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Abstract

This thesis represents an original contribution to knowledge on ordinal data, which con-

stitutes the leitmotif of the entire research product. Specifically, a short review of pref-

erence data presents the leading distance and correlations measures with a focus on two

weighted measures (i.e., distance and correlation). A simulation study investigates the

effect of introducing positional weights when preferences are analyzed through distance-

based approaches. The weighted correlation coefficient is then used as cost function

within an evolutionary algorithm for finding the consensus ranking. Then, we will focus

on analyzing ordinal data through probabilistic approaches, presenting a new tree-based

model, the Bradley-Terry Regression Trunk model (BTRT). Again, a simulation study

is conducted to evaluate the performance of the pruning procedure implemented in the

new algorithm. This model is applied on two different datasets: the first is composed of

self-reported data by students from the University of Cagliari; the second derives from

well-known databases and contains financial information about tax revenues by central

governments worldwide and their socio-economic characteristics. The BTRT model is ap-

plied to the first dataset to partition students based on their preference rankings about

the attributes they expect from an ideal professor. For the second dataset, the goal is

to apply the BTRT model for partitioning countries based on the size of their tax rev-

enues and how their socio-economic characteristics influence these revenues. The BTRT

model furnishes an easy-to-read partition in the form of a small regression tree, called

trunk, able to capture the interactions between covariates that cause the most significant

decrease in model deviance. Hence, it finds the best interactions between covariates by

simultaneously considering their main effects. Finally, the last chapter shows an advance

for the BTRT model by following the Mallows specification of the Bradley-Terry model.

The Mallows specification works on rankings instead of paired comparisons. It assumes

independence across the ranked objects so that the probability of observing a specific

ranking is proportional to the product of the estimated worth parameters for each ob-

ject. The BTRT model with the Mallows specification is applied to the financial dataset

to discover the causal effect between government expenditure and tax revenues.
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Chapter 1

Introduction

Analyzing ordinal data is ubiquitous in many scientific fields, such as social sciences,

economics, political sciences, computer science, psychometrics, behavioral sciences, and

many others. This thesis aims to resume the literature about a specific branch of ordinal

data, the preference data, when expressed as rankings or paired comparisons. Specifi-

cally, we will analyze preference data through distance-based approaches and probabilistic

models. The first is generally aimed at determining the ”consensus ranking” through the

minimization/maximization of distance/correlation measures. Hence, a short review will

be presented on the most common distance and correlation measures, focusing on two

position-weighted measures. The adoption of position weights allows calculating the ac-

curate distance between two rankings, considering where the differences occur (e.g., the

top-ranked objects or the last ones). The consensus ranking problem can be approached

through a new differential evolutionary algorithm when position weights are taken into

account. It aims at finding a solution for the search of the consensus ranking when differ-

ent weights are assigned to the different positioning of a set of objects within a ranking.

Finally, a study of simulations presents how the choice of position weights affects the

consensus ranking problem.

As far as probabilistic approaches are concerned, an innovative tree-based model

is presented for ordinal data expressed through paired comparisons. This approach is

based on the Bradley-Terry model and uses the specification of the STIMA algorithm

1



Chapter 1 Introduction

(Dusseldorp et al., 2010) for the construction of a particular regression tree called regres-

sion trunk. The combination of these tools gives rise to the Bradley-Terry Regression

Trunk model (BTRT), from which it is possible to obtain a breakdown of H individuals

based on the preferences expressed by them on no objects. The heterogeneity of individ-

uals is taken into account by considering their characteristics and how these interact with

the individuals’ choices. The main advantage of this model is finding interaction effects

when no a priori information is known about them. The model performance is computed

through a simulation study to choose the tuning parameter for the pruning procedure.

Then, we will show an application of the BTRT model to two different datasets. The

first one was collected at the Università degli Studi di Cagliari, where the first-year stu-

dents were asked to order a set of objects based on their preferences; the second dataset

is country-sectional and contains financial information on a set of countries worldwide.

Four government tax revenues categories are ranked based on their size for each country.

Given the high number of predictors, we apply a feature selection with the Bradley-

Terry-Luce Lasso method for the second application. Finally, we present an extension

of the BTRT model through the Mallows specification. This new model constitutes an

advance of the BTRT model. In the end, we apply this model to the dataset containing

financial data to investigate the causal relationship between government expenditure and

government tax revenues.

This thesis presents the candidate’s research products and is structured as follows:

The introductory Chapter 2.1 defines the preference data and the different methodologies

to analyze them. It focuses on the geometric representation of rankings and how to

analyze them with a distance-based approach. Here, we present an insight into a weighted

correlation coefficient for rankings and a simulation study on how position weights can

affect the calculations. Subsequently, Chapter 2.6 focuses on evolutive algorithms for the

consensus ranking problem, presenting the WDECOR algorithm for finding consensus

ranking through the maximization of a weighted correlation coefficient. Then, in Chapter

3.1, we move on to probabilistic approaches, focusing on a new tree-based model, the

Bradley-Terry Regression Trunk model. The subsections in this chapter show how the

algorithm works and how it performs through a simulation study. The model is applied

to the student’s dataset to include the procedure and results in Chapter 4.1. Chapter 5.1

PhD Thesis, Alessio Baldassarre 2



Chapter 1 Introduction

presents a study of tax data aimed at partitioning a set of countries worldwide based on

the ordering of their main tax revenues and their socio-economic characteristic. Chapter

6.1 presents an advance on the BTRT model through the Mallows specification and its

application to financial data. Finally, the conclusions are reported in Chapter 7.

PhD Thesis, Alessio Baldassarre 3



Chapter 2

Preference data

2.1 Introduction to preference data

Preference data are ordinal data and they can be expressed in several ways. However, for

the rest of this thesis, we will focus on preferences expressed as rankings, orderings, and

paired comparisons. Preference data are generally expressed through numerical vectors

or lists of objects, called rankings and orderings, respectively. While their meaning is

different, these terms will be used interchangeably. Specifically, H judges can express

their preferences relating to no objects by assigning values from 1 to no, where 1 indicates

the best-ranked object and no the worst. Sometimes, instead of assigning a numeric

score to each item, people can place in order the objects by forming a list in which the

preferences are stated simply by looking at the order in which each object appears in

the list. This list is called ordering (or order vector), and it can be transformed into

a ranking (or rank vector) when, given any arbitrary order of the set of the objects,

the rank of each of them is reported (Marden, 1996). For example, let four objects (A,

B, C, D) and the order expressed by the h-judge be (B, C, A, D), then the ranking

associated with this ordering is (3, 1, 2, 4). This expression indicates that object A

falls into the third position, while B and D are the most and least preferred objects.

The rankings indicate which object is preferred to another, but they do not offer any

information about the nature and intensity of this preference. Ordinal data do not have

4



Chapter 2 Preference data

metric information. Although the response options might be numerically labelled as

consecutive integers, the numerals only indicate order and do not indicate equal intervals

between levels. In fact, in the previous example, a ranking of this type (40, 2, 30, 70)

would keep the order expressed by the judge unchanged. When an individual assigns

different values from 1 to no to all objects, we speak of full rankings. If, on the other

hand, two or more objects are preferred in the same way, and they assume the same

position, then a tied (or weak) ranking is obtained. Finally, we speak of partial rankings

when judges express their preferences only on a subset of objects. The latter two cases

can be found in numerous datasets, to the point of considering their presence a rule

rather than an exception (D’Ambrosio et al., 2015). Sometimes objects are presented in

pairs to judges, producing the so-called paired comparisons: this could be the natural

experimental procedure when the objects to be ranked are similar, and the introduction of

others may be confusing (David, 1969). Given a ranking of no objects, it is always possible

to determine the relative no × (no − 1)/2 pairwise preferences. On the other hand, a set

of no × (no − 1)/2 paired comparisons does not always correspond to a ranking because

of the phenomenon of non-transitivity of the preferences. Such non-transitivity could

be avoided by ensuring that ‘individuals comparisons are independent or nearly’ (David,

1969, p. 11). In analyzing rank data, the goal is often to find one ranking that best

represents all the preferences stated by the individuals. When dealing with rank vectors,

this goal is known as the consensus ranking problem, the Kemeny problem, or the rank

aggregation problem (D’Ambrosio et al., 2019). When dealing with paired comparisons,

the goal is to determine the probability that objects i is preferred to object j for all the

possible pairs of them: the outcome is thus a probabilistic determination of the central

ranking (Kendall and Smith, 1940; Bradley and Terry, 1952; Mallows, 1957). Finding

the central ranking is a very important step when rank data are analyzed (Cook and

Seiford, 1982; Emond and Mason, 2002; Meila et al., 2007; Amodio et al., 2016; Aledo

et al., 2017) either as a final analysis tool, when homogeneity among people is assumed

or as a part of a more complex analysis strategy when heterogeneity among judges is

assumed.

The preferences can be visualized through a geometric representation within the

permutation polytope (Thompson, 1993; W. Heiser, 2004), a convex figure containing

PhD Thesis, Alessio Baldassarre 5



Chapter 2 Preference data

Figure 2.1: Generalized permutation polytope, full (and tied) rankings, three objects

all the permutations of the no objects to be classified. The polytope defined in Rno is

discrete, symmetrical, and finite space, with sides of equal size, a number of vertices

equal to no! and dimensions equal to no− 1. For this reason, the rankings space can only

be displayed when the objects are three or four. Its construction requires knowledge of

the number of objects involved in the analysis, and it is not necessary to have either the

preferences expressed by the judges or their frequency.

The permutations are arranged on the vertices so that in passing from one adjacent

corner to another, only one exchange is made between pairs of objects. With a number

of objects equal to three (A B C), the preference space is a two-dimensional hexagon,

equating to opposite vertices with full inverse rankings. If ties are allowed, the latters will

be arranged between one vertex and another, thus obtaining the generalized permutation

polytope, where, in the center, there is an all-tied ranking, which is a vector that considers

all objects in ties and equidistant from all other points of the hexagon. Figure 2.1 shows

the generalized permutation polytope of full and tied rankings with three objects.

With a number of objects equal to four, (A B C D), we obtain a truncated octa-

PhD Thesis, Alessio Baldassarre 6



Chapter 2 Preference data

Figure 2.2: Generalized permutation polytope, full and tied (in brackets) rankings, 4 objects

hedron of three dimensions and 24 vertices (Figure 2.2), formed by six squares and eight

hexagons, of which the first four always have the same object in the first position. The

remaining four hexagons indicate the same object as the least preferred on all vertices.

As for the squares, the vertices are associated with rankings that always show the same

pair of objects as a favorite.

The vertices of the polytope can be interpreted as the centers of gravity of the

objects. Therefore the truncated octahedron can be inscribed inside a pyramid whose

vertices act as poles of attraction. The centers of the four hexagons with the same object

in the first position are attracted to the vertex corresponding to the latter. Likewise, the

vertices of the pyramid represent poles of repulsion for the faces of the hexagons that are

in the opposite position. Figure 2.3 shows the truncated octahedron inscribed inside a

pyramid.

The distance between the vertices can be interpreted as the minimum number of

transpositions of adjacent objects necessary to transform one ranking into another. If ties

are allowed, the measure that best fits the permutation polytope is the Kemeny distance,

PhD Thesis, Alessio Baldassarre 7



Chapter 2 Preference data

Figure 2.3: Permutation polytope of 4 objects inscribed in a pyramid

which calculates the number of exchanges between pairs of objects necessary to trans-

form one (partial) ranking into another (Kemeny, 1959 ,W. J. Heiser and D’Ambrosio,

2013). All these geometric figures represent a valuable tool for various analyses, since

they allow the use of two measures commonly used to study full rankings, namely the

Kendall coefficient τ (see Section 2.2) and Spearman’s ρ. These indices provide a natural

geometric interpretation of the permutation polytope.

The Spearman index is proportional to the linear distance between the vertices of

the permutation polytope. Also, if the sides are of length equal to
√
2, then Spearman’s

ρ coincides with the Euclidean distance between two vertices. The Spearman distance

between two rankings R1 and R2 of no objects can be calculated as follows

d(R1, R2) =
no∑
i=1

(R1,i −R2,i)
2 (2.1)

From which the Spearman correlation coefficient ρ derives

PhD Thesis, Alessio Baldassarre 8



Chapter 2 Preference data

ρ = 1− 6
∑no

i=1 d(R1,i, R2,i)

n3
o − no

(2.2)

According to the approach of Deza and Deza, 2009, a distance metrics satisfies

three properties whose meaning is not always attributable to that of metrics. For values

A,B,C ∈ Rh, with Rh ̸= ∅ and judges h = 1, . . . , H :

1. d(R1, R2) ≥ 0 (non negativity)

2. d(R1, R2) = d(R2, R1) (symmetry )

3. d(R1, R1) = 0 (reflexivity)

If d satisfies the following conditions, then it is both distance and metric:

1. d(R1, R2) = 0 if and only if R1 = R2 (identity)

2. d(R1, R2) ≤ d(R1, R3) + d(R2, R3) (triangular inequality)

Distance and correlation represent two equivalent approaches calculations that can

give relevant information about the degree of agreement between rankings. It is, in fact,

demonstrable that the distance can be converted into a correlation coefficient through a

linear transformation. The correlation varies between ± 1: a value of -1 indicates that

the judges are in total disagreement, while the index is equal to +1 when the rankings

are equal. It is possible to convert any correlation coefficient to a distance through the

linear transformation d = 1− c. When the correlation is maximum, it is evident that the

distance assumes a value equal to zero. Similarly, starting from the distance value, the

correlation coefficient associated with it can be calculated (Edmond and Mason, 2002)

as follows

c = 1− 2d

Dmax

(2.3)

PhD Thesis, Alessio Baldassarre 9
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2.2 Kendall distance and correlation indexes

In 1938 Kendall provided his first contribution to the study of rankings which, despite the

work previously carried out by other authors, marked the starting point for the first wave

of contributions to the analysis of rankings, intended as a new branch of statistics. He

defined a distance measure that naturally fits the structure of the permutation polytope

(Kendall, 1938). Given two different rankings, R1 and R2, consisting of no objects, the

Kendall distance equals the minimum number of interchanges between adjacent objects

necessary to transform R1 into R2. For example, looking at Figure 2.1, the Kendall

distance between (A B C) and (B C A) is equal to two, since two exchanges between

pairs of adjacent objects are required to transform the first ordering into the second.

Given two rankings R1 and R2 a pair of objects i, j is defined as discordant if the

two judges have opposite relative preferences. In this case, Kendall’s distance will be

d(R1, R2) =
∑ ∑

1≤i≤j≤no

I[(R1,i −R1,j)(R2,i −R2,j) < 0], (2.4)

where I is the indicator function. If two judges express the following preferences R1 =

(A B) and R2 = (B A), then the associated rankings will be R1= (1 2) and R2 = (2 1).

In this case (R1,i − R1,j) indicates the difference between A and B in the first ranking.

Since A is preferred to lower than B, then it turns out that this difference equals to 1.

On the contrary, the second judge prefers B to A so that (R2,i −R2,j)= 1. The product

of these two differences is a negative value, and the indicator function is applied to this

result. We obtain that the distance between the two rankings is equal to 1. The Kendall

distance is widespread within numerous models, such as, for example, in the Mallows-ϕ

model (Mallows, 1957) discussed in Chapter 3.4 as a criterion for generating data samples

for a simulations study. Kendall introduced the concept of a ranking matrix (i.e., score

matrix) to calculate a correlation coefficient. Each rankings Ri of no objects is associated

with a matrix no × no whose elements αij are obtained as follows

PhD Thesis, Alessio Baldassarre 10
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αij =


+1 if i is preferred to j

−1 if j is preferred to i

0 if i and j are in tie or i=j

At this point the correlation between R1 and R2 with respective score matrices

αij and βij is defined as

τb(R1, R2) =

∑no

i=1

∑no

j=1αijβij√∑no

i=1

∑no

j=1α
2
ijβ

2
ij

(2.5)

Kendall defined τb as a ”measure of the proximity of the agreement between two

given rankings, in the sense that it measures how accurate one of the two rankings

would be if the other were objective” (Kendall and Smith, 1940). Before reaching this

conclusion, Kendall experimented with another index, called τa. It differs from τb for

the value expressed in the denominator, which corresponds to the maximum distance,

that is no × (no − 1). However, τa was little used because it does not satisfy the identity

property. In fact, in the presence of weak orderings, the correlation between a ranking

and itself is less than one (Emond and Mason, 2002). He showed that τb distributes like

a normal. However, it presents problems when ties are allowed. The correlation between

an all-tied ranking and another one is equal to the indefinite form 0/0. This result could

be treated as if it corresponded to a value equal to zero, but this would imply that the

correlation between the ranking mentioned above and any other, including itself, must be

zero. Furthermore, τb does not respect the triangular distance property and gives illogical

results even in simple cases. For example, for the following preferences (A B), (A B),

and (B A), for the criterion of maximum correlation, the consensus ranking is (A B).

However, when a third item C is entered, which the three judges rank last, the consensus

ranking becomes (A-B C), although expected to be (A B C). The introduction of the third

irrelevant object has produced a result such that A and B are in tie and, therefore, an

illogical solution. In conclusion, the Kendall distance correlation coefficient calculates the

disagreement between full rankings using the minimum number of interchanges between

adjacent objects necessary to transform one ranking into another. This index works

PhD Thesis, Alessio Baldassarre 11
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satisfactorily when ties are not allowed.

The Kendall correlation index τ can be considered as a ”disorder coefficient”

because it is linked to the Kendall distance as shown in equation 2.6.

τ = 1− 2d

no(no − 1)/2
(2.6)

This equivalence between a correlation and a distance measure highlights their connection

with the permutation polytope and demonstrates their fundamental importance for the

study of rankings: the natural distance measure defined on the permutation polytope is

the Kendall distance. Given two different rankings on the permutation polytope of no

objects, the Kendall distance counts the total number of steps to migrate from R1 and R2

by reversing adjacent pairs of objects (W. Heiser, 2004). The value in the denominator

is equal to the maximum computable distance on no(no−1)
2

pairs of objects.

2.3 Kemeny distance and the score matrix concept

In 1962 Kemeny & Snell proposed a set of four axioms applicable to any distance index

d(R1, R2) between two weak orderings R1 and R2 of no objects Kemeny and Snell, 1962

1. d(R1, R2) ≥ 0 and assumes a value equal to zero if and only if R1 = R2;

2. d(R1, R2) = d(R2, R1);

3. d(R1, R2) + d(R2, R3) ≥ d(R1, R3);

4. If R′
1 and R′

2 result from the same permutation of objects applied to both R1 and

R2, then d(R1, R2) = d(R′
1, R

′
2);

5. If R1 and R2 coincide except for a set S of k objects, then d(R1, R2) could be

computed as if these k objects were the only ones classified;

6. The minimum positive distance is equal to 1.

PhD Thesis, Alessio Baldassarre 12
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The first three axioms, already shown before, concern the properties that each

distance must respect to be considered as a metric. The fourth axiom guarantees that

no permutation of objects from their initial position is decisive for calculating distance

(invariance to random permutations). Axiom 5 requires consistency in measurement

when the number of objects varies, so if two rankings of no objects indicate the same

preferences, except for a subset of k objects placed in the middle of the ranking, then

only the latter will be considered for the distance calculation. This condition ensures

that the inclusion of irrelevant alternatives does not affect consensus ranking. Finally,

the last axiom requires that the distance is also a unit of measurement. Kemeny & Snell,

referring to Kendall’s studies, proved that only one metric satisfies these axioms. They

followed the procedure illustrated for the construction of the score matrix αij and arrived

at the following formulation

dKem(R1, R2) =
1

2

no∑
i=1

no∑
j=1

|αij − βij| (2.7)

This formula allows to calculate the distance between two rankings R1 and R2, even in

the presence of ties and partial orderings, in terms of the interchanges required between

pairs of adjacent objects to transform one (partial) ranking into another. If ties are

allowed, it is preferable to use Kemeny’s distance; otherwise, it leads to the same results

as Kendall’s distance. The procedure for constructing the score matrices associated with

each ranking is identical to that described above for Kendall’s distance. For example,

if R1 = (A,C,D,B) and R2 = (C,B,D,A) then the score matrixes associated with the

two rankings R1 = (1 4 2 3) and R2 = (4 2 1 3) are shown in Figure 2.4.

For the Kemeny distance, the point-by-point differences of these matrices must be

added in absolute value. Since the result must be divided by two, this is equivalent to

making the following calculation

dKem(R1, R2) = 8 (2.8)

Note that, for the formula no × (no − 1), the maximum distance that can be

PhD Thesis, Alessio Baldassarre 13
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Figure 2.4: Score matrices α and β associated to rankings R1 and R2, respectively, where R1 = (1 4

2 3) and R2 = (4 2 1 3)

calculated between rankings of four objects is equal to 12. In the case shown, the distance

between R1 and R2 is equal to 8, the two judges are in disagreement regarding only two

preferences (both prefer the object C to D and B). The distance between two rankings

R1 and R2 can be calculated with an analogous formula in which the sign function is

present. This variant generates the same results as the one seen previously and is set out

for the sake of completeness

dKem(R1, R2) =
no∑

i<j=1

|sgn(R1,i −R1,j)− sgn(R2,i −R2,j)|, (2.9)

where i < j. This formula does not require the construction of score matrices: the

distance between the two rankings is calculated by applying the sign function to the

difference between objects i and j. The sign function returns different values depending

on the results obtained. The differences and the presence of the absolute value make this

procedure similar to that which requires the construction of the score matrix. Indicating

with ∆ the resultant of the difference (R1,i − R1,j), the score matrices are composed by

the following values
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sgn(∆) =


+1 if a > 0

−1 if a < 0

0 if a = 0

Kemeny and Snell applied dKem to the search for the median ranking, defined as

that point in the rankings space Zno more in agreement with the preferences expressed

by the judges. When ties are allowed, the number of all possible rankings of no objects

is equal to

1

2

(
1

ln(2)

)no+1

no! (2.10)

The larger no is, the larger the space the search is carried out becomes (Gross,

1962). More formally, given a set of H rankings RH
i=1, the median ranking S is that

point (or those points) for which the sum of the distances between it and all the others

is minimal.

H∑
i=1

d(Ri, S) = min, (2.11)

with S ∈ Zn

Similarly, the median ranking can be searched through the correlation coefficient

obtainable from the distance measure using the linear transformation seen previously.

Therefore, the median ranking can be considered as that point in the space of rankings

such that the sum of the correlations between it and all the others is maximum.

H∑
i=1

τ(Ri, S) = max (2.12)
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2.4 Edmond and Mason extended correlation coeffi-

cient

Due to the problems related to the Kendall correlation coefficient for the search for

consensus ranking, Edmond & Mason,(2002), proposed an extension of this index and

reviewed the concept of ”interchange” treated by Kendall. They applied the two-step

method of half-flip for rankings without ties. Two adjacent objects (A B) can be inter-

changed with a first half-flipping in such a way as to form a tie (A-B), to then be divided

and swapped positions in a second step (B A). The distance between rankings admits

ties and is closely related to the new correlation coefficient τx proposed by Edmond &

Mason. They proved that this index satisfies the Kemeny-Snell axioms as well as the

distance calculated with the half-flip. Note that the two passes of the half-flip form a

single interchange in Kendall’s distance. The extended correlation coefficient τx differs

from Kendall’s one in the way ties are treated. A weak ordering R1 of no objects can

be represented by a new score matrix of size no × no, whose elements α∗
ij take on the

following values

α∗
ij =


+1 if i is preferred to j or if they are in tie

−1 if j is preferred to i

0 if i = j

The correlation between R1 and R2 is given by the point-by-point product of their

associated matrices α∗ and β∗

τx(R1, R2) =

∑no

i=1

∑no

j=1 α
∗
ijβ

∗
ij

no(no − 1)
(2.13)

This index is identical to Kendall’s τa when ties are not allowed. Otherwise, the

Edmond & Mason coefficient differs since ties assume a value equal to 1 rather than 0.

The denominator indicates the maximum distance calculated on the entire score matrix

so that the coefficient can assume a maximum value equal to ad 1. The matrix of scores
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associated with a ranking has extra-diagonal values equal to ± 1. However, if partial

orderings are allowed, there may be cells whose value equals 0. This means that there is

no information about the preference for that pair of objects. It should also be specified

that the method proposed by Edmond & Mason is based on a different interpretation of

the concept of a tie: the assignment of the same value to multiple objects by a judge

does not imply indifference. Indeed, this means that that judge would be fully satisfied

if the final choice fell on all the objects that he likes equally. Therefore, equality can be

interpreted as a positive declaration of agreement between two or more objects. Given

H weak rankings RH
h=1, each of these can be associated with a weight wi related to the

importance of the preference expressed by a judge over the others. At this point, the S

ranking is sought that maximizes the weighted average correlation between it and all the

other H rankings

∑H
h=1whτx(S,Rh)∑H

h=1wh

(2.14)

By replacing the coefficient with the formula seen above and indicating with sij

the score matrix associated with the consensus ranking, the condition to be checked is

the following

∑H
h=1wh(

∑no

i=1

∑no

j=1 sijα
h
ij)

no(no − 1)
∑H

h=1wh

= max, (2.15)

where αh
ij is the score matrix, as defined by Edmond & Mason, associated with the

ranking Rh. For the maximization problem, the denominator can be ignored. By moving

the sum of the weights within the parenthesis to the numerator, the final expression to

be maximized is obtained

no∑
i=1

no∑
j=1

sijcij, (2.16)

where cij =
∑H

h=1whα
h
ij. This matrix is given by the sum of all the scores matrices

and is called a combined input matrix. It contains all the information about the starting
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data set, so the search for the consensus ranking becomes faster since it will be enough to

calculate the product point by point between the score matrices of the candidate rankings

and the combined input matrix. The ranking that maximizes this product will solve the

research problem of consensus ranking (Emond and Mason, 2002, p. 23). The combined

input matrix satisfies the following properties

1. If cij = 0 ∀i, j, then each ranking constitutes a solution;

2. If sgn(cij) = 1 ∀i, j, then the solution is an all tied ranking;

3. If the combined input matrix is a valid score matrix, the only solution is that

ranking represented by that same matrix.

The latter case rarely occurs. Unfortunately, the space of possible consensus candidate

rankings expands as the number of objects no increases; in fact, three objects correspond

to 13 weak orderings, four objects correspond to 75, and so on. To solve this issue, al-

gorithms have been implemented, such as branch-and-bound (Emond and Mason, 2002),

which in the presence of weak orderings of about 20 objects provide a solution (or more

solutions) in a reasonable amount of time.

2.5 Position weights for distance and correlation mea-

sures

Garcıa-Lapresta and Pérez-Román, 2010, introduce in the distance calculation the possi-

bility of weighting the discrepancies between weak orderings to take into account where

such disagreements occur. They start from the assumption that in some decision prob-

lems, it may be helpful to understand whether the judges’ choices differ about the objects

classified in the first positions rather than in the last ones. The introduction of different

weights allows guesses where these discrepancies occur. Bosch, 2006, introduced the con-

cept of consensus measure as an index that assigns a number from 0 to 1 to any linear

order and satisfies three properties:
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1. Unanimity: for each subgroup of agents, the highest degree of consensus is reached

only in the case in which all individuals express the same preferences;

2. Anonymity: the degree of consent does not undergo variations as a result of per-

mutations of agents;

3. Neutrality: the degree of consent does not vary as alternatives are exchanged.

Garc̀ıa-Lapresta and Pérez-Romàn extended these properties to weak orders, in

which ties between objects are allowed, and considered two other properties that consen-

sus measures should satisfy:

1. Maximum dissent: in each subset of two agents, the minimum consent occurs when-

ever linear orders represent the agents’ preferences, and each of these is the inverse

of the others;

2. Reciprocity: if all the orders are reversed, the consensus does not change. They

pointed out that Kemeny distance does not consider the position in which there is

disagreement among the judges.

For example, given a set of objects (A B C D) and three rankings R1, R2, R3 a situation

like this can occur:

R1 = (A B C D);

R2 = (A B D C);

R3 = (B A C D).

The first ranking R1 and the second R2 differ for the objects ranked in the last position.

By calculating the Kemeny distance, we obtain that dKem(R1, R2) = 2. Conversely, R1

and R3 differ for the choices in the first position. The third judge prefers object B

to A. Similar to the previous case, we obtain that dKem(R1, R3) = 2. Despite this,

it seems reasonable that the first ranking is more similar to the second than the third

since it is only in the last positions that there is a discrepancy between R1 and R2. For

this reason, Garc̀ıa-Lapresta and Pérez-Romàn introduce the weighted Kemeny distance.

Given a vector of weights w = (w1, ..., wno−1) ∈ [0, 1]no−1 such that
∑
wi = 1 and
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w1 ≥ ... ≥ wno−1, the weighted Kemeny distance between two weak orderings A and B

is defined as follows

dK,w(R1, R2) =
1

2

[
no∑

i<j=1

wi|sgn(Rσ1
1,i −Rσ1

1,j)− sgn(Rσ1
2,i −Rσ1

2,j)|+

+
no∑

i<j=1

wi|sgn(Rσ2
2,i −Rσ2

2,j)− sgn(Rσ2
1,i −Rσ2

1,j)|,
(2.17)

where:

• σ1, σ2 long to the set of permutations Sno that can be performed at no objects;

• σ1, σ2 are such that Rσ1
1 = Rσ2

2 ≡ (1, 2, ..., no);

• (R1,1, .., R1,no) ≡ R1, (R2,1, .., R2,no) ≡ R2

By applying this formula to the previous example, we obtain that dK,w(R1, R2) = 1/3

and dK,w(R1, R3) = 1. The introduction of weights confirmed what seemed logical and

had not been possible to deduce with the use of unweighted distance measures. This

weighted distance has the following properties:

1. dK,w is a neutral distance in the set of weak orderings;

2. dK,w does not always verify the triangular inequality;

3. dK,w checks the identity property if and only if wn−1 > 0;

4. The maximum distance is max(dK,w) = 2
∑no−1

i=1 (no − 1)wi

The exact distance can be calculated using the construction of the score matrices α and

β with the Edmond and Mason method. In this case the formula becomes:

dK,w(R1, R2) =
1

4

no∑
i=1

no∑
j=1

[
wij

(∣∣ασ1
ij − βσ1

ij

∣∣+ ∣∣βσ2
ij − ασ2

ij

∣∣)] (2.18)
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Figure 2.5: Score matrices of weights applied to each ranking of no objects. Note that the vector of

weights require no − 1 values. It is like we assign a weight equal to zero to the last object, even if, given

the score matrix structure, we don’t see this value.

Note that wij is the asymmetric matrix of weights of size no×no associated to the

vector of weights w = (w1, ..., wno−1). Given a set of objects R = (a, b, ..., no), the score

matrix of weights is shown in Figure 2.5.

The attribution of different weights to each object allows calculating the distance

between rankings giving appropriate relevance to the alternatives presented to the judges.

The final aim is to find that ranking is more in agreement with the others, and, as seen

in the previous chapters, this problem can be solved by using an appropriate correlation

coefficient (Plaia and Sciandra, 2019). As with weighted distance, it is possible to adopt

a correlation index that attributes the right weight to each object to be classified. This

index respects the Kemeny axioms and can be obtained through a linear transformation

operated on the weighted distance. Starting from the weighted Kemeny distance and

using the formula that transforms a distance into a correlation index, Plaia et al., 2019,

presented an extension of the correlation coefficient proposed by Edmond & Mason.

Given two rankings, R1 and R2, of no objects, the weighted correlation between the two

is equal to
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τwx (R1, R2) =

∑n
i<j=1 a

σ1
ij b

σ1
ij wi +

∑n
i<j=1 b

σ2
ij a

σ2
ij wi

2
∑n−1

i=1 (n− i)wi

, (2.19)

where:

• αij, βij represent the score matrices built on rankings R1 and R2 by following the

Edmond and Mason procedure;

• σ1, σ2 belong to the set of permutations S applicable to no objects;

• σ1, σ2 are such that ασ1 = βσ2 ≡ (1, 2, ..., no);

• wi is the weight vector w = (w1, ..., wno−1).

This index satisfies the equality that links the weighted distance dK,w to the coefficient

τx,w through the following linear transformation

τx,w(R1, R2) = 1− 2d(R1, R2)

dmax

(2.20)

The correlation coefficient is an index that allows faster and more natural interpre-

tations than the distance. For this reason, it may be appropriate to prefer a correlation

measure for finding and interpreting the median ranking (or social choice). Due to its

complexity, the determination of social choice may require the use of computational

methods such as, for example, genetic algorithms belonging to the broadest class of evo-

lutionary algorithms. The following paragraph will show how they work, focusing on a

specific algorithm capable of identifying the ranking that best represents the set of pref-

erences when a set of weights occurs. Subsequently, we will proceed with an exposition

of some simulations and applications designed to verify how introducing a set of weights

can affect the detection of the final consensus ranking.
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Figure 2.6: A generic process of differential evolution

2.6 TheWeighted Differential Evolutionary algorithm

for finding Consensus Ranking (WDECoR)

Evolutionary algorithms constitute a set of meta-heuristic methods used successfully in

problems of great complexity. They are inspired by the process of evolution and the

Darwinian theory of natural selection. Specifically, given a population of individuals,

the data is perturbed to generate a selection that improves results. Usually, an initial

population is randomly generated, made up of potential solutions, and then adopts a

function that acts as an adaptation measure. The initial population is mutated based on

a mechanism by which the best mutation persists and takes the place of the previous one.

Through an iterative process, the population evolves generation by generation, leading

to continuous optimization. Among these algorithms, the most famous are the genetic

algorithms. Differential evolution solves optimization problems through alterations and

selection operators. The method uses a fixed number P of vectors x, which constitute

the initial population in each generation G. This set is chosen randomly. The method

used to generate new vectors plays a key role, as the mutation and crossover operations

depend on it. If the new vector fits the results better than the previous one, then the new

one takes the place of the old one in the next generation. For each generation, the best

individual is memorized, that is, the vector xbest,G, which minimizes the cost function.

For the research of the consensus ranking, the method called ”Differential Evolu-

tionary for Consensus Ranking” (DECoR) was proposed and implemented in ConsRank

R package (D’Ambrosio et al., 2019). The algorithm requires as cost function to be min-
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imized the sum of the Kemeny distances between the consensus S and all the rankings

represented by the combined input matrix cij.

cost(S) =
H∑

h=1

wh
no(no − 1)

2
[1− τx(cij, sij)] (2.21)

Note that taux(cij, sij) is the coefficient that measures the correlation between the com-

bined input matrix cij and the consensus candidate ranking sij. Furthermore, wk indicates

the frequency of the k-th ranking. It acts as weight within the cost function but should

not be confused with the weights mentioned in the previous paragraph, which do not

represent frequencies, but the weight attributed to each object within the classification.

cost(S) is none other than Kemeny distance multiplied by the frequency of each ranking.

From the linear transformation, it is possible to resort to the following formulation

[1− τx(cij, sij] =
2d(cij, sij)

no(no − 1)
(2.22)

By replacing this value, the cost function to be minimized is obtained

cost(S) =
H∑

h=1

wh
no(no − 1)

2

2d(cij, sij)

no(no − 1)
(2.23)

Once the appropriate simplifications have been made, it is clear that the cost function to

be minimized is the distance, weighted by the frequencies, between the combined input

matrix and the consensus candidate ranking

cost(S) =
H∑

h=1

whd(cij, sij) (2.24)

Note that d(cij, sij) is identically equal to the sum of the distances between all rankings

contained in the combined input matrix and the candidate for consensus ranking. There-

fore, if we had three rankings A,B,C, whose respective score matrices are represented

by α, β, γ, we obtain the following equivalence, valid for both distance and correlation
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d(cij, sij) = d(aij, sij) + d(βij, sij) + d(γij, sij) (2.25)

τx(cij, sij) = τx(aij + βij + γij, sij). (2.26)

When different weights are attributed to objects classified by the judges, it is

necessary to resort to this equality since it is impossible to substitute the formula of

distance or weighted correlation in Equation 2.15. In fact, such weighted calculations

would require the construction of a weighted combined input matrix and permutations,

which would lead to meaningless results. For this reason, when calculating the dis-

tance/correlation between multiple rankings with the adoption of weights, the sum of

the weighted distances/ correlations between each ranking of the starting dataset and

the consensus candidate is used. This procedure increases the computational cost of the

consensus ranking search. The combined input matrix constitutes a synthesis of all the

data available, so its use would speed up the search for consensus ranking. Future studies

and insights are directed in this direction to solve this problem and be able to use more

efficient evolutionary algorithms, which quickly return solutions even in the presence of

weighted objects. The operation of the DECoR algorithm is summarized below as a

pseudo-code:

• input: population size NP and number of generations L in which no improvements

appear (arbitrary stop criterion)

• population initialization;

• the best ranking of the first generation is stored;

• while repeat until improvements are made (number of improvements ¡L);

• for i loop = 1:NP ;

• Evolution = population mutation;

• Evolution = population crossover;

• Evolution = population discretization;
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• If cost of evolution ≤ cost of the h-th ranking of the population:

• the h-th ranking of the population = evolution;

• End of cycle for;

• the best of this generation is stored;

• If the cost of the best of this generation is equal to the cost associated with the best

of the previous generation, then the number of missed improvements L increases

by one, otherwise L = 0;

• End while loop

• output: all the best solutions obtained in the last generation.

For a complete description of DECoR refer to D’Ambrosio et al. (2016). Note that the

DECoR algorithm includes the input parameters F and CR, corresponding to the scale

factor and the crossover ratio. These two parameters are used to change the initial popu-

lation through the following procedure: three different individuals are chosen at random,

and a new vector is generated, then the crossover is applied, which consists in generating

random numbers between 0 and 1 for each element vector. If these random numbers are

more significant than the crossover ratio, the values are accepted and represent a solu-

tion; otherwise, the current index values remain. The R function DECORcore descends

from the DECoR algorithm, which recalls the primary function of the more generic ver-

sion. Several simulations show that the algorithm is accurate, although it often provides

optimal local and not global solutions. DECoR is more robust and faster than other algo-

rithms and has the same accuracy as branch-and-bound and other heuristic algorithms.

When the number of objects is less than 50, it is preferable to use the QUICK algorithm

(Amodio et al., 2016). If, on the other hand, the number of objects is greater than 100,

DECoR provides a solution much faster than the QUICK algorithm. A weakness of the

DECoR, and all the heuristic algorithms, is the phase of choosing the parameters F and

CR.

As explained several times, we often resort to the use of weights in order to

attribute greater or lesser importance to the objects of the classification. In this case,
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it is not possible to use the DECoR algorithm to search for the consensus ranking,

as it requires the combined input matrix as input. Calculating the weighted Kemeny

distance and its correlation coefficient requires the performance of permutations on the

rankings and the objects’ weighing procedure, operations that should be applied on the

combined input matrix and require more in-depth studies. The WDECoR differential

evolutionary algorithm is introduced to solve this problem, which is a weighted version of

the code shown above. It follows the same scheme illustrated by the pseudo-code, with

the difference that the cost function to be minimized is the weighted Kemeny distance.

At the same time, the solution is represented by that ranking that maximizes the sum of

the weighted average correlations between it and all the rankings present in the starting

data set.

The Weighted Differential Evolutionary for Consensus Ranking (WDECoR) is an

algorithm that searches for solutions efficiently and reasonably quickly. The higher the L

index selected as an input, the more expensive the search for consensus ranking will be,

but at the same time, it will provide solutions more similar to the global solution. If the

default parameters are left unchanged1, the algorithm returns solutions in about thirty

seconds for a data set consisting of ten rankings and ten objects. The research time

increases as the number of classified objects increases. When there are more than ten, it

is recommended to reduce the value of L. However, this solution is not optimal in terms

of results, as the algorithm will return local solutions that can be very different from

the actual consensus ranking. A crucial point is how fast solutions are found when the

number of rankings is high and only a few objects are ranked. For example, if the starting

data set contains twenty rankings and five objects with unchanged input parameters, the

output is returned in about ten seconds. Several simulations show that the time to search

for consensus rankings increases more than proportional to the increase in the number

of objects, but the increase will be less than proportional when the number of judges

increases.

In the previous paragraphs we presented weights as values belonging to the vector

of the type w = (w1, ..., wno−1) ∈ [0, 1]no−1 such that
∑
wi = 1, with w1 ≥ · · · ≥ wno−1.

1population size NP=15, generations limit L=50, scaling rate for mutation FF=0.4, crossover range

CR=0.9, search in the space of all possible permutations FULL=FALSE
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However, it is necessary to investigate the nature of this vector and its influence on the

rank aggregation problem. The choice of the weights to assign to the items affects the

solutions obtained at the end of the research phase of the consensus ranking. Assigning

zero weight to more than one object means focusing on the remaining alternatives. In

order to investigate if the choice of the weights affects the determination of the consensus

ranking, numerous simulations were carried out on data sets generated randomly. Specif-

ically, the data were simulated through the Mallows-ϕ model, in which it is assumed that,

given a consensus σ, a distance index d and a real parameter λ, the density function of

a Uniform random variable is the following

fλ(R;σ) = exp(λd(σ,R)− ψ(λ)), (2.27)

where R is a ranking and ψ is a normalization factor. The closest ranking to the median

ranking has a higher probability of being extracted and this is due to the parameter λ,

which quantifies the concentration of the distribution around the central value. In general:

if λ tends to minus infinity, then the sum of the distances between all the rankings and

the consensus is equal to zero (the rankings are all equals); if λ tends to infinity, then the

sum of the distances is maximum; if λ is equal to zero, then the probability of extraction

is equal for each ranking. When Kendall distance is used, the model is called Mallows-ϕ

model. With Spearman distance, it is referred to as Mallows-θ model. Some authors

define Equation 2.27 by setting the parameter λ with a negative sign. In this case, the

density function becomes

fλ(R;σ) =
exp(−λd(σ,R))

ψ
(2.28)

Hence a different interpretation of the concentration parameter: the higher the

value of λ, the stronger the consensus around the ranking σ. Conversely, when λ is very

low, a non-consensus situation is obtained. Finally, the interpretation of the parameter

does not vary if it is zero. When using the Kendall distance, the distribution of the

distances is known, so it is possible to estimate the parameter λ through the maximum

likelihood method. The maximum likelihood estimate of λ can be obtained, for example,
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with the central limit theorem or with the Newton-Raphson algorithm.

The simulations were carried out following the approach such that λ is a negative

value using the R software and the ConsRank and PerMallows (Irurozki et al., 2016)

packages . In the latter, the rmm function generates samples of H permutations from

the Mallows model. In order to obtain generalizable results, ten samples composed of

50 and 100 rankings were generated, each of them composed of 5, 10, and 15 objects.

Furthermore, three different absolute values of λ were chosen, namely 0, 0.4, and 0.8. The

verification of these cases led to the generation of 180 data sets on which the consensus

ranking was calculated using unweighted indices and, specifically, using the QuickCons

function belonging to the ConsRank package. Subsequently, two weight vectors were

introduced: w1 that assigns a weight to each position as specified by Garc̀ıa-Lapresta

and Pérez-Romàn; w2 that assigns a weight equal to 0.5 to the first two positions and 0

to all the others. At this point, the search for consensus ranking was carried out on all

data sets through the weighted distance and correlation indices using theWDECORcore

function. Finally, the consensus ranking obtained without weights was compared with

those obtained through the first and second weight vectors for each sample. The design

factors are summarized as follows:

• observations H = 50, 100;

• objects no = 5, 10, 15;

• λ = 0, 0.4, 0.8;

• w1 = decreasing weights;

• w2 = 0.5 for the first two objects, 0 to the others.

At the end of the search, the code returned a list of ten result matrices. We

compare the results obtained in the three procedures for each of them. For example, the

first matrix of results calculated on a dataset of 100 rankings and five objects, for which

a value of λ of zero has been chosen, is shown in Table 2.1.
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Matrix #1 A B C D τx

Cons 4 3 2 1 0.062

Consw1 4 3 2 1 0.055

Consw2 3 2 2 1 0.049

Table 2.1: First matrix of results calculated on a dataset of H = 100 rankings, no = 5 objects, and

λ = 0. The first row is the consensus ranking when no set of weights is introduced. The second row

represents the consensus ranking when applying decreasing weights as specified by Garcia-Lapresta and

Perez-Roman. The last row is the consensus ranking obtained when only the first two positions are

weighted.

The first row corresponds to the consensus ranking (with the relative correlation

coefficient in the last column) obtained with the calculation of the Kemeny distance; the

second row is obtained by weighing all the objects; the last row represents the one for

which only the first two objects are weighed. The first and second methods return the

same solution, albeit with a different correlation index. On the other hand, by assigning

values equal to 0.5 to the first two positions, a different solution is obtained, in which A

and B are respectively in the third and second position. This is just one of the many

observable cases for which it is necessary to resort to an approach that makes the results

of the analysis generalizable. In order to verify that the consensus ranking calculated

with the Kemeny distance and the one calculated with the first weight system is the same

for most of the datasets, it may be convenient to calculate the correlation τx between

these two. In the previous case in Table 2.1 it translates into calculating the correlation

between the first and second row of the observed matrix. Repeating this calculation for

the remaining nine matrices belonging to the list of results obtained from the datasets of

size 100× 5 with λ equal to zero, it is clear that the two methods generate results whose

correlation is close to one.

The results indicate that the two methods return in six result consensus rankings

with a correlation equal to one. The average of the column values is equal to 0.91. It

can therefore be said that for the ten samples extracted from a data set consisting of 100

rankings, 5 objects and with a λ equal to zero, the method that assigns a weight to each

object leads to results very similar to those obtained without the adoption of the weights
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Matrix τx(Cons, Cons
w1)

#1 1.0

#2 1.0

#3 0.9

#4 1.0

#5 1.0

#6 1.0

#7 0.6

#8 0.8

#9 0.8

#10 1.0

Table 2.2: The Table shows in the second column the correlation coefficient τx between the first two

rows of the 10 matrices. For instance, the first value 1 is the correlation between Cons and Consw1 in

Table 2.1

themselves.

Carrying out the same procedure for all the result matrices, as λ increases, an

increase in the average value of the coefficients shown in the column is noted. Specifically,

on samples of 100 rankings and 5 objects, with λ = 0.4 the average of the column values is

0.93, while with λ = 0.8 the average rises to a value equal to 0.94. The same comparison

method cannot be extended to the case in which only the first two positions are weighed.

When a weight of zero is assigned to a position, the latter will assume a null value within

the calculation of the weighted correlation index. The only evidence from the simulation is

that this weighting method generates different solutions from those obtained in the other

two cases. The matrices that compare the results of the three methods can be the subject

of numerous other analyzes, including the two-factor analysis of variance (ANOVA). The

simulation shows that by varying the weights adopted, more or less different consensus

rankings can be obtained. Further research into weighting methods could bring out

valuable results for those who must make decisions based on the preferences of other

individuals. One of the main limitations of weighted approaches is that different judges

can give different relevance to ranking positions. Giving greater weight to the objects in
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the first positions, what weight to assign to the latter, and the differences in terms of

results are the further questions to be asked following what has been demonstrated in

this paragraph.

Here, we conducted further investigations to better understand how the choice

of weights affects the final results in terms of consensus ranking. We use a dataset

collected in 2019 at the Università degli Studi di Cagliari, where 100 first-year students

were asked to rank five different objects (1) from the most interesting to the least one,

(2) from the most difficult to the easiest one, and (3) from the most time consuming to

the least one. The objects are the sequent: A = business, B = mathematics, C = law,

D = microeconomics, E = statistics. The survey was conducted at the end of the first

academic year so that all the participants had enough information to create a ranking

of the five subjects. The simulations purpose is to investigate the correlation between

the dispersion parameter λ presented in Equation 2.28 and the extended correlation

coefficient τx in Equation 2.13. Recall that λ is a spread parameter of the Mallows

model that quantifies the concentration around the consensus ranking. So, the larger the

lambda, the stronger the consensus. If lambda is equal to zero, then each ranking in the

universe is equally likely. Three different weight vectors were chosen to check for any

changes in the solution obtained:

• w1 = (0.4, 0.3, 0.2, 0.1, 0);

• w2 = (0.5, 0.5, 0, 0, 0);

• w3 = (0.8, 0.2, 0, 0, 0).

The first weights vector w1 assigns decreasing values as suggested by 2.17. The

second, w2, assigns the same value to the first two positions of the rank. Finally, the last

weighs vector w3 assigns values to the first two positions only. For each of the three parts

of the dataset (i.e., (1) interest, (2) difficulty, and (3) time), we calculate the estimated

λ̂ with the function lmm.theta within the PerMallows R package. As result, the three

parts of our dataset present three different and increasing values of concentration. In the

specific, the concentration around the consensus ranking is greater when the students
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were asked to rank the five subjects based on the time of preparation for the exam.

Starting from the estimated values λ̂, we generated ten datasets for interest, difficulty,

and time, by using the rmm function within the PerMallows package. The input are the

number of rows 100, the estimated λ̂, and the consensus ranking. Table 2.3 summarizes

data by showing, for each part of the dataset, the estimated λ̂, and the consensus rankings

when using no weights, w1, w2, and w3.

Table 2.3: Simulation results: for each part of the dataset (i.e., interest, difficulty, and time), we show

the estimated dispersion parameter λ̂ (as specified in Eq. 2.28), the consensus ranking without weights

Cons, the consensus rankings with the weights w1, w2, and w3. The extended correlation coeffient τx

(Eq. 2.13) is reported in parenthesis. For each part of the dataset, the objects are the same: A =

business, B = mathematics, C = law, D = microeconomics, E = statistics.

(1) Interest (2) Difficulty (3) Time

λ̂ = 0.35 λ̂ = 0.63 λ̂ = 0.8

Cons ADECB (0.28) ECADB (0.46) CEADB (0.56)

Consw1 ADECB (0.31) ECADB (0.51) CEADB (0.57)

Consw2 DACEB (0.28) EACDB (0.52) CEADB (0.61)

Consw3 ADECB (0.34) ECABD (0.61) ECADB (0.57)

As expected, assigning decreasing weights to each object does not cause output changes.

But, if we assign a weight of 0.5 only to the first two positions, then we get different

results in the first two datasets. In fact, the weighted consensus rankings show different

preferences in the top two positions. Finally, in the last case, the consensus ranking for

dataset time is the only one that changes from the unweighted case. Looking at the last

column, the solutions are very similar to each other regardless of the method chosen.

Several simulations showed that as the concentration parameter of the Mallows model

grows and the number of objects decreases, the weights allocation has a lesser impact on

the results of the analysis. So, it is possible to say that the assignment of weights can

generate different solutions, but these differences depend on the weight vector w chosen,

the concentration λ of judges’ preferences around the consensus ranking, the correlation

coefficient τx associated with the consensus ranking, and the number of objects no.
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A new probabilistic approach: the

Bradley-Terry regression trunk

3.1 Probabilistic approach

Preference rankings, and generally ordinal data, can be analyzed with several statisti-

cal models and methodologies, both supervised and unsupervised. Among these, there

are methods based on the goodness-of-fit adaptation and probabilistic methods (W. J.

Heiser and D’Ambrosio, 2013; Marden, 1996). The first category includes methods such

as Principal Component Analysis (Carroll, 1972), Unfolding (Busing et al., 2005; Bus-

ing et al., 2010; Coombs, 1950, 1964; Van Deun et al., 2007), Multidimensional Scaling

(W. J. Heiser and De Leeuw, 1981; Hooley, 1993) and Categorical Principal Component

Analysis (Meulman et al., 2004). These methods are intended to describe the structure of

rank data. On the other hand, the probabilistic methods can assume a homogeneous or

heterogeneous distribution of judges. In the first case, they focus on the ranking process

assuming solid homogeneity among the judges’ preferences. In the second one, the meth-

ods are aimed at modeling the population of judges assuming substantial heterogeneity

in their preferences. When homogeneity is assumed, probabilistic methods are based

on the so-called Thurstonian models (Thurstone, 1927), distance-based and multistage

models (Bradley and Terry, 1952; Luce, 1959; Mallows, 1957; Thurstone, 1927), mixtures
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of Bradley-Terry-Luce models, mixtures of distance-based models (Croon, 1989; Gorm-

ley and Murphy, 2008a; Murphy and Martin, 2003), and probabilistic-distance methods

(D’Ambrosio et al., 2019). The probabilistic methods that assume heterogeneity are

based on a reasonable concept: different groups of subjects with specific characteristics

may show different preference rankings (Strobl et al., 2011). Such heterogeneity can be

accounted for by introducing subject-specific covariates, from which mixtures of known

sub-populations can be estimated. In most cases, the methods that consider covariates

are based either on generalized linear models (Böckenholt, 2001; Chapman and Staelin,

1982; Dittrich et al., 2000; Francis et al., 2002; Gormley and Murphy, 2008b; Skrondal

and Rabe-Hesketh, 2003) or recursive partitioning methods (i.e., tree-based) (D’Ambrosio

and Heiser, 2016; Lee and Yu, 2010; Plaia and Sciandra, 2019; Strobl et al., 2011).

There is relatively little work about tree-based models for rankings in the literature.

Dittrich et al., 2000, proposed a parametric model for the analysis of rank-ordered pref-

erence through the Bradley-Terry (BT) type models when categorical subject-specific

covariates are observed. Their idea was to transform the (complete) rankings data into

paired comparisons and apply a log-linear model for a corresponding contingency table.

The authors proposed a procedure for researching the interaction effects between covari-

ates by applying a forward selection and backward elimination procedure. This approach

is well suited for hypothesis-based modeling. However, this model requires an adequate

selection of the covariates and a distinct choice of the functional form in which these

covariates are added to the model (Strobl et al., 2011). For this reason, when no a priori

hypotheses are known, it requires the arbitrary introduction of higher-order interactions.

Strobl et al., 2011, proposed a tree-based classifier, where the paired comparisons

are treated as response variables in Bradley-Terry models. They found a way to discover

interactions when no a priori hypothesis is known, suggesting a model-based recursive

partitioning where splits are selected with a semi-parametric approach by looking for

instability of the basic Bradley-Terry model object parameters. The final result provides

the preference scales in each partition group that derives from the order of object-related

parameters, but it does not offer information about how the subject-specific covariates

affect the judges’ preferences. Therefore, this semi-parametric model returns beta coeffi-

cients neither for the main effects nor for the interaction effects between the covariates.
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Recently, Wiedermann et al., 2021, extended the Strobl model by combining the

log-linear Bradley-Terry (LLBT) model with the model-based recursive partition (MOB)

for detecting treatment effect heterogeneity. They proposed a semi-parametric model

which distinguishes between focal independent variables and covariates for recursive par-

tition. A score-based procedure, the M-fluctuation test (Zeileis and Hornik, 2007; Zeileis

et al., 2008), is used to assess the stability of model parameters, and the pruning proce-

dure is conducted using the AIC.

To overcome the drawbacks characterizing the works of Dittrich et al., 2000 and

Strobl et al., 2011, we propose an utterly parametric approach that fits a generalized lin-

ear model with a Poisson distribution by combining its main effects with a parsimonious

number of interaction effects. Our proposal is framed within the Simultaneous Thresh-

old Interaction Modeling Algorithm (STIMA) proposed by Dusseldorp et al., 2010 and

Conversano and Dusseldorp, 2017 that, in the case of a numerical response, is based on

the Regression Trunk Approach Dusseldorp and Meulman, 2004. The differences with

the Wiedermann model are due to the different split search procedures based on the

MOB model. As pointed out by the authors, the testing procedure for the split search

can be very challenging (Wiedermann et al., 2021). They use the M-fluctuation test

to research the best split covariates, while our method is based on the easy-to-compute

decrease in deviance by following the regression trunk approach within the STIMA algo-

rithm. Both methods can deal with continuous or categorical subject-specific covariates,

even if our algorithm does not deal with nominal covariates. Furthermore, as in the

Wiedermann model, in the STIMA algorithm, it is possible to distinguish between fo-

cal predictors and partitioning covariates, choosing the treatment variable as the first

split variable. Dealing with paired comparisons, our approach combines the extended

log-linear Bradley-Terry model, including subject-specific covariates with the regression

trunk. Thus, the proposed model is named Bradley-Terry Regression Trunk (BTRT).

It produces an estimated generalized linear model with a log link and a Poisson distri-

bution presenting the main effects part and an interaction effects part, the latter being

composed of a restricted number of higher-order interactions between covariates that

are automatically detected by the STIMA algorithm. The interaction effect part can be

graphically represented in a decision tree structure, called trunk, because few terminal
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nodes usually characterize it. Hence, BTRT allows observing the preference scale in each

trunk node and evaluating how the probability of preferring specific objects changes for

different groups of individuals. The final result is a small tree that represents a compro-

mise between the interpretability of interaction effects and the ability to summarize the

available information about the judges’ preferences.

3.2 The Bradley-Terry model

The model proposed by Bradley and Terry, 1952, is the most widely used method for

deriving a latent preference scale from paired comparison data when no natural measuring

scale is available (Strobl et al., 2011). It has been applied in psychology and several other

disciplines. Recent applications include, for example, surveys on health care, education,

and political choice (Dittrich et al., 2006) as well as psychophysical studies on the sensory

evaluation of pain, sound, and taste (Choisel and Wickelmaier, 2007) or in prioritization

of balance scorecards (Rodŕıguez Monteqúın et al., 2020). The paired comparison method

splits the ordering process into a series of evaluations carried out on two objects at a

time. Each pair is compared, and a decision is made based on which of the two objects

is preferred. This methodology addresses the problem of determining the scale values of

a set of objects on a preference continuum that is not directly observable.

Let π(ij)i denote the probability that the object i is preferred in the comparison

with j. The probability that j is preferred is π(ij)j = 1− π(ij)i. The basic Bradley-Terry

model can be defined as in Agresti, 2002, p. 436-439

π(ij)i =
πi

πi + πj
, (3.1)

where πi and πj are non-negative parameters (also called worth parameters) describing

the location of objects on the preference scale.

The BT model can be expressed as a logistic model for paired preference data.

Suppose to have a set of no objects to be judged. The BT model can be defined as a

quasi-symmetry model for paired comparisons with object parameters λOi such that
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logit(π(ij)i) = log

(
π(ij)i
π(ij)j

)
= λOi − λOj , (3.2)

where λOi and λOj are object parameters related to π’s in Equation (3.1) by λOi = 1
2
ln(πi).

The superscript O refers to object-specific parameters. Thus, π̂(ij)i =
exp (λ̂i

O−λ̂j
O
)

1+exp (λ̂i
O−λ̂j

O
)
,

where π(ij)i =
1
2
when λOi = λOj . The model estimates

(
no

2

)
probabilities, which is the

number of paired comparisons with no objects. Note that the logit model in Equation

(3.2) is equivalent to the model in Equation (3.1). In addition, identifiability of these two

formulation requires a restriction on the parameters related on the last object no such as

λOno
= 0 and

∑no

i πi = 1.

For each pair i ≥ j, let nij be the number of comparisons made between object i

and j, y(ij)i denotes the number of preferences of i to j and y(ij)j = nij − y(ij)i denotes

the number of preferences of j to i. Assuming that nij comparisons are independent and

have the same probability π(ij)i, the y(ij)i are binomially distributed with parameters nij

and π(ij)i.

The Bradley-Terry model can also be fitted as a log-linear model (Dittrich et

al., 1998; Fienberg and Larntz, 1976; Sinclair, 1982). Among these authors, Sinclair

(1982) introduced a different approach: in comparing object i with object j, the random

variables y(ij)i and y(ij)j are assumed to follow a Poisson distribution.

Let nij be the number of comparisons made between object i and j, and m(y(ij)i)

be the expected number of comparisons in which i is preferred to j. Then, using the

respecification proposed by Sinclair and the notation for log-linear models for contingency

tables, m(y(ij)i) = nijπ(ij)i has a log-linear representation

log(m(y(ij)i)) = µij + λOi − λOj

log(m(y(ij)j)) = µij − λOi + λOj ,
(3.3)

where the nuisance parameters µ are defined by

µij = nij − ln

(√
πi
πj

+

√
πj
πi

)
, (3.4)
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and they can be interpreted as interaction parameters representing the objects involved in

the respective comparison, therefore fixing the corresponding nij marginal distributions.

In total, 2
(
no

2

)
expected counts are estimated.

This approach allows synthesizing the information about all preferences in a unique

design matrix. The design matrix is composed of column vectors representing the re-

sponses y(ij), the nuisance parameters µij, and the object parameters λOi . For example,

given three objects (A B C), an example of a design matrix is given in Table 3.1.

Table 3.1: Design matrix with one judge and three objects: The first column indicates if the object i is

preferred (yij = 1) or not (yij = 0) in a certain preference for each pair of objects ij. The second column

serves as an index for the n× (n− 1)/2 comparisons. Finally, preferences are expressed in the last three

columns. For example, the first line shows that object B is preferred to A since yij = 1, λO
B = 1, and

λO
A = −1.

Response µ λOA λOB λOC

yAB = 1 1 -1 1 0

yAB = 0 1 1 -1 0

yAC = 1 2 -1 0 1

yAC = 0 2 1 0 -1

yBC = 1 3 0 1 -1

yBC = 0 3 0 -1 1

When y(ij) assumes values of +1 and -1 instead of 1 and 0, the linear predictor

η for the basic log-linear Bradley-Terry model is the following (Hatzinger and Dittrich,

2012)

ηy(ij)i = log(m(y(ij)i)) = µij + y(ij)i(λ
O
i − λOj ). (3.5)

The log-linear formulation allows extending the model with multiple subject-

specific covariates.
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3.3 The extended Bradley-Terry model with subject-

specific covariates

In some cases, it could be interesting to analyze the variation of preferences according to

subject-specific characteristics. The Bradley-Terry model can be extended to incorporate

categorical or continuous covariates. For a categorical covariate S, let m(y(ij)i,l) be the

expected number of preferences for i compared with j, among individuals classified in

covariate category l, with l = 1. . . L, where L represents the total number of levels of the

covariate. The Bradley-Terry model is then specified as

log(m
(
y(ij)i,l

)
) = µij,l + λOi − λOj + λSl + λOS

i,l − λOS
j,l

log(m
(
y(ij)j,l

)
) = µij,l − λOi + λOj + λSl − λOS

i,l + λOS
j,l .

(3.6)

The parameter λSl represents the main effect of the subject-specific covariate S measured

on its l-th level; λOS
i,l and λOS

j,l are the subject-object interaction parameters describing

the effect of S observed on category l and concerning the preference for object i and j,

respectively. The model parameters of interest λOS
i,l and λOS

j,l can again be interpreted in

terms of log-odds and as a log-odds ratio

log

(
π(ij)i,l
π(ij)j,l

)
= 2(λOi + λOS

il )− 2(λOj + λOS
jl ). (3.7)

If the covariate S has no effect on the preferences of the judges, then λOS
i,l = 0. It means

that the model collapses into the previously described basic BT model, and there is just

one log-odds for the comparison of two specific objects. However, if there is a covariate

effect so that there is at least one interaction parameter between the individuals and

the subject-specific covariate that is significantly different from 0, we must distinguish

different log-odds for each comparison and each significant subject-object interaction

parameter (Hatzinger and Dittrich, 2012).

When continuous subject-specific covariates are included, it is necessary to build

up a separate contingency table for each judge, and each different value of the covari-

ate. Table 3.2 shows an example in which two judges, with different ages, express their
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preferences regarding three objects.

Table 3.2: Design matrix with two judges, three objects, and one continuous subject-specific covariate:

The first column indicates if the object i is preferred (yij = 1) or not (yij = 0) in a certain preference

for each pair of objects ij. The second column serves as an index for the n × (n − 1)/2 comparisons.

Preferences are expressed in the next three columns, and finally the age covariate is showed in the last

column.In this example, the two judges express opposite preference, BCA and ACB respectively

Response µ λOA λOB λOC age

yAB = 1 1 -1 1 0 23

yAB = 0 1 1 -1 0 23

yAC = 1 2 -1 0 1 23

yAC = 0 2 1 0 -1 23

yBC = 1 3 0 1 -1 23

yBC = 0 3 0 -1 1 23

yAB = 0 1 -1 1 0 24

yAB = 1 1 1 -1 0 24

yAC = 0 2 -1 0 1 24

yAC = 1 2 1 0 -1 24

yBC = 0 3 0 1 -1 24

yBC = 1 3 0 -1 1 24

Hence, the LLBT equation for the h-th judge and objects i and j is

log(m
(
y(ij)i,h

)
) = µij,h + y(ij)i,h(λ

O
i,h − λOj,h). (3.8)

The parameter λOi,h can be expressed through a linear relation

λOi,h = λOi +
P∑

p=1

βipxp,h, (3.9)

where xp,h corresponds to the value of the xp-th continuous covariate (p = 1...P ) observed

for judge h. The parameters β can be interpreted as the effect of the covariates on object
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i, whilst λOi acts as intercept and indicates the location of object i in the overall consensus

ranking.

Following this approach, it is possible to compute the deviance of the model as

the deviance of a fitted Poisson regression

D = 2
H∑

h=1

yij,h × log

(
yij,h

m(yij,h)

)
, (3.10)

where yij,h represents the observed values of each comparison ij for each judge h, and

ŷij,h are the predicted values based on the estimated model parameters. This measure

indicates how well the model fits the data. If the model fits well, the yij,h will be close

to their predicted values m(yij,h).

3.4 STIMA and trunk modeling

The Bradley-Terry model can be applied to preference data by specifying a regression

model for paired comparisons. In this paper, this specification is aimed at estimating

in an automatic and data-driven mode the main effects part of the model as well as, if

present, its interaction effects part. For this purpose, we resort to the STIMA framework

extended with the use of GLM in Conversano and Dusseldorp, 2017, and combine the

extended Bradley-Terry model including subject-specific covariates with the regression

trunk methodology (Dusseldorp and Meulman, 2004). The main feature of a regression

trunk is that it allows the user to evaluate in a unique model and simultaneously the

importance of both main and interaction effects obtained by first growing a regression

trunk and then by pruning it back to avoid overfitting. The interaction effects are hereby

intended as a particular kind of non-additivity, which occurs if the individual effects of

two or more variables do not combine additively (Berrington de González and Cox, 2007)

or when over and above any additive combination of their separate effects, these variables

have a joint effect (Cohen et al., 2013, p. 257).

The implementation of STIMA is based on the integration between generalized
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linear models - GLM (McCullagh and Nelder, 1989) and Classification And Regression

Trees (CART) (Breiman et al., 1984). A binary splitting algorithm with an ad-hoc defined

splitting criterion and a stopping rule is used to model interaction terms in GLM. The

estimated model, including main effects and threshold interactions, is equivalent, in its

form, to a standard GLM with both random and systematic components and a link

function. Usually, this model is used when the analyst has no exact a priori hypotheses

about the nature of the interaction effects. For example, regression trunks have been

successfully applied in the framework of tourism website evaluation (Conversano et al.,

2019). STIMA allows overcoming the problems related to regression models’ additive

nature and the lack of main effects in tree-based methods. Typically, regression models

are hard to interpret when higher-order interactions are arbitrarily included. In contrast,

CART-like decision trees quickly identify complex interactive structures but, when data

also includes linear main effects, they ”would take many fortuitous splits to recreate the

structure, and the data analyst would be hard-pressed to recognize them in the estimated

tree” (Hastie et al., 2009, p. 313).

Notationally, the generalized linear model estimated by STIMA assumes that a

response variable y observed on n subjects has an exponential family density ρy(y; θ;ϕ)

with a natural parameter θ and a scale parameter ϕ. The response y depends on a

set of P categorical and/or continuous covariates xp (p = 1, . . . , P ) and its mean µ =

E(y|x1, . . . , xP ) is linked to the xps via a link function g(·):

g(µ) = η = β0 +
P∑

p=1

βpxp,h +
T−1∑
t=1

βP+tI{(x1,h, . . . , xP,h) ∈ t} (3.11)

Equation (3.11) refers to a standard GLM presenting a linear predictor η such that

µ = g−1(η) (µ is an invertible and smooth function of η). The first P parameters concern

the main effects part of the model estimated in the root node of the trunk via standard

GLM. In contrast, the other T − 1 parameters define the interaction effects part of the

model obtained by partitioning recursively in a binary way the n cases in order to add

additional interaction terms defined by the coefficients βP+t and the indicator variables

I{(x1,h, . . . , xP,h) ∈ t}. Since a tree structure with T terminal nodes is derived recursively,

the so-called trunk, I{(x1,h, . . . , xP,h) ∈ t} with (t = 1, . . . , T − 1) refers to the subset of
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cases belonging to the terminal node t of the trunk. The interaction effect of the T -th

terminal node is not considered as this node serves as a reference category for the other

interaction effects. Being obtained by a sequential binary splitting of the original data,

the interaction effects correspond to threshold interactions since the values/labels of the

splitting predictors leading to a specific terminal node can be considered as thresholds

that partition the predictor space in order to correctly identify a GLM with interaction

effects that maximizes goodness of fit by controlling for overfitting.

In a generic iteration of STIMA, adding a new threshold interaction effect in the

model means adding a new binary split to the trunk. This happens when the candidate

split maximizes the effect size of the model. The search of the additional interaction effect

is conducted by considering for each predictor xp all possible split points for each current

terminal node. An additional interaction effect is included if the effect size between the

model estimated before the current split and that including the candidate interaction

originating from the current split is maximized. Once the split is found, all regression

coefficients in the model are re-estimated.

In the case of a continuous response, g(·) corresponds to the identity function, and the

effect size is computed as the relative increase in variance-accounted-for. The resulting

model is the standard regression trunk model (Dusseldorp et al., 2010). Whereas, if one

assumes that observations are independent realizations of Binomial random variables, the

link function corresponds to the Logit function, and the effect size is computed as the

relative increase in the log-likelihood R2 observed when passing from the model which

does not include the candidate interaction effect to the one that includes it. The resulting

model is the logistic classification trunk (Conversano and Dusseldorp, 2017). In all cases,

STIMA works by first growing a full trunk, corresponding to the maximum number of

splits T − 1, and then pruning it back using V -fold cross-validation with the c standard

error rule (c · SE rule). The constant c varies between 0 and 1, and the higher its value,

the more the tree is pruned back.
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3.5 The Bradley-Terry Regression Trunk (BTRT)

In the following, we introduce the Bradley-Terry Regression Trunk (BTRT) model to an-

alyze preference data. It combines the extended log-linear Bradley-Terry model including

subject-specific covariates introduced in Equations 3.8 and 3.9 with the STIMA-based

trunk model specified in Equation 3.11. The resulting model is still a log-linear model

aimed at modeling the pairwise comparisons of objects i and j (Equation 3.8) through

a different specification of the linear components describing the consensus expressed for

the objects (see for example Equation 3.9 for object i). In particular, using the regression

trunk approach and considering the possible effect of subject-specific covariates xp, the

estimated consensus expressed for object i by the judge h is

λ̂i,h = λ̂i +
P∑

p=1

β̂i,pxp,h +
T−1∑
t=1

β̂i,P+tI{(x1,h, . . . , xP,h) ∈ t} (3.12)

Again, the term
∑P

p=1 β̂i,pxp,h is the main effects part assessing the effects of

covariates on the consensus for object i. The interaction effects part is estimated by∑T−1
t=1 β̂i,P+tI{(x1,h, . . . , xP,h) ∈ t} and is derived from the terminal nodes of a regression

trunk that searches for possible threshold interactions between the P covariates assuming

they have a joint effect on the consensus expressed for object i besides their individual

(main) effect. Thus, the regression trunk has T terminal nodes and for each terminal

node t an additional parameter βi,P+t is estimated. It expresses the effect of the threshold

interaction between the covariates x1, . . . , xP whose split points lead to t. The estimated

intercept term λ̂i measures the average consensus about object i in the root node of the

trunk whilst the estimated intercept for the terminal node t is λ̂i + β̂i,P+t. Note that the

subscript O is left out from the notation of the λ̂ parameters for readability reasons.

The estimation procedure of BTRT is framed within the STIMA algorithm, but

some steps are different. Once a set of paired comparisons is given, a preliminary data

processing step is required to obtain the design matrix of the Bradley-Terry model. In

our framework, ties are not included, but the model can be extended by incorporating

undecidedness parameters. The final design matrix is composed of n = no× (no−1)×H
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rows, where H indicates the number of judges. The total number of rows is equal to

the product between the number of comparing objects, that is 2, the number of paired

comparisons (no × (no − 1)/2), and the number of judges, resulting in 2 × (no × (no −

1)/2)×H.

In the above-described framework, estimating a BTRT model needs three essential

ingredients: a splitting criterion, a stopping rule, and a pruning procedure.

3.6 Growing the trunk

In each step of STIMA, a generalized linear model with a Poisson link is fitted to the

data. To discover the main effects, it is only necessary to fit the model in the root node.

The first estimated model consists of P coefficients β that describe the probability distri-

bution of preferring a particular object to another one, given a set (x1, ..., xP ) of judges’

characteristics. STIMA searches for a split among all the values for each continuous

covariate. In each step of the regression trunk building procedure, splitting a parent

node means finding a dichotomous variable z∗ijp,t that updates the indicator function I(·)

introduced in Equation (3.12). For each terminal node t of the trunk, the number of

dichotomous variables z∗ijp,t is equal to the number of splits leading to t. The interaction

effects part of Equation (3.12) contains T − 1 terms since one terminal node is treated as

the reference group. The search of the best split of the trunk at each iteration is made by

taking into account all the available terminal nodes at that step. For a particular termi-

nal node and based on paired comparisons, for each covariate xp, with (p = 1, . . . P ), we

consider each unique value of xp as a candidate split point. Specifically, a Bradley-Terry

model is estimated for each of the possible pairs of candidate values ij ∈ [1, no]; i ̸= j, by

discretizing xp and creating the associated dichotomous variable zijp.

Next, the split point associated with z∗ijp maximizing the decrease in deviance is

computed for the goodness-of-fit test based on the deviance of a Poisson regression model

introduced in Equation (3.10). Thus, it is considered the ”best” split point, and the node

is split according to the specific value of the discretized variable xp. The splitting criterion

of BTRT is based on maximizing the decrease in deviance when moving from a parent
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node to the two possible child nodes defined by splitting on zijp. This is equivalent to

comparing the fit of two nested models, one simpler and one more complex, and could

lead to a profile log-likelihood ratio test of the hypothesis that the extra parameter βP+t

is zero.

This split search procedure is repeated by searching for each splitting node t the

best split point so that, once found, the new dichotomous variable z∗ijp,t is added to the

model, and an additional interaction effect is included. When the split is found, all

regression coefficients in the model are re-estimated.

Preliminarily, the user is required to choose between two main approaches that

could be followed in BTRT:

a) One Split Only (OSO), where the splitting covariates already used in the previous

splits are not considered as candidate splitting variables for the current split;

b) Multiple Splitting (MS), where the whole set of covariates is considered to split the

current node despite some of them having been previously selected to split other nodes.

The OSO approach returns a tree in which it is possible to analyze the interaction

effects between all the covariates. Following the splits along the tree, we can observe

the covariates that interact (two sequent split represent an interaction). In addition, the

model output presents the beta coefficients1 associated with the terminal nodes generated

by the splits of the tree and, therefore, by the interaction between the selected covariates.

In this case, the final tree might not necessarily return the best model to produce the

best goodness of fit (i.e., the maximum reduction in deviance). Besides, following the

MS approach, it is possible to achieve the maximum reduction in deviance, but there is

a risk of obtaining a tree that utilizes the same covariate (with different values) to split

several, even subsequent, nodes. In this case, only the main effects part may be retained,

and thus it is not possible to analyze interactions. We compare the two criteria in the

actual data application.

At each split step, the estimated regression parameters β̂i,P+t measure the proba-

bility of preferring a specific object i, given the interaction between different characteris-

tics of a particular group of judges. While some similar methods, such as M5 (Quinlan,

1see Section 4.1
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Figure 3.1: STIMA algorithm applied to ordinal data: the Bradley-Terry Regression trunk algorithm

before pruning.

1992) and Treed regression (Alexander and Grimshaw, 1996), estimate several linear

models, one in each node of the tree, the regression trunk model estimates a single linear

model only.

Consistent with standard criteria applied in decision tree modeling, the stopping

criterion of BTRT is based on the a-priori definition of the minimum number of observa-

tions for a node to be split. The default implementation is based on the requirement that

the size of the new nodes should be at least equal to five, even if the minimum bucket

size can be modified based on the depth of the tree requested by the user. Figure 3.1

shows a flowchart in which the tree growing procedure is schematically explained.

The final BTRT model estimates the number of parameters equal to the number of

intercepts, plus the number of main effects parameters, plus the number of interactions.

The summary of the number of parameters can be expressed as follows

(no − 1) + [P × (no − 1)] + [(T − 1)× (no − 1)]. (3.13)
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3.7 Pruning the trunk

When the final estimated trunk model presents many higher-order interactions, it may be

challenging to interpret the results, and the overfitting problem might occur. However,

growing the full expanded trunk is necessary since a small trunk may not capture the

natural interactive structure of the data if the splitting process ends too early. For

this reason, BTRT considers a pruning procedure operated after the trunk grows. In

particular, a V -fold cross-validation of the BTRT model deviance is computed for each

step split of the trunk. The user has to provide the number of subsets V in which

the entire data set is divided. To obtain the cross-validated deviance, all the preferences

expressed by a particular judge h in the design matrix are randomly assigned to a specific

subset and, for V times, the BTRT trunk model estimated in a specific node is trained on

V − 1 subsets while the left-out subset is treated as a test set. At the end of the process,

a predicted value ŷij,h is obtained for each observation in the data matrix. Following this

approach, the case-wise cross-validation deviance Dcv is

Dcv =
1

n

[
2

n∑
i′=1

yi′j;h × log

(
yi′j;h
ŷi′j;h

)]
, (i′, j) ∈ no, (i

′ ̸= j), h ∈ H (3.14)

where n equals the total number of rows of the design matrix and i′ is its generic row.

Note that the number of rows n is greater than the total number of judges H. The

standard error of Dcv is

SEcv =

√√√√ 1

n

n∑
i′=1

[
yi′j;h × log

(
yi′j;h
ŷi′j;h

)
−Dcv

]2
(3.15)

Usually, Dcv decreases after the first splits of the trunk and starts to increase

next. BTRT uses the same c · SE pruning rule used in STIMA (Dusseldorp et al.,

2010). Let t∗ ∈ [1, T ] be the size of the regression trunk with the lowest Dcv, say Dcv
t∗ .

The best size of the BTRT trunk t∗∗ corresponds to the minimum value of t such that

Dcv
t∗∗ ≤ Dcv

t∗ + c ·SEcv
t∗ . We investigate about the optimal choice of the pruning parameter

c in Section 3.8.
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3.8 Simulation study: the choice of the pruning pa-

rameter

Pruning the BTRT model with the c · SE rule requires choosing the most suitable value

for the parameter c. The optimal value may depend on the characteristics of the data,

such as sample size. In this section, a simulation study is carried out to assess the value

of the optimal c to select the final BTRT model. For the regression trunk approach used

to detect threshold interactions in the linear model, Dusseldorp et al., 2010 reported that

most of the time, a value of c = 0 results in a regression trunk with too many interaction

terms while a value of c = 1 gives a small-sized regression trunk with too few interaction

terms.

As for BTRT, we compare the performance of seven pruning rules obtained by

specifying seven different values of c ranging from 0 to 1, namely: 0.00, 0.10. 0.30, 0.50,

0.70, 0.90 and 1.00. Three different scenarios are considered for the data generating

process (DGP):

λi,h = λi + βi,1x1,h; (3.16)

λi,h = λi +
4∑

p=1

βi,pxp,h; (3.17)

λi,h = λi +
4∑

p=1

βi,pxp,h + βi,5I(x1,h > 0.00 ∩ x2,h > 0.50). (3.18)

In the first scenario (Equation 3.16), only one subject-specific covariate (x1) affects

the preferences expressed by the generic judge h on each object i. In the second one

(Equation 3.17), four subject-specific covariates are assumed to influence the judges’

preferences. These two models present linear main effects only so that the performance

metric of the pruning rules is the proportion of times a BTRT model with at least one

interaction term is selected (Type I Error). In the third scenario (Equation 3.18), a

model including both linear main effects and threshold interaction effects is considered

as a threshold interaction term between x1 and x2 is added to the main effects part
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of the model. In this case, the performance metric of the pruning rule is the Type II

Error, obtained by computing the proportion of times the selected regression trunk model

omits x1 and x2 exactly as the first and only two interacting variables. In all cases, all

the covariates xp are standard normally distributed.

3.9 Design factors and procedure

Three design factors are considered in the simulation study:

• The number of judges H: 100, 200, 300;

• The number of objects no: 4, 5. The consensus rankings were set as (A B C D) and

(A B C D E), respectively, by using decreasing values of λi, namely (0.9, 0.4, 0.3, 0.0)

in the first case, and (0.8, 0.4, 0.2, 0.1, 0.0) in the second one;

• The effect size of each covariate xp on the preferences expressed by the judge h on

each object i. Values of the parameters βi are reported in Table 3.3 for each set of

objects, the two possible effect sizes and the three different scenarios.

We only considered the case of 4 and 5 objects as design factors because working

on paired comparisons means extending the number of judges’ evaluations to 6 and

10, respectively. It seems more realistic if only a few objects are presented to judges

when paired comparisons. Furthermore, as the number of objects increases, the size of

the design matrix increases, as does the computational cost of searching for the split.

However, the computational cost does not increase in the same way when the number

of judges increases. For this reason, the BTRT model provides results in good times

when the number of judges is high, but the times expand when the number of objects

increases. The combination of the three design factors (no × H× effect size) results in

12 different BTRT specifications. For each of them, we generate 100 random samples,

so that 1,200 data sets were generated for each true scenario, given in Equations (3.16),

(3.17), and (3.18). In each run, a BTRT with a maximum of five terminal nodes (T =

5) is estimated.
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Once the design factors are set, following Equation 3.1 the values of λ̂i,h are

estimated in order to obtain the probability that a judge h prefers the object i to j. The

latter is computed for each possible comparison as follows

π(ij)i,h =
exp [2(λ̂i,h − λ̂j,h)]

1 + exp [2(λ̂i,h − λ̂j,h)]
; (3.19)

The design matrix of the log-linear Bradley Terry model requires the values of y

in the first column. The response y is coded as a 0-1 variable depending on whether or

not an individual preference occurs for each comparison ij. Thus, we consider yij,h as the

realization of a Bernoulli distribution that assumes the value 1 with probability π(ij)i,h.

The main problem for this kind of coding is that it is possible to obtain combinations

of 0-1 values for the same judge that do not verify the transitivity property between the

preferences. The number of all possible combinations of two values for each judge is equal

to 2
no(no−1)

2 , where the exponent is the number of paired comparisons obtainable from no

objects. However, when ties are not allowed, the number of permutations of no objects

equals no!, which is much smaller than the number of all the possible combinations of

two values. When no is higher than 3, it is very likely to obtain combinations that do not

find a counterpart in the universe of allowed rankings. For instance, when the number

of objects is equal to four, there could be 64 combinations of 0-1, of which only 24 are

allowed. So, there could be 40 combinations not allowed. We replaced the combinations

not allowed with the closest permutation in the universe of no! rankings to avoid this

problem.

3.10 Results

Results of the simulation study are summarized in Tables 3.4, 3.5 and 3.6. For the first

two scenarios, the pruning rules are evaluated for the Type I error (Tables 3.4, 3.5) while

for the third scenario, the focus is on the Type II error (Table 3.6). To facilitate the

interpretation of the results, the tables for Type II errors show the power of the pruning

rules (i.e., 1 - error) rather than the Type II errors. Results are reported for the 9 different
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values of the c parameter (0, 0.1, 0.3, 0.5, 0.7, 0.9, 1), as well as for the number of objects

(4 or 5), the number of judges (100, 200 or 300) and the effect sizes (Low or High). As

conventionally done, a threshold value of 0.05 is used for Type I error so that we are

accepting that there is a five percent probability of identifying an interaction effect when

there is not one. Hence, higher values are shown in boldface because the error is too

high. For power, we used the value 0.8 as a threshold so that if the power is less than

0.8, then the power is too small, and the values are shown in boldface.

Table 3.4 reports the results for the first scenario where only the main effects of

the single covariate x1 are considered. When the number of objects is equal to 4 and

the effect of x1 is low, the pruning rules with c ≥ 0.1 result in acceptable Type I errors

despite the sample size. However, when the effect size increases, the case with H = 100

requires higher values of c (i.e., c ≥ 0.3) for the pruning parameter. When the number of

objects is equal to 5 the inverse situation is observed: for small effect sizes higher values

of c (i.e., c ≥ 0.5) are required, whilst for a high effect sizes lower values of c (i.e., c ≥ 0.3)

can be used.

Table 3.5 displays the Type I errors when all the covariates x1, ..., x4 influence

judges’ preferences individually (second scenario). In this case, for no = 4 the values of

c ≥ 0.3 provide acceptable error rates despite the effect size. compared to the situation

in which the effect size is high; for no = 5 and high effect size it would be better to choose

a pruning parameter c ≥ 0.5.

The third scenario reflects the case in which all the covariates x1, ..., x4 influence

the expressed preferences, and the first two covariates interact with each other, as shown

in Equation 3.18. The power (1 - Type II error) is displayed in Table 3.6 for each possible

value of c. It emerges that for no = 4 a value of c ≥ 0.3 is considered as satisfactory

despite the effect size (except in case there are 100 judges and low effect size), while for

the no = 5 case with high effect size, it is preferable to increase the value of c up to 0.9.

Recall that low parameter c may return a large tree. The true model does not

include interaction between variables in the first two scenarios, so low c parameter values

return a too high Type I error. In the third scenario, the true model refers to a minimum
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size tree with a single interaction. For this reason, as the effect size of the covariates and

the population size increase, higher values of parameter c are required to obtain high

power. It follows that the ability of the BTRT model to find the proper interactions

between covariates increases when the number of judges and objects increases. In addi-

tion, if the judges’ characteristics have a high impact on the choices, then the quality of

performance of the BTRT model improves considerably.

Summarizing, the simulation study results show that a value of the pruning pa-

rameter c between 0.5 and 1 is a good choice in almost all situations. These results are

consistent with those reported in Dusseldorp et al., 2010, for the linear regression model

and in Conversano and Dusseldorp, 2017, for the logistic regression model.

PhD Thesis, Alessio Baldassarre 54



Chapter 3 A new probabilistic approach: road to the Bradley-Terry regression trunk model

Table 3.3: Simulated values of βi for the estimation of the pruning parameter c

N. objects = 4

Effect-size Low High

object A B C D A B C D

1st scenario (Equation 3.16)

β1 0.30 0.20 0.10 0.00 0.90 0.80 0.70 0.00

2nd scenario (Equation 3.17): add β2, β3 and β4

β2 0.20 0.30 0.10 0.00 0.80 0.70 0.90 0.00

β3 0.10 0.20 0.30 0.00 0.70 0.90 0.80 0.00

β4 0.30 0.10 0.20 0.00 0.90 0.70 0.80 0.00

3rd scenario (Equation 3.18): add β5

β5 0.25 0.15 0.35 0.00 0.55 0.65 0.45 0.0

N. objects = 5

Effect-size Low High

object A B C D E A B C D E

1st scenario (Equation 3.16)

β1 0.40 0.30 0.20 0.10 0.00 0.90 0.80 0.70 0.60 0.00

2nd scenario (Equation 3.17): add β2, β3 and β4

β2 0.30 0.20 0.10 0.40 0.00 0.80 0.90 0.60 0.70 0.00

β3 0.20 0.10 0.30 0.40 0.00 0.70 0.60 0.80 0.90 0.00

β4 0.10 0.20 0.40 0.30 0.00 0.90 0.70 0.60 0.80 0.00

3rd scenario (Equation 3.18): add β5

β5 0.25 0.15 0.35 0.45 0.00 0.55 0.65 0.45 0.60 0.00
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Table 3.4: Results first scenario: Type I error. Error higher than 0.05 in boldface.

N. objects no = 4 no = 5

Effect size Low High Low High

N. judges 100 200 300 100 200 300 100 200 300 100 200 300

c = 0.0 0.76 0.82 0.82 0.95 1.00 1.00 0.80 0.90 0.98 0.75 0.84 0.82

c = 0.1 0.16 0.18 0.04 0.62 0.51 0.58 0.60 0.58 0.60 0.30 0.38 0.26

c = 0.3 0.01 0.00 0.00 0.26 0.12 0.08 0.32 0.18 0.28 0.08 0.08 0.00

c = 0.5 0.00 0.00 0.00 0.08 0.05 0.02 0.12 0.04 0.10 0.00 0.02 0.00

c = 0.7 0.00 0.00 0.00 0.03 0.00 0.00 0.04 0.02 0.00 0.00 0.00 0.00

c = 0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00

c = 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00

Table 3.5: Results second scenario: Type I error. Error higher than 0.05 in boldface.

N. objects no = 4 no = 5

Effect size Low High Low High

N. judges 100 200 300 100 200 300 100 200 300 100 200 300

c = 0.0 0.88 0.86 0.98 0.95 0.94 0.98 0.97 1.00 0.98 0.91 0.96 1.00

c = 0.1 0.58 0.56 0.66 0.67 0.66 0.74 0.74 0.86 0.86 0.62 0.70 0.80

c = 0.3 0.14 0.06 0.10 0.11 0.04 0.10 0.09 0.14 0.12 0.16 0.28 0.18

c = 0.5 0.04 0.02 0.00 0.01 0.00 0.00 0.01 0.02 0.04 0.06 0.06 0.02

c = 0.7 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

c = 0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

c = 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.6: Results third scenario: Test’s power (1-Type II error). Power lower than 0.80 in boldface.

N. objects no = 4 no = 5

Effect size Low High Low High

N. judges 100 200 300 100 200 300 100 200 300 100 200 300

c = 0.0 0.00 0.00 0.00 0.03 0.02 0.01 0.02 0.00 0.01 0.00 0.00 0.02

c = 0.1 0.45 0.52 0.28 0.30 0.20 0.80 0.22 0.06 0.01 0.28 0.12 0.02

c = 0.3 0.79 0.94 0.84 0.84 0.84 0.99 0.82 0.52 0.46 0.74 0.28 0.14

c = 0.5 0.99 0.99 0.99 0.92 0.94 0.98 0.96 0.96 0.88 0.98 0.44 0.24

c = 0.7 1.00 1.00 1.00 0.96 0.98 1.00 1.00 1.00 1.00 0.98 0.80 0.56

c = 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90

c = 1.0 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.96
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The Bradley-Terry Regression trunk

on preference data

4.1 Application on a real dataset

This section shows a practical application of the regression trunk for preference rankings

on a real data set following two different approaches. The STIMA algorithm based on

the BTRT model has been implemented in the R environment (R Core Team, 2021) by

using the packages prefmod (Hatzinger and Dittrich, 2012) and BradleyTerry2 (Turner

and Firth, 2012).

The analyzed data have been collected through a survey carried out at the Univer-

sity of Cagliari (Italy). In particular, 100 students (H = 100) enrolled in the first year of

Master Degree in Business Economics were asked to order five characteristics of an ideal

professor (no = 5) based on what they considered the most relevant: clarity of exposition

(o1), availability of teaching material before the lectures (o2), scheduling of midterm tests

(o3), availability of slides and teaching material accompanying the selected books (o4),

helpfulness of the professor (o5). These characteristics were ranked with values from 1

to 5, where 1 was assigned to the characteristic considered as the most important, and

5 to the least important one. Students were not allowed to indicate ties. Moreover, for

57



Chapter 4 Advances On The Analysis Of Ordinal Data

each student, seven subject-specific covariates have been collected: year of study (x1),

total number of ECTS obtained (x2), grade point average (x3), course attendance in

percentage (x4), daily study hours (x5), gender (x6), and age (x7). Table 4.1 reports the

key statistics for each subject-specific covariate.

Table 4.1: Descriptive statistics of the subject-specific covariates in application.

vars n mean sd median trimmed mad min max range skew kurtosis se

Year of study x1 100 1.18 0.39 1.00 1.10 0.00 1.00 2.00 1.00 1.64 0.70 0.04

ECTS x2 100 37.69 40.22 27.00 28.89 5.93 0.00 163.00 163.00 1.90 2.23 4.02

Grade point average x3 100 23.02 6.93 24.80 24.49 3.26 0.00 30.00 30.00 -2.36 5.17 0.69

Course attendance x4 100 87.37 13.34 90.00 89.53 13.34 40.00 100.00 60.00 -1.22 0.93 1.33

Daily study hours x5 100 3.73 1.62 4.00 3.64 1.48 0.25 8.00 7.75 0.48 0.05 0.16

Gender x6 100 1.44 0.50 1.00 1.42 0.00 1.00 2.00 1.00 0.24 -1.96 0.05

Age x7 100 21.00 3.25 20.00 20.27 1.48 19.00 41.00 22.00 3.16 13.59 0.33

The rankings were converted into ten paired comparisons to apply the Bradley-

Terry model. Dealing with a few judges and several covariates, each judge will likely

have at least one characteristic that differs from the other judges. In this framework,

for each pair of comparing objects, the response variable y is binary and takes 0 and 1.

Therefore, 20 observations are obtained for each judge so that the total number of rows

n is equal to 2,000.

Once the design matrix is obtained, a Poisson regression model is estimated in the

root node. Next, the split search as described in Section 3.6 is performed. In the following,

we compare the results obtained for the two splitting options currently implemented for

BTRT: the OSO approach and the MS approach.

4.2 One-Split-Only (OSO) approach

The full tree can have a maximum number of splits equal to the number of subject-specific

covariates P based on the OSO approach. Thus, the maximum depth regression trunk

has seven splits. In this application, the trunk before the pruning is composed of 6 splits

and 7 terminal nodes because no more splits respected the minimum bucket condition

(i.e., number of judges greater or equal to five).

PhD Thesis, Alessio Baldassarre 58



Chapter 4 Advances On The Analysis Of Ordinal Data

Table 4.2 reports the node splitting information and the deviance D of the final

model estimated in each node (see Equation 3.10). Notice that the deviance of the main

effects model is reported in the first row of Table 4.2 while the deviance of the model,

including a simple dichotomous variable inducing the first split of the trunk (bestsplit1)

is reported in the second row. The threshold interactions are specified starting from the

third row of the table, i.e., from bestsplit2 onwards.

Table 4.2: Pruned regression trunk: OSO approach. The table shows the node in which the split

is found, the splitting covariate, and its split point together with the deviance associated with each

estimated model.

Node n. Splitting covariate Split Point Model Deviance

1 main effects (no splits) 1115

bestsplit1 root x3 (grade point average) 27.50 1096

bestsplit2 2 x7 (age) 25.00 1080

bestsplit3 4 x2 (n. of ECTS) 39.00 1064

The maximum-depth regression trunk is pruned applying the c ·SE rule described

in Section 3.7 based on both the case-wise 10-fold cross-validation deviance (Dcv) intro-

duced in Equation 3.14 and its standard error (SEcv, Equation 3.15). Table 4.3 shows

the results of the cross-validation estimates.

Table 4.3: 10-fold cross-validation results with OSO approach: D = model deviance (Eq. 3.10); Dcv =

casewise cross-validation deviance (Eq. 3.14); SEcv = standard error of Dcv (Eq. 3.15).

D Dcv SEcv

mod0 1115 0.5957 0.0003

mod1 1096 0.5910 0.0004

mod2 1080 0.5870 0.0005

mod3 1064 0.5858 0.0005

mod4 1058 0.5874 0.0005

mod5 1048 0.5890 0.0005

mod6 1033 0.5894 0.0005

Note that Dcv is much smaller than the model deviance D, because we used two

PhD Thesis, Alessio Baldassarre 59



Chapter 4 Advances On The Analysis Of Ordinal Data

different specifications for these two (see Equation 3.10 and 3.14): D decreases between

one model and another, while Dcv is decreasing up to the model 3 having four terminal

nodes. Applying the pruning rule with the c parameter is unnecessary in this case cause

the cross-validation deviance starts to increase from the fourth model (mod4). Thus, the

pruned trunk corresponds to the model in Table 4.2. The final trunk including three

splits and T = 4 terminal nodes is shown in Figure 4.1 .

Figure 4.1: Pruned regression trunk: OSO approach on students’ survey. The number of judges H is

shown for each node. The splitting covariate xp is presented for each split. The consensus ranking C and

the extended correlation coefficient taux are shown in each terminal node. The objects are the following:

clarity of exposition, availability of teaching material before the lectures, scheduling of midterm tests,

availability of slides and teaching material beside the selected book, and the helpfulness of the professor.

Figure 4.1 shows the pruned regression trunk. It reports the number of judges H

belonging to each terminal node T . The consensus ranking C is computed by using the

differential evolution algorithm for median ranking detection (D’Ambrosio et al., 2017)

and the extended correlation coefficient τx (Emond and Mason, 2002) within the group.

Both measures are computed using the R package ConsRank (D’Ambrosio et al., 2019).

The consensus ranking reports the positions of the objects ordered from o1 to o5. Ties

are allowed only for the consensus ranking within the groups so that two tied objects

have the same associated value.
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4.3 Multiple Splitting (MS) approach

The MS approach allows covariates already used in previous splits for the split search. To

compare the MS approach with the OSO one, a regression trunk with the same number

of terminal nodes of the OSO trunk is grown for the MS case (T = 7). The results

associated with the pruned tree are reported in Table 4.4.

Table 4.4: Pruned regression trunk: MS approach. The table shows the node in which the split

is found, the splitting covariate, and its split point together with the deviance associated with each

estimated model.

Node Covariate Point Deviance

1 main effects (no splits) 1115

bestsplit1 root x3 (grade point average) 27.50 1096

bestsplit2 2 x7 (age) 25.00 1080

bestsplit3 4 x2 (n. of ECTS) 39.00 1064

bestsplit4 8 x3 (grade point average) 21.00 1050

The pruning procedure is performed using the ten-fold cross-validation estimation

of the deviance and its standard error. Table 4.5 shows the results associated with the

pruned trunk deriving from the MS approach.

Table 4.5: 10-fold cross-validation results with MS approach: D = model deviance (Eq. 3.10); Dcv =

casewise cross-validation deviance (Eq. 3.14); SEcv = standard error of Dcv (Eq. 3.15).

D Dcv SEcv

mod0 1115 0.5957 0.0003

mod1 1096 0.5910 0.0004

mod2 1080 0.5870 0.0005

mod3 1064 0.5858 0.0005

mod4 1050 0.5809 0.0005

mod5 1038 0.5810 0.0005

mod6 1026 0.5809 0.0006

mod7 1018 0.5814 0.0006
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The MS approach, for each split, generates a reduction in deviance greater than

that obtained with the OSO approach. The cross-validation deviance is decreasing up to

model 4. Figure 4.2 compares the two approaches in terms of cross-validation deviance

obtained from one split to another. It displays that the MS approach returns a regression

trunk capable of better explaining the preferences expressed by the judges.
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Figure 4.2: Comparison between OSO and MS approaches

Using the information obtained from the simulation study presented in Section

3.8, with no = 5 and H = 100 a possible pruning parameter is c = 0.5 so that the the

final trunk is that corresponding to model 4 (mod4) in Table 4.5 with four splits and five

terminal nodes. Figure 4.3 shows the pruned regression trunk.

Note that the professor’s quality of exposition (o1) is always preferred to all the

other objects in the pruned tree, except by the judges in Region 1. As expected, the two

approaches provide different results: the OSO approach detects the interaction between

all the covariates under study (see Figure 4.1) but does not return the best regression

trunk in terms of goodness-of-fit. The MS approach returns a trunk that fits the data

better, but the final BTRT model may be more challenging to interpret.
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Figure 4.3: Pruned regression trunk: MS approach on students’ survey. The number of judges H is

shown for each node. The splitting covariate xp is presented for each split. The consensus ranking C and

the extended correlation coefficient taux are shown in each terminal node. The objects are the following:

clarity of exposition, availability of teaching material before the lectures, scheduling of midterm tests,

availability of slides and teaching material beside the selected book, and the helpfulness of the professor.
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The model deriving from the MS regression trunk returns the coefficients shown

in Table 4.6.

Table 4.6: MS regression trunk final output: the Table shows the estimated coefficients associated

to the objects o1, o2, o3, and o4. The last object o5 is set as reference level, so that the estimated

parameters associated to λ̂o5,h (the professor helpfulness) are automatically set to zero. The standard

errors are shown in parenthesis and the stars ′∗′ associated to some estimate coefficients indicate that

they are significantly different from zero with a pvalue lower than 0.001 (′ ∗ ∗∗′), 0.01 (′ ∗ ∗′) and 0.05

(′∗′), respectively.

λ̂o1,h λ̂o2,h λ̂o3,h λ̂o4,h

λ̂i 3.36 (1.98) 4.96∗∗ (1.68) 3.46∗ (1.59) -2.41 (1.72)

β̂i,x1 -0.90∗ (0.42) -0.43 (0.40) -0.03 (0.40) -0.56 (0.42)

β̂i,x2 0.02∗∗∗ (0.005) 0.009 (0.004) 0.003 (0.004) 0.009 (0.004)

β̂i,x3 -0.16∗∗∗ (0.04) -0.14∗∗∗ (0.04) -0.09∗ (0.03) -0.01 (0.04)

β̂i,x4 -0.008∗ (0.006) -0.01∗ (0.006) -0.01∗∗ (0.006) -0.007 (0.006)

β̂i,x5 -0.04 (0.06) -0.07 (0.05) -0.12∗ (0.05) -0.06 (0.05)

β̂i,x6 0.31 (0.18) 0.29 (0.15) 0.29 (0.15) 0.36∗ (0.15)

β̂i,x7 0.17∗∗ (0.06) 0.03 (0.04) 0.03 (0.04) 0.15∗∗ (0.04)

β̂i,R2 -2.30∗∗∗ (0.62) -1.96∗∗∗ (0.56) -1.47∗∗ (0.55) -0.47 (0.59)

β̂i,R3 -2.86∗∗∗ (0.58) -1.37∗∗ (0.47) -0.73 (0.45) -0.32 (0.46)

β̂i,R4 -3.56∗∗∗ (0.67) -1.47∗∗ (0.53) -1.14∗ (0.52) -1.32∗ (0.54)

The regions R2, . . . , R5 obtained from the regression trunk represented in Figure

4.3 are defined as follows:

R2 = I(grade point average ≤ 21, age ≤ 25, n. of ECTS ≤ 39),

R3 = I(21 < grade point average ≤ 27.5, age ≤ 25),

R4 = I(grade point average ≤ 27.5, age ≤ 25, n. of ECTS > 39),

R5 = I(grade point average ≤ 27.5, age > 25),

The region R1 plays the role of reference category. It is defined by the indicator
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function I(grade point average > 27.5). From the side of the main effects, looking at the

values in Table 4.6 the final model shows that the covariates x3 (grade point average)

and x4 (course attendance in percentage) have a significant and negative effect on the

preferences expressed. In particular, looking at the β̂i,x3 coefficients, it can be seen that

as the grade point average increases, the tendency to prefer the professor’s clarity (o1)

to his helpfulness (o5) is lower. On the contrary, when the number of ECTS increases,

the tendency to prefer the professor’s clarity to the professor’s helpfulness is higher.

These two results might suggest that students looking for a high average grade consider

interacting with the professors even outside of class hours. On the other hand, students

who have a high number of ECTS may not be interested in a high average grade, but

only in obtaining a degree quickly, so they believe it is more important than the teachers

are clear during the lessons.

As for the interaction effects, Table 4.6 shows that the last region R4 has significant

and negative coefficients whatever the considered object. In each case, when the students’

grade point average is lower than 27.5 and the age is higher than 25, there is a strong

tendency to prefer the professor’s helpfulness to all other attributes.

4.4 Discussion

This chapter introduced a new Bradley-Terry Regression Trunk (BTRT) model to ana-

lyze preference data. BTRT is based on a probabilistic approach in which the judges’

heterogeneity is taken into account with the introduction of subject-specific covariates.

Combining the log-linear Bradley-Terry model with the regression trunk methodology

allows generating, through Poisson regressions, an easy-to-read partition of judges based

on their characteristics and the preferences they have expressed. The effects of the judges’

characteristics and their interactions on the object choice are estimated simultaneously.

BTRT accounts for the drawback of the classic tree-based models when no a priori hy-

potheses on the interaction effects are available. At the same time, it allows detecting

threshold interactions in an automatic and data-driven model. The final result is a small

and easily interpretable tree structure, called regression trunk, that only considers the
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interactions that significantly improve the main effects model fit.

Simulations showed that the ability of the BTRT model to find the right inter-

actions increases when both the sample size and the number of objects to be judged

increase, particularly if the covariates have a high impact on the choices. The results

suggest that a value of the pruning parameter c between 0.7 and 0.9 is a good choice in

most cases. These values are consistent with those reported in Dusseldorp et al., 2010,

for the linear regression model and in Conversano and Dusseldorp, 2017, for the logistic

regression model.

The two different approaches introduced for the BTRT model have been used in

a real dataset application. It emerges that the One-Split-Only approach aims to verify

the interaction effect between all the covariates taken into consideration, and the final

result is easier to interpret. On the other hand, the Multiple Splitting approach yields a

tree that can capture the most significant interactions between the variables selected by

the model. The BTRT model appears well-suited to analyze the probability distribution

of preferring a particular object for a specific group of individuals with a specific set

of characteristics. For this reason, it can be used for both descriptive and predictive

purposes as it allows the user to estimate the impact of each subject-specific covariate on

the judges’ choices, the overall consensus ranking, and the effect size of the interactions

between covariates.

Future research is addressed to consider cases when categorical subject-specific

covariates with more than two categories are used as possible split candidates and in-

vestigate further model performance and stability concerning (big) datasets presenting a

high number of objects, rankings, and covariates. This would allow us to evaluate better

the two approaches illustrated in Section 4.1. In addition, an R function is currently

under development to allow replications and extensions of the BTRT procedure. At the

same time, research efforts will extend the model to cases where missing values (i.e.,

partial orderings) are allowed. As the number of objects increases, paired comparisons

become more challenging to treat. A solution to this issue is furnished in Chapter 6.1,

where we present an extension of the BTRT model to analyze ordinal data treated as

rankings. This extension is based on the Mallows specification of the BT model.
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Chapter 5

The Bradley-Terry Regression

Trunk on financial data

5.1 Applitation of BTRT on financial data

Public finance can be described as the study of the government’s role in the economic sys-

tem (Gruber, 2005). Policymakers must respect the government budget balance, which is

the overall difference between government revenues and spending. This principle became

even more critical following the financial crisis that erupted in 2007 in the US and then

turned into a sovereign debt crisis. The public authorities’ goal is to find the right balance

between government revenues and government expenditures to achieve desirable effects

and avoid undesirable ones (Jain, 1989). If we singularly consider these two components,

it is pretty clear how they influence the countries’ Gross Domestic Product (GDP). By

looking at the spending approach, the GDP is directly influenced by the government’s

public spending, while the taxes generally act in the opposite direction. However, the

relationship between tax revenues and public spending and their interaction with eco-

nomic components is unclear. Manage and Marlow, 1986, focused on analyzing the causal

relationship between taxation and central government public expenditure. They showed

that taxation causes expenditure at the state level of government but that such causation

becomes bidirectional in the short run. However, Anderson et al., 1986, concluded that
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government expenditures cause government taxes by conducting the Granger causality

test in the same year. On the other hand, there is a discrete interest in the literature

about tax revenue determinants. At the basis of this interest, there is a common ques-

tion: where do the differences in tax revenues between countries come from? According

to Kaldor, 1963, underdeveloped countries’ tax revenues are much lower than developed

countries. This effect can be explained by the fact that taxes can be paid from the in-

come surplus over the population’s minimum subsistence needs (Boukbech et al., 2018).

Therefore, an emerging country has less room for transforming national income volume

into taxes to finance collective needs without creating intolerable social tensions. It is

reasonable to assume that the higher the country’s level of development, the greater its

capacity to raise tax resources (Brun and Diakite, 2016).

Several authors worked on the relationship between socio-economic explanatory

variables and tax revenues as response variables through cross-sectional or panel empirical

studies. Their goal was to find the tax revenues’ determinants. The main findings suggest

that the principal factors of tax pressure are represented by the Gross Domestic Product

per capita (Gupta, 2007a; Pessino and Fenochietto, 2010), the productive specialization

captured by the sectoral composition of the GDP (R. J. Chelliah, 1971; R. Chelliah, 1975;

Tait et al., 1979; Piancastelli, 2001; Karagöz, 2013), external factors such as the level of

foreign direct investment (FDI) and trade (Cassou, 1997; Gupta, 2007b; R. M. Bird et al.,

2008), the level of public debt (Teera and Hudson, 2004) and policy makers’ choices, such

as exchange rate, inflation rules (Keynes-Oliveira-Tanzi effect) and financial-fiscal policies

(Tanzi, 1989. Other works analyzed the role of government efficiency and institutional

factors such as political stability and political and civil rights (Martın-Mayoral and Uribe,

2010). On the social side, some researchers study the impact of the educational level (as

a share of public expenditure on education), illiteracy rate, and population growth on

tax revenues (Bahl and Wallace, 2005). Accountability and civil and political rights

are also considered determinants of tax revenue. Also, factors such as corruption, entry

regulations, and the rule of law can play a determinant role in defining tax revenues (R.

Bird et al., 2004).

These authors used different methodologies to achieve their similar goals. Some
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have applied dynamic general equilibrium models (Feltenstein and Cyan, 2013), but

others have recurred to econometric techniques, such as the first cross-sectional study on

international tax ratios conducted by Lotz and Morss, 1967. They introduced the tax

effort concept and determined that per capita income and trade share are determinants

of the tax share. On the panel empirical methods side, Pessino & Fenocchietto, 2010,

determined a panel version of a stochastic tax frontier model, while others focused on

static fixed and random effect models and dynamic panel data techniques that use the

generalized method of moments (Gupta, 2007; Martin-Mayoral and Uribe, 2010).

Between the works mentioned above, Teera & Hudson, 2004, and Pessino & Fenoc-

chietto, 2010, applied their methodologies to large samples of countries by considering

different countries’ geographical locations or income levels. However, there are works

based on a restricted sample of countries. Castro and Camarillo, 2014, considered only

the 34 countries from the Organisation for Economic Co-operation and Development

(OECD) by using lagged values of the tax revenues over 2001-2011. The basis of this

choice is that the research for tax determinants may not be significant for a heterogeneous

group of countries. The determinants of tax revenue can be different in low, middle, and

high-income countries.

Our work matches the needs mentioned above: Finding the tax revenues compo-

nents by accessing the heterogeneity of countries and focusing on the relationship between

tax revenues and government expenditure. We present an application that differs from

those made previously. Unlike the works cited, we decided to study the determinants of

tax revenues by decomposing them into taxes on income, social security contributions,

taxes on property, and taxes on goods (Organisation for Economic Co-operation and De-

velopment classification). In this way, it is possible to simultaneously consider the effect

of socio-economic variables on different tax categories. In addition, the tax categories are

paired compared on their size, which means that the tax revenue categories have been or-

dered according to their size and then compared to each other. Passing from continuous

data to categorical ones (from numbers to rankings and then to paired comparisons), we

can apply the Bradley-Terry model for matched pairs, using the log-linear formulation

with subject-specific covariates in order to capture and to quantify the effects of each
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country socio-economic feature on their tax revenues category. In addition, the trans-

formation from continuous data to rankings seems reasonable when comparing countries

with different fiscal systems. The Organisation for Economic Co-operation and Develop-

ment (OECD) tax revenues classification results from a big effort to obtain a common

ground to compare data from different countries. Our transformation allows us to work

on sizes and not on precise continuous values of tax revenues so that the problem of

comparability becomes easier to overlook Here, we used data from different databases by

combining data from OECD, International Monetary Fund (IMF), and World Bank for

the year 2018. The heterogeneity in the model is also taken into account by expressing

variables in terms of Gross Domestic Product (GDP) and applying a particular partition-

ing model for the Bradley-Terry model. Specifically, the Bradley-Terry Regression Trunk

(BTRT) is chosen to investigate the interactions between covariates that most affect the

comparisons between taxation items. The result is a small regression tree that creates

a partition of countries and provides valuable information about each terminal node’s

main effects, interaction effects, and estimated tax ordering.

The proposed model provides a solution to discover interaction effects when no

a-priori hypotheses are available. It produces a small tree, called trunk, representing a

fair compromise between a straightforward interpretation of the interaction effects and

an easy-to-read partition of countries based on their socio-economic characteristics and

the order of their tax revenues. This model is also justified because there are relatively

few works in the classification community for paired comparisons data, especially in

public finance studies. Then, we decomposed the government expenditure by following

the Classification of the Functions of Government (COFOG) classification to capture the

effect of each type of government expenditure on each tax revenues category.

5.2 Data

We use a cross-section dataset that covers 100 countries and their associated tax revenues

by category for 2018. These initial data are taken from the Global Revenue Statistics

Database (OECD, 2018), where the OECD classification of taxes is used. This ensures
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consistency across countries and provides a high granularity of tax revenue categories

(Constructing the global revenues statistics, 2018). According to OECD classification,

taxes are classified by the base of the tax: income and profits (heading 1000), compulsory

SSCs (heading 2000), payroll and workforce (heading 3000), property (heading 4000),

goods and services (heading 5000), other taxes (heading 6000). All these categories are

expressed in terms of the level of taxation through the tax-to-GDP ratio, calculated by

the ratio of nominal tax revenue of a country h and its nominal GDP for the year 2018.

The tax-to-GDP ratio is well suited for cross-country research studies aiming to compare

tax levels across countries with different development degrees.

At the initial stage of our analysis, we transformed tax revenue categories from

continuous data to rankings by assigning values from 1 to 6 to each category, where 1

represents the higher tax category, and 6 is the lower one. This transformation aims to

obtain paired comparisons between categories that are the basis of the BTRT model.

Once rankings are obtained, we calculated the consensus ranking by maximizing the

extended correlation coefficient τx. Following this specification, the consensus ranking

is the best compromise between a set of rankings. It is the solution to a maximization

problem: the consensus ranking is that ranking in the permutation space maximizes the

sum of correlations between itself and all the other rankings. We used the R package

ConsRank for this calculation, and the result is the following: goods and services >

income and profits > compulsory SSCs > property > workforce = other taxes. The

categories taxes on workforce and other taxes are ranked in the last position. In most

cases, in the original continuous data, these two categories present values equal to 0,

which conducted us to exclude them so that our analysis covers 100 countries and four

tax revenue categories.

Once the data cleaning on tax revenue categories is operated, we focused on col-

lecting predictors to determine the tax revenues as independent variables. We followed

the suggestions from the previous literature mentioned in the introduction Section 5.1,

and we considered a high number of socio-economic covariates by combining information

from IMF, OECD, and World Bank databases. All covariates refer to the year 2018,

which is the last year for sufficient financial data we needed, and they are almost all
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expressed in terms of GDP.

In the specific, before the feature selection process, the country-specific covariates

we considered in our analysis are the sequent: current account balance; employment

and unemployment rate; general government gross debt; general government net lend-

ing/borrowing; gross fixed capital formation; percentage of change in the gross domestic

product; gross national savings; the volume of exports and imports of goods and ser-

vices; account ownership at a financial institution; subsidies and other transfers; interest

payments; compensation of employees; value-added of agriculture, services, industry,

and manufacturing; population density; final consumption expenditure; banking non-

performing loans; claims on central government; households consumption; government

consumption; trade volume; environmental performance index; government expenditure

for military, education, health, and others. The latter covariate was constructed by dif-

ference, subtracting military expenses, education expenses, and healthcare expenses from

the total government expenditure. This step was necessary due to the lack of data on

the other public expenditure items included in the COFOG classification.

In addition, for replacing missing values, we also considered the location variable

from the OECD database. It classifies the H = 100 countries into four categories: 36

OECD countries, 29 countries from Africa, 15 countries from Asia, and 21 countries from

South America. Missing values for each covariate were replaced with the median value

conditioned to the location of each specific country.

5.3 Bradley-Terry-Luce Lasso for covariates selec-

tion

When dealing with BT models, the inclusion of covariates yields models with a high

number of parameters. Therefore, in applications like ours, it would be better to select

the most relevant terms to reduce the complexity of the model. Generally, not all the

explanatory predictors likely impact the objects’ ordering in a high-dimensional dataset.

For this reason, we applied a subject-specific covariates selection through the Bradley-
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Terry-Luce Lasso (BTLL) proposed by Schauberger and Tutz (2019). The authors refer

to this methodology as BTLL regression since the BT model is strongly connected to

the axiom formulated by Luce, 1959, which states that other objects do not influence

the decision between two objects. Luce’s axiom is usually defined as independence from

irrelevant alternatives. This methodology is based on the maximization of the penalized

log-likelihood as follows

lp(ξ) = l(ξ)− ΛJ(ξ), (5.1)

where l(ξ) is the classic log-likelihood with (ξ) indicating a vector with all the parameters.

The penalty term is represented by J(ξ), with Λ as a tuning parameter that quantifies

how seriously the penalty term must be taken. When Λ = 0, the classic ML estimate is

obtained.

The penalty for subject-specific covariates yields for all the covariates xp that

share the same effect and can be formulated as follows

P (βi,1, ..., βi,P ) =
P∑

p=1

∑
i<j

|βi,p − βj,p| (5.2)

If Λ → ∞ all the effects of xp are merged to one single cluster, it is eliminated

from the model as all effects tend to zero. On the contrary, when Λ = 0, the model gives

coefficients equal to a classic BT model with subject-specific covariates. It derives that

for a finite value of Λ some of the covariates are eliminated, while the remaining are still

identified in the model.

The penalty terms can be internally weighted according to the principle of adaptive

lasso (Zou, 2006), and finally, they can be combined as

J(ξ) =
L∑
l=1

ψlPl, (5.3)

where ψl represents penalty-specific weights. This formulation allows combining all
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penalty terms into one joint penalty controlled by the tuning parameter Λ to make the

optimization procedure easier. The comparability of different penalty terms requires two

conditions. First, all subject-specific covariates have to be scaled to compare their effect

sizes. Second, the weights ψl have to be assigned according to the number of penalties

and free parameters they include (Bondell and Reich, 2009; Oelker et al., 2015).

We used the R package BTLLasso (Schauberger, 2015) that applies L1 penalties to

the Fisher scoring. This package allows implementing a 10-fold cross-validation procedure

to find the optimal level of tuning parameters Λ. By applying the cv.BTLLasso R

function before starting the regression trunk building procedure (i.e., in the root node),

the cross-validation procedure detected Λ = 1.23 as optimal value for the size of penalties

applied to our βi,p coefficients. As a result, we removed the covariates that presented an

effect size equal to zero on two or more different tax revenue categories. The selected

variables with a significative main effect on tax revenues are the sequent: employment

rate, general government gross debt, gross national savings, the volume of exports and

imports of goods and services, interest payments, value-added of agriculture and services,

final consumption expenditure, bank non-performing loans, claims on central government,

government consumption, EPI, and expenses on the military, education, health, and other

expenses. In total, 13 out of 30 subject-specific covariates are removed from our dataset.

At the end of the feature selection, our dataset is composed by H = 100 countries, no = 4

tax revenue categories, and 17 xps subject-specific covariates. It is quite interesting that

all the covariates related to the public expenditure remain in our analysis, meaning that

their size main effect on the composition of tax revenues can not be overlooked. Table 5.1

shows a summary of the descriptive statistics for each covariate xp chosen after conducting

the BTLL future selection.

Missing values reported in Table 5.1 were replaced with the median value of each

covariate conditioned to the location membership of the country (i.e., OECD, Africa,

South America, and Asia).
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Table 5.1: Key descriptive statistics for subject-specific covariates after selection through BTLlasso

covariates xp missing mean sd median min max range skew kurtosis se

Employment rate x1 2 0.59 0.09 0.59 0.39 0.85 0.45 0.05 0.27 0.01

Gov gross debt x2 1 0.59 0.35 0.50 0.09 2.38 2.29 2.12 6.96 0.03

Savings x3 5 0.21 0.08 0.21 0.02 0.46 0.44 0.53 0.48 0.01

Exp x4 13 0.04 0.06 0.05 -0.36 0.17 0.54 -3.59 22.69 0.01

Imp x5 11 0.04 0.06 0.05 -0.23 0.18 0.41 -1.66 6.12 0.01

Interests x6 21 0.08 0.05 0.07 0.00 0.29 0.29 1.34 2.98 0.01

Agric added-value x7 2 0.09 0.09 0.05 0.00 0.45 0.45 1.69 2.79 0.01

Services added-value x8 21 0.57 0.10 0.57 0.29 0.79 0.50 -0.40 -0.20 0.01

Final consumption x9 8 0.78 0.11 0.79 0.43 1.12 0.69 -0.49 1.88 0.01

Bank NPloans x10 16 0.04 0.06 0.03 0.00 0.42 0.42 4.77 25.75 0.01

Claims centr gov x11 4 0.12 0.18 0.08 -0.14 1.42 1.56 3.85 23.62 0.02

Gov consumption x12 8 0.16 0.05 0.16 0.04 0.39 0.35 0.63 2.42 0.01

EPI x13 0 0.59 0.16 0.59 0.00 0.87 0.87 -0.93 2.21 0.02

Military spending x14 2 0.01 0.01 0.01 0.00 0.05 0.05 1.44 3.72 0.00

Education spending x15 33 0.04 0.01 0.04 0.01 0.08 0.07 0.72 0.25 0.00

Health spending x16 0 0.07 0.03 0.07 0.02 0.17 0.15 0.74 0.96 0.00

Other spending x17 9 0.20 0.10 0.20 0.03 0.76 0.73 1.77 7.89 0.01

5.4 Results

The final result of the BTRT model is a tree that represents a compromise between

an easy-to-read partition of countries and an effective capture of the main effects and

interaction effects that have the most significant impact on the order of magnitude of the

four tax revenue categories.

The main results in terms of the node in which the split is found, best split

covariate, best split point, and model deviance are shown in Table 5.2. We used the

same nodes coding procedure as used in CART. These values are referred to the pruned

regression trunk because the pruning procedure has already been applied to the full tree.

The algorithm tried to split the root node by considering all the values of each

subject-specific covariate in Table 1. As a result, the first best split covariate is repre-

sented by the Environmental Performance Index (EPI) with a value of 0.7. This covariate
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Table 5.2: Pruned regression trunk. The table shows the node in which the split is found, the splitting

covariate, and its split point together with the deviance associated with each estimated model. The

codification of the nodes follows the same scheme as in the CART algorithm.

Node n. Splitting covariate Split Point Model Deviance

1 main effects (no splits) 313

bestsplit1 1 x15 (Environmental Performance Index) 0.70 271

bestsplit2 3 x2 (Gross debt) 0.40 238

bestsplit3 2 x4 (Health spending) 0.06 213

bestsplit4 5 x8 (Employment rate) 0.51 190

bestsplit5 4 x8 (Environmental Performance Index) 0.56 171

has been scaled in data cleaning steps to obtain an index between 0 and 1. It is well

known that EPI is highly related to income, wellness, and human development (Lai &

Chen 2020). The BTRT results confirm the expectations of EPI as a key covariate by

selecting it as the first choice and best split covariate. The 100 countries in node 1 are

splitted according to the threshold EPI = 0.7 so that 76 countries go left to node 2

(EPI ≤ 0.7) and 24 go right to node 3 (EPI > 0.7). The second-best split covariate is

the GDP change in percentage (x2), which splits node 3 according to the value 0.4. The

government health spending (x4) is the third split covariate, with a value equal to 0.06. It

splits node two and generates nodes 4 and 5 with 46 and 30 countries. The employment

rate (x8) splits node 5 with a value equal to 0.51. The employment rate is unaffected

by voluntary changes in labor force participation so that it can be considered a useful

indicator of current labor market conditions. The unemployment rate is affected by the

size of the labor force (e.g., it may fall if workers give up looking for work, and as the

labor market is recovering, unemployment can rise because more people are entering the

labor force). The last best split of the pruned tree is still the EPI, with a value of 0.56.

Table 5.3 shows the deviance, cross-validation deviance, with associated standard

error, for each step of the BTRT building process. Note that the results referred to

model6 (mod6) are reported even if the pruned tree stops at model5 (mod4). We also

reported the model results for one more split to show how the pruning procedure works.

In our case, by adding another split to the tree, the model deviance D and the cross-
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validation deviance Dcv decrease. The Dcv values are much smaller than the D values

because they are mean values of deviances calculated on each row of the design matrix

(Equation 3.15), while D is calculated as a sum (Equation 3.14). The pruning back

procedure consists of applying the c × SE rule as for the STIMA algorithm and BTRT

model. Here, we use a value c = 0.5 as suggested by simulations results of the BTRT

model in Chapter 3.8, and model6 is pruned (0.3565+0.5× 0.0014 > 0.3567). Then, the

final tree corresponds to model5 (mod5) with five splits and T = 6 terminal nodes.

Table 5.3: 10-fold cross-validation results: D = model deviance for a Poisson distribution; Dcv =

casewise cross-validation deviance (Eq. 3.14); SEcv = standard error of Dcv (Eq. 3.15).

D Dcv SEcv

mod0 313.0671 0.3775 0.0010

mod1 271.9198 0.3682 0.0010

mod2 238.8955 0.3659 0.0011

mod3 213.5469 0.3617 0.0011

mod4 190.8353 0.3594 0.0013

mod5 171.2580 0.3567 0.0013

mod6 136.5742 0.3565 0.0014

Figure 5.1 shows the pruned regression trunk. In each terminal node, we report

the number of countries H belonging to T , the consensus ranking C, and the associated

correlation coefficient τx. The consensus rankings are calculated by maximizing the cor-

relation τx between rankings inside the nodes, where τx refers to the extended correlation

coefficient. These values are reported just as descriptive statistics since they do not de-

rive from the estimated parameters of the BTRT model. The consensus ranking C and

the associated correlation coefficient τx are calculated using the DECOR function within

the ConsRank R package.

As a result, the BTRT model found the first-order interaction between the EPI

and health spending and the second-order interaction between EPI, health spending, and

employment rate. It seems that in countries with higher health expenditure, the struc-

ture and development of the labor market, associated with the degree of environmental

performance, have a substantial effect on the composition of tax revenues categories for
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Figure 5.1: Pruned regression trunk: In each terminal node T1...T6 and in the root note, the number

of countries H, the consensus ranking C, and the correlation coefficient τx are shown. The order of taxes

is the sequent: taxes on income, social security contributions, taxes on property, and taxes on goods.

The consensus rankings C assign values to this object, where 1 corresponds to the highest and 4 to the

lowest.

the sample of countries in our dataset.

For a visualization of the composition of the terminal nodes deriving from the

application of the BTRT model on financial data, Figure 5.2 shows the world map with

the final breakdown of the countries in the respective terminal nodes T1, . . . , T5.

The results in terms of coefficients are summarized in Table 5.4 for taxes on income

o1, compulsory social security contributions o2, and taxes on property o3. For taxes on

goods o4, the estimated parameters are automatically set to 0 as this revenues source

acts as the reference category.

The regions R2, ..., R6 are defined as follows
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Figure 5.2: Countries’ distribution map in each terminal node

R2 = I(EPI ≤ 0.56, health spending ≤ 0.06),

R3 = I(0.56 < EPI ≤ 0.7, health spending ≤ 0.06),

R4 = I(EPI ≤ 0.7, health spenging > 0.06, empl. rate ≤ 0.51),

R5 = I(EPI ≤ 0.7, health spenging > 0.06, empl. rate > 0.51),

R6 = I(EPI > 0.7, gross debt ≤ 0.4)

Note that the region I(EPI > 0.7, gross debt > 0.4) does not appear neither in

model final output nor in the regions mentioned above. The reason is that it acts as a

reference region for model specification needs.

By looking at the coefficients of the BTRT model output, some interesting results

emerge:

• For the first object o1, taxes on income, the level of military spending x14, and
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Table 5.4: MS regression trunk final output: the Table shows the estimated coefficients associated to

the objects taxes on income o1, social security contributions o2, taxes on property o3, and taxes on goods

and services o4. The last object o4 is set as reference level, so that the estimated parameters associated

to λ̂o4,h are automatically set to zero. The standard errors are shown in parenthesis and the stars ′∗′

associated to some estimate coefficients indicate that they are significantly different from zero with a

pvalue lower than 0.001 (′ ∗ ∗∗′), 0.01 (′ ∗ ∗′) and 0.05 (′∗′), respectively.

λ̂o1,h λ̂o2,h λ̂o3,h

λ̂i 13.15∗ (5.33) -33.63∗∗ (11.83) -50.09 (115.79)

β̂i,x1 -4.16 (2.77) 1.24 (4.62) 8.73 (4.54)

β̂i,x2 0.71 (0.93) -5.28∗∗ (1.94) -2.99 (1.98)

β̂i,x3 5.45 (3.68) 20.95∗∗ (7.56) 15.78 (8.15)

β̂i,x4 -16.68∗∗ (5.58) -5.02 (9.13) -32.94∗ (12.96)

β̂i,x5 14.89∗ (5.43) -11.30 (7.38) 5.96 (8.51)

β̂i,x6 -15.22∗ (7.38) -2.61 (10.94) 4.06 (12.10)

β̂i,x7 -10.12∗ (4.48) 2.40 (10.70) -15.69 (12.72)

β̂i,x8 -8.05∗ (3.78) 16.25∗ (6.72) 11.85 (7.51)

β̂i,x9 2.82 (3.39) 5.23 (5.50) 7.94 (6.69)

β̂i,x10 -4.54 (4.09) 16.92∗ (7.60) -0.19 (10.47)

β̂i,x11 0.33 (1.60) 7.91∗∗ (3.05) 9.32∗ (4.04)

β̂i,x12 -11.06 (7.49) -28.28∗ (12.56) -51.68∗∗ (16.17)

β̂i,x13 -6.54∗ (2.65) 22.30∗∗∗ (6.52) 24.17∗∗ (7.61)

β̂i,x14 -25.63 (25.38) 6.32 (33.37) 137.84∗∗ (53.16)

β̂i,x15 -3.98 (21.42) -65.68 (38.44) -45.98 (43.92)

β̂i,x16 10.26 (13.88) 20.80 (17.44) 5.51 (25.97)

β̂i,x17 -4.15 (2.63) 22.81∗∗ (7.01) 33.23∗∗∗ (8.64)

β̂i,R2 -3.21∗ (1.32) 0.83 (1.88) 14.30 (115.09)

β̂i,R3 -2.25∗ (1.06) 0.50 (1.42) 11.58 (115.09)

β̂i,R4 -0.77 (1.32) 4.87∗ (2.22) 19.19 (115.10)

β̂i,R5 -3.24∗∗∗ (0.96) 3.31∗ (1.29) 6.00 (153.15)

β̂i,R6 7.93 (201.22) -4.26∗ (1.73) 8.35 (115.10)
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exports x4 have a substantial impact on the size of taxes on income. In particular,

the higher the level of military spending or exports, the lower the probability that

taxes on income are higher than the taxes on goods o4 (i.e., the reference category).

On the contrary, the import levels and health expenditures positively affect the size

of taxes on income. Then, all the regions harm taxes on income except for R6. Note

that all the countries in this region are OECD members;

• About the second object o2, compulsory social security contributions, the covariates

savings x3, EPI x13, and other spendings x17 have a positive and strong impact on

the size of o2. For instance, the higher the EPI, the lower the log-odds that social

security contributions are higher than taxes on goods. The EPI has a positive and

high impact on o2, contrary to what happens for income taxes, for which the EPI

has a negative effect. It seems that in the most developed countries, it is very likely

that social security contributions are higher than taxes on goods. In addition, it is

interesting that the government consumption x12 has a strong and negative effect

on social security contributions. Finally, the region R4 and R6 have a significative

effect on o2. The first has a positive impact, the latter a negative one;

• In the end, the third object o3, taxes on property, has a strong tendency to be

the last object ranked as the intercept is the lowest one. Then, about the main

effects, the covariates export levels x4 and the government consumption x12 have

a strong and negative effect on the size of taxes on property. On the contrary,

military spending x14 and other spending x17 positively impact this tax category.

Regarding the interaction effects, all the regions found by the BTRT algorithm

positively impact the comparison between taxes on property and taxes on goods

and services.
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5.5 Comparing BTRT with the basic LLBT model

and BTtree

The following section shows an application to our data of the LLBT model without

subject-specific covariates and the ”BTtree” model proposed by Strobl (Strobl, Wickel-

maier, & Zeileis, 2011).

The LLBT model without subject-specific covariates applies a generalized linear

model with log-link and Poisson distribution intending to calculate the λi values that

act as intercepts in the BTRT model. Once this value has been obtained, the worth

parameters πi are easily calculated through the inversion shown after Equation 3.2. This

model has been applied using the prefmod R package , which does not allow the inte-

gration of numerical subject-specific covariates. For this reason, the analysis was carried

out assuming that the covariates do not affect the order of magnitude of the tax revenue

categories.

An application of this type can be considered an analysis aimed at finding consen-

sus ranking, with the difference that a probabilistic approach is followed here. In fact, in

addition to the estimated values of the lambda coefficients, the standard errors and the

significance of the coefficients themselves are provided. The output of the LLBT model

without subject-specific covariates is shown in Table 5.5.

Table 5.5: Log-linear Bradley-Terry model without subject-specific covariates: results

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.61 0.05 67.24 0.00

o1 -0.20 0.07 -2.72 0.00

o2 -0.73 0.08 -9.24 0.00

o3 -1.26 0.08 -15.37 0.00

o4 0.00 0.00 0.00 0.00

From these values we get the worth parameters πi for each object so that π1 = 0.33,

π2 = 0.11, π3 = 0.04, and π4 = 0.50. These values are in line with those shown in Figure

2. If we observe the consensus ranking within the root node of the tree, we obtain the
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same ordering: the fourth object (taxes on goods) is in the first position, the first object

(taxes on income) is in second place, the third object (taxes on property) is in the third

position and the second object (social security contributions) is in the last position.

This approach is the same one followed by Dittrich. However, it is based on

the use of the prefmod R package, in which the possibility of regressing the response

variable on numerical subject-specific covariates is not implemented. Furthermore, since

it is not a tree-based division procedure, different results are not provided based on the

characteristics of the individuals, but the average value for each of them of the lambda

coefficients is calculated. The BTRT model, on the other hand, provides a different

composition of the tax revenues ordering based on the main effects and the interaction

of the covariates that have the most significant effect on the ordering itself.

Strobl et al., 2011, have developed a model capable of applying a tree model to

the BT model. They determined a model-based recursive partitioning where splits are

selected with a semi-parametric approach by looking for instability of the basic Bradley-

Terry model object parameters. The model is implemented within the psychotree R

package by using the bttree function. The drawback of this approach is that the final

output contains less information than those contained in BTRT. The final result of BTtree

provides the preference scales in each group of the partition that derives from the order

of object-related parameters, but it does not offer information about how the subject-

specific covariates affect the judges’ preferences. Therefore, this semi-parametric model

returns beta coefficients neither for the main effects nor for the interaction effects between

the covariates. In addition, it is essential to underline that the split selection procedure

is carried out differently than in the BTRT model. As pointed out by the authors, the

testing procedure for the split search can be very challenging (Wiedermann et al., 2021).

They use the M-fluctuation test that is a score-based procedure (Zeileis and Hornik, 2007;

Zeileis et al., 2008) to research the best split covariates, while our method is based on the

easy-to-compute decrease in deviance by following the regression trunk approach within

the STIMA algorithm.

Applying the bttree function to our dataset, we obtain the result shown in Figure

5.3. The visualization of the composition of the two terminal nodes was obtained by
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Figure 5.3: Application of BTtree proposed by Strobl et al, where H is the number of judges, I =

taxes on income, S = social security contributions, P = taxes on property, and G = taxes on goods and

services. The two graphs indicate the estimated worth parameters for both terminal nodes.

plotting the results of the bttree function. In the Strobl model, EPI is the first and

only covariate used to split countries. Although this first result is in line with that

obtained by the BTRT model, this application’s main difference is even more evident.

The Strobl model does not find interactions between covariates as it works differently

than the BTRT: after fitting a BT model, one wonders if the order presented in the

root node is the same for all observations in the dataset. Then the covariates that cause

greater instability in the ordering and, therefore, in the estimated lambda parameters are

selected. Using EPI as the first split variable, it is possible to obtain two different orders,

as shown in Figure 5.3. For countries with an EPI lower than or equal to 0.661, the

revenues related to income taxes are lower than those on goods. Conversely, the exact

opposite occurs when EPI is greater than the indicated value.

Income taxes are in the second position in the terminal nodes to the left of the

first split, while taxes on goods are in the first position. The situation is reversed in the

terminal nodes to the right of the first split. However, through the application of the

BTRT model, it is further possible to differentiate the subgroups based on the ordering

of their income by taxation, thanks to the effect of the interactions.
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In conclusion, the model of Strobl and the BTRT respond to different needs. While

the first searches for the variables that cause greater instability in ordering objects, the

second searches for the variables that improve the model’s goodness-of-fit and have the

most significant impact on ordering objects by considering their main and interaction

effects simultaneously.

5.6 Discussion

The analysis of financial data could be challenging when considering different countries

worldwide. We deviated from the usual way these data are treated in literature by analyz-

ing the problem from a different point of view: how the size of tax revenues by category of

different countries is affected by the characteristics of the countries themselves? For this

purpose, we create a new dataset by combining data mainly from OECD, IMF, and World

Bank databases for the year 2018. First, the tax revenues by four different categories

(OECD classification) have been ordered by size for every 100 countries in our sample.

These orderings represent the starting point to approach this problem by following an

innovative probabilistic approach for preference rankings, the Bradley-Terry Regression

Trunk model. Most studies in literature focus on the determinants of tax revenues, but

few investigate the composition of tax revenues. Moreover, there are few studies in which

countries that are not part of the same economic organization/area (e.g., OECD) are an-

alyzed simultaneously. This study, therefore, makes it possible to analyze tax categories

through the paired comparison system for a high number of countries worldwide.

The BTRT model fits well when the need is to partition individuals, splitting the

observations based on the orderings associated with them and the causal relationship

between the ordering and the subject-specific characteristics. It is reasonable to assume

that the ordering of tax revenue for a country depends on its socio-economic character-

istics. Hence, for each country, we collected a group of covariates generally used in the

literature to study the determinants of tax revenues. In addition, we also tried to con-

tribute to that branch of literature that deals with the study of the relationship between

tax revenues and government expenditures. Four representative expense items have been
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considered for this purpose: spending on military, education, health, and others (residual

category for all the other government expenses).

Given the large number of subject-specific covariates that make up the dataset,

we applied the Bradley-Terry-Luce Lasso selection model. It is suitable when the goal is

to choose the covariates that significantly impact each object of an order. It allowed us

to considerably reduce the number of parameters in the BTRT model. At this point, the

orderings constitute the basis for creating a design matrix in which all orderings are ex-

pressed through the paired comparison system. This matrix contains all the information

the model needs, and the tree-based algorithm starts its work: countries are partitioned

by choosing the best split covariates in terms of model deviance reduction until the search

for a different interaction effect causes an improvement in the information value of the

tree itself. The final result is a small trunk tree, representing a fair compromise between

ease of interpretation of results and effectiveness in capturing the best interaction effects

between the covariates.

In our case, the final result is a partition of 100 countries into six terminal nodes.

The splitting covariates are represented by the Environmental Performance Index (EPI,

used as a proxy of development degree), the gross government debt, health spendings,

and employment rate. The algorithm selected two first-order interactions and one higher-

order interaction effect. The firsts are EPI-health spending and EPI-government gross

debt interactions, while the higher-order interaction is EPI-health spending-employment

rate.

The results section shows the most significant coefficients for each object compos-

ing the tax revenues orderings. They contain information about the effect size of each

tax revenue category’s most critical main effects and interaction effects, which consti-

tutes the main strength of this model: to provide a probabilistic measure of the causal

relationship between subject-specific covariates and objects presented in paired compar-

isons. In Section 5.5, we compared our model with those used in the field of preference

data for the partitioning or analysis through the Bradley-Terry model. Compared to

Dittrich model, ours allows a tree-based algorithm to break down the analyzed sample.

This approach allows for an easy-to-read representation of the final result. Compared to
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Strobl semi-parametric model, however, ours returns an estimate of the effect size of the

subject-specific covariates on each object of the paired comparison.

In conclusion, this chapter presented an application in public finance that can

represent a point of reflection for policymakers. It makes it possible to estimate the

effects of an economic shock on the structure of tax revenues. This type of application

can also represent a point of reflection for countries that want to change the composition

of their tax revenues. The final results show that it is possible to obtain a variation in

the size of the tax revenues by operating on one’s socio-economic characteristics. In this

way, it may not be necessary to initiate legislative processes for regulatory changes in

taxation, which in many cases take a very long time.

Future research aims to interpret the final output even more intuitively through

a simplification of the structure of the dependent variable. Our case derives from the

outcome of each pairwise comparison between objects. Instead, a solution might be

to deal directly with rankings rather than converting them into pairwise comparisons.

The Mallows extension for the Bradley-Terry model can be a solution to reduce the

high number of parameters of the final BTRT model, which is the main BTRT model

drawback.
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Advances on the Bradley-Terry

Regression Trunk model: the

Mallows extension

6.1 Mallows-Bradley-Terry model

The government budget, also called public fiscal balance, is a flow variable. It is calculated

as the overall difference between government revenues and spending. If the outcome is

positive, the budget is surplus; otherwise, there is a deficit. Positive net lending allows

governments to provide financial resources to the economic sector, while negative net

lending indicates governments need to apply financial resources to other sectors. The

budget can be referred to the central government or local municipalities, and one of

the critical roles for policy-makers is to maintain these balances positively, avoiding

undesirable effects (Jain, 1989). This need was increased after the 2007 financial crisis

erupted in the U.S. real estate market, which turned into a sovereign debt crisis.

More generally, a country’s GDP is negatively influenced by tax revenues and

positively influenced by the government’s public spending. Nevertheless, the relationship

between tax revenues and government expenditures is unclear. In literature, several
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alternative hypotheses try to explain it. For instance, Peacock and Wiseman, 1979,

followed by several other authors (Anderson et al., 1986; Von Furstenberg et al., 1986),

support the spend-and-tax model by demonstrating that spending leads to revenues. On

the contrary, Friedman, 1978 suggests that taxes lead to government spending because

the second has to adjust to the level supported by taxation. The Friedman theory was

supported by other authors, such as Manage and Marlow, 1986, Ram et al., 1988, and

Blackley, 1986. Meltzer and Richard, 1981, finding the middle ground between these two

theories, demonstrate that spending and taxes are determined simultaneously, supported

by authors such as Miller and Russek, 1990, Bohn, 1991, and Jones and Joulfaian, 1991.

All three theories are the result of empirical tests on time series data. This fact led to

critiques due to the concern that the time series data are stationary, with the risk of

leading to spurious results (Hondroyiannis and Papapetrou, 1996). Most of the studies

conducted in the literature focus on the tax revenues determinants by considering a single

country or countries in the same organization (e.g., OECD countries) in a specific period.

This choice is usually considered as a solution to the big issue affecting comparability

across heterogeneous groups of countries: for instance, there are countries where hospitals

are classified as public corporations instead of the government sector. In addition, there

are cases in which the concept of public ownership is not clear. However, this issue is

partially overcome if a unique classification for tax revenues and government expenditures

is followed.

This chapter focuses on the determinants of tax revenues by using government

expenditures as country-specific covariates. We built a new dataset composed of 100

countries worldwide, and for each of them, the tax revenues by four categories are col-

lected for 2018. The heterogeneity among countries in our dataset is taken under control

by collecting data from the OECD database, which follows the same classification for tax

revenue categories in different countries. The main innovation is that tax revenues are

differentiated by four categories, based on the tax source (i.e., taxes on income, social

security contributions, taxes on property, and taxes on goods and services). The critical

point of our analysis is that those continuous and numerical data were ordered by their

size for each country to obtain 100 rankings. This transformation ensures consistency

in comparing data regarding different countries with different fiscal systems. Even by
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following the OECD classification for tax revenues, there could be inconsistency issues.

The transformation into rankings can be a solution. The size of tax revenue categories

is respected, but now we work on ordinal data instead of continuous ones. In our case,

it can be reasonable to assume that the tax revenues size depends on the characteristics

of a country (IMF).

Differently from the application in Chapter 5.1, once we obtained rankings, we ap-

plied the Mallows-Bradley-Terry (MBT) to our data. The Mallows specification extends

the BT model for paired comparisons to the case of rankings. This model is typically used

for treating rankings and discovering the causal effect of specific covariates, also called

subject-specific covariates. When the log-linear Bradley-Terry model (LLBT) is applied,

the causal effect is estimated through a GLM. In our case, we introduce country-specific

covariates, which are four government expenses categories: health expenditure, military

expenditure, education expenditure, and other expenses. We collected these data by

following the COFOG classification, allowing comparability among countries adopting

different accounting systems.

In summary, the primary purpose of this application is to obtain a partition of

countries based on the size of their tax revenue categories and the relation between taxes

and government expenses. Hence, the MBT model is combined with the regression trunk

within the STIMA algorithm. This combination determines the new model presented in

this paper, the Mallows-Bradley-Terry Regression trunk (M-BTRT). Chapter 5 demon-

strated that government expenses and other socio-economic characteristics impact the

size of tax revenues differentiated by categories. In that application, we partitioned coun-

tries through the BTRT model and used a high number of country-specific covariates.

However, one of the significant drawbacks of the BTRT model is the interpretation of

the results. This model has a high number of parameters to be estimated. The Mal-

lows extension reduces this number and makes interpretation of the final results easier.

Hence, the M-BTRT can be considered the BTRT model’s natural advance. The reasons

why the Mallows extension is easier to interpret are shown in Chapter 6.3, dedicated to

our methodology. We show an application on financial data that picks up the BTRT

application discussed above. The main differences are:
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• we directly focus on the relationship between tax revenues and government expenses

without considering other socio-economic characteristics;

• we use rankings as input data instead of paired comparisons;

• the model is based on the Mallows extension to the basic BT model.

The final result is still a small regression tree, called trunk, built by considering

the main and interaction effects of government expenses on the rankings of tax revenues.

The proposed model shares the same advantages of the regression trunk framed into the

STIMA algorithm and the BTRT model, with the further advantage of easier-to-read

model output.

The rest of the Chapter introduces the main characteristics of our dataset, the

Mallows extension to the basic Mallows-Bradley-Terry model, the benefits related to this

extension, and how the M-BTRT model works. The final partition of the countries in

our data is shown in Chapter 6.4 with a world map and an easy-to-read regression tree

visualization. Finally, results and future research steps are discussed in Chapter 6.5.

6.2 Data

Our dataset is cross-sectional and is composed of 100 countries worldwide. For each

country, we report tax revenues by category for 2018—data derived from the Global

Statistics Database (OECD, 2018). The OECD classification ensures consistency across

countries and provides a high granularity of tax revenue categories (Constructing the

global revenues statistics, 2018). Taxes are then classified as income and profits (heading

1000), compulsory social security contributions (heading 2000), payroll and workforce

(heading 3000), property (heading 4000), goods and services (heading 5000), and other

taxes (heading 6000). We consider only four out of six tax revenue categories. We exclude

the categories ”payroll and workforce” and ”other taxes” from our analysis. This choice

is justified because they are both ranked in the last position for almost all the countries

in our sample. In addition, these two categories present values equal to zero for almost
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Figure 6.1: OECD: Tax revenues composition

all the cases. The economic size and the development of each country are taken into

account by expressing tax revenues as a tax-to-GDP ratio, which is the ratio of nominal

tax revenue and nominal GDP for the year 2018. Expressing tax revenues in terms of

GDP aims at comparing tax levels across countries with different development degrees.

Figures 6.1 . . . 6.4 show the composition of tax revenue categories for each country

in our dataset. Countries are shown based on their economic and geographical position:

OECD countries, Africa, Asia, and South America. Data for the last three geographical

locations derive from the OECD’s respective tables.

The work conducted by the OECD to classify the tax revenues is affected by the

comparability problems mentioned above. For this reason, we transformed tax revenue

categories from continuous data to rankings. Rankings are numerical vectors that assign

to each tax category values from 1 to 4, where 1 represents the higher value and 4 is the

lower one. This transformation allows considering the tax data by their size instead of

their original value. Given that we started using numerical and continuous data, there
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Figure 6.2: Africa: Tax revenues composition

Figure 6.3: Asia: Tax revenues composition
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Figure 6.4: South America: Tax revenues composition

are no ties between two or more tax revenue categories in our dataset.

We aim to analyze the causal effect of four government expenditure categories

on each tax revenue category by finding subgroups of countries that share a similar

pattern in the tax revenue composition. Then, the government expenditure categories

represent our country-specific covariates. They refer to the year 2018, the same year

tax revenues are referred, and the data source is the IMF database. Specifically, we

consider government expenses on military, education, health, and others. The latter is a

residual category calculated as the difference between the total government expenditure

of the country m (OECD source) and the sum of the other expenses associated with

that country. The expenses data are comparable across countries, given that they are

collected by following the COFOG classification. Again, the government expenditure

categories are expressed in terms of GDP. Missing values for each object and covariate

were replaced with the median value conditioned to the location of each specific country.

With the term of location, we mean the classification adopted by OECD, which is an

economic and geographical location. Specifically, the countries in our dataset are assigned
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to four locations: 36 OECD countries, 29 countries from Africa, 15 from Asia, and 21

from South America.

Table 6.1 reports the first six rows of our dataset, where the four objects (i.e., the

tax revenue categories) are now expressed as ordinal values. For instance, in Australia,

tax revenues on income are the highest, and those on social security contributions are

the lowest. Then, the government military expenses are two percent of the GDP. Aus-

tralia’s total government expenditure in 2018 was approximately 37% of the total GDP so

that the category ”others” was obtained by the difference between the total government

expenditure and the sum of the expenses on military, education, and health.

Table 6.1: Dataset head: First six rows. We report the rankings of tax revenue categories associated

to each country and the four government expenditures as country-specific covariates.

Countries income social property goods military education health others

Australia 1 4 3 2 0.02 0.05 0.09 0.21

Austria 2 1 4 3 0.01 0.05 0.10 0.32

Belgium 1 2 4 3 0.01 0.06 0.10 0.35

Canada 1 3 4 2 0.01 0.04 0.11 0.25

Chile 2 3 4 1 0.02 0.05 0.09 0.09

Colombia 2 3 4 1 0.03 0.05 0.07 0.14

As mentioned in Chapter 2, one of the most common analyses when dealing with

rankings is the research of consensus ranking. This solution can be found through

distance-based approaches or probabilistic models. In this application stage, we cal-

culated the consensus ranking in our dataset by maximizing the extended correlation

coefficient τx. We found the solution of the typical aggregation problem by using the R

package ConsRank and the function DECoR. The consensus ranking shows the follow-

ing order of objects, from the biggest to the lowest in size: Goods and services, income

and profits, compulsory social security contributions, and property. Table 6.2 reports a

summary of the key statistics for the covariates that will be used as predictors in the

M-BTRT model.
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Table 6.2: Summary of the kew statistics for our country-specific covariates (i.e., government expenses)

Expenses vars mean sd median min max range skew kurtosis se

military x1 0.01 0.01 0.01 0.00 0.05 0.05 1.44 3.72 0.00

education x2 0.04 0.01 0.04 0.01 0.08 0.07 0.72 0.25 0.00

health x3 0.07 0.03 0.07 0.02 0.17 0.15 0.74 0.96 0.00

others x4 0.20 0.10 0.20 0.03 0.76 0.73 1.77 7.89 0.01

6.3 Mallows-Bradley-Terry Regression Trunk

The Mallows-Bradley-Terry model derives from the specification of the Babington Smith

probability model for rankings. This specification is based on the assumption that all the

ranking structures can be obtained from the pairwise comparison (Dossou-Gbété et al.,

2009). Starting from n× (n− 1)/2 paired comparisons parameters, the probability that

the ranking r occurs is given by

p(r, θ) = c(θ)
∏
i,j

θ
I(r(i)<r(j))
ij , (6.1)

where θij ∈]0, 1[, 1 ≤ i < j ≤ n] and I[A] is the indicator function of the event

A so that I[A] = 1 when A occurs and I[A] = 0 otherwise. The c(θ) is the normalizing

constant and θij is the probability that the object i is ranked lower than the object j.

The Babington Smith model (Kendall and Smith, 1939) involved a number of

parameters equal to the number of paired comparisons, which may be too large to deal

with. Mallows proposed a sub-model of the Babington Smith model for ranks without

tie by assuming a Bradley-Terry model and constraints on the parameters space. This

extension reduces the number of Bradley-Terry and Babington Smith model parameters

to obtain a more interpretable model.

The Mallows-Bradley-Terry model assumes that the probability p(r, π) is propor-

tional to the product
∏n

i=1 π
n−r(j)
j so that the model can be written as (Dossou-Gbété

et al., 2009)
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p(r, π) = C(π)
n∏

j=1

π
n−r(j)
j . (6.2)

When the constraint
∑n

j=1 πi = 1 is assumed for the model identificability, the

model can be reparametrized and the relationship between πjs and the θjs is πj =

exp(θj)∑n
l=1 exp(θl)

with j = 1 : n and θn = 0. The parameters θl refers to the number of

paired comparisons parameters l1, . . . , n− 1.

Vitelli et al., 2018, proposed new methods for Bayesian inference in Mallows mod-

els that work with any right-invariant distance. This method performs inference on the

consensus ranking, also when dealing with partial rankings or pairwise comparisons. In

addition, for cases with subject-specific covariates, the authors proposed a mixture model

for clustering. Critchlow and Fligner, 1991, proposed treating the Mallows-Bradley-Terry

model as a GLM with a log link function and a multinomial family. The MBT model is

implemented by the eba (Wickelmaier and Schmid, 2004) and prefmod R packages. Here

we used the prefmod package to estimate the MBT model as a special case of pattern

models, where a pattern is considered a set of paired comparisons considered simultane-

ously (Turner et al., 2020). In this case, the response variable is y = (y12, . . . , yJ−1,J) and

the probability of observing a pattern is defined as follows

p(y) = p(y12, . . . , yJ−1,J) = c
∏
j<k

(√
πj√
πk

yjk
)

(6.3)

The pattern model can be expressed as a log-linear model introducing subject-

specific covariates. In addition, several extensions (ties, object-specific covariates, po-

sition effects, and missing values) are proposed by Hatzinger and Dittrich in their R

packages prefmod. The model is estimated through a GLM with log link and Poisson

distribution. The response variable is the number of times a certain ranking is observed.

The design matrix is the input for the application of the glm R function. When no

subject-specific covariates are added to the model, the design matrix is only composed

by a number of rows equal to the number of rankings in the permutation universe when

no ties are allowed. This number equals n!, and the response variable y counts the num-

ber of times each ranking occurs in our input rank data. When subject-specific covariates
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are introduced, a different design matrix is built for each country m. An example of a

typical design matrix for LLBT pattern models is shown in Table 3.2 in Chapter 3.1.

In this case, the number of rows dramatically increases to n! × m. This is the main

difference with the typical design matrix for the LLBT model when the orderings are

expressed as paired comparisons. In this case, when no subject-specific covariates are

introduced, the design matrix is composed by a number of rows equal to the number of

paired comparisons n × (n − 1)/2, and the response variable y indicates the number of

times a specific object i is preferred to another one j.

We apply the log-linear MBT model as a particular class of pattern model to our

dataset by combining this model with the regression trunk approach. The result is the

M-BTRT model that is an advance of the BTRT model. The algorithm for the split

research is the same procedure followed by the BTRT model and synthesized in 3.1. The

main difference is that we are now working on rankings instead of paired comparisons

to formulate the model the same way as the BTRT. The model can be represented by a

single formulation as follows

λ̂i,h = λ̂i +
P∑

p=1

β̂i,pxp,h +
T−1∑
t=1

β̂i,P+tI{(x1,h, . . . , xP,h) ∈ t}, (6.4)

where λ̂i,h are the object-parameter for each object i and each country h in the

node t. The first part of the formula refers to the main effect part and it is specified

by
∑P

p=1 β̂i,pxp,h. It can be interpreted as the main effects of our country-specific pre-

dictors on the size of tax revenue category i for the country m. The second part of

the equation represents the interaction effects part. The interactions are estimated by∑T−1
t=1 β̂i,P+tI{(x1,h, . . . , xP,h) ∈ t} for each group of individuals in each terminal node

T . One terminal node has to be treated as reference group, so that we estimate T − 1

interaction terms, which is equal to the number of splits of the final tree. The estimated

intercept λ̂i quantifies the overall location of object i for all the individuals of the trunk.

As for every tree-based model, the pruning procedure avoids the overfitting case.

The M-BTRT model follows the same pruning procedure as the BTRT model. We apply

the pruning back procedure once the full trunk is grown using the V -fold cross-validation
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with the c standard error rule (c · SE rule). The constant c varies between 0 and 1, and

the higher its value, the more the tree is pruned back. The standard error is applied to

the cross-validation deviance calculated for each tree split. The cross-validation deviance

is obtained by training on V −1 subsets the estimated trunk model in a specific node. The

left-out subset is trained as a test set, and the predicted value ŷij,h is obtained for each

observation in the typical design matrix built by using the function patt.design from the

prefmod R package. The case-wise cross-validation deviance Dcv is then expressed as in

Equation 3.14, and its standard errors as in Equation 3.15. Usually, the cross-validation

deviance follows a typical pattern: it decreases after the first splits of the trunk and starts

to increase starting from a specific sequent split. The c ·SE pruning rule is then applied

as in the BTRT model. Let t∗ ∈ [1, T ] be the size of the regression trunk with the lowest

Dcv, say Dcv
t∗ . The best size of the trunk t

∗∗ corresponds to the minimum value of t such

that Dcv
t∗∗ ≤ Dcv

t∗ + c ·SEcv
t∗ . The optimal choice of the pruning parameter c is investigated

in Chapter 3.8.

6.4 Application

We start our application by building the design matrix with the patt.design R function.

It creates a table with information about the rankings contained in our input rank data.

When the government expenditures covariates are not included yet, the design matrix

is composed of 24 rows, which is the number of rankings in the space of permutation

when the number of objects is equal to four and no ties are allowed. The response

variable y indicates the number of times a certain ranking occurs in our input rank data.

Table 6.3 shows the design matrix without country-specific covariates yet. In the first

stage, we estimated a GLM model considering the design matrix as input data and the

tax revenue categories as unique parameters of the model. By applying a GLM with

log link and Poisson errors, we obtain the λ̂i values of the basic BT model when the

Mallows extension is applied to the case of rankings. From the λ̂i we obtain the worth

parameters π̂i = exp(2λ̂i)∑n
i=1(exp(2λ̂i)

. After that, we plot the worth parameters through the

function ”patt.worth” in Figure 6.5.
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Figure 6.5: Plot of the worth parameters estimated with a GLM when no country-specific covariates

are included in the model, and the objects are used as unique parameters. The order shown in the

figure respects the consensus ranking. However, here we can quantify the distance among the objects

by looking at the value of the estimated worth parameters.

The results of the basic MBT model with the pattern model specification bring the

same results given by the consensus ranking research. The estimated ranking for the tax

revenues is taxes on goods and services, taxes on income, social security contributions,

and taxes on the property. However, we can quantify the distance between the objects

in the estimated rank. This is the main advantage of the probabilistic models compared

to the simple calculation of the consensus ranking, which only offers information about

the order of objects. When the government expenditures are included as country-specific

covariates, the design matrix expands for each country if there are no countries with the

same characteristics and rankings of tax revenues size. Here, we are using continuous

country-specific covariates so that no countries have the same government expenditures

values. The design matrix is composed of 2,400 rows, which is the product of the number

of permutations 24 and the number of countries 100.

Once obtained the design matrix with our country-specific covariates, the M-

BTRT model can be applied for the split research. In Chapter 4.1 two different ap-

proaches are proposed for the research of splits: The One-Split-Only (OSO) approach,

which does not allow the use of the same covariate for more than one split, and the
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Multiple Splitting (MS) approach, which has no restrictions on the covariate to consider

a candidate to split. It is demonstrated that the first approach can be helpful when the

priority is to find the interaction between all the covariates under investigation, while

the second approach restitutes better results in terms of model and cross-validation de-

viance. The MS approach considers all the values of all the covariates in the dataset for

each step of the tree building procedure. For this reason, it considers a higher number

of candidates in each split research so that better results are obtained. For this reason,

we choose to follow the MS approach for our application.

The final tree after pruning has five splits and six terminal nodes. The best split

covariates and the respective best split points are reported in Table 6.4. The model

with only main effects has deviance equal to 383. The best candidate covariate for the

first split is ”health expenses” with a value equal to 0.23, and the model deviance is

now decreasing at 362. The first interaction is found with the second split ”bestsplit2”,

covariate ”military expenses”, with a value equal to 0.02. As we can notice, the covariate

x4 ”other expenses” is never chosen by the algorithm for splitting the tree. Table 6.4

shows the results of the final tree after pruning, but the STIMA algorithm applies the

pruning only after building the entire tree until a stopping rule verifies. Here, we obtain a

tree with five splits because the cross-validation deviance increases starting from the sixth

split. Table 6.5 shows the deviance, cross-validation deviance, and standard errors for

each model. In Table 6.5 mod0 is the model with only main effects. The first interaction

is added starting from mod2, where we have two splits, three nodes, and the interaction

between health expenses and military expenses.

The pruned regression tree is shown in Figure 6.6. For each node, we report the

number of countries H, and for each terminal node, we also show the consensus ranking

within the group C and its associated extended correlation coefficient τx. Note that we

report the consensus ranking as a summary measure of the node, but it results from a

simple maximization problem without considering the characteristics of the countries (i.e.,

the government expenditures) in each node. On the contrary, we follow a probabilistic

approach, and the results are shown as plots for each terminal node. The plots report the

worth parameters πi and are obtained by applying the formula in Equation 6.4 for each
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Figure 6.6: Pruned regression trunk: MS approach. The final trunk reports the number of countries H

in each node of the tree. For the terminal nodes, the consensus ranking C and its associated correlation

coefficient taux are reported for the sake of completeness. Next, the worth parameters are obtained

through the estimation of the mean value of λ̂i,h for each object across all the countries in each terminal

node. Finally, the plots of the estimated worth parameters are shown for each region R1, . . . , R6.

country terminal node. After that, we calculate the mean value for each object across

all the countries inside the node. Finally, we calculate the worth parameters using the

relationship between πi and λi.

The regions R1, . . . , RT indicate the regions created by the final tree. They are

defined as follows

R2 = I(health expenses ≤ 0.23,military expenses ≤ 0.02, education expenses ≤ 0.03),

R3 = I(health expenses ≤ 0.23,military expenses ≤ 0.02, education expenses > 0.03),

R4 = I(health expenses ≤ 0.23,military expenses > 0.02),

R5 = I((health expenses > 0.23,military expenses ≤ 0.01),

R6 = I((health expenses > 0.23, 0.01 < military expenses ≤ 0.038),

R1 = I((health expenses > 0.23,military expenses > 0.038),

where the last region R1 is our reference terminal node. The final regression trunk
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Figure 6.7: Partition of countries based on memberships to the terminal nodes.

individiduate two types of interactions: the first one is a higher order interaction between

health, military, and education government expenses (i.e., regions R2 and R3); the second

is a first order interaction between health and military expenses (i.e., R1, R4, R5, and

R6).

We report the countries composing each terminal node in a map shown in Figure

6.7. The first group comprises the ten countries that constitute the region R2. These

countries are mainly the USA and countries of central Africa. They are characterized by

higher revenues for income taxes than taxes on goods, social security contributions, and

property. Note that the European countries are all partitioned in the last three groups,

regions R5, R6, and R1 in Figure 6.6. They are all characterized by higher government

health expenses.

After pruning the tree, the final model reports the coefficients shown in Table

6.6. The coefficients refer to the first three objects (i.e., taxes on income, social security

contributions, and taxes on property) because the last one, taxes on goods and services,

is our reference object. For each of these three objects, the intercepts λ̂i are reported in
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the first row. The main effects are represented by β̂i,xp , while the interaction effects are

expressed by β̂i,Rt .

By looking at the coefficients of the BTRT model output, some interesting results

emerge:

• For the first object o1, taxes on income, the level of military spending x1 has a

substantial impact on the size of taxes on income. In particular, the higher the

level of military spending, the lower the probability that taxes on income is higher

than the other taxes. On the contrary, health expenditures positively affect the

size of taxes on income. Then, all the regions increase taxes on income except for

R5 composed by those countries with health spending greater than 0.23;

• About the second object o2, compulsory social security contributions, the covariate

x3, health spending, have a positive and strong impact on the size of o2. For

instance, the higher the government spending on health, the higher the log-odds

that social security contributions are higher than the other tax revenue categories.

In addition, it is interesting that the government spending on education, x2, has a

positive effect on social security contributions. Finally, all the regions except for

R5 have a negative effect on o2;

• In the end, the third object o3, taxes on property, has a strong tendency to be the

last object ranked as the intercept is the lowest one. Then, about the main effects,

the covariate military spending, x1, has a strong and negative effect on the size

of taxes on property. On the contrary, all the other covariates present a positive

coefficient. The coefficients’ signs are the opposite of those observed for social

security contributions regarding the interaction effects. All the regions except for

R5 have a positive effect on the size of taxes on property revenues.

6.5 Discussion

The analysis of tax revenues across different countries could be challenging for compa-

rability reasons. We focused on how government spending influences tax revenues using
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a magnifying glass. Tax revenues constitute the analysis’s object, but we differentiated

from the most common literature because tax revenues are decomposed into four tax rev-

enue categories by following the OECD classification. Comparing different countries with

different fiscal and accounting systems can be challenging even when adopting a classifi-

cation like the OECD’s. For this reason, we transformed into rankings the numeric and

continuous data about the four different tax revenue categories, obtaining ordinal values

that represent the size of tax revenues for each country in our dataset. In this way, the

size of tax revenues is preserved, and the comparability issue becomes easier to address.

In addition, working on rankings allows the adoption of rankings models with the intro-

duction of subject-specific covariates. It is reasonable to assume that the ordering of tax

revenue for a country depends on its socio-economic characteristics. In our analysis, the

subjects are represented by countries, and the covariates by four government spending

categories: military spending, health spending, education spending, and other spending.

The causal effect of each covariate is considered as the main effect and interaction effect,

even when no a priori information is known about the interactions to include, through a

new version of the STIMA algorithm. This new version is based on the BTRT model for

preference data but adapted to rankings expressing financial information. The BT model

can be extended by following the Mallows specification that works on rankings instead

of paired comparisons. The Mallows extension is based on the concept that the proba-

bility of observing a specific ranking is proportional to the product of worth parameters

associated with each object ranked.

We created a new dataset merging information from different databases (i.e.,

OECD, IMF, and World Bank). The dataset is composed of 100 records (countries),

four objects (i.e., revenues on taxes on income, social security contributions, taxes on

property, and taxes on goods and services), and four subject-specific covariates (i.e.,

spending on military, health, education, and others). The heterogeneity in our dataset

is observed through the Mallows-BTRT model so that we obtain a partition of countries

based on the size of their tax revenues and the causal relation with the central govern-

ment expenditure. In our case, the final result is a partition of 100 countries through five

splits and six terminal nodes. The splitting covariates are represented by the government

spending on health, military, and education. The residual spending category (others)
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does not appear to be the best split covariate in the final regression trunk. The algo-

rithm selected one first-order interaction (military spending-health spending) and one

higher-order interaction (education-military-health).

The application section shows the most significant coefficients (Table 6.6 for each

tax revenues category (except for taxes on goods and services, which represent the refer-

ence level). They contain information about the effect size of each tax revenue category’s

most critical main effects and interaction effects, which constitutes the main strength of

this model: to provide a probabilistic measure of the causal relationship between country-

specific covariates and objects presented in rankings. Converting the estimated values by

the models into worth parameters furnishes elements for predictive analysis. It is possible

to investigate the most probable size of tax revenues for countries, given their govern-

ment expenditure. In addition, this analysis represents a useful tool for policy-makers

who want to change their tax revenues’ structure by operating on government spending

instead of proposing time-consuming tax reforms. In this way, it may not be necessary

to initiate legislative processes for regulatory changes in taxation, which in many cases

take a very long time.

Future research aims to create an R package with the BTRT and MBTRT func-

tions to partition individuals based on paired comparisons and rankings of objects. The

function implemented in R is not generalizable yet and requires modifications for a bet-

ter user experience. Next, the MBTRT model can be extended for dealing with missing

values (e.g., partial rankings), object-specific covariates, and order effects. In all the

cases, this model has to be considered a tool to find interaction effects when all the main

effects are still considered and when the analysis is composed of individuals, objects, and

predictors.
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Table 6.3: Design matrix for pattern models generated with ”patt.design” R function. The input data

are no = 4 tax revenue categories and H = 100 countries. The response variable y indicates the number

of times a specific ranking is observed in the input data.

y income social property goods

0 3 1 -1 -3

0 1 3 -1 -3

0 1 -1 3 -3

0 3 -1 1 -3

0 -1 3 1 -3

0 -1 1 3 -3

30 1 -1 -3 3

16 3 -1 -3 1

9 -1 3 -3 1

10 -1 1 -3 3

4 3 1 -3 -1

4 1 3 -3 -1

0 -1 -3 3 1

0 -1 -3 1 3

0 3 -3 1 -1

0 1 -3 3 -1

13 1 -3 -1 3

12 3 -3 -1 1

0 -3 3 1 -1

0 -3 1 3 -1

1 -3 1 -1 3

0 -3 3 -1 1

0 -3 -1 3 1

1 -3 -1 1 3
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Table 6.4: Pruned regression trunk: MS approach. The table shows the node in which the split

is found, the splitting covariate, and its split point together with the deviance associated with each

estimated model.

Node n. Splitting covariate Split Point Model Deviance

1 main effects (no splits) 383

bestsplit1 1 x3 (health expenses) 0.23 362

bestsplit2 2 x1 (military expenses) 0.02 349

bestsplit3 3 x1 (military expenses) 0.01 336

bestsplit4 4 x2 (education expenses) 0.03 325

bestsplit5 7 x1 (military expenses) 0.03 317

Table 6.5: 10-fold cross-validation results with MS approach: D = model deviance (Eq. 3.10); Dcv =

casewise cross-validation deviance (Eq. 3.14); SEcv = standard error of Dcv (Eq. 3.15).

D Dcv SEcv

mod0 383 0.1683 0.0001

mod1 362 0.1613 0.0002

mod2 349 0.1567 0.0002

mod3 336 0.1524 0.0002

mod4 325 0.1473 0.0002

mod5 317 0.1453 0.0002

mod6 312 0.1461 0.0002
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Table 6.6: MS regression trunk final output: the Table shows the estimated coefficients associated

to the objects o1, o2, o3, and o4. The last object o5 is set as reference level, so that the estimated

parameters associated to λ̂o5,h (the professor helpfulness) are automatically set to zero. The standard

errors are shown in parenthesis and the stars ′∗′ associated to some estimate coefficients indicate that

they are significantly different from zero with a pvalue lower than 0.001 (′ ∗ ∗∗′), 0.01 (′ ∗ ∗′) and 0.05

(′∗′), respectively.

λ̂o1,h λ̂o2,h λ̂o3,h

λ̂i -1.24∗ (0.57) -0.84 (0.52) -2.41∗∗∗ (0.49)

β̂i,x1 -67.31∗∗∗ (18.41) -4.66 (15.25) -30.35∗∗ (10.47)

β̂i,x2 11.81 (6.85) -10.14 (5.97) 8.38 (4.47)

β̂i,x3 12.99∗∗∗ (3.34) 16.07∗∗∗ (3.11) 3.12 (2.55)

β̂i,x4 1.53 (1.24) -0.70 (1.15) 1.58 (0.91)

β̂i,R2 0.99∗ (0.44) -0.16 (0.41) 0.65∗ (0.31)

β̂i,R3 -0.07 (0.31) -0.84∗∗ (0.32) 0.20 (0.19)

β̂i,R4 1.65∗∗∗ (0.48) -0.90∗ (0.43) 1.14∗∗∗ (0.32)

β̂i,R5 -0.41 (0.31) 0.30 (0.32) -0.03 (0.22)

β̂i,R6 0.04 (0.36) -0.72∗ (0.36) 0.18 (0.20)
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Conclusions

At the end of the reading of this thesis, the reader has learned the main concepts related to

preference data. The primary analysis methods are presented and the most used measures

of distance and correlation in the literature of preference data. When working on ordinal

data, information about the distances between one class and another is lost. If the data

is analyzed through distance or correlation measures, positional weights differentiate the

positions in a ranking based on their relevance. The simulation study demonstrates that

introducing positional weights can cause variations for the consensus ranking based on

how far the choice of weights deviates from the typical set of weights suggested in the

literature. The first and second chapters of this thesis touch on these points categorized as

distance-based approaches. Starting from Chapter 3.1, the thesis is focused on a different

way to approach ordinal data through a new probabilistic model. Probabilistic models

estimate the probability of observing an order of objects. It is reasonable to assume that

the order of objects can depend on some characteristics of individuals who furnish the

ranking (e.g., judges express preference rankings) or with whom the ranking is associated

(e.g., the ranking of tax revenue categories for countries). The results usually derive from

the best model research in terms of goodness-of-fit. We presented a new probabilistic

model, the Bradley-Terry Regression Trunk (BTRT), based on the combination of the

regression trunk approach with the Bradley-Terry model for paired comparisons. The

model is well suited when the aim is to partition individuals based on their preferences

and characteristics as covariates. In addition, the algorithm finds the best interactions
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between covariates. The model shares the same advantage as decision trees: the easy-to-

read visualization of results through a small tree called trunk. The pruning procedure is

tested through a simulation study: the model performance in finding the best interaction

is investigated in three different scenarios, and the results are furnished in terms of

Type I and Type II errors. The BTRT model is then applied to a dataset composed of

self-reported data by students at the Università di Cagliari. This application presents

two different approaches for interaction research: the One-Split-Only approach and the

Multiple Splitting approach. The results of the two approaches are compared, and it

results that the Multiple Splitting approach performs better when the aim is to find

the best model in terms of goodness-of-fit. Starting from Chapter 5.1, we abandon the

concept of preference data in the strict sense and apply the BTRT model to financial

data transformed into rankings. This analysis aims to estimate the main effects and

interactions of socio-economics covariates on the size of tax revenues for a specific country

in the world. We build a new country-sectional dataset from well-known databases

(OECD, IMF, and World Bank) where the objects are represented by four tax revenue

categories associated with 100 countries worldwide. The tax revenues are converted

from continuous data to rankings and finally to paired comparisons for each country.

Then, to reduce the number of parameters, we apply a covariates selection through the

Bradley-Terry-Luce Lasso to select the covariates that have the most significant linear

effect on the size of tax revenues. Out of 30 socio-economic covariates, the algorithm

selected 17 covariates. The application of the BTRT model to the dataset after covariates

selection brings to a regression trunk composed of five splits and six terminal nodes. The

Environmental performance index appears as the first splitting covariate. The algorithm

selected two first-order interactions and one higher-order interaction effect. The firsts are

EPI-health spending and EPI-government gross debt interactions, while the higher-order

interaction is EPI-health spending-employment rate. The results section shows the most

significant coefficients for each object composing the tax revenues orderings. They contain

information about the effect size of each tax revenue category’s most critical main effects

and interaction effects, which constitutes the main strength of this model: to provide a

probabilistic measure of the causal relationship between subject-specific covariates and

objects presented in paired comparisons. It makes it possible to estimate the effects of

an economic shock on the structure of tax revenues. This type of application can also
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represent a point of reflection for countries that want to change the composition of their

tax revenues. The final results show that it is possible to obtain a variation in the size

of the tax revenues by operating on one’s socio-economic characteristics. In this way, it

may not be necessary to initiate legislative processes for regulatory changes in taxation,

which in many cases take a very long time.

As the number of objects increases, paired comparisons become more challenging

to treat. A solution to this issue is furnished in Chapter 6.1, where we present an

extension of the BTRT model to analyze ordinal data treated as rankings. This extension

is based on the Mallows specification of the BT model. The Mallows extension is based

on the concept that the probability of observing a specific ranking is proportional to

the product of worth parameters associated with each object ranked. We used the same

dataset with financial data, but we directly focused on the relationship between tax

revenues and government spending (military, health, education, and others) without

considering other socio-economic characteristics. Then, we work on rankings instead of

paired comparisons. The final tree is composed of five splits and six terminal nodes. The

splitting covariates are represented by the government spending on health, military, and

education. The algorithm selected one first-order interaction (military-health) and one

higher-order interaction (education-military-health). Converting the estimated values

by the models into worth parameters furnishes elements for predictive analysis. Given

their government expenditure, it is possible to investigate the most probable size of tax

revenues for countries. In addition, this analysis represents a valuable tool for policy-

makers who want to change their tax revenues’ structure by operating on government

spending instead of proposing time-consuming tax reforms.

Future research is addressed to consider cases when nominal subject-specific co-

variates with more than one category are used as possible split candidates and investigate

further model performance and stability concerning (big) datasets presenting a high num-

ber of objects, rankings, and covariates. Simultaneously, research efforts will extend the

model to cases where missing values (i.e., partial orderings) or order effects are allowed.

Finally, an R function is currently under development to allow replications and extensions

of the BTRT procedure.
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