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Abstract: Interspecific biotic interaction is believed to be a fundamental phenomenon in ecology.
However, despite the increasing efforts, interaction mechanisms are still not clearly understood.
We compiled a database of 323 birds and 844 vascular plants in 30 wetlands from Sardinia. This
was complemented with seed dispersal features and plant structures (suitability for nesting), and
with site-level traits, such as wetland surface area, distance from the sea, percentage of open water,
protection level, and number of human impacts. The percentage of non-random co-occurrences
was then measured, and the relative importance of each trait in determining it was modelled. We
found that non-random co-occurrences among sites decreased with the site extent and increase with
the percentage of open water, bird zoochory was positively correlated with co-occurrences, nesting
birds showed higher rates of co-occurrence than non-nesting birds, and plants with habits suitable
for nesting displayed more co-occurrences than the rest of the plants. These results are a small
contribution to the complex topic of species co-occurrence and connectivity within an ecosystem.
Species co-occurrence is a promising but debatable approach that may provide insightful clues to
species interactions within ecological systems.

Keywords: community ecology; zoochory; Mediterranean island wetlands; plant–bird interactions;
species traits; vegetation structure; wetland conservation

1. Introduction

Interspecific biotic interaction is recognised as one of fundamental phenomena in
ecology and conservation, because their reduction or loss often affect community com-
position, structure and functionality and, more generally, the resilience of a habitat [1,2].
Collaborative behaviours in nature are increasingly demonstrated against the competitive
theory to play a critical, but overlooked role [3,4]. Among species groups, plant–animal
interactions are widespread and essential for ecosystems functioning and maintenance. In
general, ecological connectivity through plant–animal interaction should be stronger for
those subgroups of birds and plants that are more specialised on each other than for those
with weaker network interaction. If the type of interaction is in some cases proven, such
as plant–insect pollination mutualisms or herbivory, in other cases, interactions (negative
or positive) among species are the result of several factors which are difficult to control
or predict. This is the case of plant–bird interactions. Among specific examples, bird and
woody plant species richness are often linked to vegetation structural complexity and bird-
nesting opportunities [5]. Other interactions, such as frugivory or propagules dispersal,
are common positive and neutral interactions that influence the distribution patterns of
both groups of species. These interactions are of particular interest in the case of migratory
birds—several are waterbirds—which enable plants to disperse for long distances in a
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relatively short time [6–8]. Recent discoveries in this sense, such as the extreme ability to
disperse non-fleshy-fruited plants [9], has confirmed the need to fill large gaps in this topic.
Moreover, plant–bird interactions comprise a wide range of overlooked relationships, such
as ingestion and dispersal or the control of arthropod herbivory by birds [10].

Understanding factors influencing patterns of species interaction is a recent major
aim of community ecology [11,12]. Interactions might be influenced by the same drivers
of spatial patterns in species and habitats diversity, such as natural gradients, elevation,
distance from the coast or human-induced environmental changes [13–15]. For instance,
historical human presence on several Mediterranean islands acted as a relevant process
in disrupting the energy and resource flow and lowering the bird trophic level to one
dominated by herbivory and omnivory [16]. In line with this theory but with a different
perspective, some studies have stressed that ecological interactions are often lost at a higher
rate than species, affecting species functionality and ecosystems services at a faster rate
than local species extinctions [17]. For the same reason, habitat fragmentation has been
shown to have strong effects on ecological connectivity [13].

Despite the importance of interactions for self-sustaining ecosystems and successful
management, only a relatively small proportion of conservation-oriented studies have
explicitly considered interactions. The main reason is the high initial cost of conservation
studies aimed at unravelling such complex biological networks. In the era of big data,
null model analysis has become a standard tool to search for patterns that may reflect
processes of community interactions [18]. Null models can be based on the analysis
of a presence–absence matrix that allows for a classification of all the unique species’
pairs in an assemblage as random, aggregated, or segregated [18–20]. Although inferring
ecological interactions from presence–absence data holds a great appeal, the existence of
signals of cause-and-effect are still debated. While some recent studies have confirmed
such a regular signal (e.g., [21,22]), others have shown that the signal is blurred and
diluted in complex networks [23] or even absent [24]. In order to maximize the chance of
distinguishing between the influence of environmental preferences and biotic interactions,
classic null models were compared or implemented by the introduction of frameworks with
species distribution models (SDMs; [11]) and joint species distribution models (JSDM; [25]).
Research studies that have attempted to examine species co-occurrences through SDMs
and JSDMs were often limited to few species/interactions or to simulated species. Reasons
were once again related to the complex model interpretation, the high time required, and
the missing data for validation [26]. In synthesis, despite the significant improvements in
modelling efforts, compared to early presence–absence null models, the ability to reveal
the interaction mechanisms is still controversial and unresolved [23,27,28].

We used a classic null model framework (sensu [1,11]), including information of
323 bird and 844 vascular plant species from a set of 30 wetlands from Sardinia (second
largest island of the Mediterranean Basin), to carry out a relatively easily interpretable
methodological framework, which includes the following steps: (1) finding significant co-
occurrences between plants and birds from a relatively large and feasible set of commonly
available presence–absence data; (2) define characteristics related to sites (environmental
conditions and level of human disturbance), plants (structural traits, exoticity and dispersal
syndrome) and birds (nesting and dispersing); (3) model the site- and species-based number
of co-occurrences in response to their respective traits.

Acknowledging that co-occurrence is not evidence of biological interactions, we tested
if the signal of such ecological connectivity can be captured in observational data by ex-
amining the following hypotheses: Hypothesis 1 (H1), environmental filtering hypothesis:
co-occurrences vary among sites according to their environmental diversity and decrease
with the presence of threats/impacts; Hypothesis 2 (H2), dispersal hypothesis: bird dis-
persers show a high number of non-random co-occurrences with plants dispersed by bird
zoochory; Hypothesis 3 (H3), vegetation structure hypothesis: birds using plants for nesting
show a high number of non-random co-occurrences with plants having habits suitable
for nesting.
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2. Materials and Methods
2.1. Study Area and Sampling

The island of Sardinia (Italy) offers the opportunity to cover studies in a diverse set of
environments in a reasonable small extent. Specifically, a recent inventory of the Sardinian
wetlands found a total number of 2501 wetlands, highly variable in size and typology (www.
italiaiswet.it, accessed on 1 March 2022). Most of these wetlands, especially the 706 natural
wetlands, covering a total surface area of 365.6 km2, support a rich biodiversity. A recent
inventory of strictly hydro- and hygrophilous vascular plants in Italy, identified for Sardinia,
119 species equal to 42.6% and 37.9% of the richness estimated at the Italian and European
scale, respectively [29]. Unfortunately, part of them are threatened and unprotected [30,31].
Sardinian wetlands also represent a network of important stopover sites for migratory birds
along the Mediterranean flyways [32]. Therefore, the conservation and management of its
wetlands is pivotal for many avian species, in particular passeriforms, ducks in winter, and
waders in summer and autumn [33].

In order to limit efforts and cover a diverse set of wetland conditions with homogenous
data availability, the selection of the study sites considered: (a) wetlands where the available
literature was exhaustive to support our field data and/or efforts to validate or complete
it were feasible; (b) wetlands differing in, at least, distance from the coast and protection
level, covering as large as possible range of typologies. Finally, 30 wetlands were identified.
These comprised the eight Ramsar sites, but also sites within national and regional parks,
Natura 2000 network or none of them. The distance from the coast ranged from 0 to 33 km
(Figure 1).
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Figure 1. Wetland areas of Sardinia (in blue) and location and names of the 30 study sites.

The presence/absence of 323 bird and 844 vascular plant species was recorded for each
wetland. Data of both plants and birds were retrieved from all available consulted literature
and reports, such as [34]; data repositories, such as wikiplantbase [35] or INaturalist [36],
and all available grey literature. These were completely revised by personal data of the
authors and, at least, one recent monitoring (2018–2021).

www.italiaiswet.it
www.italiaiswet.it
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2.2. Analysis of Species Co-Occurrence

First, we applied a pair-wise null model analysis to the presence–absence species
matrix to determine which associations were significant (i.e., non-random). We used
the probabilistic modelling approach developed by [20], which calculates the expected
frequency of co-occurrence between each pair of species based on the distribution of one
species being independent of the second one. It then compares the expected frequency
to the observed frequency and returns the probability that a lower or higher value of
co-occurrence could have been obtained by chance. A species co-occurrence analysis was
carried out using the function “cooccur” in the cooccur R package [37]. Starting from
community data organised in bird and plant species by site matrix, the function returns a
list containing pair-wise species co-occurrence results. The package returns a probability
of co-occurrence, which can be interpreted as p value and classifies species pairs into
categories of negative or positive associations. In this case, significant probabilities of
co-occurrence were retained upon a threshold of 0.05 [38]. The percentage of significant
co-occurrences of each taxon were treated as the response variable to be regressed. The
average of the same percentages of all the species present in each site was used as the
response variable at site level.

2.3. Species and Site Traits Data

Following the order of the enumerated hypotheses, we considered the following site-
and species-based traits:

H1, environmental filtering hypothesis: in order to test how non-random co-occurrences
vary among sites according to their environmental richness and decrease with the pres-
ence of threats/impacts, we measured six variables: (1) surface area in hectares; (2) % of
open water; (3) distance of the polygon centroid from the coast; (4) number of habitats
sensu Habitat Directive 92/43/EEC, retrieved from field observations and literature re-
sources. The level of disturbance was measured by means of (5) protection level, and
(6) number of human impacts observed in the field and reported following the MedWet
scheme [39]. Because a given site can be protected by more than one designation, e.g., a
natural park included in the Natura 2000 network, the level was the result of a sum of
different terms of protection, ranging from 0 (no protection) to 2 (maximum protection). For
further details, see Supplementary Material (Table S1). Wetland delineations, number of
habitats and human impacts are available from the online database of the Italian wetlands
(www.italiaiswet.it, accessed on 1 March 2022). The polygons were then processed in GIS
environment for measuring the rest of the parameters.

H2, dispersal hypothesis: the dispersal syndrome of each bird species showing non-
random co-occurrences with plants was classified as disperser/non-disperser according to
the literature concerning the species or its most closely related one. If not directly reported,
the information was extrapolated by evaluating their diet and behaviour. The dispersal
syndrome of each vascular plant species was retrieved from available databases [40,41].

H3, vegetation structure hypothesis: birds were classified as nesting/non-nesting in
Sardinia according to the large amount of available grey and scientific literature (e.g., [42–44]),
by only including species regularly nesting on plants in the study sites. Plants were
classified as to whether their habit was suitable for bird nesting. The presence of exotic
plants was also considered under this hypothesis, because the introduction of alien plants
often results in a changed vegetation structure. This information was retrieved from the
latest checklists of the Italian alien flora [45]. All traits are reported in Tables S2 and S3.

2.4. Statistical Analysis

All statistical procedures were performed in R software (v 3.4.3). Both site- and species-
based predictors were analysed by generalised linear models (GLMs) with identity link and
Gaussian error distribution to calculate the relative effects on the response of co-occurrence
in each site and for each species. In a further step, all analyses were re-run following the
application of Cook’s distance criterion [46]. This was performed to remove models which

www.italiaiswet.it
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were unduly influenced by a single data point. Two sites (“Codoleddu” and “Stagno di
Cagliari”) had a Cook’s distance greater than one and thus were removed as outliers. Model
selection was based on Akaike information criterion corrected (AICc) for small sample sizes.
The R package “glmulti” was used [47] to retain, among all possible combinations, only
the top-ranked models with AICc differences (∆AICc) < 2 [48]. The averaged coefficients
of the retained models were then calculated using the same R package. p values derived
from the retained GLMs were coupled with the sum of Akaike weights to estimate the
importance of each variable [48]. The variable importance output gives the total weight of
each driver across all possible models. The sum of Akaike weights have values ranging
from 0 to 1; values close to 1 indicate drivers that occur in large portions of the models and
with higher probability that a driver is important [49]. A cutoff of 0.8 was set to differentiate
between essential and nonessential predictors [50]. To measure the deviance explained,
adjusted D-squared (D2) was also calculated for each top-ranked GLM using modEvA R
package [51]. To summarise, the three hypotheses were plotted according to the sum of
Akaike weights accounted by each respective predictor retained in the best models.

3. Results
3.1. Summary of Co-Occurrences among Site-Based and Species-Based Traits

Of the 237,098 interspecific possible pair combinations, 226,193 (95% of the total)
were not considered because the species pairs were showing an insignificant probability
of co-occurrence (p values > 0.05). From the remaining 10,905 pairs, a further 9556 pairs
were removed because the expected species co-occurrence was <1 and considered as
random. The last 1349 plant–bird pairs including 136 plant and 146 bird species were
thus analysed. The highest percentage of non-random co-occurrences was presented for
two coastal wetland systems: “Stagno di Sal’e Porcus” (CW Sardinia, 7.8%) and “Stagno
di Sa Praia” (SE Sardinia, 7.6%). The lowest percentage of non-random co-occurrences
was in the inland temporary pond of “Codoleddu” (SE Sardinia, 2.8%). Among plant
species, the lentisc (Pistacia lentiscus, 18.9%) and the common reed (Phragmites australis,
15.9%) were found to have the highest rates of co-occurrence with birds. The Black-winged
Stilt (Himantopus himantopus, 19.2%) and the Common Moorhen (Gallinula chloropus, 19.1%)
were the two birds’ species with the highest plant–bird percentage of co-occurrence. See
further information concerning each site and species co-occurrence in Tables S1–S3.

3.2. Influence of Site- and Species-Based Traits on Plant–Bird Co-Occurrences

When considering the percentage of co-occurrence by the mean of sites’ environmental
conditions, the best models (∆AICc < 2) contained two main drivers: area and % of open
water, with a sum of Akaike weights across all models of 0.98 and 0.86, respectively
(Table 1 and Figure 2). At the bird level, our findings retained two models with ∆AICc < 2
(Table 1). Nesting birds and bird dispersers were the two significant predictors (both
with sum of Akaike weights = 0.99). At the plant level, only one predictor trait was in
the three retained best models: habits suitable for nesting (sum of Akaike weights = 0.99;
Table 1 and Figure 2).

According to these results, each hypothesis was explained by at least one predictor
(Figure 2). H1, the environmental filtering hypothesis, was supported by two essential
predictors (area and % of open water). H2, the dispersal hypothesis, was confirmed by bird
dispersers. In addition, H3, the vegetation structure hypothesis, was supported by two
essential predictors (nesting birds and plants with habits suitable for nesting.
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Table 1. GLM models and information for site-, bird- and plant-based co-occurrence. Best GLMs (all
models within ∆AICc ≤ 2) are shown. Predictor traits not present in the model are indicated by NA.
See Materials and Methods for explanation of model terms. Adjusted D-squared (D2) was reported
in addition to the Akaike information criterion corrected for small sample sizes (AICc). Note that
the variable importance, in terms of sum of Akaike weights, was calculated for all possible models.
The degrees of freedom (df) are reported for each model. Significance level: *** p ≤ 0.001, ** p ≤ 0.01,
* p ≤ 0.05.

Explanatory: site co-occurrence

Model terms Model performance
Area (ha) N_Habitat D_coast (km) Open Water Protection df Dsq AICc delta

−0.00 ** 0.07 * −0.03 * 0.02 * −0.99 23 0.66 66.86
−0.00 ** −0.03 * 0.02 * 24 0.47 67.05 0.19
−0.00 ** 0.06 * 0.03 *** 24 0.45 68.12 1.26
−0.00 ** 0.00 *** −0.01 24 0.45 68.56 1.51
−0.00 ** 0.05 0.03 *** −0.91 23 0.48 68.70 1.65
−0.00 ** −0.05 *** 25 0.41 68.73 1.87
−0.00 ** −0.02 0.02 * 23 0.48 68.80 1.94

0.98 0.35 0.66 0.86 0.46 <– Akaike weights

Explanatory: bird co-occurrence

Model terms Model performance
Disperser Nesting df Dsq AICc delta

1.70 *** 2.71 *** 142 0.19 739.63
0.99 0.99 <– Akaike weights

Explanatory: plant co-occurrence

Model terms Model performance
Nest Seeding Exotic df Dsq AICc delta

2.31 *** 132 0.13 640.34
2.20 *** 0.47 132 0.13 641.73 1.39
2.26 *** 0.41 131 0.13 642.13 1.79

0.99 0.32 0.28 <– Akaike weights
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Figure 2. Interdependence of the three hypotheses (H1–H3) in determining species co-occurrences at
site-, bird- and plant-level. Each hypothesis is supported by predictors with different variable impor-
tance (sum of Akaike weights, SW). Accordingly, the three hypotheses were ranked as contributors of
the final species co-occurrence rates and possible species interactions.
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4. Discussion

The example reported by [28] was here confirmed: from an initial relatively large
dataset, a large proportion of the co-occurrences were insignificant and thus not valid to
efficiently measure the co-occurrence between two species groups. This confirms that,
although there is no specific size prescription, many samples are required, much more
than what is typically used, for instance, to model single-species distributions. Correlation
does not mean causation, and co-occurrence is not evidence of ecological interactions.
However, weak and less weak evidences from our results were in line with the hypotheses
of biological interactions raised in the literature and corroborated by several experiments.

According to H1, the environmental filtering hypothesis, we found that non-random
co-occurrences among sites were influenced by their environmental characteristics. Specifically,
co-occurrences and hypothesised interactions decrease with the site extent and increase
with the percentage of open water. Although the area plays a prominent role in favouring
species diversity [52,53], incongruent patterns in cross-taxon relationships were here found.
First, the correlation of species richness between birds and plants is highly variable, and
this is likely increasing in disturbed and fragmented habitats [54]. Moreover, habitat
fragmentation has been proven to have little effects on network structure, especially for
bird species, due to their ability to fly across habitat boundaries [13,55]. Further reasoning
can be based on how the distribution patterns of each species group and their functional
traits directly vary across space. Previous studies have shown that bird specialisation
on specific plant partners increases towards sites with relatively uncommon and extreme
environmental conditions, such as forests above 3000 m asl [13] or small islands [50]. Similar
specialised plant–bird interactions might be present in small and isolated wetlands where,
according to the Italian island inventory [30,56], rare and specialist plant and bird species
were more common than in large wetland systems, which are also often characterised by
monodominant vegetation communities and relatively low niche variability. If considering
that the extent of a site increases with the % of open water, our results are partially in
contrast. However, although a few bird species may benefit from naturally vegetated waters,
such as the ones dominated by reeds (e.g., [57]), it often negatively impacts on several
birds, especially when they are dominated by non-native species, such as Arundo donax or
Eichhornia crassipes, which can lead to loss of diversity and interactions between plants and
other species groups [58,59]. Caution might be thus warranted when, such as in our case
with Acacia saligna (see Table S2), positive co-occurrences are found between some birds
and invasive plants. Although some mutualistic interactions between invasive and native—
even endangered—species are reciprocally present (e.g., [60,61]), plant–bird interaction
networks are generally impacted by the introduction of non-native species [17,62,63].

Little evidence in support of the H2 dispersal hypothesis was found, despite the large
body of literature reporting interactions between seed-dispersing birds and dispersed
plants (e.g., [7,8]). Only dispersing birds have higher percentages of non-random co-
occurrences than non-dispersing birds, whereas this was not found for zoochorous plants.
The importance of the avian zoochory for the angiosperms within and beyond a wetland
landscape was already illustrated by several authors ([9] and references therein); differently,
zoochorous plants might rely on unspecialised dispersers [64]. Moreover, most of the
considered dispersal traits were based on assumptions that might be further investigated.
In this sense, the need for deeper knowledge was already evidenced [9,65].

Finally, H3, the vegetation structure hypothesis, was also supported by the results.
Plant-nesting birds and plants with habits suitable for bird nesting were significant pre-
dictors of co-occurrence with the respective other species’ group. Our findings sug-
gested that this hypothesis, already largely demonstrated through different approaches
(e.g., [5,13,44,66]), might also be confirmed by network reconstructions based on species co-
occurrence. Plants are key structural elements of terrestrial ecosystems and thus determine
habitat configuration for many animal species, including birds. Even if this interaction
might appear rather generalist, that is birds do not need specific plant species for nesting,
and plants do not take any specific advantage from nesting birds, it might reveal several
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species-specific positive and some non-standard interactions. For instance, seeds can re-
main attached or embedded within materials gathered for nest building [67], and faeces,
fallen nest material and carcass remains left below trees elevate levels of nutrients available
to plants in the otherwise poor soils [68].

To summarise, the results obtained from the perspective of conservation manage-
ment suggest that: (1) interactions between birds and plants, and ecosystem connectivity
more in general, are difficult to detect and infer from presence–absence data. However,
improving methods in their identification is crucial because their maintenance will ensure
the ecosystem self-sustenance. (2) Ensuring a natural vegetation structure is crucial, for
birds and for plants conservation. (3) Interactions related to plant dispersion exist, but
often in our case were species unspecific and difficult to detect with presence–absence data.
(4) Caution is needed in the interpretation of results from presence–absence data because
deeper investigations are essential to confirm any real species interaction. However, the
high replicability of this simple and low-consumption approach has potential utility for
initial screening of the most promising species for further investigation.

5. Conclusions

These results suggested that co-occurrence data can provide insightful clues to biotic
interactions, although these need to be confirmed by analyses that consider in detail all
possible specific situations and conditions. Moreover, co-occurrences might reveal “false-
positives” and conceal several interaction types, such as birds promoting the spread of
invasive plants and vice versa. The need of a large set of data is again confirmed. Although
the initial set of 237,098 interspecific possible pair combinations appears consistent, it was
weak considering the low number of significant interactions that emerged from it. However,
this work represents a small drop in the ocean of the era of big data, which might be in any
case verified and cleaned of spurious and erroneous information. Automated bioinformatic
instruments are nevertheless promising.

Ecologists have already largely documented the inherent difficulty in inferring interac-
tions from descriptive data, and many authors are actively engaged in developing methods
to do so, while recognising the difficulties. However, network reconstructions based on
species co-occurrence are proven as useful to provide insightful clues on phenomena such
as co-existence and ecosystem functioning [69]. In closing, we acknowledge that, as with
most approaches in science, our results need refinement and improvement. However,
the approach has shown sensible predictions that can be widely tested and replicated to
increase the knowledge of the hypotheses derived from their application.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d14040253/s1, Supplementary Material: Explanation of the protection
index. Table S1: Co-occurrences and traits related to each wetland site; Table S2: Co-occurrences and
traits related to plant species. See Materials and Methods for explanations of each trait. Species names
were verified according to The Plant List. Link: https://www.catalogueoflife.org/, accessed on 3
November 2021. Dispersal traits were retrieved according to TRY plant trait database (https://www.
try-db.org/TryWeb/Home.php, accessed on 9 February 2022) and LEDA plant traits database (https:
//uol.de/en/landeco/research/leda, accessed on 10 February 2022); Table S3: Co-occurrences and
traits related to each bird species. See Materials and Methods for explanations of each trait.
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