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ABSTRACT 24 

The phenolic fraction of a naturally fermented cultivar of table olives, “Tonda di Cagliari”, was 25 

investigated for the ability to protect Caco-2 cells against oxidative stress and membrane damage 26 

induced by tert-butyl hydroperoxyde (TBH). TBH exposure resulted in an alteration of cellular 27 

redox status, with an increase of ROS and a decrease of GSH level. A loss of the epithelial integrity, 28 

as indicated by the decrease of the transepithelial electrical resistance (TEER) value, was also 29 

observed over time, together with an intense lipid peroxidation process. The olives phenolic extract 30 

significantly counteracted ROS generation and subsequent alteration of monolayer integrity and 31 

membrane oxidative damage. The protective action of the extract is likely due to the scavenging 32 

ability of its main components, as hydroxytyrosol, oleuropein and verbascoside among the 33 

secoiridoids and derivatives. Since olives phenolic compounds concentrate in the intestinal lumen, 34 

they may be an useful tool in the prevention of intestinal disorders related to oxidative damage.  35 

 36 
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 38 

 39 

Practical Application: Naturally fermented table olives of the variety “Tonda di Cagliari” have 40 

been found to be rich in hydroxytyrosol, oleuropein and verbascoside. The olive phenolic fraction 41 

as a whole protected intestinal cells against oxidative damage, highlighting an added nutraceutical 42 

value. Likewise olive oil, they may be considered a good source of active phenolic compounds that 43 

may contribute to the maintenance of intestinal mucosal integrity. 44 



3 

 

Introduction 45 

Olives are a foundamental part of the Mediterranean diet, and a column of the Mediterranean 46 

social, cultural, and gastronomic heritage. They are widely acknowledged as an important source of 47 

health-protective nutrients, such as the oleic monounsaturated fatty acid, -tocopherol and many 48 

antioxidant polyphenols (Lanza 2012). Table olives phenolic fraction ranges from 1 to 3% of the 49 

fresh pulp weight, and can include more than 36 different compounds; its composition can vary 50 

both in quality and quantity depending upon the processing method, the cultivar, the agronomic 51 

practices, and the degree of olives maturation (Charoenprasert and Mitchell 2012). The main classes 52 

are represented by phenolic acids, phenolic alcohols, flavonoids and secoiridoids. Oleuropein is the 53 

most abundant phenolic compound found in green olives, and is the main responsible for the strong 54 

bitter taste of the fruit, making it unpalatable before processing. Unfortunately the technological 55 

process can lead to an important loss of phenolic compounds (Ben Othman and others 2009). The 56 

“Greek-style” or “natural method” involves a spontaneous fermentation, mainly driven by yeasts 57 

and lactic acid bacteria, which provides higher and appreciable amounts of phenolic compounds 58 

(Charoenprasert and Mitchell 2012). Thus, processed natural table olives still contain  significant 59 

amount of phenolic compounds, such as the phenolic alcohol hydroxytyrosol, derived from the 60 

hydrolysis of oleuropein, tyrosol, verbascoside, oleuropein, and flavonoids as apigenin, luteolin and 61 

its glycosilated form luteolin-7-glucoside (Boskou and others 2006; Marsilio and others 2005). The 62 

high content of hydroxytyrosol may confer important properties to table olives, since to this 63 

compound are ascribed several pharmacological activities, mainly related to its antioxidant 64 

properties (Hu and others 2014). The antioxidant capacity of the phenolic fraction of olives from 65 

different cultivars has been demonstrated in chemical experimental  trials, as the 66 

hypoxanthine/xanthine oxidase assay (Owen and others 2003), the reducing power assay (Pereira 67 

and others 2006; Malheiro and others 2011) and DPPH (2,2-diphenyl-1-picrylhydrazyl) method 68 
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(Malheiro and others 2014; Campus and others 2015; Boskou and others 2006). However, no 69 

studies, until now, have investigated the antioxidant properties of this fraction in cell cultures.  70 

The Caco-2 cell line is a widely used model for the study of epithelial barrier and tight junctions 71 

(TJ ) integrity (Peterson and Mooseker 1993). After confluence, these cells differentiate 72 

spontaneously, both structurally and functionally, into mature enterocytes (Pinto and others 1983), 73 

therefore artificially oxidative stress allows the evaluation of the protective capacity of target 74 

compounds and extracts against oxidative damage. Artificial oxidative cell injury can be carried out 75 

using TBH (tert-butyl hydroperoxide) that catalyzes the peroxidation of membrane lipids 76 

(Chamulitrat 1998), and structural changes such as the opening of TJ (Tomita and others 2002), 77 

generating free radicals. The effect of TBH upon Caco-2 cells well simulates the damaging action 78 

of dietary lipid hydroperoxides on the intestinal mucosa. The redox equilibrium alteration within the 79 

intestinal mucosa is deeply related to the onset and progression of the most common degenerative 80 

diseases (Biasi and others 2013). It has been reported that one of the most important sites of olive 81 

oil polyphenols action is the intestinal lumen (Halliwell and others 2005). Polyphenols concentrate 82 

in this district before absorption (Corona and others 2009a), contributing to the preservation of the 83 

intestinal mucosa integrity against oxidative damage. 84 

The present study aimed to evaluate the protective effect of the phenolic fraction of a naturally 85 

fermented table olives of “Tonda di Cagliari” cultivar , against the oxidative stress and membrane 86 

damage in Caco-2 cells. The protective action of the olives phenolic extract was evaluated as the 87 

ability to modify cellular redox status alteration (ROS production and GSH level), and to counteract 88 

the disruption of epithelial integrity, measured as transepithelial electrical resistance (TEER). The 89 

protective action against the oxidative damage of the membrane lipid fraction, was evaluated 90 

measuring the production of MDA, fatty acids hydroperoxides (HP), and 7-ketocholesterol (7-keto), 91 

together with the decrease of the levels of the membrane antioxidant -tocopherol.  92 

93 
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Materials and methods 94 

Chemicals 95 

 All analytical standards were at 95% certified purity (Sigma Aldrich). Methanol, acetonitrile, and 96 

hexane were of residue analysis grade, purchased from Carlo Erba (Milan, Italy), H3PO4 and other 97 

chemicals were of analytical grade (Carlo Erba). Phenol extract working solutions were obtained by 98 

appropriate dilutions of dried extract, obtained from homogenized olive pulp, to reach the amounts 99 

of 10, 25, 50, and 100 g/mL in the working media. Bradford protein assay and 2′,7′- 100 

dichlorodihydrofluorescein diacetate (H2-DCF-DA) were from Sigma-Aldrich. Cell culture 101 

materials were from Invitrogen (Milan, Italy) and transwell inserts from Corning Costar Corp. (New 102 

York, USA). 103 

Olive samples and fermentation procedure  104 

“Tonda di Cagliari” olives were harvested mechanically at the green-yellow ripe stage, from an 105 

irrigated olive orchard, located in the south of Sardinia, Italy (39°23'18.7"N 8°51'46.8"E). Fruits 106 

were sorted, discarding injured and defective ones, and graded (18-20 mm diameter), then washed 107 

under continuous stirring in chlorinated water. Olives were left to dry at ambient temperature,  108 

placed in sanitized HDPE vats (60 kg of olives), and filled with 40 L of brine at 7% NaCl. Salt 109 

percentage was kept constant throughout the whole process, checking its concentration with the 110 

Mohr method. The vats were kept at 27 °C in a thermostatic storage cell. The experimental design 111 

consisted of 3 trials with 3 repetitions (n=9).  When reaching a steady pH state the temperature 112 

inside the cell was kept constant at 24°C. After 9 months  of  debittering at final pH of 3.8, and 3 113 

months of simulated shelf life at 24° C, samples (1 Kg of olives for each repetition) were brought to  114 

the laboratory for the processing step. 115 

Preparation of the phenolic fraction 116 

Olives were randomly selected out of the batches and the kernel was removed. The resulting olive 117 

pulp was cut with a mincing knife into small pieces, homogenized with a blender, weighted in a 40 118 
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mL test tube, and extracted with a methanol/water (80/20) solution in a 1/2 ratio. The tube was 119 

stirred 2 min in vortex and agitated 15 min in a rotary shaker, thereafter hexane (1/5 of the methanol 120 

/ water solution volume) was added, and the resulting mixture was agitated for 10 min in a rotary 121 

shaker. The extraction mixture was then transferred in centrifuge falcon tubes (clarified 122 

polypropylene) of 15 mL and centrifuged at 3200 g for 10 min at 10 °C. The organic fraction was 123 

discarded and the methanolic/water solution collected, 1 mL was evaporated to dryness under 124 

nitrogenous stream at ambient temperature and recovered with 0.5 mL of syringic acid (15 mg/L) 125 

H3PO4 0.22 M solution, for HPLC analysis. Total phenolic content of the extract was determined 126 

with the Folin Ciocalteau method (Campus and others 2015). 127 

Characterization of the phenolic extract 128 

The characterisation and quantification of the main components was carried out by HPLC-DAD 129 

analysis, using an Agilent 1100 HPLC (Agilent Technologies, Milan, Italy) coupled with a DAD 130 

detector (UV 6000, Thermo Finnigan, Milan, Italy), and a Kinetex (5 m, 100 Å, 250 mm x 4.6 131 

mm, Phenomenex, USA) column. The analysis were carried out according to Campus et al. 132 

(Campus and others 2015) at 280 and 360 nm. Compounds identification was made by comparison 133 

with authentic analytical standards. Quantitative analysis were made according to the International 134 

Olive Council method ((IOC) 2009), using siringic acid as internal standard. 135 

Cell culture 136 

Caco-2 cells (ECACC, Salisbury, UK) were cultured in monolayers at 37 °C in a humidified 137 

atmosphere at 5% CO2 (Incani and others 2016). At passage 45–60, cells were plated at a density of 138 

about 1x105/mL and used when fully differentiated (21 days post seeding). The Bradford assay was 139 

used to determine cell protein concentration.  140 

Determination of intracellular ROS production 141 

ROS production in Caco-2 cells was determined using the fluorescent probe H2-DCF-DA, 142 

according to Atzeri et al. (Atzeri and others 2016), with minor modifications. Cells, grown and 143 
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differentiated in 96-well plates, were incubated with 10 µM of H2-DCF-DA in 100 µL of PBS for 144 

30 min. H2-DCF-DA was then replaced by the PBS solution containing the phenolic extract (10, 25 145 

and 50 µg/mL), 30 min prior to adding tert-butyl hydroperoxide (TBH) 2.5 mM and incubated for 146 

30 min. The increase in cell fluorescence was determined using an Infinite F200 (Tecan, Salzburg, 147 

Austria) auto microplate reader at 485 and 530 nm (excitation and emission wavelengths, 148 

respectively). Moreover samples were analyzed with the ZOETM Fluorescent Cell Imager (Bio-Rad 149 

Laboratories, Inc.), using the green channel with a blue LED (excitation: 480/17 nm; emission: 150 

517/23 nm) to the size of 100 µm.  151 

Determination of MDA level 152 

MDA concentrations, reported as percentage of the control samples, were determined in the 153 

supernatants as nmol of MDA equivalents produced per mg of protein, and were determined with 154 

the TBARS test and HPLC-DAD quantification (Agilent Technologies) (Deiana and others 2012).  155 

Determination of intracellular reduced glutathione (GSH) level 156 

GSH level was determined in Caco-2 cells, grown and differentiated in 6-well plates. Cells were 157 

treated with different amounts of the extract (10, 25, and 50 µg/mL in PBS), for 30 min. Thereafter 158 

TBH 2.5 mM was added and cells were incubated for 30 min. Cells were then scraped into 200 L 159 

of ice-cold PBS and centrifuged at 10000 g for 20 min at 4 °C. The pellet was used to determine 160 

GSH level through EC-HPLC quantification (Agilent 1260 infinity coupled with an electrochemical 161 

detector DECADE II Antec, Leyden, Netherlands) (Atzeri and others 2016).  162 

 Determination of α-tocopherol, fatty acids and cholesterol oxidation products 163 

α-tocopherol, 7-ketocholesterol (7-keto) and fatty acid hydroperoxides (HP) were obtained from the 164 

cell pellet by mild saponification of the lipid fraction (Deiana and others 2008). Separation and 165 

detection of 7-keto (at 245 nm) and HP(at 234 nm), was performed with an HPLC–DAD system 166 

(Agilent Technologies), while α-tocopherol was determined by HPLC-electrochemical detection 167 

(DECADE II, Antec) set at an oxidizing potential of 0.6 V (Deiana and others 2010). 168 
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Determination of transepithelial electrical resistance (TEER) 169 

Caco-2 cells were seeded in 12 mm i.d. Transwell inserts (polycarbonate membrane, 0.4 µm pore 170 

size) in 12-well plates. Before each experiment the monolayer integrity was checked by measuring 171 

the TEER value (Millicell-ERS system, Millipore, Bedford, MA). Cells in inserts with TEER values 172 

>300 Ω/cm2 were treated with the phenolic extract dissolved in MeOH (10, 25 and 50 µg/mL) and 173 

with TBH (2.5 mM) and incubated for 2 h (Deiana and others 2012). TEER was measured every 30 174 

min and reported as percentage of the corresponding TEER value at time zero (T=0).  175 

Statistical analyses 176 

Results are expressed as means ± standard deviations of triplicate values obtained in three 177 

independent experiments (n = 9). The statistical significance of parametric differences among sets 178 

of experimental data was evaluated by the one-way ANOVA test associated with Bonferroni’s 179 

multiple comparison post test using GraphPad InStat (GraphPad Software, San Diego, CA, USA).180 
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Results 181 

Characterization of the olives phenolic extract 182 

The most abundant compound in the olives phenolic fraction was hydroxytyrosol, with a 183 

concentration of 410.2 ± 15.8 mg/Kg fresh weight (Table 1), while tyrosol showed a concentration 184 

ten times lower. Among the secoiridoids and their derivatives, oleuropein and verbascoside showed 185 

amounts of 85.2 ± 11.2 and 47.8 ± 10.0 mg/Kg respectively. A substantial amount of the flavonoids 186 

luteolin and luteolin 7-glucoside was also detected.  187 

Determination of antioxidant activity 188 

The protective action of the phenolic extract was evaluated at non toxic concentrations in 189 

differentiated Caco-2 cells, exposed to the oxidizing action of TBH. After 30 min of incubation, 190 

TBH determined in the treated cells a significant production of intracellular ROS, with levels more 191 

than twice with respect to the controls, as indicated by the increase of fluorescence (Figure 1). 192 

Moreover a significant reduction of cellular GSH, around 50% of the initial value, was detected 193 

(Figure 2). Pretreatment with the phenolic extract, from 25 g/mL, counteracted TBH induced 194 

alteration of cellular redox status, with a significant and dose dependent decrease of ROS level and 195 

increase of GSH concentration. Cellular redox imbalance caused a significant alteration of the 196 

monolayer integrity with time (Figure 3), starting from 30 min of incubation, when the registered 197 

TEER value was 80% of the basal level. TEER values measured in monolayers treated with 198 

amounts from 25 g/mL of the extract were significantly higher than in those incubated without the 199 

extract at the same time points (60, 90 and 120 min; Figure 3). After 120 min of incubation TBH 200 

caused the complete loss of membrane integrity with TEER value close to zero (Figure 3). Under 201 

these experimental conditions (TBH 2.5 mM/120 min), an oxidative stress-dependent lipid 202 

peroxidation process determined a significant increase of oxidated products, such as fatty acids 203 

hydroperoxides (HP) and 7-ketocholesterol (7-keto), compared to controls (Figure 4). A two-fold 204 

increase of MDA level was also observed in TBH-treated samples (Figure 4). The lipid 205 
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peroxidation process also led to a significant decrease of -tocopherol, with a reduction up to 30% 206 

after 120 min of TBH exposure (Figure 5). Pretreatment with the phenolic extract significantly 207 

inhibited membrane oxidative damage. In presence of 25 g/mL of the extract, the production of 208 

HP and 7-keto was significantly reduced compared with oxidized samples, whereas MDA 209 

formation was inhibited at all tested concentrations. In addition the level of -tocopherol was 210 

completely preserved in samples pretreated with 25 and 50 g/mL of the extract (Figure 5). 211 

  212 

213 
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Discussion 214 

Table olives phenolic compounds  contribute to the color, taste and texture of the product 215 

(Marsilio and others 2001), as well as to the antioxidant capacity and related health benefits. The 216 

phenolic profile and its amount in table olives is related to several factors, among which the 217 

cultivar, the maturity state and the processing method play a major role. All processing methods 218 

may reduce the phenolic content of table olives by different ways. The Greek-style like method, 219 

where olives are directly put into brine and left to ferment, results in a final product that retains a 220 

good quantity of polyphenols (Charoenprasert and Mitchell 2012).  221 

The cultivar “Tonda di Cagliari” is a well-known olive used for the preparation of table olives. 222 

The chemical characterization of the extract revealed the presence of a high quantity of 223 

hydroxytyrosol, oleuropein and verbascoside, among the secoiridoids and derivatives, and luteolin, 224 

and luteolin 7-glucoside among the flavonoids. It has been reported that hydroxytyrosol, the most 225 

concentrated phenolic compound in the extract, is one of the strongest antioxidant in nature 226 

(Granados-Principal and others 2010), able to scavenge reactive species, both in the reaction 227 

medium and near the membrane surface (Paiva-Martins and others 2003), and lipid peroxyl radicals 228 

generated from membrane UFA and cholesterol (Deiana and others 2010). It is the only phenol that 229 

has been recognized by the European Food Safety Authority (EFSA) with a protective activity  on 230 

blood lipids from oxidative damage, when consumed daily within a balanced diet (EFSA 2011). A 231 

protective role of hydroxytyrosol against alteration of redox status and membrane oxidative damage 232 

in Caco-2 cells has been reported (Atzeri and others 2016; Deiana and others 2010). 233 

Hydroxytyrosol may permeate Caco-2 membranes (Corona and others 2006), thus its protective role 234 

may be exerted both inside and outside the cell.  235 

Oleuropein, present in significant amount in the extract, may also contribute to the overall 236 

antioxidant activity. Several in vitro and in vivo studies, recently summarized by Hassen et al.  237 

(Hassen and others 2015), have demonstrated its strong activity as a free radical scavenger and 238 



12 

 

metal-chelating agent,  related to the presence of phenolic hydroxyls and other active molecular 239 

sites (Hassanzadeh and others 2014). It has been shown that oleuropein and oleuropein rich extracts 240 

have gastroprotective effects, due to their ability to maintain cell membrane integrity and to 241 

strengthen the mucosal barrier, inhibiting lipid peroxidation and potentiating the activity of key 242 

cellular antioxidant enzymes (Alirezaei and others 2012). A substantial portion of oleuropein reach 243 

unmodified the lower gastrointestinal tract, where it is mainly metabolized in hydroxytyrosol by the 244 

colonic microflora (Corona and others 2006; Corona and others 2009b). Thus, oleuropein and 245 

hydroxytyrosol can have more significant direct antioxidant effects in the gastrointestinal tract than 246 

in other sites within the body. 247 

Verbascoside has shown to possess beneficial activities for human health, including antioxidant, 248 

anti-inflammatory and antineoplastic properties (Alipieva and others 2014). Thanks to its proton-249 

donating capacity, verbascoside is able to act as radicals scavenger (Wang and others 1996; 250 

Georgiev and others 2011), even if its antioxidant activity in biological systems seems to be mainly 251 

related to its capacity to enhance the activities and induce gene transcription of major cellular 252 

antioxidant enzymes (Alipieva and others 2014). Although there are no data on the bioavailability 253 

of verbascoside in humans, animal studies suggest that it can reach the intestine and can be 254 

absorbed in its intact form or after metabolization to simple phenols as hydroxytyrosol (Quirantes-255 

Pine and others 2013). Verbascoside may be rapidly incorporated in Caco-2 cells (Cardinali and 256 

others 2011) and HT 29 cells, where it has been shown to inhibit H2O2 induced oxidative stress, 257 

acting as free radicals scavenger (Cardinali and others 2012). Verbascoside also showed the 258 

capacity to inhibit lipid peroxidation and malondialdehyde generation in liposomal systems (Funes 259 

and others 2009). Being localized in some regions of the bilayer, it may act as a radicals scavenger 260 

in the surroundings of the membrane, thus preventing the lipid peroxidation process (Funes and 261 

others 2010). 262 
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The “Tonda di Cagliari” phenolic extract significantly counteracted the alteration of cellular 263 

redox status, inhibiting ROS generation and GSH level decrease and subsequent membrane 264 

oxidative damage. The protective action of the olives phenolic extract is likely due to the ability of 265 

its main components to scavenge TBH generated radicals or intermediate of reaction metabolites, as 266 

shown by the fluorescence data. The scavenging activity of the phenolic compounds present in the 267 

extract led to the blockade of the oxidation process in the early stage, thus maintaining barrier 268 

integrity, as shown by the higher TEER values measured in samples pretreated with the phenolic 269 

extract. Our data confirm that the structural changes of the TJ in Caco-2 monolayers are mainly due 270 

to the reactive species generated by TBH (Tomita and others 2002). These reactive species caused 271 

oxidative injury to enterocytes membrane, as shown by the increase of MDA and lipid peroxidation 272 

products. Pretreatment with the phenolic extract significantly inhibited membrane disruption and 273 

preserved -tocopherol level.  274 

The protective action of the phenolic extract has a great biological relevance. Changes in 275 

membrane fluidity and structure is a key event in the initiation and progression of mucosal barrier 276 

dysfunction, correlated to the onset of inflammatory and degenerative intestinal diseases (Biasi and 277 

others 2013). This is especially true in the colon, whose antioxidant capacity is low, in contrast to 278 

the high level of oxidizing species (Blau and others 1999). Therefore polyphenols together with 279 

their metabolites, may give a contribution to the redox environment, thus maintaining cell integrity 280 

and function. The consumption of naturally fermented table olives, in combination with olive oil, 281 

within a balanced Mediterranean diet, provide a large amount of important antioxidants. About 5-10 282 

table olives might cover the daily intake of polyphenols (Boskou and others 2006), providing an 283 

amount of sodium (around 5% in commercial products) (Lopez-Lopez and others 2004) that is not 284 

in contrast with dietary recommendation (Lanza 2012), except in the presence of hypertensive 285 

pathologies. 286 

 287 
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Conclusions 288 

The data reported showed that table olives “Tonda di Cagliari” processed with the “Greek style” 289 

or “natural method” yields a final processed product with peculiar antioxidant properties due to its 290 

phenolic composition, being rich in hydroxytyrosol, oleuropein  and verbascoside, and luteolin 291 

among flavonoids. The olives phenolic extract significantly prevented oxidative stress and 292 

membrane damage in Caco-2 cells treated with TBH, suggesting a protective role in the intestinal 293 

lumen, where they concentrate before absorption.  294 

 295 
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Table 1. Total phenols and main phenolic compounds identified in the Tonda di Cagliari pulp.  420 

 421 

  422 

 Tonda di Cagliari 

Compunds mg/Kg fresh pulp 

Total phenols 1507.80 ± 27.33 

Hydroxytyrosol 410.2 ± 15.8 

Tyrosol 44.0 ± 3.6 

Verbascoside 47.8 ± 10.0 

Oleuropein 85.2 ± 11.2 

Luteolin 105.9 ± 15.3 

Luteolin-7-glucoside 27.8 ± 15.5 

Apigenin 23.4 ± 3.3 
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 440 

 441 

 442 

Figure 1- ROS level, visualized as H2-DCF-DA fluorescence and expressed as % of the control samples 443 

(non oxidized nor pre-treated samples), in Caco-2 after 30 min incubation with TBH 2.5 mM and 444 

pre-treated with the phenolic extract (30 min). Values not sharing a superscript letter are 445 

significantly different (p < 0.05). 446 
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 463 

 464 

Figure 2 - GSH level, expressed as % of the control samples (non oxidized nor pre-treated samples), in 465 

Caco-2 after 30 min incubation with TBH 2.5 mM and pre-treated with the phenolic extract (30 466 

min). Values not sharing a superscript letter are significantly different (p < 0.05). 467 
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 486 

 487 

 488 

Figure 3 - TEER value in Caco-2 cell monolayers incubated with TBH 2.5 mM and different amounts of 489 

olives phenolic extract. All values reporting changes with time for each series are significantly 490 

different (p < 0.05). a=p<0.001 versus oxidized control (0 g/mL) at the same time. 491 
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 514 

 515 

Figure 4 - Values of fatty acids hydroperoxides (HP, A), 7-ketocholesterol (7-keto, B) and MDA (C) 516 

measured in Caco-2 cells after 2 h incubation with TBH 2.5 mM and pre-treated with the phenolic 517 

extract (30 min). Values not sharing a superscript letter are significantly different (p < 0.05). 518 
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 535 

 536 

 537 

Figure 5 - Values of -tocopherol, expressed as % of the control samples (non oxidized nor pre-treated 538 

samples), in Caco-2 after 2 h incubation with TBH 2.5 mM and pre-treated with the phenolic extract 539 

(30 min). Values not sharing a superscript letter are significantly different (p < 0.05). 540 

 

0

20

40

60

80

100

120

Control 0 10 25 50

α
-

to
c
o

p
h

e
r
o

l 
(%

 o
f 

th
e
 c

o
n

tr
o

l)

Phenolic extract (µg/mL) 

a

a

b
c

a


