

MiR NGS analysis was performed in the same nodules analyzed for transcriptomics. 

Unsupervised hierarchical cluster and PCA analyses stratified the samples into two different 

clusters, with the exception of two samples (Fig.18 A, B). Analysis of differentially expressed 

miRNAs identified 28 miRNAs (cut off ≥ 1.4), with 12 of them being up-regulated (Fig.18C). 

MiRNAs have been reported to act by binding to the promoter region, and to specific sequences 

in UTR and coding regions. Interaction with the promoter region has been reported to 

preferentially induce transcription, while binding to the UTR sites and coding sequence to 

predominantly induce transcriptional repression. (85,132,133) In this study, we only analysed 

miRNAs binding to the UTR sites.  
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(A)                                                                           (B) 

                

 

                

                     (C) 

 

 

 

Fig. 18. T3 modifies the global miRNA expression profile of preneoplastic lesions A) Hierarchical 

clustering of miRNA in preneoplastic lesions untreated (nodules), or treated with T3 for 4 days 

(nodules +T3). Each row represents the expression of a gene and each column a sample. Red and 

green colors represent higher or lower miRNA expression levels (median-centered), respectively. 

B) Principal component analysis (PCA) indicative of the variability of miRNA expression data in 

nodules untreated or treated with T3 for 4 days. C) Volcano plot of the 28 significantly 

differentially expressed miRNAs. Red dots indicate the miRNAs which qualify the P-value of 0.05 

and FC 1.4. Green and grey triangles indicate miRNAs which did not pass the P-value and Fold 

change cutoff respectively. 
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6.6. Integrative Analysis of miRNA-mRNA Expression Profiles.  

A state of local hypothyroidism represents a promoting condition for the progression of 

preneoplastic lesions to HCC, (41) and restoration of a normal T3/Thr axis is associated to their 

regression. (43,134) However, whether miRs are involved in the increased expression of Thrβ 

target genes is unclear. Therefore, we also investigated whether relevant changes in miRNAs 

targeting Thrβ, Dio1 or other genes involved in the activation of the THR/RXR pathway take place 

after T3. Our analysis showed down-regulation of miR-224 and miR-185-5p, two miRs known 

(58,131) or predicted (TargetScan) to target Dio1. Notably, miR-224 - which was the most up-

regulated in the nodules when compared to controls (254-fold) - was also the most-downregulated 

following T3 treatment; conversely, transcriptomic analysis performed in the same nodules 

showed that Dio1 was up-regulated in T3-treated nodules (12-fold increase) compared to untreated 

nodules. Dio1 up-regulation was also associated with a concomitant decreased expression of miR-

182 (-2.01 fold) and miR-185-5p (-1.92 fold). The possible role of miRs in the reversion from a 

local hypo- to a hyperthyroid state of the nodules was also supported by the finding that miR-425-

5p - predicted to target Thrβ – and upregulated in preneoplastic nodules, was down-regulated by 

T3 treatment in parallel with enhanced TRβ mRNA levels.  

No inverse correlation between miRs and TRβ expression was observed for other miRs previously 

suggested as TRβ regulators, such as miR-155. (135) 

6.6.1. Nrf2-Mediated Oxidative Stress Response.  

Nrf2 pathway has been previously shown to promote HCC development in humans as well as in 

experimental models. (136) Accordingly, we investigated whether miRs could be involved in the 

pathways most modified by T3 treatment, and in particular the Nrf2 and the Oxidative 

Phosphorylation pathways. Among the miRNAs whose expression was up-regulated by T3 

treatment, we found a number of miRs known or predicted to target genes involved in the 

activation of the Nrf2 pathway. Up-regulation of Nrf2 has been observed in the experimental 

model herein used and T3 treatment was shown to reverse Nrf2 activation, although the 

mechanisms underlying this effect were not defined. (137) The present NGS analysis revealed that 

most Nrf2-target genes were down-regulated by T3 treatment (Fig. 19A), and, interestingly, this 

effect was associated with up-regulation of 6 miRs predicted (miR-27a, 378a-5p, 532-3p, 802-5p, 

672-5p) or shown (miR-140-5p) to target Nrf2 or genes involved in the Keap1-Nrf2 pathway. 
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(138) It is also worth to mention that the decreased expression G6pd, another Nrf2 target 

implicated in the metabolic reprogramming of preneoplastic lesions was paralleled with up-

regulation of miRNA-672-5p (Fig. 19A).  

6.6.2. Oxidative Phosphorylation  

Another pathway strongly modified by T3 treatment is the Oxidative Phosphorylation pathway 

that was down-regulated in preneoplastic nodules (for a comparison see Fig. 19B and 15B). 

Among the miRs whose expression was down-regulated by T3 treatment, we found 9 miRs 

predicted to target the five mitochondrial complexes (miR151-3p, 185-5p, 128-3p,182- 5p, 193a-

3p, 128-5p, 425-5p, 320-3p, 224-5p). Notably, the induction of miR-182 has also been reported to 

promote glucose metabolism in non-small lung cancer cells. (139) Thus, the switch from glycolysis 

to OXPHOS induced by T3 may be mediated, at least in part, by downregulation of this miR. 

6.6.3. Proline Biosynthesis Pathway  

Together with the switch from glycolysis to OXPHOS, T3 treatment also led to inhibition of 

proline biosynthesis, recently shown to be required for HCC progression. (140) Indeed, as 

demonstrated in Fig. 20A, the expression of Pycr1 and Aldh18a1, two enzymes involved in proline 

synthesis, was up-regulated in nodules and down regulated following treatment with T3. To 

directly establish whether T3 could affect proline biosynthesis, we analyzed the expression of 

Pycr1 and Aldh18a1 in Thrβ-transfected HepG2 cells. As shown in Fig. 20B, T3 significantly 

diminished the expression of both the genes in mock as well as in Thrβ-transfected cells. Notably, 

among the miRs modified by thyroid hormone was miR-672-5p, predicted to target Pycr1 
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                                                                          (A) 

                                                                         (B) 

Fig. 19. MiRNA:mRNA integrated network and proline biosynthesis in preneoplastic nodules 

following T3 treatment A) IPA analysis of Nrf2 oxidative stress response pathway in T3 treated 

nodules vs. untreated nodules; B) IPA analysis of Oxidative Phosphorylation pathway in T3-

treated nodules vs. untreated nodules. 
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(A)                                                                                  (B)                                                            

Fig. 20. A) Results of NGS analysis showing fold change of the key genes involved in proline 

metabolism: Pycr1, Aldh18a1 and Prodh. P-adjusted value = 0.05 and fold change ± 1.5. B) qRT 

PCR analysis of the expression of PYCR1 and ALDH18a1 in HepG2 cells not transduced (PLVX) 

or transduced with THRB and treated (T3) or not (NT) for 48 hours with 100nM T3. MiRNA 

expression was calculated as fold change using the 2-Ct method and RNU48 as endogenous 

control. Student t-test: *P<0.05; **P<0.01 

6.7. In-vitro validation of selected mRNA and miRNA in HCC  

Preneoplastic nodules are considered, as a population, the precursors of HCC. However, it 

is known that not all the genetic/epigenetic changes found at early stages of hepatocarcinogenesis 

are maintained until the final steps of this process. (141,142) 

 To directly establish whether miRs could play a role in the T3-modified molecular 

pathways in HCC, we analyzed the expression of miRNAs involved in the T3/Thr axis and in the 

Nrf2 pathway in HepG2 cells transduced with lentiviral vector expressing THRB gene, with and 

without T3 treatment. As shown in Fig. 21A, differently from what was observed in T3-treated 

preneoplastic nodules, no change of the expression of miRNAs involved in Keap1-Nrf2 pathway, 

OXPHOS and T3/Thr axis (miR-140, miR-185, miR-421, miR-425 and miR-224) was detected in 

mock or Thrβ−transfected HepG2 or Mahlavu cells exposed to thyroid hormone.  
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(A) 

Fig. 21. A) Expression of miR-140, 185, 425 and 421, and 224 in HepG2 or Mahlavu cells  

transduced with empty vector (PLVX) or with the vector containing the THRB cDNA and 

treated (T3) or not (NT) for 48 hours with 100nM T3. Each sample was run in triplicate and gene 

expression analysis of SNU48 was used as endogenous control. Relative quantification analysis 

for each gene was calculated by 2-Ct method; ND: not detected; Student t-test: *P<0.05; 

**P<0.01; ns: non-significant. 
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To further investigate whether the expression of miRs associated to T3-induced metabolic 

reprogramming of preneoplastic nodules is affected by T3 also at late stages of 

hepatocarcinogenesis, we analyzed by qRT-PCR the expression of some of the genes/miRNAs 

engaged in the T3/Thr axis or in the Nrf2 pathway in laser-microdissected HCCs generated 10 

months after DEN in rats exposed or not to T3 treatment (Fig. 8B). The expression of genes 

implicated in the Keap1-Nrf2 pathways (Fig. 22C, Nqo1, Gstp1), T3/THR axis (Dio1) and of a 

specific marker of the most aggressive lesions – cytokeratin-19 (Krt-19) – was affected by T3 in a 

similar manner both in preneoplastic nodules and HCCs (Fig. 22A, 22C). On the contrary  all of 

the examined miRs in pre-neoplastic nodules (miR-224; miR-425; miR185; miR-27) were not 

modified with the exception of miR-182 (Fig. 22B). These results suggest that the effect of T3 on 

these pathways in HCC is no longer dependent upon the vast majority of these miRNAs.  
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                                                                   (C) 

Fig. 22. A) qRT-PCR analysis of the expression of Gstp, Nqo1, Dio1 and Krt-19 in HCC bearing 

rats. Rats exposed to the R-H protocol were sacrificed 10 months after treatment with a single dose 

of DEN. The week prior to sacrifice, one group of animals was fed a T3-supplemented diet as 

described in Materials and Methods. Each sample was run in triplicate and gene expression 

analysis of beta-actin was used as endogenous control. Relative quantification analysis for each 

gene was calculated by 2-Ct method. Student t-test: *P<0.05; **P<0.01; (X5); B) qRT-PCR 

analysis of the expression of miR-224, miR-425-5p, miR-185, miR-182, and miR-27 in HCC 

bearing rats. Rats were treated as described B. Each sample was run in triplicate and gene 

expression analysis of Gapdh was used as endogenous control. Relative quantification analysis for 

each gene was calculated by 2-Ct method. Student t-test: *P<0.05. C) GSTP, NQO1 and KRT-

19 immunohistochemistry of HCCs from livers of animals treated as described in Fig 8B. 
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7. DISCUSSION 

 MicroRNAs are a large family of endogenous, small-non coding RNAs that function post-

transcriptionally in the regulation of gene expression. As far as HCC is concerned, miRNAs have 

increasingly gained importance due to their widespread occurrence and diverse functions as 

regulatory molecules in all aspects of cancer biology, such as proliferation, invasion, apoptosis, 

and angiogenesis. Importantly, miRNAs appear to play a critical role not only in HCC but also at 

the initial steps of hepatocarcinogenesis in both experimental and human studies. (143) 

Previous studies have reported the anti-tumorigenic effect of T3 on rat hepatic preneoplastic 

nodules (134). The effect of T3 and the reprogramming of poorly differentiated hepatocytes to a 

more mature phenotype that causes the disappearance of preneoplastic nodules is not fully 

understood. In this study, we utilized NGS to carry out an in-depth analysis of miRNAs and 

mRNAs in preneoplastic nodules following T3 treatment. The present work unveiled dysregulated 

pathways and their miRNA-mRNA pairs involved in the regression of preneoplastic nodules. We 

identified 28 differentially expressed miRNAs in T3 treated nodules compared to preneoplastic 

lesions not exposed to thyroid hormone. Among the major pathways that were significantly 

dysregulated there were Oxidative Phosphorylation, and NRF2 mediated oxidative stress response. 

Down-regulation of OXPHOS and subsequent activation of glycolysis are well established in 

proliferating liver cancer cells as they dramatically reprogram some of the metabolic pathways to 

meet the increased energetic and anabolic needs. T3 treatment for 4 days caused down-regulation 

of 8 miRNAs predicted/shown to target genes of membrane mitochondrial complexes. Down-

regulation of these miRNAs was associated with the up-regulation of 90% of the genes involved 

in the mitochondrial respiratory chain and to the restoration of OXPHOS. Among the down-

regulated miRNAs, 5 have been reported to act as OncomiRNAs in HCC; indeed, miR-224, miR-

425, miR-151-3p, miR-182-5p, and have been shown to promote cell proliferation, invasion, and 

metastasis. (144–147)  

Interestingly, miR-224, which is predicted to target Ubiquinone Oxidoreductase Subunit 

A8 and Cytochrome c oxidase subunit 6B1, has been reported as an early-stage biomarker in HCC 

patients (148). Recently, it has also been established that it accelerates HCC progression. (149) 

We also observed up-regulation of the Succinate dehydrogenase complex, a tetramer consisting of 

SDHA, SDHB, SDHC, and SDHD subunits. Succinate dehydrogenase has a critical tumor-
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suppressive role and has been suggested as an important drug target in HCC. 53 Mir-185-5p and 

mir-320-3p, which are predicted to target of Succinate Dehydrogenase Complex Subunit C 

(SDHC) and Succinate Dehydrogenase Complex Subunit D (SDHD) respectively, were down-

regulated in T3 treated nodules. Additionally, up-regulation of miR-320-3p has also been 

implicated in early stages of steatohepatitis, a condition favoring HCC development. (150) 

Cancer cell proliferation leads to the accumulation of reactive oxygen species (ROS). 

Cellular oxidants activate the Nrf2 signaling pathway that protects cancer cells from DNA damage. 

T3 treatment significantly down-regulated this pathway in preneoplastic nodules, as documented 

by the up-regulation of 6 miRNAs predicted/shown to target genes involved in this pathway. 

Interestingly, 3 of these miRs exhibited a tumor-suppressive role during HCC progression. MiR 

378a-3p, which is predicted to target RAS Like Proto-Oncogene B, has a protective role in liver 

fibrosis by inactivating hepatic stellate cells, (151,152) whereas miR 27a-3p and 140-5p - predicted 

to target NRF2 - inhibit cell viability and migration in HCC. (153,154) The present study also 

confirms that T3 is able to revert the local hypothyroid status of preneoplastic and neoplastic 

hepatocytes and suggests that some miRNAs (i.e. miR-224 and miR-185-5p) may play a role in 

restoring the thyroid status, at least at the early stages of tumorigenesis.  

Metabolic alterations in cancer are mainly focused on aerobic glycolysis and central carbon 

metabolism, including the citric acid cycle and the pentose phosphate pathway. Nevertheless, 

several reports suggested that amino acids may also play a relevant role to support survival and 

proliferation of cancer cells. (155) In this context, recent studies demonstrated that proline 

biosynthesis by modulating the expression of the enzymes involved in the biosynthetic process, 

significantly influences proliferation of HCC cell lines in vitro and tumor formation in vivo. (140) 

Our NGS analysis enabled us to show that T3, in addition to a switch from glycolysis to OXPHOS, 

profoundly modifies proline biosynthesis by inhibiting on 18 the one hand the expression of the 

two enzymes critically involved in proline formation and, on the other hand, up-regulating Prodh 

which is involved in proline catabolism. Of note, these effects were observed in both preneoplastic 

nodules as well as in HCCs and HepG2-Thrβ transfected cells. Altogether, these results provide 

novel information on the anti-tumorigenic role of T3, suggesting the thyroid hormone as a critical 

player in interfering with metabolic pathways altered in HCC development. Furthermore, 

intercrossing miRNAs-mRNAs revealed that T3- induced regression of preneoplastic nodules is 
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accompanied by deregulation of a number of miRNAs that target genes involved in metabolic 

pathways altered at early stages of HCC development; however, our data also point out that the 

miRNAs found dysregulated at early stages are unlikely involved at the final steps of 

tumorigenesis. Whether other miRNAs yet to be defined are implicated in the metabolic switch 

associated to T3-induced regression of HCC remains to be established. 

 8. CONCLUSIONS 

The present study showed that: i) a number of miRNAs modified by T3 are likely associated to 

T3-induced regression of preneoplastic nodules; ii) the anti-tumorigenic effect of T3 is mediated 

by miRNAs implicated in reverting metabolic pathways altered in cancer; iii) proline biosynthesis, 

up-regulated in HCC, is profoundly inhibited by T3 at both early and late stages. These results are 

relevant as they can help in the development of novel strategies based on the use of novel 

thyromimetics, devoid of T3-induced adverse side effects, as therapeutic cancer drugs in the 

treatment of early stages of human HCC development. 

We have also implemented two computational analysis workflows. RIDE and SRIDE are easy-to-

manage RNA-Seq and small RNA-Seq analysis workflows. Both the pipeline includes complete 

workflow, starting with QC of the raw FASTQ files, going through optional trimming, alignment, 

and counting.  

Running these workflows requires a moderate knowledge of programming skills, however, well-

written tutorials help the users to set up and run the workflows from scratch. RIDE and SRIDE 

can be applied to raw FASTQ reads from any organism, where users can provide the reference 

genome and transcriptome downloaded from UCSC and Ensembl genome browser respectively.  

RIDE and SRIDE are built on the basis of Conda and Snakemake, thus making installation and 

management very easy. All the required tools are available on the Anaconda cloud 

(https://anaconda.org/) and are wrapped in a virtual environment managed by Conda, making both 

the workflows independent of the underlying system thus avoiding package/library version 

conflicts. Both the workflows are defined by rules managed by Snakemake, making them highly 

modular. Advanced users can easily extract parts of the workflow or expand it based on their own 

research needs, and replace the tools used in RIDE and SRIDE with other tools to explore new 

pipelines for analyzing RNA-Seq and small RNA-Seq data. 
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