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Abstract

A reaction-diffusion-advection equation with uncertain parameters, and additionally subject to disturbances of both matched and mismatched
nature, is considered. It is assumed that only a finite number of point-wise sensing and actuation devices, suitably located in an equi-spaced
manner along the 1-dimensional spatial domain of interest, is available. The variable structure control approach is adopted to design the
underlying discontinuous feedback control laws. The existence of the resulting closed-loop trajectories is addressed in depth. The state of
the closed-loop system is shown to feature an exponential ISS property with respect to mismatched disturbances thereby constituting a
new result in the DPS’ setting, capturing point-wise sensing and actuation. Apart from this, it is established that an arbitrary level of the
mismatched disturbance attenuation can be achieved by employing sufficiently many sensing and actuation devices. It is also established
that the matched disturbances entering the control channels can be fully rejected by the proposed design. Tuning rules of the controller
parameters are constructively derived by means of the Lyapunov approach, and simulation results are brought into play to support the
theoretical development.

Key words: Reaction-diffusion-advection equation; Collocated sensing; Point-wise actuation. Distributed-parameter systems; Sliding
mode control.

1 Introduction

Variable structure control has long been recognized as a
powerful control method to counteract non-vanishing ex-
ternal disturbances affecting dynamical systems of finite
and infinite dimension (see [Utkin, 1992]). As many im-
portant systems and industrial processes (such as, e.g.,
flexible manipulators and chemical reactors) are governed
by partial differential equations (PDEs) with uncertain
parameters and external disturbances, significant interest
has emerged in extending the discontinuous control meth-
ods to the infinite-dimensional distributed-parameter sys-
tems. Presently, the discontinuous control synthesis in the
infinite-dimensional setting is well documented (see, e.g.,
[Levaggi, 2002], [Orlov et al., 1987], [Orlov, 2009]) and it
is generally shown to retain the main robustness features as
those possessed by its finite-dimensional counterpart.

State feedback distributed controllers possess powerful
stabilizing features but they are hardly implementable in

⋆ This paper was not presented at any IFAC meeting. Correspond-
ing author: Y. Orlov.

Email addresses: pisano@diee.unica.it (Alessandro
Pisano), yorlov@cicese.mx (Yury Orlov).

many practical situations as they require infinitely many
sensors and actuators. Due to this, control design methods
for distributed-parameter systems (DPS’) employing only
a finite number of collocated in-domain sensing and ac-
tuating devices have been studied [Fridman et al., 2012],
[Demetriou et al., 2005], [Demetriou, 2009].

In [Pisano et al., 2012] a boundary second-order sliding-
mode controller, providing rejection of matched boundary
disturbances, has been proposed. In the presence of mis-
matched disturbances, however, their rejection becomes in
general unfeasible and the notion of input-to-state stabil-
ity (ISS) has been introduced (see, e.g., the survey paper
[Sontag, 2008] and the references therein) to characterize the
response of the closed-loop system against them. Roughly
speaking, ISS means that once the underlying system is ini-
tialized at the origin, the state norm is upper bounded by a
continuous disturbance-dependent function, escaping to zero
when the disturbance magnitude is nullified whereas the ef-
fect of the arbitrary initial conditions is captured by an addi-
tional term, being a function of class KL (see [Khalil, 2002])
depending both on the magnitude of the initial condition and
on time, which asymptotically decays as time goes to infinity.
Further generalizations of the ISS concept to the finite-time
stability setting were given in [Hong et al., 2010], where
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such a KL-class function was required to vanish in finite-
time rather than asymptotically as in [Sontag, 2008]. ISS is
the subject to be addressed in the present work in the PDEs
setting, incorporating point-wise sensing and actuation.

The ISS of DPS’ has been addressed in the literature,
e.g., in [Prieur et al., 2012], [Dashkovskiy et al., 2013]
[Karafyllis et al., 2016] to name a few (see also ref-
erences therein). The integral ISS (iISS) of DPS’ has
been tackled as well [Mironchenko et al., 2015], and par-
ticularly, within the linear H∞ framework (see, e.g.,
[Morris, (2001),Kasinathan et al., 2013]). A constructive
output-feedback design was proposed in [Morris, (2001)]
whereas in [Kasinathan et al., 2013] a methodology was
given to optimally locate a pre-specified number of actua-
tors in the spatial domain. In this paper, a relevant problem
is attacked to determine how many actuator/sensor pairs are
needed to achieve a pre-specified arbitrary level of attenua-
tion of in-domain distributed mismatched disturbances.

More precisely, the present work investigates the practical
stabilization problem for a class of uncertain parabolic linear
PDEs, confined to the finite spatial domain x ∈ [0, 1], and
perturbed by matched and mismatched disturbances. State
measurements are assumed to only be available in a finite
number of fixed and equi-spaced spatial points xi = (i−1)h
with i = 1, 2, ..., N and h = 1/(N − 1), and actuation is
applied at these N points xi only. Therefore, a finite array
of stationary sensors and actuators is needed to implement
the suggested control scheme.

The underlying control process is uncertain as it possesses
unknown diffusivity, advection and reaction coefficients, and
it is perturbed by two types of disturbances. These distur-
bances are formed by a distributed disturbance term f(x, t),
acting along the entire spatial domain, and by a number of
collocated disturbances ψi(t), i = 1, 2, ..., N , matching the
actuation channels. It is worth noticing that within the pro-
posed point-wise actuation framework, the distributed dis-
turbance turns out to be a mismatched one.

The design to be developed is based on the sliding mode
control approach, and along with the complete rejection of
the matched disturbances it proves to be capable of ensuring
an arbitrary level of attenuation of the mismatched distur-
bances provided that the numberN of actuation and sensing
devices is taken large enough. The proposed design is ac-
companied with a detailed ISS Lyapunov analysis to support
the expected robustness properties.

The present work makes a step beyond the conference pa-
per [Orlov, et al. 2014] where a more narrow class of PDEs
was dealt with no advection and reaction terms. Besides the
higher complexity of the underlying PDE, the presence of
the advection and reaction poses a new challenge that the
open loop system is admitted to be unstable unlike that of
[Orlov, et al. 2014]. Due to this, the closed-loop stabiliza-
tion and disturbance attenuation are deeper analyzed to yield

the minimal number of required actuator-sensor pairs. Ad-
ditionally, the appropriate ISS framework is introduced in
the present work to better describe its contribution.

The structure of the paper is as follows. The present sec-
tion is concluded by the description of the adopted notation
and by an instrumental lemma to be used in the sequel. The
ISS problem of interest is formulated in Section 2 for scalar
reaction-diffusion-advection processes with point-wise col-
located sensing and actuation and with in-domain distributed
disturbances. The stabilizing synthesis is then developed in
Section 3, where the existence of the closed-loop trajectories
is addressed and the main stability results are presented. In
Section 4, the effectiveness of the proposed synthesis is sup-
ported by numerical simulations. Finally, Section 5 presents
some conclusions and discusses perspectives of the future
research.

1.1 Notation and instrumental lemma

The symbol K stands for the class of continuous and strictly
increasing functions γ : ℜ+ → ℜ+ such that γ(0) = 0 and
γ(t) > 0 for t > 0. Hℓ(a, b) with a ≤ b and ℓ = 0, 1, 2, . . .
denotes the Sobolev space of absolutely continuous scalar
functions z(x) on (a, b) with square integrable derivatives

z(i)(x) up to the order ℓ and the Hℓ-norm

‖z(·)‖Hℓ(a,b) =

√

∫ b

a

Σℓ
i=0[z

(i)(x)]2dx. (1)

Throughout the paper, the standard notations H0(a, b) =
L2(a, b) and L∞(a, b) are used as well. The symbol
L∞(0, T ;L2(a, b)) is reserved for the set of functions
f(x, t) such that f(·, t) ∈ L2(a, b) for almost all t ∈ (0, T ),
∫ b

a
f(x, t)φ(x)dx is Lebesgue measurable in t for all

φ(·) ∈ L2(a, b), and ess supt∈(0,T )

∫ b

a
f2(x, t)dx < ∞.

For ease of reference, the notations Lloc
∞ =

⋂

T>0 L∞(0, T )

and Lloc
∞ (L2(a, b)) =

⋂

T>0 L∞(0, T ;L2(a, b)) are in play.

Lemma 1.1 Let z(x) ∈ H1(a, b) and x1, x2 ∈ ℜ be such
that a ≤ x1 ≤ x2 = x1 + h ≤ b for some h ≥ 0. Then, the
following inequality

‖z(·)‖2L2(x1,x2)
≤ 2h

[

z2(xi) + h‖zx(·)‖2L2(x1,x2)

]

(2)

holds for i = 1, 2 and zx(·) = dz/dx.

Proof of Lemma 1.1. Given z(·) ∈ H1(a, b), it is absolutely
continuous and therefore,

z(η) = z(x1) +

∫ η

x1

zx(x)dx ∀ η ∈ [x1, x2]. (3)

Now squaring both sides of (3), exploiting the well-known
inequality 2ab ≤ a2 + b2, successively applying the Hölder
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inequality, and taking into account that η ∈ [x1, x1 + h] by
construction, one arrives at the next chain of inequalities

z2(η)≤ 2

[

z2(x1) +

(
∫ η

x1

zx(x)dx

)2
]

≤ 2

[

z2(x1) + (η − x1)

∫ η

x1

z2x(x)dx

]

≤ 2
[

z2(x1) + h‖zx(·)‖2L2(x1,x2)

]

. (4)

Integrating both sides of (4) with respect to η from x1 to x2
yields (2) with i = 1. The proof of (2) with i = 2 becomes
identical under the change of coordinate ζ = x2 − x. �

2 Problem formulation

Consider the space- and time-varying scalar field z(x, t),
evolving in the space L2(0, 1), with the spatial variable x ∈
[0, 1] and time variable t ≥ 0. Let it be governed by the next
perturbed parabolic boundary-value problem (BVP)

zt(x, t) = θzxx(x, t) + dzx(x, t) + λz(x, t) + f(x, t)

+

N−1
∑

i=2

bi(x) [ui(t) + ψi(t)] , (5)

zx(0, t) =−[u1(t) + ψ1(t)], (6)

zx(1, t) = uN(t) + ψN (t) (7)

of Neumann type where θ, d, λ are uncertain diffusion, ad-
vection and reaction coefficients, respectively, and f(x, t) is
an uncertain distributed disturbance of class Lloc

∞ (L2(0, 1)).
The control signals ui(t), i = 2, ..., N − 1 and matched
disturbances ψi(t) ∈ Lloc

∞ enter the in-domain control chan-
nels, which are characterized by their spatial localizations
bi(x) whereas u1(t) and uN (t) are manipulable boundary
control inputs, and ψ1(t), ψN (t) ∈ Lloc

∞ are boundary dis-
turbances. Along with this, the BVP is equipped with N
collocated sensors at the boundaries and in the interior of
the considered spatial domain.

The associated initial condition (IC) is

z(x, 0) = z0(x) ∈ L2(0, 1). (8)

Due to the simultaneous presence of the boundary con-
trol inputs and perturbations, invoking the usual compat-
ibility conditions z0(0) = u1(0) + ψ1(0) and z0(1) =
uN(1) + ψN (1) in the closed-loop setting appears to be
rather restrictive. Instead, the meaning of the BVP (5)-(7) is
subsequently viewed in the mild sense. For later use, recall
[Butkovskiy, 1982] that the mild solutions of (5)-(7) coin-
cide with the corresponding weak solutions of the so-called

standardizing PDE in distributions

zt(x, t) = θzxx(x, t) + dzx(x, t) + λz(x, t) + f(x, t)

+

N−1
∑

i=2

bi(x) [ui(t) + ψi(t)] + θ[u1(t) + ψ1(t)]δ(x)

+ θ[uN (t) + ψN (t)]δ(x − 1), (9)

subject to the homogeneous BCs

zx(0, t) = 0, zx(1, t) = 0, (10)

and to the same IC (8). Since the right-hand side of (9) con-
tains the Dirac distributions δ(x) and δ(x− 1), the meaning
of the BVP (9), (10) is defined indirectly according to the
weak solution concept (see, e.g., [Pazy, 2002]).

Definition 1 A continuous function z(·, t) ∈ H1(0, 1), sat-
isfying the BCs (10), is said to be a weak solution of the
BVP (9)-(10) on [0, τ) if for every ϕ(ξ) ∈ H1(0, 1), the

function
∫ 1

0 z(ξ, t)ϕ(ξ)dξ is absolutely continuous on [0, τ)
and relation

d

dt

∫ 1

0

z(ξ, t)ϕ(ξ)dξ = −θ
∫ 1

0

zξ(ξ, t)ϕξ(ξ)dξ

+d

∫ 1

0

zξ(ξ, t)ϕ(ξ)dξ +

∫ 1

0

[λz(ξ, t) + f(ξ, t)]ϕ(ξ)dξ

+

N−1
∑

i=2

∫ 1

0

bi(ξ) [ui(t) + ψi(t)]ϕ(ξ)dξ

+θ
[

u1(t) + ψ1(t)
]

ϕ(0) + θ
[

uN (t) + ψN (t)
]

ϕ(1) (11)

holds for almost all t ∈ [0, τ).

The weak solution concept (11) relies on the well-defined

action
∫ 1

0
ϕ(ξ)δ(ξ − ζ)dξ = ϕ(ζ) of the shifted Dirac dis-

tribution δ(ξ − ζ), ζ ∈ [0, 1] on an arbitrary test function
ϕ(ξ) ∈ H1(0, 1) and it is based on the integration-by-parts
property

∫ 1

0

zξξ(ξ, t)ϕ(ξ)dξ = −
∫ 1

0

zξ(ξ, t)ϕξ(ξ)dξ (12)

of the Sobolev derivatives of the H1(0, 1)-valued functions
under the BCs (10).

In the sequel, the spatial distribution functions of the in-
domain actuators are specified as follows. Let the points
0 = x1 < x2 < . . . < xN = 1 be taken equi-spaced in the
spatial domain [0, 1], i.e.,

xi = (i− 1)h, i = 1, 2, ..., N, h =
1

N − 1
. (13)

The points xi correspond to the fixed location of the col-
located in-domain and boundary sensing and actuation de-
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vices. The present investigation is confined to point-wise in-
domain actuators, which are located at (13) and contribute
to the state PDE (9) in a similar manner as those located at
the boundaries.

Thus, the spatial distribution function of the i-th in domain
actuator is assumed to be of the form

bi(x) = θδ(x − xi) (14)

of a Dirac distribution, located at the corresponding point
xi and pre-multiplied by the diffusivity parameter θ. Then
substituting (14) into (9) for the spatial localization functions
bi(x), i = 2, ..., N − 1 yields the next standardizing plant
PDE in distributions

zt(x, t) = θzxx(x, t) + dzx(x, t) + λz(x, t) + f(x, t)

+ θ

N
∑

i=1

δ(x− xi) [ui(t) + ψi(t)] , (15)

coupled to the homogenous BCs (10) and the IC (8).

The control objective is to properly design collocated con-
trol laws ui(t), rejecting the matched disturbances ψi(t)
while also attenuating the mismatched disturbance f(x, t).
Potential solutions of the closed-loop BVP (10), (15)
should then satisfy the exponential ISS inequality (see, e.g.,
[Dashkovskiy et al., 2013] for details)

‖z(·, t)‖2L2(0,1)
≤ e−βt‖z(·, 0)‖2L2(0,1)

+γ0
(

‖f‖L∞(0,t;L2(0,1))

)

+

N
∑

i=1

γi
(

‖ψi‖L∞(0,t)

)

(16)

for any IC (8), ∀t ≥ 0, ∀f ∈ Lloc
∞ (L2(0, 1)), ∀ψi ∈ Lloc

∞ ,
for some constant β > 0, and for some functions γj , j =
0, 1, . . . , N, of class K.

In addition, a question is addressed on how many collocated
actuator-sensor pairs are needed to guarantee the exponential
ISS property (16) with a pre-specified arbitrarily large decay
rate β.

The above ISS issues are subsequently treated under the
following assumption on the available information on the
uncertain system parameters.

Assumption 1 There exist a-priori known constants θ0 > 0,
D ≥ 0, and Λ such that

0 < θ0 ≤ θ, λ ≤ Λ, |d| ≤ D. (17)

�

Apart from this, an extra assumption on admissible magni-
tudes of the external disturbances is involved.

Assumption 2 There exist a nonnegative constant F and
a-priori known constants Ψi, i = 1, 2, ..., N such that

‖f(·, t)‖L2(0,1) ≤ F, |ψi(t)| ≤ Ψi ∀ t > 0. (18)

�

Since under Assumption 2 the exponential ISS property (16)
is enforced, the guaranteed closed-loop accuracy

‖z(·, t)‖2L2(0,1)
≤ σ0γ0(F )+σΣ

n
i=1γi(Ψi), t ≥ T (19)

can be achieved in a finite transient time T > 0with arbitrary
σ0 > 1 and σ > 1. Moreover, by employing sliding mode
control components, it becomes possible to read the closed-
loop accuracy (19) with σ = 0.

3 Control synthesis

The collocated feedback inputs

ui(t) =−kiz(xi, t)−Misign(z(xi, t)), i = 1, . . . , N (20)

are involved to attain the stated control objective by properly
tuning the proportional and switching gains ki ≥ 0 and
Mi ≥ 0.

The meaning of the closed-loop system (10), (15), driven by
the proportional-discontinuous feedback (20), is adopted in
the generalized sense [Orlov, 2000] as a limiting result ob-
tained through the regularization procedure, similar to that
proposed for finite-dimensional systems [Utkin, 1992]. Ac-
cording to this procedure, the weak solutions of the BVP
(10), (15), (20) are only considered whenever they are be-
yond any of the discontinuity manifolds z(xi, t) = 0, i =
1, . . . , N whereas in a vicinity of these manifolds the origi-
nal system is replaced by a related system, which takes into
account all possible imperfections in the new input functions
uδi (t) (e.g., delay, hysteresis, saturation, etc.) and for which
there exists a weak solution. A generalized solution of the
system in question is then obtained by making the character-
istics of the new system approach those of the original one.
As established in [Levaggi, 2002], such a generalized solu-
tion is nothing else than a weak solution of the multi-valued
closed-loop system (10), (15) with the switched feedback
(20), where the sign function is defined in the Filippov sense

sign(z) ∈















1 if z > 0,

[−1, 1] if z = 0,

−1 if z < 0.

(21)

The ISS analysis of the closed-loop system (10), (15) with
the switched multi-valued inputs (20), (21) is preceded by
establishing specific solutions of the resulting BVP to glob-
ally exist. The uniqueness of such a solution is actually
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questionable for potential sliding modes even in the finite-
dimensional setting with multi inputs [Utkin, 1992, Chapter
3] what is however irrelevant within the ISS analysis to be
conducted where all (possibly, non-unique) plant trajecto-
ries are required to exponentially decay according to (16).
The interested reader may refer to [Guo et al., 2015] for
uniquely determined Filippov solutions in the PDE setting
under a single boundary control input.

3.1 Existence of closed-loop trajectories

The aim of this section is to demonstrate that generalized
solutions of the BVP (10), (15) with the discontinuous in-
put (20) globally exist. To facilitate the exposition, a par-
ticular case N = 2 is addressed in depth. The general
treatment follows the same line of arguing by separately
viewing the coupled plant PDEs over the plant localizations
(xi, xi+1), i = 1, . . . , N − 1.

Passing back to the original plant representation, the closed-
loop system (10), (15), (20) with N = 2 is given by

zt(x, t) = θzxx(x, t) + dzx(x, t) + λz(x, t) + f(x, t)

−θδ(x) [M1sign(z(0, t))− ψ1(t)]

−θδ(x− 1) [M2sign(z(1, t))− ψ2(t)] , (22)

zx(0, t) = k1z(0, t), zx(1, t) = −k2z(1, t). (23)

In the sequel, potential dynamics of the BVP (22), (23) are
separately investigated out of the discontinuity surface and
along it. In the former case, the functions sign(z(0, t)) and
sign(z(1, t)) are single-valued whereas in the latter case of
the multi-valued sign function (21), potential sliding modes
along z(0, t) = 0 and/or z(1, t) = 0 are specified according
to the equivalent control method [Orlov, 2000], resulting in
the Neumann/Robin (mixed) BCs (23) with k1 = 0 and/or
k2 = 0 (dependent on whether the sliding mode is at the
left boundary and/or at the right boundary) and respectively
yieldingM1sign(z(0, t)) = ψ1(t) and/orM2sign(z(0, t)) =
ψ2(t).

For demonstrating a generalized solution of the multi-valued
BVP (22), (23) to globally exist, the invertible state trans-
formation

Q(x, t) = e
d

2θxz(x, t) (24)

is applied to the BVP (10), (15) (properly specified outside
and along the discontinuity surface) to simplify it to the one

Qt(x, t) = θQxx(x, t) + (λ− d2

4θ
)Q(x, t) + e

d

2θ xf(x, t)

−θδ(x) [M1sign(z(0, t))− ψ1(t)]

−θδ(x− 1)e
d

2θ [M2sign(z(1, t))− ψ2(t)] (25)

with no advection term, with the associated IC

Q(x, 0) = e
d

2θ xz0(x) ∈ L2(0, 1), (26)

and with Robin (mixed) boundary conditions

Qx(0, t) =
( d

2θ
+ k1

)

Q(0, t),

Qx(1, t) =
( d

2θ
− k2

)

Q(1, t). (27)

It is worth recalling that the sliding modes along the disconti-
nuity surface(s) z(0, t) = 0 and/or z(1, t) = 0 are governed
by the PDE (25) with nullified terms M1sign(z(0, t)) −
ψ1(t) = 0 and/or M2sign(z(1, t)) − ψ2(t) = 0, and with
BCs (27), specified with k1 = 0 and/or k2 = 0. In any case,
a generalized solution of such a BVP, is subsequently shown
to admit the Fourier expansion

Q(x, t) =
∞
∑

m=1

qm(t)rm(x), x ∈ [0, 1], t ≥ 0 (28)

in terms of the eigenfunctions rm(x) ∈ L2(0, 1), k = 1, . . .
of the Sturm-Liouville problem (cf. [Boyce et al., 1997],
[Karafyllis et al., 2016])

θrxx(x) = −µr(x),

rx(0) =
( d

2θ
+ k1

)

r(0), rx(1) =
( d

2θ
− k2

)

r(1). (29)

In L2(0, 1), the Sturm-Liouville problem (29) is actually
well-recognized [Butkovskiy, 1982] to possess an orthonor-
mal basis of the uniformly bounded eigenfunctions

rm(·) : max
x∈[0,1]

|rm(x)| ≤ R, m = 1, 2, . . . (30)

with some positive constant R and with corresponding real
eigenvalues 0 < µ1 < µ2 < . . . < µm < . . . such that

∞
∑

m=1

µ−1
m <∞. (31)

By substituting (28) into (25) and taking into account the
Fourier expansion of the shifted Dirac distribution 1

δ(x− ξ) =
∞
∑

m=1

rm(ξ)rm(x), (32)

1 In order to reproduce (32) it suffices to verify that the action∫
1

0

∑
∞

m=1
rm(ξ)rm(x)ϕ(x)dx =

∑
∞

k=1
ϕmrm(ξ) = ϕ(ξ) of

the right-hand side of (32) on an arbitrary test function ϕ(x) =∑
∞

m=1
ϕmrm(x), (as a matter of fact, admitting the standard

Fourier representation) coincides with that of the shifted Dirac
distribution δ(x− ξ).
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the solution Fourier modes qm(t), m = 1, 2, . . . prove to be
governed by

q̇m(t) =

(

−µm + λ− d2

4θ

)

qm(t) + fe
m(t)

−θrm(0)
[

M1sign(< q(t), r(0) >)− ψ1(t)
]

−θrm(1)e
d

2θ

[

M2sign(< q(t), r(1) >)− ψ2(t)
]

(33)

where

fe
m(t) =

∫ 1

0

e
d

2θ xf(x, t)rm(x)dx (34)

is the corresponding Fourier coefficient of the external dis-

turbance e
d

2θ xf(x, t) and

< q(·), r(·) >=
∞
∑

m=1

qm(·)rm(·). (35)

It follows that a potential solution (28) of the BVP (25)-(27)
can be represented in the integral form

Q(x, t) =

∞
∑

m=1

e

(

−µm+λ− d
2

4θ

)

t
q0mrm(x)

+
∞
∑

m=1

rm(x)

∫ t

0

e

(

−µm+λ− d
2

4θ

)

(t−τ)
{

fe
m(τ)

−θrm(0)
[

M1sign(Q(0, τ))− ψ1(τ)
]

−θrm(1)e
d

2θ

[

M2sign(Q(1, τ)) − ψ2(τ)
]}

dτ (36)

where

q0m =

∫ 1

0

Q(x, 0)rm(x)dx, m = 1, 2, . . . (37)

are the Fourier coefficients of the initial distribution (26).
In order to conclude that such a solution, formally sat-
isfying the BVP (25)-(27), does globally exist it suffices
to note that the right hand side of (36) is straightfor-
wardly verified to absolutely converge in L2(0, 1) for
any t ≥ 0, ∀f ∈ Lloc

∞ (L2(0, 1)), ∀ψ1, ψ2 ∈ Lloc
∞ , and

for any admissible value of the sign function (21). In-
deed, taking into account that due to (30), (31), the series
∑∞

m=1

(

µm − λ+ d2

4θ

)−1

rm(x) is absolutely convergent

for any x ∈ [0, 1], one derives

‖Q(x, t)‖L2(0,1) ≤ ‖Q(0, t)‖L2(0,1)e

(

−µ1+λ− d
2

4θ

)

t

+‖f‖L∞(0,t;L2(0,1))

∞
∑

m=1

(

µm − λ+
d2

4θ

)−1

+θ
(

M1 + ‖ψ1‖L∞(0,t)

)[

∞
∑

m=1

(

µm − λ+
d2

4θ

)−1

rm(0)
]

+θe
d

2θ

(

M2 + ‖ψ2‖L∞(0,t)

)

×
[

∞
∑

m=1

(

µm − λ+
d2

4θ

)−1

rm(1)
]

<∞ (38)

for all t ≥ 0.

Summarizing and extrapolating from N = 2 to an arbitrary
N , the following result is obtained.

Theorem 1 The BVP (10), (15) with the proportional-
discontinuous feedback (20) globally possesses a general-
ized solution for any IC (8), for any plant parameters (17),
for any controller gains ki,Mi ≥ 0, i = 1, . . . , N , and for
any f ∈ Lloc

∞ (L2(0, 1)), ψ1, ψ2 ∈ Lloc
∞ .

Proof of Theorem 1. In a particular case where onlyN = 2
boundary actuators were in play, it was explicitly shown that
by means of the invertible transformation (24), a general-
ized solution of the closed-loop BVP (10), (15), (20) can be
expressed in terms of a generalized solution of the auxiliary
system (25), (27), which admits the integral representation
(36) of the absolutely and uniformly convergent Fourier se-
ries (28). The extension of the proof to an arbitrary number
N of the available actuators is straightforward. Such a tech-
nical extension is however rather lengthy and its details are
left to the interested reader. �

3.2 ISS analysis

Once the closed-loop BVP (10), (15), (20) is established to
possess generalized solutions, its Lyapunov ISS analysis be-
comes eligible. Before applying such an analysis, suppose
that the collocated proportional-discontinuous output feed-
back (20) is tuned with non-negative switching gains Mi

and with proportional gains such that

k1 > 1 +
1

2
D, ki > 1, i = 2, ..., N − 1, kN ≥ 1

2
D. (39)

Provided that the numberN of actuator-sensor pairs is large
enough to meet the condition

N ≥max

{

1 +
β + 2Λ

θ0
, 0

}

(40)

with β being the decay rate from (16), the next result proves
to be in force.
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Theorem 2 Under Assumption 1 on the plant parameters,
consider the perturbed reaction-diffusion-advection process
(15) with the BCs (10) and arbitrary ICs (8). Let it be con-
trolled by the output feedback (20) with proportional gains,
tuned according to (39), with arbitrary switching magni-
tudes Mi, i = 1, . . . , N , and with sufficiently large actua-
tors number N , satisfying (40). Then the closed-loop system
is exponentially ISS so that (16) holds with

γ0 (r) :=

√
2

εβ
r, γj (r) :=

θ0
εβ
r, j = 1, . . . , N, (41)

and sufficiently small ε > 0 such that

θ0
h

− 2Λ−
√
2ε

2
> 0 (42)

ε < 2min

{

k1 −
D

2
− 1, ki − 1, kN − D

2

}

(43)

for i = 2, . . . , N − 1.

Proof of Theorem 2. Consider the Lyapunov functional can-
didate

V (z) =
1

2

∫ 1

0

z2(x, t)dx =
1

2
‖z(·, t)‖2L2(0,1)

. (44)

By applying the differentiation rule (11) (specified with
ϕ(ξ) = z(ξ, t), the spatial variable ξ = x, and the frozen
time instant t) to the generalized (weak) solutions of the
BVP (10), (15), the time derivative of V (z) = V (z(·, t))
along these solutions, which is for simplicity referred to as

V̇ (t), is evaluated as follows

V̇ (t) =

∫ 1

0

z(x, t)zt(x, t)dx = −θ
∫ 1

0

z2x(x, t)dx

+
1

2
d
[

z2(1, t)− z2(0, t)
]

+ λ

∫ 1

0

z2(x, t)dx +

∫ 1

0

z(x, t)f(x, t)dx

+ θ

N
∑

i=1

z(xi, t) [ui(t) + ψi(t)] dx. (45)

Estimating the right-hand side of the above relation (45)
by applying the well-known Hölder integral inequality (see,
e.g., [Abramowitz et al., 1974]) to its fourth term, then sub-
stituting the control law (20) into its fifth term, and finally

employing the plant parameter estimates (17), one arrives at

V̇ (t) ≤ −θ0‖zx(·, t)‖2L2(0,1)
+ Λ‖z(·, t)‖2L2(0,1)

+ ‖f(·, t)‖L2(0,1)‖z(·, t)‖L2(0,1) − θ0

N
∑

i=1

k̃iz
2(xi, t)

− θ0

N
∑

i=1

[Mi − |ψi(t)|] |z(xi, t)| (46)

where

k̃1 = k1 −
1

2
D, k̃N = kN − 1

2
D,

k̃i = ki, i = 2, . . . , N − 1. (47)

By applying the straightforward norm decomposition

‖z(·)‖2L2(0,1)
=

N−1
∑

i=1

‖z(·)‖2L2(xi,xi+1)
(48)

to the solution derivative zx(·), it follows that

V̇ (t) ≤ −θ0
N−1
∑

i=1

[

‖zx(·)‖2L2(xi,xi+1)
+ k̃iz

2(xi, t)
]

+ Λ‖z(·, t)‖2L(0,1)
+ ‖f(·, t)‖L2(0,1)‖z(·, t)‖L2(0,1)

− θ0k̃Nz
2(xN , t)− θ0

N
∑

i=1

[Mi − |ψi(t)|] |z(xi, t)|.

(49)

Now taking into account that relation (2) under sampling
(13) yields

‖zx(·)‖2L2(xi,xi+1)
+ k̃iz

2(xi, t) ≥ h‖zx(·)‖2L2(xi,xi+1)

+ z2(xi, t) +
(

k̃i − 1
)

z2(xi, t)

≥ 1

2h
‖z(·)‖2L2(xi,xi+1)

+
(

k̃i − 1
)

z2(xi, t) (50)

for i = 1, 2, ..N − 1, for h = 1/(N − 1) < 1, and for the
controller gains (39), inequality (49) is further manipulated
to

V̇ (t)≤− θ0
2h

N−1
∑

i=1

‖z(·)‖2L2(xi,xi+1)
+ Λ‖z(·, t)‖2L2(0,1)

+ ‖f(·, t)‖L2(0,1)‖z(·, t)‖L2(0,1) − θ0

N
∑

i=1

k∗i z
2(xi, t)

− θ0

N
∑

i=1

[Mi − |ψi(t)|] |z(xi, t)| (51)
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where

k∗i = k̃i − 1, i = 1, . . . , N − 1, and k∗N = k̃N . (52)

Since (48) ensures that the Lyapunov functional candidate
(44) satisfies the relation

N−1
∑

i=1

‖z(·)‖2L2(xi,xi+1)
= 2V (z), (53)

inequality (51) is simplified to

V̇ (t)≤−
[

θ0
h

− 2Λ

]

V (z)

+ ‖f(·, t)‖L2(0,1)

√

2V (z)− θ0

N
∑

i=1

k∗i z
2(xi, t)

− θ0

N
∑

i=1

[Mi − |ψi(t)|] |z(xi, t)|. (54)

The latter inequality verifies that relation (44) determines an
exponential ISS Lyapunov functional [Prieur et al., 2012].
Indeed, by taking into account the well-known inequality
2ab ≤ εa2+ε−1b2 , which is valid for arbitrary real numbers
a and b and for an arbitrary ε > 0 , (54) results in

V̇ (t)≤−
[

θ0
h

− 2Λ− ε√
2

]

V (z)

−θ0
N
∑

i=1

[

k∗i −
ε

2

]

z2(xi, t) +

√
2

2ε
‖f(·, t)‖2L2(0,1)

+
θ0
2ε

N
∑

i=1

ψ2
i (t). (55)

To complete the proof it remains to note that under condi-
tions (39), (40), (43), coupled to notations (47), (52), the

factors θ0
h
−2Λ−

√
2ε
2 and k∗i − ε

2 , i = 1, . . . , N are positive,
and with this in mind, applying [Khalil, 2002, Comparison
Lemma 3.4] to (55) yields the ISS property (16), specified
with (41). �

Theorem 2 presents the proportional gains tuning rules (39),
(40) for the closed-loop BVP (10), (15), (20) to be ISS in
the presence of mismatched disturbances, distributed over
the plant domain. Properly tuning the magnitudes of the
discontinuous components of the proposed feedback (20)
allows one to additionally reject the matched disturbances,
collocated with the available point-wise actuators. Such a
strengthened version of Theorem 2 is as follows.

Theorem 3 Let along with the conditions of Theorem 2,
Assumption 2 on the disturbance magnitudes be additionally
in force and let the proportional gain tuning rules (39), (40)
be accompanied with their counterpart

Mi >Ψi, i = 1, 2, ...N (56)

on the discontinuous control components. Then starting from
a finite time instant

T =
‖z0(·)‖L2(0,1)

(σ0 − 1)F
, (57)

dependent on the plant IC (8), relation

‖z(·, t)‖L2(0,1) ≤ γ2F, t ≥ T (58)

holds true with

γ2 =
2h

θ0 − 2hΛ
σ0, (59)

and an arbitrary parameter σ0 > 1 for all generalized so-
lutions z(·, t) of the closed-loop BVP (10), (15), (20).

Proof of Theorem 3. Under Assumption 2, the differential
inequality (54) on the Lyapunov functional (44) is simplified
to

V̇ (t)≤−
[(

θ0
h

− 2Λ

)

√

V (z)−
√
2F

]

√

V (z). (60)

The latter inequality ensures that the domain

√

V (z) ≤ σ0

√
2hF

θ0 − 2hΛ
(61)

is invariant and it is reached in finite time with any σ0 > 1.
Indeed, (60) guarantees that the differential inequality

V̇ (t) ≤ −
√
2F (σ0 − 1)

√

V (z) (62)

holds true outside of domain (61) whereas (62) ensures the
finite-time attractiveness of this domain with a transient time
T , estimated as follows

T ≤
√

2V (z0)

(σ0 − 1)F
. (63)

To complete the proof it suffices to note that by taking
into account the explicit Lyapunov functional representation
(44), the transient time estimate (63) and the attraction do-
main (61) itself are readily reproduced in terms of the state
z(·, t) of the plant in the form of (57) and (58). respectively.
�

4 Simulation results

Consider the BVP (15), (10), with parameters θ = 10,
d = 1 and λ = 2, distributed disturbance f(x, t) =
20sin(2πx)sin(10πt)) and collocated matched distur-
bances ψi(t) = sin(2πt) (i = 1, 2, ..., N ). Due to the
chosen disturbance profiles, the bounds in (18) take the
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value F = 20/
√
2 ≈ 14.14 and Ψi = 1. The IC is set as

z(ξ, 0) = 1 and the limiting values for the uncertain param-
eters, reported in (17), are taken as θ0 = 5, D = 2, Λ = 3.
In accordance with (39) and (56), the controller parameters
are set to ki =Mi = 2, i = 1, 2, .., N .

For solving the closed-loop PDE, a standard finite-difference
approximation method is used by discretizing the spatial so-
lution domain x ∈ [0, 1] into a finite number of 200 uni-
formly spaced solution nodes. The resulting 200-th order
discretized system is then solved by the fixed-step forward
Euler method with step Ts = 10−5.

First, the performance of the open-loop system is numeri-
cally analyzed. Figure 1 depicts the unstable spatiotemporal
profile of the solution z(x, t) with ui(t) = 0, i = 1, 2, .., N .

Fig. 1. Spatiotemporal solution profile in the open loop test

The disturbance attenuation problem is then addressed under
the pre-specified attenuation level γ2 = 0.1 for the attenua-
tion factor (59) appearing in (58) and the decay rate β = 10.
By applying relations (59), (13), (40), it turns out that at
least N = 32 actuator-sensor pairs are needed to guarantee
the desired disturbance attenuation level and and decay rate.
The corresponding closed-loop behaviour is shown in Fig. 2,
which reports the long-term time evolution of the L2 norm
‖z(·, t)‖0,0,1 (left-plot) and a zoom on the steady state pro-
file (right plot). The left plot shows clearly the finite-time
convergence towards the invariant domain (58). The zoom
in the right plot shows that the steady-state accuracy remains
within the guaranteed bound ‖z(·, t)‖0,0,1 ≤ γ2F ≈ 1.4,
specified according to (58), (59). As typical in the variable
structure control design, the actual accuracy appears to be
much higher than that predicted by the theoretical computa-
tions, what is due to the worst-case nature of the underlying
analysis.

To investigate how the number of actuator-sensor pairs varies
with the desired level of attenuation γ2, the computation of
the minimal number Nmin of required actuators has been
made by considering relation (59) with different values of
the desired attenuation coefficient γ2. The resulting diagram
is shown in Fig. 3 which highlights the inverse dependence
of Nmin on γ2.

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

Time [sec]

L
2
 norm of the solution

0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

0.02

Time [sec]

L
2
 norm of the solution (zoom)

Fig. 2. Solution L2 norm ‖z(·, t)‖0,0,1 in the closed loop test with
N = 32
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Fig. 3. Minimal number Nmin of actuator-sensor pairs vs. desired
attenuation coefficient γ2

Particularly, in order to attain the less restrictive disturbance
attenuation level γ2 = 0.2, compared to the value γ2 = 0.1
used in the previous test, one needs to utilize at leastN = 19
actuator-sensor pairs. While the left plot of Fig. 4 illustrates
that using 19 actuator-sensor pairs, the transient time remains
almost the same, the right plot of the figure shows that the
actual accuracy decreases by nearly two times as compared
with the previous test when 32 actuator-sensor pairs were
used.
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Fig. 4. Solution L2 norm ‖z(·, t)‖0,0,1 in the closed loop test with
N = 19

5 Concluding remarks

A variable-structure control system, using a finite number
of actuation and sensing devices, is suggested to address
the ISS of an uncertain reaction-diffusion-advection pro-
cess, affected by matched and mismatched disturbances. It
is shown that the level of the mismatched disturbance atten-
uation can be set arbitrarily, and the complete rejection of
the distributed disturbance is theoretically achievable when
the number of devices tends to infinity. Among the relevant
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problems to be attacked within the proposed framework, it
is of great interest to implement sampled-in-space second-
order sliding mode distributed controllers recently devel-
oped in [Orlov et al., 2011a,Orlov et al., 2011b]. Such con-
trollers are expected to attenuate the chattering phenomenon
which, due to the discontinuous nature of the control al-
gorithm, suggested in the present work, is a source of the
potential drawback in applications.
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