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OUTPUT FEEDBACK STABILIZATION OF COUPLED REACTION-DIFFUSION
PROCESSES WITH CONSTANT PARAMETERS

Y. ORLOV∗, A. PISANO†, A. PILLONI ‡, AND E. USAI§

Abstract. The problem of output feedback boundary stabilization is considered for n coupled plants, distributed
over the one-dimensional spatial domain [0, 1] where they are governed by linear reaction-diffusion Partial Differ-
ential Equations (PDEs). All plants have costant parameters and are equipped with its own scalar boundary control
input, acting at one end of the domain. First, a state feedback law is designed to exponentially stabilize the closed-
loop system with an arbitrarily fast convergence rate. Then, collocated and anti-collocated observers are designed,
using a single boundary measurement for each plant. The exponential convergence of the observed state towards
the actual one is demonstrated for both observers, with a convergence rate that can be made as fast as desired. Fi-
nally, the state feedback controller and the pre-selected, either collocated or anti-collocated, observer are coupled
together to yield an output feedback stabilizing controller. The distinct treatments are proposed separately for the
case in which all processes have the same diffusivity and for the more challenging scenario where each process has
its own diffusivity. The backstepping method is used for both controller and observer designs. Two main classes of
coupled PDEs are studied along the paper. In the first one, all processes possess a Dirichlet-type boundary condition
(BC) at the uncontrolled side. With reference to this class, the state feedback and observer-based output feedback
designs are successfully solved in both the equi-diffusivity and distinct-diffusivity scenarios, and, particularly, the
kernel matrices of the underlying transformations are derived in analytical form by using the method of successive
approximations to solve the corresponding kernel PDEs. Thus, the resulting control laws and observers become
available in explicit form. The second and more general class of coupled PDEs considered in the paper entails a
subset of the processes having Dirichlet-type BCs at the uncontrolled side, whereas all remaining processes possess
Neumann-type BCs. With reference to this wider class of systems with heterogenous BCs, it turns out that the state
feedback design can only be solved in the equi-diffusivity case, although the resulting kernel matrix is no longer
available in explicit form, whereas the same approach yields an overdetermined kernel PDE admitting no solution in
the distinct diffusivity case. Anticollocated observer design and output feedback designs are additionally developed
in the equi-diffusivity scenario. Interestingly, the observer gains are still available in explicit form also in this case.
Capabilities of the proposed synthesis and its effectiveness are supported by a numerical study made for two coupled
systems with heterogeneous BCs.
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1. Introduction. Reaction-diffusion equations are parabolic Partial Differential Equa-
tions (PDEs) which often occur in practice, e.g., to model the concentration of one or more
substances, distributed in space, under the influence of different phenomena such as local
chemical reactions, in which the substances are transformed into each other, and diffusion,
which causes the substances to spread out over a surface in space. Certainly, reaction-
diffusion PDEs are not confined to chemical applications (see e.g. [25]), but they also describe
dynamical processes of non-chemical nature, with examples being found in thermodynamics,
biology, geology, physics, ecology, etc. (see e.g. [10, 13]).

In the present work, the problem of output feedback boundary stabilization is considered
for two classes of coupled linear reaction-diffusion PDEs having constant diffusion and reac-
tion parameters. In the first class, all processes are governed by Dirichlet boundary conditions
at the uncontrolled side provided that only boundary flows are available for measurements.
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In the second, wider, class of coupled PDEs a subset of them possess Dirichlet BCs, whereas
all remaining processes possess Neumann BCs

The adopted treatment does not rely on any discretization or finite-dimensional approxi-
mation of the underlying PDEs and it preserves the infinite-dimensional structure of the sys-
tem during the entire design process. The proposed output feedback synthesis is based on the
so-called “backstepping” approach [17]. Basically, the backstepping approach deals with an
invertible Volterra integral transformation, mapping the system dynamics onto a predefined
exponentially stable target dynamics. Backstepping is a versatile and powerful approach to
boundary control and observer design, applicable to a broad spectrum of linear PDEs, and
under certain circumstances controllers and observers are derived in explicit forms [17].

1.1. Related literature. The backstepping-based boundary control of scalar reaction-
diffusion processes was studied, e.g., in [21], [31] whereas scalar wave processes were stud-
ied, e.g., in [18], [33]. Complex-valued PDEs such as the Schrodinger equation were dealt
with in [19]. Synergies between the backstepping methodology and the flatness approach
were exploited in [22], [23] to control parabolic PDEs with spatially and time-varying coef-
ficients in spatial domains of dimension 2 and higher. In addition, an interesting feature of
backstepping is that it admits a synergic integration with robust control paradigms such as the
sliding mode control methodology (see, e.g., [11]).

The implementation of backstepping controllers usually requires the full state informa-
tion. From the practical standpoint, the available measurements of Distributed Parameter Sys-
tems (DPSs) are typically located at the boundary of the spatial domain, that motivates the
need of the state observer design [37, 12]. For linear infinite-dimensional systems, the Luen-
berger observer theory was established by replacing matrices with linear operators [7, 20, 12],
and the observer design was confined to determining a gain operator that stabilizes the asso-
ciated observation error dynamics. In contrast to finite-dimensional systems, finding such a
gain operator was not trivial even numerically because operators were not generally repre-
sented with a finite number of parameters.

Observer design methods that would be capable of yielding the observer gains in the an-
alytical form have only recently been investigated. In this context, the backstepping method
appears to be a particularly effective systematic observer design approach [17, 32]. For scalar
systems governed by parabolic PDEs defined on a 1-dimensional (1D) spatial domain, a sys-
tematic observer design approach, using boundary sensing, is introduced in [32]. Recently,
the backstepping-based observer design was presented in [36] for reaction-diffusion processes
with spatially-varying reaction coefficients while measuring a certain integral average value
of the state of the plant. In [14, 15], backstepping-based observer design was addressed for
reaction-diffusion processes evolving in multi-dimensional spatial domains.

More recently, high-dimensional systems of coupled PDEs were considered in the back-
stepping boundary control and observer design settings. The most intensive efforts of current
literature were oriented towards coupled hyperbolic processes of the transport-type [2, 8, 9,
42, 43]. In [2], a 2 × 2 linear hyperbolic system was stabilized by a scalar observer-based
output feedback boundary control input, with an additional feature that an unmatched distur-
bance, generated by an a-priori known exosystem, was rejected. In [42], a 2 × 2 system of
coupled linear heterodirectional hyperbolic equations was stabilized by observer-based out-
put feedback. The underlying design was extended in [8] to a particular type of 3 × 3 linear
systems, arising in modeling of multi-phase flow, and to the quasilinear case in [43]. In [9],
backstepping observer-based output feedback design was presented for a system of n + 1
coupled first-order linear heterodirectional hyperbolic PDEs (n of which featured rightward
convecting transport, and one leftward) with a single boundary input.

Some specific results on the backstepping based boundary stabilization of parabolic cou-
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pled PDEs have additionally been presented in the literature [1, 35, 41, 39, 40]. In [35], two
parabolic reaction-diffusion processes, coupled through the corresponding boundary condi-
tions, were dealt with. The stabilization of the coupled equations was reformulated in terms
of the stabilization problem for a unique process, which possessed piecewise-continuous dif-
fusivity and (space-dependent) reaction coefficient and which was viewed as the “cascade”
between the two original systems. The problem was then solved by using a scalar boundary
control input and by employing a non conventional backstepping approach with a discon-
tinuous kernel function. In [1], the Ginzburg-Landau equation with the imaginary and real
parts expanded, thus being specified to a 2 × 2 parabolic system with equal diffusion coef-
ficients, was dealt with. In [41], the linearized 2 × 2 model of thermal-fluid convection was
treated by using a singular perturbations approach combined with backstepping and Fourier
series expansion. In [40], the boundary stabilization of the linearized model of an incom-
pressible magnetohydrodynamic flow in an infinite rectangular 3D channel, also recognized
as Hartmann flow, was achieved by reducing the original system to a set of coupled diffu-
sion equations with the same diffusivity parameter and by applying backstepping. In [39], an
observer that estimated the velocity, pressure, electric potential and current fields in a Hart-
mann flow was presented where the observer gains were designed using multi-dimensional
backstepping. In [24], a backstepping observer was designed for a system of two diffusion-
convection-reaction processes coupled through the corresponding boundary conditions.

The recent authors‘ work [4], which appeared to be more closely related to the present
investigation, dealt with the state feedback controller design for coupled reaction-diffusion
processes equipped with Neumann (rather than Dirichlet) BCs. The same publication also
addressed a state feedback stabilization problem for two coupled reaction-diffusion processes,
which were underactuated by a scalar boundary input applied just to one of the processes.

1.2. Results and contributions of the paper. Thus motivated, the primary concern of
this work is to extend the backstepping synthesis developed in [32], where explicit stabilizing
output feedback boundary controllers were designed for scalar unstable reaction-diffusion
processes with constant parameters. Here, a generalization is provided by considering a set of
n reaction-diffusion processes, which are coupled through the corresponding reaction terms.

A constructive observer-based output feedback synthesis procedure, with the majority of
controllers and observers given in explicit form, presents the main contribution of this work to
the existing literature. Under the requirement that the considered multi-dimensional process
is fully actuated by a set of n boundary control inputs acting on each subsystem, all these
approaches are shown to exponentially stabilize the controlled system with an arbitrarily fast
convergence rate. Particularly, in the present paper output feedback stabilizing controllers
using both collocated and anti-collocated observers are presented.

The present treatment addresses, side by side, two distinct situations which require quite
different solution approaches to be adopted. First, the case where all processes have the same
diffusivity parameter (“equi-diffusivity” case) is attacked, and then the more challenging sit-
uation where each process possesses its own diffusivity (“distinct-diffusivity” case) is treated.

Particularly, the paper first investigates the class of coupled PDEs where all processes
possess a Dirichlet-type boundary condition (BC) at the uncontrolled side. For this class of
systems, the state feedback and observer-based output feedback designs (with the observers
being developed in the anti-collocated and collocated forms) are successfully solved in both
the equi-diffusivity and distinct-diffusivity scenarios, and, particularly, all controllers and
observers are available in explicit form.

Successively, the analysis is extended towards the more general class of coupled PDEs
where a subset of the processes have Dirichlet-type BCs whereas all remaining processes
possess Neumann-type BCs. With reference to this wider class of systems with heteroge-
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nous BCs, the state feedback design is only solved in the equi-diffusivity case, although
the resulting kernel matrix is no longer available in explicit form, whereas in the distinct
diffusivity scenario an overdetermined kernel PDE admitting no solution is obtained. The
anti-collocated observer and output feedback designs are additionally developed in the equi-
diffusivity scenario. Interestingly, the observer gains are still available in explicit form also
for this extended class of coupled PDEs. To the best of authors knowledge, coupled parabolic
processes with different types of BCs are studied for the first time in the present paper within
the backstepping-based boundary control design framework.

1.3. Organization. The structure of the paper is as follows. After introducing in Sub-
section 1.4 some notation and a useful Lemma, in Section 2 the problem statement for the
class of coupled PDEs with Dirichlet BCs at the uncontrolled side is presented along with
the associated assumptions. In Section 3, the resulting state feedback controller synthesis is
developed. Sections 4 and 5 present, respectively, the anti-collocated and collocated observer
designs. Section 6 develops the output feedback controller design by providing a demonstra-
tion of the stable coupling between the designed controllers and observers.

Section 7 deals with the generalized class of coupled PDEs with “heterogenous” BCs.
The state feedback design is first addressed, showing that it can only be successfully com-
pleted within the equi-diffusivity scenario. Section 7 also contains the underlying anti-
collocated observer and output feedback designs, both developed within the same equi-diffusivity
scenario. Section 8 discusses some simulation results. Finally, Section 9 collects concluding
remarks and features future perspectives of this research.

1.4. Notation and Instrumental Lemma. L2(0, 1) stands for the Hilbert space of square
integrable scalar functions z(ζ) on the domain (0, 1) with the corresponding L2-norm

∥z(·)∥2 =

√∫ 1

0

z2(ζ)dζ. (1.1)

Hℓ(0, 1), with ℓ = 0, 1, 2, . . . , denotes the Sobolev space of absolutely continuous scalar
functions z(ζ) on the domain (0, 1), with square integrable derivatives z(k)(ς) up to order ℓ
and the corresponding Hℓ-norm

∥z(·)∥Hℓ =

√√√√ ℓ∑
k=0

∥z(k)(·)∥22. (1.2)

Also, the notations

Ln
2 =

L2(0, 1)× L2(0, 1)× . . .× L2(0, 1)︸ ︷︷ ︸
n times

and

Hℓ,n =
Hℓ(0, 1)×Hℓ(0, 1)× . . .×Hℓ(0, 1)︸ ︷︷ ︸

n times

are utilized and

∥Z(·)∥2,n =

√√√√ n∑
i=1

∥zi(·)∥22, (1.3)
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∥W (·)∥Hℓ,n =

√√√√ n∑
i=1

∥wi(·)∥2Hℓ (1.4)

stand, respectively, for the L2-norm of a vector function Z(ζ) = [z1(ζ), z2(ζ), ...., zn(ζ)] ∈
Ln
2 and for the Sobolev Hℓ-norm of a vector function W (ζ) = [w1(ζ), w2(ζ), ...., wn(ζ)] ∈

Hℓ,n.
Throughout, I1(·) stands for the first order modified Bessel functions of the first kind,

and T denotes the domain

T = {(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ 1}. (1.5)

Given a generic real-valued square matrix A, the symbol S[A] denotes its symmetric part
S[A] = (A + AT )/2. Provided that A is symmetric, the inequality A > 0 means that it is
positive definite. Just in case, σm(A) denotes the smallest eigenvalue of A.

Given a real-valued square matrix function M(x) of order n, whose entries mij(x) are
defined on a set X , its C0(X)-norm is determined by

∥M(x)∥C0(X) = max
i, j = 1, 2, ..., n

sup
x∈X

|mij(x)|. (1.6)

Finally, Im×m stands for the identity matrix of dimension m.
For later use, an instrumental lemma is presented.

LEMMA 1.1. (cf. [27, Lemma 2]) Let b(ζ) ∈ L2(0, 1). Then, the following inequality[∫ 1

0

|b(ζ)|dζ
]2

≤ ∥b(·)∥22 (1.7)

holds.

2. Coupled PDEs with Dirichlet-type BCs. A system of n coupled reaction-diffusion
processes, governed by the reaction-diffusion vector PDE

Qt(x, t) = ΘQxx(x, t) + ΛQ(x, t), (2.1)

which is equipped with the BCs

Q(0, t) = 0, (2.2)
Q(1, t) = U(t), (2.3)

and subject to the initial condition (IC)

Q(x, 0) = Q0(x) ∈ H4,n, (2.4)

is under investigation. Hereinafter,

Q(x, t) = [q1(x, t), q2(x, t), . . . , qn(x, t)]
T ∈ H4,n (2.5)

is the state vector,

U(t) = [u1(t), u2(t), . . . , un(t)]
T ∈ Rn (2.6)

is the boundary control vector, Λ ∈ Rn×n is a real-valued square matrix, and Θ = diag(θi)
is the diagonal diffusivity matrix with θi > 0 for all i = 1, 2, ..., n.
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To avoid imposing a restrictive compatibility condition on the initial function (2.4) to
satisfy the BCs (2.2)-(2.3), solutions of the Boundary Value Problem (BVP) (2.1)-(2.3) (as
well as solutions of any BVP to be used in the sequel) are viewed in the weak sense as those
to the variational problem of finding a function Q(x, t) ∈ H1,n subject to the BCs (2.2)-(2.3)
such that∫ 1

0

WT (ξ)Qt(ξ, t)dξ = WT (1)Qξ(1, t)−WT (0)Qξ(0, t)−
∫ 1

0

WT
ξ (ξ)Qξ(ξ, t)dξ

+

∫ 1

0

WT (ξ)ΛQ(ξ, t)dξ (2.7)

for any t > 0 and for any W (·) ∈ H1,n. Such a solution of (2.7), satisfying (2.2)-(2.3), is
further referred to as a weak solution of the BVP (2.1)-(2.3) that has become standard in the
literature.

If confined to a linear feedback input U(·), the closed-loop system (2.1)-(2.4) is well-
known1 to possess a unique weak solution of class Hℓ,n with an arbitrarily large integer ℓ
provided that the initial state is of the same class. For technical reasons, the weak solutions of
(2.1)-(2.3) are required to evolve in the state space H4,n to guarantee that the corresponding
second order spatial derivative evolves in the state space H2,n. Due to this, the IC (2.4) has
been pre-specified to belong to H4,n.

The open-loop system (2.1)-(2.4) (with U(t) = 0) possesses arbitrarily many unstable
eigenvalues whenever S[Λ] has positive and sufficiently large eigenvalues. Since the term
ΛQ(x, t) is the source of such an instability, the problem then arises to exponentially stabilize
the closed-loop system by “reshaping” this term via reversing its effect into a stabilizing one.
This problem will be addressed under two distinct scenarios:

i.) anti-collocated measurement setup, where the only measurement of the flow Qx(0, t)
is available at the uncontrolled boundary;

ii.) collocated measurement setup, where sensing of Qx(1, t) is available at the con-
trolled boundary only.

To facilitate exposition the treatment is first addressed by deriving a stabilizing control
law using the state feedback. Then the corresponding collocated and anti-collocated observers
are designed. Finally, feeding the proposed state feedback controller with the state of such an
observer, running in parallel, yields an output feedback stabilizing control law.

3. State-feedback controller design. The rationale of the backstepping state feedback
boundary control design is to exponentially stabilize system (2.1)-(2.3) by exploiting an in-
vertible transformation

Z(x, t) = Q(x, t)−
∫ x

0

K(x, y)Q(y, t)dy (3.1)

with a n×n kernel matrix function K(x, y). An appropriate choice of the kernel K(x, y) and
that of the state feedback input vector U allows one to transform the underlying closed-loop
system into the target system

Zt(x, t) = ΘZxx(x, t)− CZ(x, t), (3.2)
Z(0, t) = 0, (3.3)
Z(1, t) = 0, (3.4)

1See, e.g., [6] for the Fourier representation of such a solution similar to (3.9) used in the proof of Theorem 3.1.
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written in terms of the state vector Z(x, t) = [z1(x, t), z2(x, t), . . . , zn(x, t)]
T with C ∈

Rn×n being a design matrix parameter, subject to the IC

Z(x, 0) = Q0(x)−
∫ x

0

K(x, y)Q0(y)dy, (3.5)

which follows from (2.4) and (3.1). To ensure that an arbitrary weak solution of the target
system BVP (3.2)-(3.5) evolves in the same state space H4,n it suffices to assume that the
kernel matrix function K(x, y) is smooth enough in its domain T defined in (1.5). The valid-
ity of this assumption is subsequently verified when the analytical representation of K(x, y)
is derived.

With the above consideration in mind, the exponential stability of the target system (3.2)-
(3.5) is then ensured with an arbitrarily fast convergence rate by an appropriate choice of the
real-valued square matrix C ∈ Rn×n. The following result is in order.

THEOREM 3.1. Let matrix C be such that S[C] > 0. Then, system (3.2)-(3.5) with the
IC (3.5) in H4,n is exponentially stable in the space H2,n with the decay rate σm(S[C]) so
that

∥Z(·, t)∥H2,n ≤ ∥Z(·, 0)∥H2,ne−σm(S[C])t. (3.6)

Additionally, the following point-wise estimates

max
x∈[0,1]

|zi(x, t)| ≤
√
2∥Z(·, 0)∥H2,ne−σm(S[C])t, i = 1, 2, ..., n (3.7)

max
x∈[0,1]

|zix(x, t)| ≤
√
2∥Z(·, 0)∥H2,ne−σm(S[C])t, i = 1, 2, ..., n (3.8)

are in force, where zix(x, t) denotes the i-th element of Zx(x, t).
Proof. To begin with, let us note that under the conditions of the theorem a weak solution

Z(x, t) of (3.2)-(3.5) admits a Fourier representation

Z(x, t) =

∞∑
k=1

Zk(t) sin(πkx), (3.9)

where Zk(t), k = 1, 2, . . ., is a solution of the ODE Żk = −[(πk)2Θ + C]Zk (see, e.g.,
[6, 16] for details). It is then straightforward to verify that the spatial derivatives Zx(x, t) and
Zxx(x, t) constitute weak solutions of the BVPs

Ztx(x, t) = ΘZxxx(x, t)− CZx(x, t), (3.10)
Ztxx(x, t) = ΘZxxxx(x, t)− CZxx(x, t), (3.11)
Zxx(0, t) = Zxx(1, t) = 0, (3.12)

inherited from (3.2)-(3.4). Remarkably, the same BCs (3.12) are of Neumann type for the
PDE (3.10) in Zx, and of Dirichlet type for the PDE (3.11) in Zxx.

Taking this into account, let us now consider the Lyapunov functional

V (t) =
1

2
∥Z(·, t)∥2H2,n =

1

2

∫ 1

0

ZT (ξ, t)Z(ξ, t)dξ +
1

2

∫ 1

0

ZT
ξ (ξ, t)Zξ(ξ, t)dξ

+
1

2

∫ 1

0

ZT
ξξ(ξ, t)Zξξ(ξ, t)dξ. (3.13)
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In light of (3.10)-(3.11), the corresponding time derivative of the Lyapunov functional (3.13)
along the solutions of (3.2)-(3.4) and (3.10)-(3.12) is given by

V̇ (t) =

∫ 1

0

ZT (ξ, t)ΘZξξ(ξ, t)dξ −
∫ 1

0

ZT (ξ, t)CZ(ξ, t)dξ +

∫ 1

0

ZT
ξ (ξ, t)ΘZξξξ(ξ, t)dξ

−
∫ 1

0

ZT
ξ (ξ, t)CZξ(ξ, t)dξ +

∫ 1

0

ZT
ξξ(ξ, t)ΘZξξξξ(ξ, t)dξ −

∫ 1

0

ZT
ξξ(ξ, t)CZξξ(ξ, t)dξ.

(3.14)

The first integral term in the right hand side of equality (3.14), being integrated by parts,
is estimated as∫ 1

0

ZT (ξ, t)ΘZξξ(ξ, t)dξ = ZT (χ, t)ΘZx(χ, t)
∣∣χ=1

χ=0
−

∫ 1

0

ZT
ξ (ξ, t)ΘZξ(ξ, t)dξ

≤ −θm∥Zx(·, t)∥22,n, (3.15)

where relations (3.3), (3.4) and the diagonal form of matrix Θ have been taken into account,
and the notation θm = min1≤i≤n θi > 0 has been used. Following the same route, the third
and fifth integral terms in the right hand side of (3.14) are estimated as∫ 1

0

ZT
ξ (ξ, t)ΘZξξξ(ξ, t)dξ ≤ −θm∥Zxx(·, t)∥22,n, (3.16)∫ 1

0

ZT
ξξ(ξ, t)ΘZξξξξ(ξ, t)dξ ≤ −θm∥Zxxx(·, t)∥22,n, (3.17)

where the BCs (3.12) have been used. To manage the remaining integral terms in the right
hand side of (3.14), the well-known property

ζTCζ ≥ σm(S[C])ζT ζ (3.18)

of the quadratic form ζTCζ is exploited with the matrix C, whose symmetric part is positive
definite by assumption, and an arbitrary n-dimensional vector ζ. Substituting (3.15)-(3.17)
into (3.14), one readily obtains

V̇ (t) ≤ −θm∥Zξ(·, t)∥2H2,n − 2σm(S[C])V (t) ≤ −2σm(S[C])V (t) (3.19)

by applying straightforward manipulations, made according to (3.18). By definition of the
Lyapunov functional (3.13), relation (3.19) ensures the exponential stability of the target sys-
tem (3.2)-(3.4) in the space H2,n with the decay rate obeying the estimate (3.6).

It remains to establish the point-wise estimates (3.7) and (3.8). For this purpose, let us
note that relation (3.6) remains in force in the component-wise form

∥zi(·, t)∥H2 ≤ ∥Z(·, 0)∥H2,ne−σm(S[C])t, i = 1, 2, . . . , n (3.20)

and due to the trivial inequalities ∥zi(·, t)∥2 ≤ ∥zi(·, t)∥H2 , ∥zix(·, t)∥2 ≤ ∥zi(·, t)∥H2 , the
next estimates

∥zi(·, t)∥2 ≤ ∥Z(·, 0)∥H2,ne−σm(S[C])t, ∥zix(·, t)∥2 ≤ ∥Z(·, 0)∥H2,ne−σm(S[C])t (3.21)

are in force as well. The point-wise estimate (3.7) is then trivially derived from that obtained
by employing Agmon’s inequality and utilizing the estimates (3.21):

max
x∈[0,1]

z2i (x, t) ≤ 2∥zi(·, t)∥2∥zix(·, t)∥2 ≤ 2∥Z(·, 0)∥2H2,ne−2σm(S[C])t, i = 1, 2, . . . , n.

(3.22)
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To prove (3.8) let us consider an arbitrary constant x̄ ∈ [0, 1] and write down the trivial
relation

zix(x̄, t) = zix(x, t)−
∫ x

x̄

ziξξ(ξ, t)dξ, x̄ ∈ [0, 1], i = 1, 2, ..., n (3.23)

where zix(·) and zixx(·) denote the i-th element of vectors Zx(·) and Zxx(·). Squaring both
sides of (3.23) and applying the triangle inequality yield

z2ix(x̄, t) ≤ 2z2ix(x, t) + 2

[∫ x

x̄

ziξξ(ξ, t)dξ

]2
, x̄ ∈ [0, 1], i = 1, 2, ..., n.(3.24)

By virtue of Lemma 1.1, specified with b(·) = ziξξ(·), the chain of inequalities

z2ix(x̄, t) ≤ 2z2ix(x, t) + 2

[∫ 1

0

|ziξξ(ξ, t)|dξ
]2

≤ 2z2ix(x, t) + 2∥zixx(·, t)∥22, x̄ ∈ [0, 1], i = 1, 2, ..., n (3.25)

is derived from (3.24). Then by integrating both sides of (3.25) with respect to the spatial
variable x from 0 to 1 and by exploiting relation (3.20), one gets

z2ix(x̄, t) ≤ 2∥zix(·, t)∥22 + 2∥zixx(·, t)∥22 ≤ 2∥zi(·, t)∥H2 ≤ 2∥Z(·, 0)∥2H2,ne−2σm(S[C])t

x̄ ∈ [0, 1], i = 1, 2, ..., n. (3.26)

By noticing that x̄ is an arbitrarily chosen point in the interval [0,1], the point-wise
estimate (3.8) is straightforwardly concluded from (3.26). The proof of Theorem 3.1 is thus
completed.

REMARK 1. It should be pointed out that relations (3.7) and (3.8) do not truly establish
the exponential point-wise decay of zi(x, t) and zix(x, t) due to the fact that ∥Z(·, 0)∥H2,n ,
rather than |zi(x, 0)| and, respectively, |zix(x, 0)|, appears in the corresponding right-hand
sides of these relations. However, such “quasi-exponential” decays prove to be suitable for
establishing the exponential stability of the original system (2.1)-(2.3) in the space H2,n

under the output feedback boundary controller to subsequently be designed.

The BVP governing the kernel matrix function K(x, y) is now derived through the stan-
dard procedure adopted in the backstepping design [17]. Next developments closely follow
our recent works [3, 4], where the same analysis were conducted for coupled reaction diffu-
sion equations equipped with Neumann rather than Dirichlet BCs.

By applying the Leibnitz differentiation rule to (3.1), spatial derivatives Zx(x, t) and
Zxx(x, t) are readily developed as a straightforward matrix generalization of corresponding
well-known scalar counterparts. Furthermore, using (2.1) and applying recursively integra-
tion by parts, the time derivative Zt(x, t) is derived as well. Combining such expressions
and performing rather lengthy but straightforward computations (see [3] for more detailed
derivations) yield

Zt(x, t)−ΘZxx(x, t) + CZ(x, t)

=

[
Λ + C +Ky(x, x)Θ + ΘKx(x, x) + Θ

d

dx
K(x, x)

]
Q(x, t)

+

∫ x

0

[ΘKxx(x, y)−Kyy(x, y)Θ−K(x, y)Λ− CK(x, y)]Q(y, t)dy

+ [ΘK(x, x)−K(x, x)Θ]Qx(x, t) +K(x, 0)ΘQx(0, t)−Ky(x, 0)ΘQ(0, t). (3.27)
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Clearly, the target system PDE (3.2) requires the right hand side of (3.27) to be identically
zero. Considering the homogeneous BC (2.2), this leads to the next relations

ΘKxx(x, y) − Kyy(x, y)Θ = K(x, y)Λ + CK(x, y), (3.28)

Λ + C + Ky(x, x)Θ + ΘKx(x, x) + Θ
d

dx
K(x, x) = 0, (3.29)

ΘK(x, x) − K(x, x)Θ = 0, (3.30)
K(x, 0) = 0. (3.31)

As in the Neumann BCs case [3], the main critical feature of (3.28)-(3.31) is in the
presence of relation (3.30). While being identically satisfied in the scalar case (n = 1) [31],
this relation is generally contradictive, and there are two options to fulfill (3.30). One of these
options is to impose the constraint that all the coupled processes possess the same diffusivity
value θ, i.e.,

Θ = θIn×n. (3.32)

An alternative option is to enforce the next constraint

K(x, y) = k(x, y)In×n (3.33)

on the form of the kernel matrix. Assumption (3.33) greatly simplifies the complexity of the
underlying backstepping transformation, which is simply determined by a scalar function.
This simplification, however, will also bring some constraint on the choice of the matrix C
which is no longer an arbitrary design parameter when the relation (3.33) is in force. The
above arguments motivate the need of treating separately the equi-diffusivity case, where
constraint (3.32) is in force, and the distinct diffusivity case where the kernel matrix is subject
to the constraint (3.33).

3.1. Equi-diffusivity case. Specializing system (3.28), (3.29), (3.31) in light of the
equi-diffusivity constraint (3.32) and exploiting the identity d

dxK(x, x) = Kx(x, x)+Ky(x, x)
yield the BVP

Kxx(x, y) − Kyy(x, y) =
1

θ
K(x, y)Λ +

1

θ
CK(x, y), (3.34)

Λ + C + 2θ
d

dx
K(x, x) = 0, (3.35)

K(x, 0) = 0. (3.36)

Integrating (3.35) with respect to x gives K(x, x) = − 1
2θ (Λ + C)x+K(0, 0). It follows

from (3.36) that K(0, 0) = 0, hence relation (3.35) is replaced by

K(x, x) = − 1

2θ
(Λ + C)x. (3.37)

The following result is in order.

THEOREM 3.2. The boundary-value problem (3.34), (3.36), (3.37) possesses a solution

K(x, y) = −
∞∑
j=0

(x2 − y2)j(2y)

j!(j + 1)!

(
1

4θ

)j+1
[

j∑
i=0

(
j

i

)
Ci (Λ+ C)Λj−i

]
(3.38)

which is of class C∞ in the domain T defined in (1.5).
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Proof. The proof of the present theorem follows the same line of reasoning as that of [3,
Th. 1], where the Neumann BCs were in play. Therefore, the detailed proof can straighfor-
wardly be derived from the proof of [3, Th. 1].

REMARK 2. Uniqueness of a solution to some BVPs, similar to (3.34), (3.36), (3.37), has
been addressed in the literature (see, e.g., [31, 11]). This valuable issue does not, however,
affect the underlying synthesis and it therefore remains beyond the scope of the paper.

The designed state feedback boundary controller for the equi-diffusivity case takes the
form

U(t) =

∫ 1

0

K(1, y)Q(y, t)dy, (3.39)

K(1, y) = −
∞∑

n=0

[
2y(1− y2)n

n!(n+ 1)!

](
1

4θ

)n+1
[

n∑
i=0

(
n

i

)
Ci (Λ+ C)Λn−i

]
. (3.40)

The following result is in order:

THEOREM 3.3. Let matrix C be selected in such a manner that S[C] > 0 and σm(S[C])
is arbitrarily large. Then, the boundary control input (3.39)-(3.40) exponentially stabilizes
system (2.1)-(2.3) in the space H2,n with the corresponding norm obeying the estimate

∥Q(·, t)∥H2,n ≤ a∥Q(·, 0)∥H2,ne−σm(S[C])t, (3.41)

where a is a positive constant independent of Q(x, 0).

Proof. See Subsection 3.1.2

REMARK 3. The plant IC at x = 0 should meet, of course, the corresponding BC (2.2)
to avoid the resulting incompatibility of the IC and BC. The additional, and more critical,
compatibility issue arises that the plant IC at x = 1 must match the initial value U(0) of the
applied control law in order to avoid initial jumps of the boundary state. The assumption on
the IC Q0(x), needed to solve such an issue, would be certainly restrictive in applications.
However, an alternative approach is feasible, as done, e.g., in [43], through adding an appro-
priate, exponentially vanishing, extra term in the control law (3.39)-(3.40). The next modified
control law

U(t) =

∫ 1

0

K(1, y)Q(y, t)dy +

[
Q0(1)−

∫ 1

0

K(1, y)Q0(y)dy

]
e−γt, γ > 0(3.42)

is capable of solving the aforementioned compatibility issue, yielding the required compati-
bility condition Q0(1) = U(0). Clearly, the exponential convergence condition (3.41) is no
longer in force due to this modification, and lengthy steps of analysis are needed to assess
the resulting closed-loop performance (see [43]). This analysis, however, remains out of the
scope of this paper. In the simulation section we will show that adding such an extra term
one not only removes the initial jump of the closed-loop system boundary state but one also
alleviates the transient peaking as well.

3.1.1. Inverse transformation and stability issues. Relevant results, concerning the
invertibility of the backstepping transformation (3.1) and the smoothness of the inverse kernel
matrix, are collected in this subsection to be used in the proof of Theorem 3.3.
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Transformation (3.1) is a matrix Volterra integral equation. We look for an inverse trans-
formation in the form

Q(x, t) = Z(x, t) +

∫ x

0

L(x, y)Z(y, t)dy. (3.43)

Existence and smoothness properties of L(x, y) are investigated in the following lemma
(see, e.g., [9, 38] for the scalar case which is going to be extended to the present vector case).

The following lemma is in order.

LEMMA 3.4. There exist a kernel matrix L(x, y), of class C∞(T ) with the domain T
specified in (1.5), such that the inverse transformation (3.43) of (3.1) is in force.

Proof. Substituting (3.1) into (3.43) and performing straightforward manipulations, one
derives the integral equation

L(x, y) = K(x, y) +

∫ x

y

L(x, s)K(s, y)ds, (3.44)

that implicitly defines the inverse kernel matrix L(x, y) on T . The method of successive
approximations is going to be applied to show that a smooth solution to (3.44) exists. Let us
start with the initial guess L0(x, y) = 0 and construct the recursive formula

Lj+1(x, y) = K(x, y) +

∫ x

y

Lj(x, s)K(s, y)ds, j = 0, 1, 2, . . . (3.45)

Let us denote the difference between two consecutive terms as

∆Lj(x, y) = Lj+1(x, y)− Lj(x, y), j = 0, 1, 2, . . . (3.46)

Then, the next recursion is obtained by (3.45)

∆L0(x, y) = L1(x, y) = K(x, y), (3.47)

∆Lj+1(x, y) =

∫ x

y

∆Lj(x, s)K(s, y)ds, j = 0, 1, 2, . . . (3.48)

If the recursion (3.47)-(3.48) converges, a solution L(x, y) to (3.44) takes the form

L(x, y) =

∞∑
j=0

∆Lj(x, y). (3.49)

The kernel matrix K(x, y) is continuous (cf. Theorem 3.2), hence its C0-norm (1.6) admits
a uniform upperbound in the compact set T . It means that there exists a positive constant M
such that

∥∆L0(x, y)∥C0(T ) = ∥K(x, y)∥C0(T ) ≤ M. (3.50)

Suppose that

∥∆Lj(x, y)∥C0(T ) ≤ M j+1x
j

j!
. (3.51)
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Then, by (3.48), (3.50) and (3.51) one derives the next estimate

∥∆Lj+1(x, y)∥C0(T ) ≤
∣∣∣∣∫ x

y

∥∆Lj+1(x, s)∥C0(T )∥K(s, y)∥C0(T )ds

∣∣∣∣
≤ M j+2

j!
xj

∣∣∣∣∫ x

y

ds

∣∣∣∣ = M j+2

j!
xj |x− y| . (3.52)

Due to the inequalities 0 ≤ y ≤ x, which come from the domain definition (1.5), the
following estimate

xj |x− y| ≤ xj+1, (x, y) ∈ T , (3.53)

is in force. Therefore, combining (3.52) and (3.53), one gets

∥∆Lj+1(x, y)∥ ≤ M j+2 xj+1

(j + 1)!
. (3.54)

By mathematical induction, (3.54) is true for all j ≥ 0. It then follows from the Weier-
strass M-test that the series (3.49) converges absolutely and uniformly in T . Thus, (3.47)-
(3.49) is a solution to (3.44) and it thereby implements the inverse transformation (3.43).

Due to the fact that K(x, y) is of class C∞(T ), the integral equation (3.44) allows one
to conclude that the function L(x, y) is continuous and at least one time continuously differ-
entiable in the domain T . By iterating on the successive differentiation of (3.44), one further
derives that L(x, y) is of class C∞ in its domain. Lemma 3.4 is proven.

By generalizing [34, Th 2.3], it is now proved that the properties K(x, y) ∈ C∞(T ) and
L(x, y) ∈ C∞(T ) result in the equivalence of the norms of Z(x, t) and Q(x, t) in H2,n.

LEMMA 3.5. Consider the direct and inverse backstepping transformations (3.1) and
(3.43) with the associated kernel matrices K(x, y), L(x, y) ∈ C∞(T ) on the domain T de-
fined in (1.5). Then, there are positive constants b1 and b2 such that

∥Q(·, t)∥H2,n ≤ b1∥Z(·, t)∥H2,n , (3.55)
∥Z(·, t)∥H2,n ≤ b2∥Q(·, t)∥H2,n . (3.56)

Proof. To begin with, one notices that properties K(x, y) ∈ C∞(T ) and L(x, y) ∈
C∞(T ) guarantee the existence of positive constants M1,M2, ...,M8 such that

∥K(x, y)∥C0(T ) ≤ M1, ∥L(x, y)∥C0(T ) ≤ M2, (3.57)
∥Kx(x, y)∥C0(T ) ≤ M3, ∥Lx(x, y)∥C0(T ) ≤ M4, (3.58)
∥Ky(x, y)∥C0(T ) ≤ M5, ∥Ly(x, y)∥C0(T ) ≤ M6, (3.59)

∥Kxx(x, y)∥C0(T ) ≤ M7, ∥Lxx(x, y)∥C0(T ) ≤ M8. (3.60)

From relation (3.43) one concludes, after straightforward manipulations (similar to those
of [34, Th 2.3]), that

∥Q(·, t)∥2,n ≤ ∥Z(·, t)∥2,n + ∥L(x, y)∥C0(T )∥Z(·, t)∥2,n ≤ (1 +M2)∥Z(·, t)∥2,n. (3.61)

Spatial derivatives Qx(x, t) and Qxx(x, t) are computed by iteratively applying the Leibnitz
differentiation rule to (3.43). It yields

Qx(x, t) = Zx(x, t) + L(x, x)Z(x, t) +

∫ x

0

Lx(x, y)Z(y, t)dy, (3.62)
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Qxx(x, t) = Zxx(x, t) +

[
d

dx
L(x, x)

]
Z(x, t) + L(x, x)Zx(x, t) + Lx(x, x)Z(x, t)

+

∫ x

0

Lxx(x, y)Z(y, t)dy. (3.63)

It is concluded from (3.62), (3.57) and (3.58) that

∥Qx(·, t)∥2,n ≤ ∥Zx(·, t)∥2,n + ∥L(x, x)∥C0(T )∥Z(·, t)∥2,n + ∥Lx(x, y)∥C0(T )∥Z(·, t)∥2,n
≤ ∥Zx(·, t)∥2,n + (M2 +M4)∥Z(·, t)∥2,n. (3.64)

By applying a similar estimation to (3.63), and noticing that by (3.58) and (3.59) the relation∥∥∥∥ d

dx
L(x, x)

∥∥∥∥
C0(T )

= ∥Lx(x, x) + Ly(x, x)∥C0(T ) ≤ ∥Lx(x, x)∥C0(T ) + ∥Ly(x, x)∥C0(T )

≤ M4 +M6 (3.65)

is in force, one straightforwardly concludes that

∥Qxx(·, t)∥2,n ≤ ∥Zxx(·, t)∥2,n +M2∥Zx(·, t)∥2,n + (2M4 +M6 +M8)∥Z(·, t)∥2,n.
(3.66)

From (3.61), (3.64) and (3.66) one gets (3.55) with the constant b1 = 1 + 2M2 + 3M4 +
M6+M8}. Relation (3.56) is obtained by applying the similar analysis starting from relation
(3.1). This concludes the proof of Lemma 3.5.

3.1.2. Proof of Theorem 3.3. The backstepping transformation (3.1), (3.38) was de-
rived to map system (2.1)-(2.3) into the target dynamics governed by the PDE (3.2). It re-
mains to prove that the homogenous BCs (3.3)-(3.4) hold as well. Specifying (3.1) with x = 0
and x = 1, and considering (2.2) and (2.3), yield

Z(0, t) = Q(0, t) = 0, (3.67)

Z(1, t) = Q(1, t)−
∫ 1

0

K(1, y)Q(y, t)dy = U(t)−
∫ 1

0

K(1, y)Q(y, t)dy. (3.68)

Thus, the boundary control input vector (3.39)-(3.40), where the kernel K(1, y) is readily
obtained by specifying (3.38) for x = 1, results in the target BVP (3.2)-(3.4) with homoge-
neous BCs. The exponential stability of (3.2)-(3.4) in the space H2,n was established in
Theorem 3.1 provided that S[C] > 0. Particularly, relation (3.6) was proven. Coupling (3.6)
and (3.55), one derives that

∥Q(·, t)∥H2,n ≤ b1∥Z(·, 0)∥H2,ne−σm(S[C])t. (3.69)

Specifying (3.56) with t = 0 and substituting the resulting relation in (3.69), one obtains
(3.41) with the constant a = b1b2 which is independent of Q(x, 0). This completes the proof
of Theorem 3.3.

3.2. Distinct diffusivity case. In the present subsection, boundary stabilization of sys-
tem (2.1)-(2.3) with distinct diffusivity parameters is addressed by following the previously
introduced backstepping design, specified with (3.33). Specializing system (3.28), (3.29),
(3.31) in view of the constraint (3.33) on the kernel matrix yields

(kxx(x, y)− kyy(x, y))Θ = k(x, y)(Λ + C), (3.70)

2
d

dx
k(x, x)Θ = −(Λ + C), (3.71)

k(x, 0) = 0. (3.72)
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By following [4, Sect. 4], where system (2.1), equipped with homogeneous Neumann
BCs, was under investigation, one concludes that to guarantee the solvability of (3.70)-(3.72)
the matrix C has to be selected in the constrained form

C = −Λ + γ∗Θ, (3.73)

where γ∗ is a scalar parameter.

REMARK 4. It was proven in [4, Th. 4] that one can always select the parameter γ∗ in
(3.73) large enough such that S[C] > 0 and σm(S[C]) is arbitrarily large as well.

By substituting (3.73) into (3.70) and (3.71), and by performing straightforward manip-
ulations, the kernel function k(x, y) is shown to be a solution to the following BVP

kxx(x, y)− kyy(x, y) = γ∗k(x, y), (3.74)

k(x, x) = = −γ∗

2
x, (3.75)

k(x, 0) = 0, (3.76)

whose explicit representation

k(x, y) = −γ∗y
I1(

√
γ∗(x2 − y2))√
γ∗(x2 − y2)

(3.77)

is extracted from [17].

REMARK 5. The BVP (3.74)-(3.76) is a particular case of (3.34), (3.36), (3.37). It thus
follows from Theorem 3.2 that k(x, y) is of class C∞(T ) with T defined in (1.5). Clearly,
the inverse transformation of (3.1), (3.33) takes the form (3.43) specified with L(x, y) =
l(x, y)In×n. By Lemma 3.4 one concludes that l(x, y) is of class C∞(T ), too.

The next theorem specifies the proposed state feedback boundary control design for the
distinct diffusivity case.

THEOREM 3.6. Let matrix C be selected according to (3.73) with sufficiently large
parameter γ∗ > 0 to ensure that S[C] > 0 and σm(S[C]) is arbitrarily large. Then, the
boundary control input

U(t) =

∫ 1

0

k(1, y)Q(y, t)dy, k(1, y) = −γ∗y
I1(

√
γ∗(1− y2))√
γ∗(1− y2)

(3.78)

exponentially stabilizes system (2.1)-(2.3) in the space H2,n with decay rate

∥Q(·, t)∥H2,n ≤ a∥Q(·, 0)∥H2,ne−σm(S[C])t, (3.79)

where a is a positive constant independent of Q(x, 0).
Proof. The form (3.78) of the chosen boundary feedback control is readily justified by

specifying (3.67) and (3.68) with (3.33) and noticing that k(1, y) is obtained by specifying
(3.77) with x = 1. Thus, with the feedback law (3.78) system (2.1)-(2.3) is transferred by
(3.1), (3.33) into the target dynamics (3.2)-(3.4) with the matrix C given by (3.73). According
to Remark 4, one can always select a large enough parameter γ∗ such that S[C] > 0 and
σm(S[C]) is arbitrarily large. Provided that S[C] > 0, the stability of the target dynamics
(3.2)-(3.4) in the space H2,n was established in Theorem 3.1. Noticing that Lemma 3.5 is
still in force due to Remark 5, the rest of the proof follows that of Theorem 3.3. The stability
of the original system (2.1)-(2.3) is then established in the space H2,n by employing (3.79)
with the same constant a = b1b2. Theorem 3.6 is thus proved.
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4. Observer design for the anti-collocated measurement setup. For system (2.1)-
(2.3) of n coupled reaction-diffusion processes with the boundary flow Qx(0, t) being the
only available measurement, the state observer

Q̂t(x, t) = ΘQ̂xx(x, t) + ΛQ̂(x, t) +G(x)
[
Qx(0, t)− Q̂x(0, t)

]
, (4.1)

Q̂(0, t) = 0, (4.2)
Q̂(1, t) = U(t), (4.3)
Q̂(x, 0) = Q̂0(x) ∈ H4,n (4.4)

is proposed, where Q̂(x, t) is the observer state and G(x) is a square matrix of spatially-
dependent observer gains to subsequently be designed. The observer is equipped with anal-
ogous BCs as those of the original system (2.2)-(2.3). The meaning of the BVP (4.1)-(4.4)
is viewed in the weak sense as the system (2.1)-(2.4) is. In order to ensure that the weak
solutions of (4.1)-(4.4) evolve in the state space H4,n the IC (4.4) is pre-specified to belong
to H4,n.

REMARK 6. As in the state feedback design, initial jumps of the observer state occur if
the observer ICs Q̂0(x) at x = 0 and x = 1 do not match the corresponding BCs (4.2) and
the initial value U(0), resulting from (4.3). The assumption

Q̂0(1) = U(0) (4.5)

on the IC Q̂0(x) now becomes less restrictive as the observer IC can be set arbitrarily. How-
ever, as in Remark 3, an alternative approach can be invoked by adding an appropriate,
exponentially vanishing, extra term in the observer dynamics. More precisely, the following
modification to eq. (4.3)

Q̂(1, t) = U(t) +
[
Q̂0(1)− U(t)

]
e−βt, β > 0, (4.6)

can solve the mentioned compatibility issue without requiring to put any restriction on the
observer IC at x = 1. Note that a completely analogous modification will also be effective to
solve the same compatibility issue for the collocated observer design.

Introduce the estimation error variable

Q̃(x, t) = Q(x, t)− Q̂(x, t), (4.7)

and consider the associated BVP

Q̃t(x, t) = ΘQ̃xx(x, t) + ΛQ̃(x, t)−G(x)Q̃x(0, t), (4.8)
Q̃(0, t) = 0, (4.9)
Q̃(1, t) = 0, (4.10)
Q̃(x, 0) = Q0(x)− Q̂0(x), (4.11)

which is readily derived from (2.1)-(2.4) and (4.1)-(4.4).
To design the observer gain matrix G(x) the backstepping approach is involved for find-

ing out the conditions under which an invertible transformation

Q̃(x, t) = Z̃(x, t)−
∫ x

0

P (x, y)Z̃(y, t)dy, (4.12)



OUTPUT-FEEDBACK STABILIZATION OF COUPLED REACTION-DIFFUSION PROCESSES 17

with a n × n matrix kernel function P (x, y), maps the error system (4.8)-(4.10) into the
exponentially stable target error BVP

Z̃t(x, t) = ΘZ̃xx(x, t)− C̄Z̃(x, t), (4.13)
Z̃(0, t) = 0, (4.14)
Z̃(1, t) = 0. (4.15)

To derive the corresponding IC, the inverse transformation of (4.12) comes into play, which
takes the form

Z̃(x, t) = Q̃(x, t) +

∫ x

0

R(x, y)Q̃(y, t)dy. (4.16)

Specifying (4.16) with t = 0 yields

Z̃(x, 0) = Q̃(x, 0) +

∫ x

0

R(x, y)Q̃(y, 0)dy ∈ H4,n, (4.17)

which complements the boundary value problem (4.13)-(4.15).
The meaning of (4.13)-(4.15), (4.17) is also viewed in the weak sense. In the sequel, the

BVP, governing the kernel matrix P (x, y), and the tuning rule of selecting the observer gain
matrix G(x) are derived.

Spatial differentiation of (4.12) yields

Q̃x(x, t) = Z̃x(x, t)− P (x, x)Z̃(x, t)−
∫ x

0

Px(x, y)Z̃(y, t)dy. (4.18)

By specifying (4.12) and (4.18) with x = 0, and substituting (4.14) in the resulting relations,
one arrives at

Q̃(0, t) = Z̃(0, t) = 0, (4.19)
Q̃x(0, t) = Z̃x(0, t)− P (0, 0)Z̃(0, t) = Z̃x(0, t). (4.20)

Specifying (4.12) with x = 1, substituting the resulting expression in (4.10), and imposing
the BC (4.15), the relation ∫ 1

0

P (1, y)Z̃(y, t)dy = 0 (4.21)

is obtained to derive the BC

P (1, y) = 0. (4.22)

By differentiating (4.18) with respect to x, the second-order spatial derivative Q̃xx(x, t)
is readily developed (all spatial differentiations involve the use of the Leibnitz differentiation
rule). Differentiating (4.12) in time, substituting (4.13) in the resulting relation, and apply-
ing recursively integration by parts, one readily obtains the time derivative Q̃t(x, t) as well.
Substituting (4.12), (4.19), (4.20) and the obtained expressions of Q̃xx(x, t) and Q̃t(x, t) into
(4.8) and performing lengthy but straightforward computations yield

Z̃t(x, t)−ΘZ̃xx(x, t) + C̄Z(x, t) =

[ΘP (x, x)− P (x, x)Θ] Z̃x(x, t)− [G(x) + P (x, 0)Θ] Z̃x(0, t)

−
{
Θ

[
d

dx
P (x, x)

]
+ Py(x, x)Θ + ΘPx(x, x)− Λ− C̄

}
Z̃(x, t)

−
∫ x

0

[
ΘPxx(x, y)− Pyy(x, y)Θ + P (x, y)C̄ + ΛP (x, y)

]
Z̃(y, t)dy (4.23)
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To meet the PDE (4.13) the right-hand side of (4.23) should be identically zero. From this
requirement, coupled to the BC (4.22), the BVP

ΘPxx(x, y)− Pyy(x, y)Θ = −P (x, y)C̄ − ΛP (x, y), (4.24)

Θ
d

dx
P (x, x) + ΘPx(x, x) + Py(x, x)Θ = Λ + C̄, (4.25)

P (x, x)Θ = ΘP (x, x), (4.26)
P (1, y) = 0, (4.27)

governing the kernel matrix P (x, y) is derived, and the observer gain tuning condition is
obtained in the form

G(x) = −P (x, 0)Θ. (4.28)

Similarly to system (3.28)-(3.31), that was derived in the state feedback controller design,
due to relation (4.26) the boundary value problem (4.24)-(4.27) is overdetermined and it has
no solution unless either the equi-diffusivity constraint (3.32) holds true or, alternatively, the
relation

P (x, y) = p(x, y)In×n, (4.29)

similar to (3.33), is enforced. Thus, duality between the controller and observer designs is
in force, and the observer treatment is then separately studied for the equi-diffusivity and
distinct-diffusivity scenarios.

4.1. Equi-diffusivity case. Specializing system (4.24)-(4.27) with the equi-diffusivity
constraint (3.32) and exploiting the identity d

dxP (x, x) = Px(x, x)+Py(x, x) yield the BVP

Pxx(x, y)− Pyy(x, y) = −1

θ

[
P (x, y)C̄ + ΛP (x, y)

]
, (4.30)

2θ
d

dx
P (x, x) = Λ + C̄, (4.31)

P (1, y) = 0, (4.32)

whereas the tuning condition (4.28) simplifies to

G(x) = −θP (x, 0). (4.33)

Integrating (4.31) with respect to x gives

P (x, x) =
1

2θ

(
Λ + C̄

)
x+ P (0, 0). (4.34)

Evaluating (4.34) at x = 1 yields

P (1, 1) =
1

2θ

(
Λ + C̄

)
+ P (0, 0). (4.35)

On the other hand, by evaluating (4.32) at y = 1 it is concluded that P (1, 1) = 0, thereby
obtaining

P (0, 0) = − 1

2θ

(
Λ + C̄

)
. (4.36)
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In light of (4.34) and (4.36) one thus rewrites (4.30)-(4.32) as

Pxx(x, y)− Pyy(x, y) = −1

θ

[
P (x, y)C̄ + ΛP (x, y)

]
, (4.37)

P (x, x) =
Λ + C̄

2θ
(x− 1), (4.38)

P (1, y) = 0. (4.39)

Conditions (4.37)-(4.39) form a well-posed BVP which admits an analytical solution. The
following result is in order.

THEOREM 4.1. The boundary-value problem (4.37)-(4.39) possesses a solution

P (x, y) = −
∞∑
j=0

2(1− x)((1− y)2 − (1− x)2)j

j!(j + 1)!

(
1

4θ

)j+1
[

j∑
i=0

(
j

i

)
Λi(Λ+ C̄)C̄j−i

]
(4.40)

which is infinitely times continuously differentiable in the domain T defined in (1.5).
Proof. By making the invertible change of variables

x̄ = 1− y, ȳ = 1− x, (4.41)

one transforms the boundary-value problem (4.37)-(4.39) into

P̄x̄x̄(x̄, ȳ)− P̄ȳȳ(x̄, ȳ) =
1

θ

[
P̄ (x̄, ȳ)C̄ + ΛP̄ (x̄, ȳ)

]
, (4.42)

P̄ (x̄, x̄) = −Λ + C̄

2θ
x̄, (4.43)

P̄ (x̄, 0) = 0. (4.44)

By direct comparison between (4.42)-(4.44) and (3.34), (3.36)-(3.37) one immediately
notices that P̄ (x̄, ȳ) = K(x, y) when Λ and C are respectively replaced by C̄ and Λ. Thus,
from (3.38), one obtains the solution of (4.42)-(4.44) in the form

P̄ (x̄, ȳ) = −
∞∑
j=0

(x̄2 − ȳ2)j(2ȳ)

j!(j + 1)!

(
1

4θ

)j+1
[

j∑
i=0

(
j

i

)
Λi

(
Λ+ C̄

)
C̄j−i

]
. (4.45)

By substituting the change of variables (4.41) into (4.45) one returns back to the original
variables x and y, thereby getting the series expansion (4.40) for the Kernel matrix P (x, y)
which solves the BVP (4.37)-(4.39). Clearly, due to the smooth change of coordinates (4.41)
the solution P (x, y) inherits the smoothness properties of K(x, y) to be of class C∞(T ).
Theorem 4.1 is thus proven.

The representation

G(x) = θ

∞∑
j=0

2(1− x)(1− (1− x)2)j

j!(j + 1)!

(
1

4θ

)j+1
[

j∑
i=0

(
j

i

)
Λi(Λ+ C̄)C̄j−i

]
(4.46)

of the observer gain matrix is straightforwardly derived by specifying (4.33) with the solution
(4.40) to the boundary-value problem (4.37)-(4.39).

The next theorem summarizes the proposed anti-collocated observer design for the equi-
diffusivity case.
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THEOREM 4.2. Let matrix C̄ be selected such that S[C̄] > 0 and σm(S[C̄]) is arbitrarily
large. Then, the observer (4.1)-(4.3), (4.46) reconstructs the state of system (2.1)-(2.3), (3.32)
with the associated error decay rate obeying the estimate

∥Q̃(·, t)∥H2,n ≤ b∥Q̃(·, 0)∥H2,ne−σm(S[C̄])t, (4.47)

where b is a positive constant independent of Q̃(ξ, 0).
Proof. It was shown in the present section that the backstepping transformation (4.12),

(4.40) transfers the error system (4.8)-(4.11) into the exponentially stable target error dynam-
ics (4.13)-(4.15), (4.17), provided that the observer gain G(x) is selected as in (4.46). By
straightforwardly specifying relation (3.6) with the state Z̃(x, t) of the target error dynamics
one obtains the estimate

∥Z̃(·, t)∥H2,n ≤ ∥Z̃(·, 0)∥H2,ne−σm(S[C̄])t. (4.48)

Owing on the smoothness properties of P (x, y), established in Theorem 4.1, and apply-
ing Lemma 3.4 one concludes that the kernel matrix R(x, y) is of class C∞(T ) as well. Thus,
Lemma 3.5 is straightforwardly reformulated with reference to the direct and inverse back-
stepping transformations (4.12) and (4.16) along with the associated smooth kernel matrices
P (x, y) and R(x, y). Particularly, relations

∥Q̃(·, t)∥H2,n ≤ c1∥Z̃(·, t)∥H2,n , (4.49)
∥Z̃(·, t)∥H2,n ≤ c2∥Q̃(·, t)∥H2,n , (4.50)

readily follow from (3.55)-(3.56) for some positive constants c1 and c2. Coupling together
(4.48) and (4.49), one derives that

∥Q̃(·, t)∥H2,n ≤ c1∥Z̃(·, 0)∥H2,ne−σm(S[C̄])t. (4.51)

Finally, specifying (4.50) with t = 0, and substituting the resulting relation in (4.51), one
obtains (4.47) with the constant b = c1c2 which is independent on Q̃(x, 0). Theorem 4.2 is
proven.

4.2. Distinct diffusivity case. In the present subsection, the anti-collocated observer
design is addressed by dispensing with the equi-diffusivity requirement (3.32) (i.e., all pro-
cesses possess their own distinct diffusivity parameters) and by introducing an extra constraint
(4.29) on the kernel matrix P (x, y) of the backstepping transformation (4.12).

By specializing the BVP (4.24)-(4.27) with the constraint (4.29), and applying the iden-
tity d

dxp(x, x) = px(x, x) + py(x, x), one obtains

(pxx(x, y)− pyy(x, y))Θ = −p(x, y)(Λ + C̄), (4.52)

2
d

dx
p(x, x)Θ = Λ + C̄, (4.53)

p(1, y) = 0, (4.54)

whereas the observer gain (4.28) specializes to

G(x) = −Θp(x, 0). (4.55)

The BVP (4.52)-(4.54) shares the same structure of (3.70)-(3.72). Thus, its solvability is
addressed by following [4, Sect. 4] thereby arriving in analogy with (3.73) to the constrained
form

C̄ = −Λ + γ̄∗Θ (4.56)



OUTPUT-FEEDBACK STABILIZATION OF COUPLED REACTION-DIFFUSION PROCESSES 21

of the matrix C̄ in the target error dynamics (4.13)-(4.15), where γ̄∗ ∈ R is a design parame-
ter. Substituting (4.56) into (4.52) and (4.53) it yields the scalar BVP

pxx(x, y)− pyy(x, y) = −γ̄∗p(x, y), (4.57)
d

dx
p(x, x) =

γ̄∗

2
, (4.58)

p(1, y) = 0. (4.59)

Integrating (4.58) with respect to x gives the relation p(x, x) = γ̄∗

2 x + p(0, 0) whereas
another relation p(0, 0) = − γ̄∗

2 is deduced from (4.59) by noticing that p(1, 1) = 0.
System (4.57)-(4.59) can thus be specified to the BVP

pxx(x, y)− pyy(x, y) = −γ̄∗p(x, y), (4.60)

p(x, x) =
γ̄∗

2
(x− 1), (4.61)

p(1, y) = 0, (4.62)

whose solution

p(x, y) = −γ̄∗(1− x)
I1(

√
γ̄∗(2x− x2 + y2 − 2y))√
γ̄∗(2x− x2 + y2 − 2y)

(4.63)

is well-known from [17]. The representation

G(x) = Θγ̄∗(1− x)
I1(

√
γ̄∗x(2− x))√
γ̄∗x(2− x)

(4.64)

of the observer gain is straightforwardly derived by specifying (4.55) with the solution (4.63)
to the BVP (4.60)-(4.62) evaluated in y = 0.

The next theorem specifies the proposed anti-collocated observer design for the distinct
diffusivity case.

THEOREM 4.3. Let the constant γ̄∗ be chosen large enough such that S[C̄] > 0 and
σm(S[C̄]) is arbitrarily large where C̄ is given in (4.56). Then, the observer (4.1)-(4.3),
(4.64) reconstructs the state of system (2.1)-(2.3) with the observation error decay obeying
the estimate

∥Q̃(·, t)∥H2,n ≤ b∥Q̃(·, 0)∥H2,ne−σm(S[C̄])t, (4.65)

with a positive constant b, independent of Q̃(x, 0).

Proof. The backstepping transformation (4.12), (4.29), specified with (4.63), transfers
the error system (4.8)-(4.11) into the target error dynamics (4.13)-(4.15), (4.17), where C̄ is
given by (4.56), and the observer gain G(x) is selected as in (4.64). According to Remark
4, one can always select the parameter γ̄∗ large enough such that S[C̄] > 0 and σm(S[C̄])
is arbitrarily large. Thus, exponential stability of the target error dynamics is in force with
an arbitrarily fast convergence rate according to estimate (4.48). Since the BVP (4.60)-(4.62)
is a particular instance of (4.37)-(4.39), its solution (4.29) is guaranteed by Theorem 4.1 to
be of class C∞(T ). Clearly, the inverse backstepping transformation takes the form (4.16),
specified with R(x, y) = r(x, y)In×n, and by a straightforward extension of Lemma 3.4, one
concludes that r(x, y) is of class C∞(T ), too. The rest of the proof follows the same steps
used in the proof of Theorem 4.2. Particularly, relations (4.49)-(4.50) are shown to be in force
for some positive constants c1 and c2. These relations, along with (4.48), result in estimate
(4.65). This concludes the proof of Theorem 4.3.
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5. Observer design for the collocated measurement setup. In the present section the
state observer design for system (2.1)-(2.4) is addressed and solved under the assumption
that only the boundary flow Qx(1, t) at the controlled side of the spatial domain is available
for measurements. The design closely follows that of Section 4, with a slightly different
form of the backstepping transformations used. All similar developments to those of the
anti-collocated scenario will be skipped. The proposed collocated observer takes the form

Q̂t(x, t) = ΘQ̂xx(x, t) + ΛQ̂(x, t) +G(x)
[
Qx(1, t)− Q̂x(1, t)

]
, (5.1)

Q̂(0, t) = 0, (5.2)
Q̂(1, t) = U(t), (5.3)
Q̂(x, 0) = Q̂0(x) ∈ H4,n, (5.4)

where G(x) is a square matrix of observer gain functions to subsequently be designed.
The observation error variable (4.7) is governed by the BVP

Q̃t(x, t) = ΘQ̃xx(x, t) + ΛQ̃(x, t)−G(x)Q̃x(1, t), (5.5)
Q̃(0, t) = 0, (5.6)
Q̃(1, t) = 0, (5.7)
Q̃(x, 0) = Q0(x)− Q̂0(x) ∈ H4,n. (5.8)

To design the observer gain G(x) extra conditions are to be involved under which an
invertible transformation

Q̃(x, t) = Z̃(x, t)−
∫ 1

x

P (x, y)Z̃(y, t)dy (5.9)

maps the error BVP (5.5)-(5.8) into the exponentially stable target error dynamics (4.13)-
(4.15). The IC (4.15) is rewritten as

Z̃(x, 0) = Q̃(x, 0) +

∫ 1

x

R(x, y)Q̃(y, 0)dy, (5.10)

where R(x, y) is the kernel matrix of the inverse transformation

Z̃(x, t) = Q̃(x, t) +

∫ 1

x

R(x, y)Q̃(y, t)dy. (5.11)

Note that the integration interval adopted in (5.9) and (5.11) is different from that of
(4.12) and (4.16), which constitutes the main observer design difference between the anti-
collocated and collocated case. Due to this difference, the domain of the kernel matrices
P (x, y) and R(x, y) is actually given by the set

T1 = {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 1} (5.12)

which is symmetrical to the domain (1.5), considered in the previous sections. Apart from
these minor differences, the subsequent treatment follows the same line of reasoning used
before.

As assumed throughout, the meaning of the BVPs (5.1)-(5.4), (5.5)-(5.8), and that of
(4.13)-(4.15), (5.10) are viewed in the weak sense and the weak solutions Q̂(x, t), Q̃(x, t),
Z̃(x, t) are required to evolve in the state space H4,n. Due to this, the corresponding ICs
(5.4), (5.8) and (4.17) are pre-specified to belong to H4,n.
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Similar developments to those of Section 4, which are skipped for brevity, yield the
following BVP

ΘPxx(x, y)− Pyy(x, y)Θ = −P (x, y)C̄ − ΛP (x, y), (5.13)

Θ
d

dx
P (x, x) + ΘPx(x, x) + Py(x, x)Θ = −Λ− C̄, (5.14)

P (x, x)Θ = ΘP (x, x), (5.15)
P (0, y) = 0, (5.16)

governing the kernel matrix P (x, y), and the observer gain tuning condition

G(x) = P (x, 1)Θ (5.17)

is involved. Due to relation (5.15), the BVP (5.13)-(5.16) admits a solution iff either the
equi-diffusivity constraint (3.32) holds or relation (4.29) is enforced. This is in analogy to the
BVP (3.28)-(3.31), that was involved in the state feedback controller design, and in analogy
to the BVP (4.24)-(4.27), that was employed in the anti-collocated observer design. These
two separate scenarios are investigated independently.

5.1. Equi-diffusivity case. Specializing system (5.13)-(5.16) with the equi-diffusivity
constraint (3.32) and exploiting the identity d

dxP (x, x) = Px(x, x) + Py(x, x) yield after
straightforward manipulations

Pxx(x, y)− Pyy(x, y) = −1

θ

[
P (x, y)C̄ + ΛP (x, y)

]
, (5.18)

P (x, x) = −Λ + C̄

2θ
x, (5.19)

P (0, y) = 0. (5.20)

Conditions (5.18)-(5.20) form a well-posed BVP which admits an analytical solution as
shown in the following theorem.

THEOREM 5.1. The BVP (5.18)-(5.20) possesses a solution

P (x, y) = −
∑∞

j=0
2x(y2−x2)j

j!(j+1)!

(
1
4θ

)j+1
[∑j

i=0

(
j
i

)
Λi(Λ+ C̄)C̄j−i

]
(5.21)

which is infinitely times continuously differentiable in the domain (5.12).
Proof. By making the invertible change of variables

x̄ = y, ȳ = x, (5.22)

one transforms (5.18)-(5.20) into

P̄x̄x̄(x̄, ȳ)− P̄ȳȳ(x̄, ȳ) =
1

θ

[
P̄ (x̄, ȳ)C̄ + ΛP̄ (x̄, ȳ)

]
, (5.23)

P̄ (ȳ, ȳ) = −Λ + C̄

2θ
ȳ, (5.24)

P̄ (x̄, 0) = 0. (5.25)

The BC (5.24) can be rewritten in the equivalent form

P̄ (x̄, x̄) = −Λ + C̄

2θ
x̄. (5.26)
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Substituting C̄ and Λ into the BVP (3.34), (3.36), (3.37) for Λ and C, respectively, one
arrives at the BVP (5.23), (5.25), (5.26), thereby establishing the relation P̄ (x̄, ȳ) = K(x, y)
between the solutions of these BVPs. With this in mind, the solution representation (3.38)
allows one to reproduce the solution of (5.23), (5.25), (5.26) in the form

P̄ (x̄, ȳ) = −
∞∑
j=0

(x̄2 − ȳ2)j(2ȳ)

j!(j + 1)!

(
1

4θ

)j+1
[

j∑
i=0

(
j

i

)
Λi

(
Λ+ C̄

)
C̄j−i

]
(5.27)

By substituting the change of variables (5.22) into (5.27) one returns back to the original
variables x and y to obtain the series expansion (5.21) of the kernel matrix P (x, y) which
solves the BVP (5.18)-(5.20). Due to the smooth change of coordinates (5.22) the solution
P (x, y) inherits the smoothness properties of K(x, y), and therefore it proves to be of class
C∞(T1). Theorem 5.1 is thus proven

The observer gain representation

G(x) = P (x, 1)θ = −θ

∞∑
n=0

2x(1− x2)n

n!(n+ 1)!

(
1

4θ

)n+1
[

n∑
i=0

(
n

i

)
Λi(Λ+ C̄)C̄n−i

]
(5.28)

is straightforwardly derived by specifying (5.17) according to the solution representation
(5.21) for the BVP (5.18)-(5.20).

The next theorem summarizes the proposed anti-collocated observer design for the equi-
diffusivity case.

THEOREM 5.2. Let matrix C̄ be selected such that S[C̄] > 0 and σm(S[C̄]) is arbitrarily
large. Then, the observer (5.1) -(5.3), (5.28) reconstructs the state of system (2.1)-(2.3), (3.32)
with decay rate specified by (4.47), where b is a positive constant independent of Q̃(ξ, 0).

Proof. The proof is nearly the same as that of Theorem 4.2 and it is therefore omitted.

5.2. Distinct diffusivity case. In the present subsection, the collocated observer design
is addressed in the distinct diffusivity scenario. The content of this section, being similar to
that of Section 4.2, is not accompanied with design details as they can straightforwardly be
derived from the corresponding anti-collocated design.

The observer gain takes the form

G(x) = −γ̄∗x
I1(

√
γ̄∗(1− x2))√
γ̄∗(1− x2)

Θ, (5.29)

and the next result is in force.

THEOREM 5.3. Let the constant γ̄∗ be chosen large enough to ensure that S[C̄] > 0
with C̄ given in (4.56) and σm(S[C̄]) is arbitrarily large. Then, the observer (5.1)-(5.3),
(5.29) reconstructs the state of system (2.1)-(2.3) with the observation error decay obeying
the estimate (4.65), where b is a positive constant independent of Q̃(x, 0).

Proof. The proof is identical to that of Theorem 4.3.

6. Output-feedback stabilization. In this section, the anti-collocated and collocated
backstepping observers of Sections 4 and 5 are combined with their natural dual backstepping
controllers of Section 3 to present the output feedback exponential stabilization of system
(2.1)-(2.4).
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6.1. Anti-collocated measurement setup. The following result is in order

THEOREM 6.1. Consider system (2.1)-(2.4) driven by the controller

U(t) =

∫ 1

0

K(1, y)Q̂(y, t)dy (6.1)

and fed by observer (4.1)-(4.4), (4.46). Let the matrices C and C̄ be selected such that
S[C] > 0 and S[C̄] > 0, and let K(1, y) be given by (3.40). Then, the closed-loop system
(2.1)-(2.4),(4.1)-(4.3), (4.46), (6.1) is exponentially stable in the space H2,n ×H2,n.

Proof.
Lengthy but straightforward manipulations show that the backstepping transformation

Ẑ(x, t) = Q̂(x, t)−
∫ x

0

K(x, y)Q̂(y, t)dy (6.2)

maps the observer dynamics (4.1)-(4.3) into the system

Ẑt(x, t) = ΘẐxx(x, t)− C̄Ẑ(x, t) + F1(x)Z̃x(0, t), (6.3)
Ẑ(0, t) = 0, (6.4)
Ẑ(1, t) = 0, (6.5)

with

F1(x) =

[
G(x)−

∫ x

0

K(x, y)G(y)dy

]
. (6.6)

The Z̃(x, t)-system, governed by (4.13)-(4.15), is exponentially stable in the space H2,n as
well as the homogeneous part of the Ẑ(x, t)-system (6.3)-(6.5) is if considered separately
with the external term Z̃x(0, t) deliberately set to zero. Following [32, Sect. 5.1], one no-
tices that the interconnection of the two systems in the (Ẑ, Z̃) coordinates is in cascade
form, and it was shown in Theorem 3.1 that all entries of the forcing term Z̃x(0, t) escape
“quasi-exponentially” to zero according to (3.8) (see Remark 1). Owing on the boundedness
and smoothness of G(x) and K(x, y) in the corresponding domains, the function F1(x) is
bounded and smooth in its domain 0 ≤ x ≤ 1, too. Thus, the combined (Ẑ, Z̃)-system
straightforwardly proves to be exponentially stable in the space H2,n×H2,n. As a result, the
(Q̂, Q̃)-system is exponentially stable in the same space since it is related to (Ẑ, Z̃) by the
invertible coordinate transformations (4.12) and (6.2) whose kernel matrix gains P (x, y) and
K(x, y), along with the corresponding inverse transformation matrices R(x, y) and L(x, y),
belong to C∞(T ), where T is defined in (1.5). Indeed, a straightforward generalization of
Lemma 3.5 shows that these smoothness properties guarantee the equivalence between norms
of (Ẑ, Z̃) and (Q̂, Q̃) in the space H2,n ×H2,n, directly ensuring the exponential stability of
the closed-loop system of interest in the space H2,n ×H2,n. Theorem 6.1 is proven.

The proof of the stable coupling of the controller to the anti-collocated observer, designed
in the distinct-diffusivity case, follows the same line of reasoning and it is skipped for brevity.

6.2. Collocated measurement setup. The following theorem is in force

THEOREM 6.2. Consider system (2.1)-(2.4) driven by the controller

U(t) =

∫ 1

0

K(1, y)Q̂(y, t)dy (6.7)
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and fed by observer (5.1)-(5.3), (5.28). Let the matrices C and C̄ be selected such that
S[C] > 0 and S[C̄] > 0, and let K(1, y) be given by (3.40). Then, the closed-loop system
(2.1)-(2.4),(5.1)-(5.3), (5.28), (6.7) is exponentially stable in the space H2,n ×H2,n.

Proof. One shows that the backstepping transformation (6.2) maps the observer dynamics
(5.1)-(5.3) into the BVP

Ẑt(x, t) = ΘẐxx(x, t)− C̄Ẑ(x, t) + F1(x)Z̃x(1, t), (6.8)
Ẑ(0, t) = 0, (6.9)
Ẑ(1, t) = 0, (6.10)

which only differs from (6.3)-(6.5) in that Z̃x(1, t) rather than Z̃x(0, t) enters the correspond-
ing PDE as an external input premultiplied by the smooth matrix gain F1(x). The rest of the
proof follows the same steps and reasonings used in the proof of Theorem 6.1. The proof of
Theorem 6.2 is thus concluded.

REMARK 7. The previously addressed compatibility issue (see Remark 3) also arises
in the output feedback case. To solve it, both the output feedback controllers using the anti-
collocated and collocated observer can be modified in the same manner. Particularly, the
next modified control

U(t) =

∫ 1

0

K(1, y)Q̂(y, t)dy +

[
Q0(1)−

∫ 1

0

K(1, y)Q̂0(y)dy

]
e−δt, δ > 0(6.11)

which is intended to replace either (6.1) or (6.7) can be implemented to solve the aforemen-
tioned issue.

7. Coupled PDEs with heterogenous BCs. In this section we investigate the more
general class of processes governed by n coupled reaction-diffusion PDEs which possess
different BCs at the uncontrolled side. Particularly, we address the scenario in which, among
the coupled reaction-diffusion subsystems, n1 > 0 processes are subject to Dirichlet BCs
whereas n2 = n−n1 > 0 processes are subject to Neumann BCs. We consider the following
BVP

Q1t(x, t) = Θ1Q1xx(x, t) + Λ11Q1(x, t) + Λ12Q1(x, t), (7.1)
Q2t(x, t) = Θ2Q2xx(x, t) + Λ21Q1(x, t) + Λ22Q1(x, t), (7.2)

which is equipped with the BCs and ICs

Q1(0, t) = 0, (7.3)
Q2x(0, t) = 0, (7.4)
Q(1, t) = U(t), (7.5)
Q(x, 0) = Q0(x) ∈ H4,n, (7.6)

where

Q1(x, t) = [q11(x, t), q12(x, t), . . . , q1n1(x, t)]
T
, (7.7)

Q2(x, t) = [q21(x, t), q22(x, t), . . . , q2n2(x, t)] , (7.8)

Q(x, t) =
[
QT

1 (x, t), Q
T
2 (x, t)

]T
, (7.9)

Θ1 and Θ2 are diagonal definite-positive matrices of dimension n1 and n2, respectively,
whereas Λij (i, j=1,2) are arbitrary matrices of appropriate dimension. Define

Θ =

[
Θ1 0
0 Θ2

]
, Λ =

[
Λ11 Λ12

Λ21 Λ22

]
, (7.10)



OUTPUT-FEEDBACK STABILIZATION OF COUPLED REACTION-DIFFUSION PROCESSES 27

7.1. State feedback stabilization. The target system is chosen in the form of the BVP
composed of the PDE (3.2) and the BCs

Z1(0, t) = 0, (7.11)
Z2x(0, t) = 0, (7.12)
Z(1, t) = 0 (7.13)

The resulting BVP is conveniently expressed in the expanded form

Z1t(x, t) = Θ1Z1xx(x, t)− C11Z1(x, t)− C12Z1(x, t), (7.14)
Z2t(x, t) = Θ2Z2xx(x, t)− C21Z1(x, t)− C22Z1(x, t), (7.15)
Z1(0, t) = 0, (7.16)
Z2x(0, t) = 0, (7.17)
Z(1, t) = 0, (7.18)

where Z(x, t) = [ZT
1 (x, t)Z

T
2 (x, t)], C11, C12, C21, C22 and

C =

[
C11 C12

C21 C22

]
(7.19)

is the design matrix of an appropriate dimension.
The exponential stability of the target system (7.14)-(7.18) is ensured with an arbitrarily

fast convergence rate by an appropriate choice of the real-valued matrices C ∈ Rn×n. The
following result is in order.

THEOREM 7.1. Let matrix C be such that S[C] > 0. Then, system (7.14)-(7.18) is
exponentially stable in the space H2,n with the decay rate σm(S[C]) according to (3.6), and
the estimates (3.7)-(3.8) are in force where zix(x, t) denotes the i-th element of Zx(x, t).

Proof. Following the same line of reasoning, used in the proof of Theorem 3.1, one
shows that the spatial derivatives Zx(x, t) and Zxx(x, t) constitute weak solutions of the
BVPs composed of the PDEs (3.10), (3.11) and the BCs

Z1xx(0, t) = Z2xxx(0, t) = Zxx(1, t) = 0, (7.20)

inherited from (3.2), (7.11)-(7.13). The Lyapunov functional (3.13) is then involved, whose
time derivative along the weak solutions in question is given by (3.14). The first integral term
in the right hand side of equality (3.14), being integrated by parts, is estimated as follows∫ 1

0

ZT (ξ, t)ΘZξξ(ξ, t)dξ = ZT (χ, t)ΘZx(χ, t)
∣∣χ=1

χ=0
−
∫ 1

0

ZT
ξ (ξ, t)ΘZξ(ξ, t)dξ

= ZT (1, t)ΘZx(1, t)− ZT
1 (0, t)Θ1Z1x(0, t)

− ZT
2 (0, t)Θ2Z2x(0, t)−

∫ 1

0

ZT
ξ (ξ, t)ΘZξ(ξ, t)dξ

≤ −θm∥Zx(·, t)∥22,n, (7.21)

where the BCs (7.11), (7.13) and the diagonal form of matrix Θ have been taken into account,
and the same notation θm = min1≤i≤n θi > 0 has been used. The third and fifth integral
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terms in the right hand side of (3.14) are estimated as follows

∫ 1

0

ZT
ξ (ξ, t)ΘZξξξ(ξ, t)dξ = ZT

x (χ, t)ΘZxx(χ, t)
∣∣χ=1

χ=0
−
∫ 1

0

ZT
ξξ(ξ, t)ΘZξξ(ξ, t)dξ

= ZT
x (1, t)ΘZxx(1, t)− ZT

1x(0, t)Θ1Z1xx(0, t)

− ZT
2x(0, t)Θ2Z2xx(0, t)−

∫ 1

0

ZT
ξξ(ξ, t)ΘZξξ(ξ, t)dξ

≤ −θm∥Zxx(·, t)∥22,n, (7.22)∫ 1

0

ZT
ξξ(ξ, t)ΘZξξξξ(ξ, t)dξ = ZT

xx(χ, t)ΘZxxx(χ, t)
∣∣χ=1

χ=0
−

∫ 1

0

ZT
ξξξ(ξ, t)ΘZξξξ(ξ, t)dξ

= ZT
xx(1, t)ΘZxxx(1, t)− ZT

1xx(0, t)Θ1Z1xxx(0, t)

− ZT
2xx(1, t)Θ2Z2xxx(0, t)−

∫ 1

0

ZT
ξξξ(ξ, t)ΘZξξξ(ξ, t)dξ

≤ −θm∥Zxxx(·, t)∥22,n, (7.23)

where the BCs (7.20) have been used. From this point on, the proof follows the same steps
as those in the last part of the proof of Theorem 3.1. This concludes the proof.

To transfer the BVP (7.1)-(7.9) into the target system BVP, the same invertible backstep-
ping transformation (3.1) is applied with the n × n kernel matrix function K(x, y), whose
elements are denoted as kij(t), i, j = 1, 2, ..., n. This matrix is decomposed as follows

K(x, y) =

[
K1

1 (x, y) K1
2 (x, y)

K2
1 (x, y) K2

2 (x, y)

]
=

[
K1(x, y) K2(x, y)

]
(7.24)

where the involved matrices

K1
1 (x, y) ∈ Rn1×n1 , K1

2 (x, y) ∈ Rn1×n2 , K2
1 (x, y) ∈ Rn2×n1 , K2

2 (x, y) ∈ Rn2×n2 ,

(7.25)

play an important role in the sequel and K1(x, y) ∈ Rn×n1 , K2(x, y) ∈ Rn×n2 denote
the first n1 columns and the last n2 columns of matrix K(x, y), respectively. Note that the
generic name K(x, y) is used in the present Section to denote the kernel matrix, as it was
previously done in Sections 3 and 6. Clearly, within the present section the kernel matrix will
be governed by a different BVP, and thus its expression will be different from that obtained
in Sections 3 and 6.

The backstepping transformation (3.1) is thus rewritten in the expanded form

Z1(x, t) = Q1(x, t)−
∫ x

0

K1
1 (x, y)Q1(y, t)dy −

∫ x

0

K1
2 (x, y)Q2(y, t)dy (7.26)

Z2(x, t) = Q2(x, t)−
∫ x

0

K2
1 (x, y)Q1(y, t)dy −

∫ x

0

K2
2 (x, y)Q2(y, t)dy (7.27)

By applying similar manipulations as those made in Section 3, the resulting kernel BVP
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takes the form

ΘKxx(x, y) − Kyy(x, y)Θ = K(x, y)Λ + CK(x, y), (7.28)

Λ + C + Ky(x, x)Θ + ΘKx(x, x) + Θ
d

dx
K(x, x) = 0, (7.29)

ΘK(x, x) − K(x, x)Θ = 0, (7.30)
K1(x, 0) = 0. (7.31)
K2y(x, 0) = 0. (7.32)

The only difference between the obtained BVP (7.28)-(7.32) and the BVP (3.28)-(3.31)
previously derived in the Dirichlet BC case is in the relations (7.31) and (7.32), defining the
BCs of the underlying BVP along the line y = 0.

Solvability of the BVP (7.28)-(7.32) is subsequently studied in the two cases of the equi-
diffusivity, where the constraint (3.32) is imposed on the diffusivity parameters, and of the
distinct diffusivity, where relation (3.32) is no longer in force.

In contrast to the Dirichlet BC case studied previously, in the present ”heterogeneous
BCs” setting the distinct-diffusivity case yields an overdetermined kernel PDE that possesses
no solution.

7.1.1. Equi-diffusivity case. Specifying the BVP (7.28)-(7.32) in light of the equi-
diffusivity constraint (3.32), and performing straightforward manipulations, yield

Kxx(x, y) − Kyy(x, y) =
1

θ
K(x, y)Λ +

1

θ
CK(x, y), (7.33)

K(x, x) = − 1

2θ
(Λ + C)x+K(0, 0) (7.34)

K1(x, 0) = 0. (7.35)
K2y(x, 0) = 0. (7.36)

Let us presently motivate the crucial constraint K(0, 0) = 0 that was earlier required in
Subsection 3.1 where only Dirichlet BCs were dealt with. It follows from (7.35) that

K1(0, 0) = 0, (7.37)

i.e. the first n1 columns of matrix K(0, 0) are identically zero. To derive the additional
constraints on K(0, 0), the spatial derivative of the backstepping transformation (7.26)-(7.27)
is first computed by applying the Leibnitz differentiation rule and then specified at x = 0:

Z1x(0, t) = Q1x(0, t)−K1
1 (0, 0)Q1(0, t)−K1

2 (0, 0)Q2(0, t) (7.38)
Z2x(0, t) = Q2x(0, t)−K2

1 (0, 0)Q1(0, t)−K2
2 (0, 0)Q2(0, t). (7.39)

Substituting the BCs (7.3)-(7.4) and (7.16)-(7.17) into (7.38)-(7.39) yields

Z1x(0, t) = Q1x(0, t)−K1
2 (0, 0)Q2(0, t) (7.40)

0 = K2
2 (0, 0)Q2(0, t) (7.41)

It follows from (7.41) that K2
2 (0, 0) must be zero, whereas relation (7.40) does not impose any

constraint on K1
2 (0, 0). We thus make the deliberate choice K1

2 (0, 0) = 0, yielding the final
relation K(0, 0) = 0. It is worth noticing that any alternative value of K1

2 (0, 0) is compatible
with (7.40), and it could be a valid choice as well provided that the resulting kernel BVP is
feasible.
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Thus, relation (7.34) of the kernel BVP is replaced by

K(x, x) = − 1

2θ
(Λ + C)x (7.42)

LEMMA 7.2. The BVP (7.33), (7.35)-(7.36), (7.42) admits a solution which is of class
C∞ in the domain (1.5).

Proof. Inspired from [31], the substitution

ξ = x+ y, η = x− y, (7.43)

of the independent variables is adopted to represent the BVP (7.33), (7.35)-(7.36), (7.42) in
terms of

G(ξ, η) = K(x, y) = K

(
ξ + η

2
,
ξ − η

2

)
(7.44)

as follows

Gξη(ξ, η) =
1

4θ
G(ξ, η)Λ +

1

4θ
CG(ξ, η), (7.45)

G(ξ, 0) = − 1

4θ
(Λ + C) ξ, (7.46)

G1(ξ, ξ) = 0, (7.47)
G2ξ(ξ, ξ) = G2η(ξ, ξ), (7.48)

where G1(x, y) and G2(x, y) are such that

G(x, y) =
[
G1(x, y) G2(x, y)

]
, G1(x, y) ∈ Rn×n1 , G2(x, y) ∈ Rn×n2

(7.49)

Integrating (7.45) with respect to η from 0 to η, and considering the relation Gξ(ξ, 0) =
− 1

4θ (Λ+ C), which is straightforwardly obtained from (7.46), we get

Gξ(ξ, η) = − 1

4θ
(Λ+ C) +

1

4θ

∫ η

0

[G(ξ, s)Λ+ CG(ξ, s)] ds (7.50)

Integrating (7.50) with respect to the first argument from η to ξ and applying straightfor-
ward manipulations yield

G(ξ, η) − G(η, η) = − 1

4θ
(Λ+ C)(ξ − η) +

1

4θ

∫ ξ

η

{∫ η

0

[G(τ, s)Λ+ CG(τ, s)] ds

}
dτ

(7.51)

We are now in a position to derive an explicit form of G(η, η). The first n1 columns of
G(η, η), i.e. the matrix G1(η, η), are identically zero due to (7.47). To derive G2(η, η), we
use (7.48) to write

d

dξ
G2(ξ, ξ) = G2ξ(ξ, ξ) +G2η(ξ, ξ) = 2G2ξ(ξ, ξ) (7.52)

Let us note that G2(x, y) = G(x, y)Tn1n2 , where

Tn1n2
=

[
0n1,n2

In2

]
(7.53)
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is a projection operator which allows one to extract the corresponding last n2 columns. Taking
this into account and setting η = ξ one derives from (7.52) that

G2η(η, η) = − 1

4θ
(Λ+ C)Tn1n2

+
1

4θ

∫ η

0

[G(η, s)Λ+ CG(η, s)] dsTn1n2
. (7.54)

Using (7.54), relation (7.50) can be represented in the form of the differential equation

d

dη
G2(η, η) = − 1

2θ
(Λ+ C)Tn1n2 +

1

2θ

∫ η

0

[G(η, s)Λ+ CG(η, s)] dsTn1n2(7.55)

Integrating both sides of (7.55) with respect to η yields

G1(η, η) = 0 (7.56)

G2(η, η) = − 1

2θ
(Λ+ C)ηTn1n2

+
1

2θ

∫ η

0

{∫ τ

0

[G(τ, s)Λ+ CG(τ, s)] ds

}
dτTn1n2

(7.57)

Now involving the projection operator

En1n2
= [0n1+n2,n1

Tn1n2
] (7.58)

let us rewrite (7.56)-(7.57) in the compact form

G(η, η) = − 1

2θ
(Λ+ C)ηEn1n2

+
1

2θ

∫ η

0

{∫ τ

0

[G(τ, s)Λ+ CG(τ, s)] ds

}
dτEn1n2

.

(7.59)

Substituting (7.59) into (7.51) for G(η, η) yields

G(ξ, η) = − 1

2θ
(Λ+ C)ηEn1n2 +

1

2θ

∫ η

0

{∫ τ

0

[G(τ, s)Λ+ CG(τ, s)] ds

}
dτEn1n2

+
1

4θ
(Λ+ C)(ξ − η) +

1

4θ

∫ ξ

η

{∫ η

0

[G(τ, s)Λ+ CG(τ, s)] ds

}
dτ

(7.60)

Next the method of successive approximations is used to show that equation (??) has a
smooth solution. By letting

G0(ξ, η) = 0 (7.61)

the recursive formula is set up for (7.60) as follows

Gn+1(ξ, η) = − 1

2θ
(Λ+ C)ηEn1n2

+
1

2θ

∫ η

0

{∫ τ

0

[Gn(τ, s)Λ+ CGn(τ, s)] ds

}
dτEn1n2

+
1

4θ
(Λ+ C)(ξ − η) +

1

4θ

∫ ξ

η

{∫ η

0

[Gn(τ, s)Λ+ CGn(τ, s)] ds

}
dτ

(7.62)

Clearly if this recursion converges, the limiting relation

G(ξ, η) = lim
n→∞

Gn(ξ, η) (7.63)
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determines a solution of (7.60).
Denote the difference between two consecutive terms as

∆Gn(ξ, η) = Gn+1(ξ, η)−Gn(ξ, η) (7.64)

Then, the next recursion

∆G0(ξ, η) = G1(ξ, η) = − 1

2θ
(Λ+ C)ηEn1n2

+
1

4θ
(Λ+ C)(ξ − η) (7.65)

∆Gn+1(ξ, η) =
1

2θ

∫ η

0

{∫ τ

0

[∆Gn(τ, s)Λ+ C∆Gn(τ, s)] ds

}
dτEn1n2

+
1

4θ

∫ ξ

η

{∫ η

0

[∆Gn(τ, s)Λ+ C∆Gn(τ, s)] ds

}
dτ (7.66)

is concluded from (7.61)-(7.62), and (7.63) can be rewritten in the form

G(ξ, η) =

∞∑
n=0

∆Gn(ξ, η) (7.67)

Since 0 ≤ y ≤ x ≤ 1, the ξ- and η-variables are located within |η| ≤ 1, |ξ| ≤ 2.
Furthermore,

∥En1n2∥ ≤ 1 (7.68)

due to (7.58), and using (7.65) and (7.68), one can readily show that

∥∆G0(ξ, η)∥ ≤ 1

2θ
(∥Λ∥+ ∥C∥)∥En1n2∥+

1

2θ
(∥Λ∥+ ∥C∥) ≤ 1

θ
(∥Λ∥+ ∥C∥) = M (7.69)

Suppose that

∥∆Gn(ξ, η)∥ ≤ Mn+1 (ξ + η)n

n!
(7.70)

Then applying computations, similar to those used in [3] for deriving equations (55)-(56),
yield

∥∆Gn+1(ξ, η)∥ ≤ Mn+2 (ξ + η)n+1

(n+ 1)!
(7.71)

Thus by mathematical induction, (7.71) is true for all n > 0. It then follows from the
Weierstrass M-test that the series (7.67) converges absolutely and uniformly in 0 ≤ η ≤ ξ ≤
2.

To complete the proof it remains to note that being given by the integral equality (7.60),
the continuous function G(ξ, η) is at least twice continuously differentiable in the domain
0 ≤ η ≤ ξ ≤ 2. Moreover, by iterating on the successive differentiation of (7.60), one
concludes that G(ξ, η) is of class C∞ in its domain. By virtue of (7.44), the corresponding
solution is thus shown to be of class C∞(T ). This concludes the proof.

Under certain conditions, the state feedback boundary controller

U(t) =

∫ 1

0

K(1, y)Q(y, t)dy, (7.72)
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is shown in the following Theorem to be exponentially stabilizing in the equi-diffusivity case.

THEOREM 7.3. Let matrix C be selected in such a manner that S[C] > 0 whereas
σm(S[C]) is arbitrarily large. Then, the boundary control input (7.72), where K(x, y) is a
solution to the BVP (7.33), (7.35)-(7.36), (7.42), exponentially stabilizes system (7.1)-(7.9) in
the space H2,n with the corresponding norm obeying the estimate

∥Q(·, t)∥H2,n ≤ a∥Q(·, 0)∥H2,ne−σm(S[C])t, (7.73)

where a is a positive constant independent of Q(x, 0).

Proof. The proof is based on the demonstration of Lemma 7.2, and it is formally identical
to that of Theorem (3.3).

7.1.2. Distinct diffusivity case. We now show that in the distinct diffusivity case, where
the constraint (3.33) is imposed on the form of the kernel matrix to verify the relation (7.30),
the BVP (7.28)-(7.32) is overdetermined and it possesses no solution. For the sake of sim-
plicity this analysis is illustrated for two (n = 2) coupled processes with n1 = n2 = 1
and

Λ =

[
λ11 λ12

λ21 λ22

]
, C =

[
c11 c12
c21 c22

]
. (7.74)

The general treatment is essentially the same.
The matrix PDE (7.28), specified with n = 2, yields the four scalar relations

kxx(x, y)− kyy(x, y) =
λ11 + c11

θ1
k(x, y), (7.75)

kxx(x, y)− kyy(x, y) =
λ22 + c22

θ2
k(x, y), (7.76)

λ12 + c12 = 0, (7.77)
λ21 + c21 = 0, (7.78)

that imply the constraints

λ11 + c11
θ1

=
λ22 + c22

θ2
= γ, (7.79)

c12 = −λ12, (7.80)
c21 = −λ21. (7.81)

on the coefficients of the C matrix. The BCs (7.29) yields the four relations

d

dx
k(x, x) =

λ11 + c11
2θ1

, (7.82)

d

dx
k(x, x) =

λ22 + c22
2θ2

, (7.83)

λ12 + c12 = 0, (7.84)
λ21 + c21 = 0, (7.85)

which yield the same constraints (7.79)- (7.81). Finally, the BCs (7.31)-(7.32) lead to the
corresponding BCs

k(x, 0) = 0. (7.86)
ky(x, 0) = 0. (7.87)
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It yields the overall BVP

kxx(x, y)− kyy(x, y) = γk(x, y), (7.88)
d

dx
k(x, x) =

1

2
γ, (7.89)

k(x, 0) = 0, (7.90)
ky(x, 0) = 0, (7.91)

which is clearly overdetermined since the separate BVPs (7.88)-(7.90) and (7.88)-(7.89),
(7.91) admit distinct unique solutions (see [17]). Thus in the distinct diffusivity case, the
state feedback design becomes unfeasible within the present approach.

7.2. Anticollocated observer design and output feedback stabilization. For system
(7.1)-(7.5) of n coupled reaction-diffusion processes with the boundary flow Q1x(0, t) and
the boundary state Q2(0, t) being the only available measurements, the state observer

Q̂1t(x, t) = Θ1Q̂1xx(x, t) + Λ11Q̂1(x, t) + Λ12Q̂1(x, t) +G11(x)[Q1x(0, t)− Q̂1x(0, t)]

+ G12(x)[Q2(0, t)− Q̂2(0, t)], (7.92)
Q̂2t(x, t) = Θ2Q̂2xx(x, t) + Λ21Q̂1(x, t) + Λ22Q̂1(x, t) +G21(x)[Q1x(0, t)− Q̂1x(0, t)]

+ G22(x)[Q2(0, t)− Q̂2(0, t)], (7.93)

is equipped with the BCs and arbitrary IC:

Q̂1(0, t) = 0, (7.94)
Q̂2x(0, t) = M(Q2(0, t)− Q̂2(0, t)), (7.95)
Q(1, t) = U(t), (7.96)
Q̂(x, 0) = Q̂0(x) ∈ H4,n. (7.97)

Hereinafter, Q̂(x, t) = [Q̂T
1 (x, t)Q̂

T
2 (x, t)] is the state estimate, M is a constant square matrix

of dimension n2 to subsequently be designed and

G(x) =

[
G1

1(x) G1
2(x)

G2
1(x) G2

2(x)

]
=

[
G1(x) G2(x)

]
(7.98)

is a square matrix of spatially-dependent observer gains to subsequently be designed as well,
where the dimensions of the involved sub-matrices are

G1
1(x) ∈ Rn1×n1 , G1

2(x) ∈ Rn1×n2 , G2
1(x) ∈ Rn2×n1 , G2

2(x) ∈ Rn2×n2 , (7.99)

and G1(x) ∈ Rn×n1 , G2(x) ∈ Rn×n2 denote the first n1 columns and the last n2 columns
of matrix G(x), respectively.

The meaning of the BVP (7.92)-(7.97) is viewed in the weak sense similar to that of
system (7.1)-(7.5) is. In order to ensure that the weak solutions of (7.92)-(7.96) evolve in the
state space H4,n the IC (7.97) is pre-specified to belong to H4,n.

The observation error variables

Q̃1(x, t) = Q1(x, t)− Q̂1(x, t), (7.100)
Q̃2(x, t) = Q2(x, t)− Q̂2(x, t), (7.101)

Q̃(x, t) = [Q̃T
1 (x, t)Q̃

T
2 (x, t)] = Q(x, t)− Q̂(x, t), (7.102)
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are defined, on the basis of which the associated BVP

Q̃1t(x, t) = Θ1Q̃1xx(x, t) + Λ11Q̃1(x, t) + Λ12Q̃1(x, t) +G11(x)Q̃1x(0, t)

+ G12(x)Q̃2(0, t), (7.103)
Q̃2t(x, t) = Θ2Q̃2xx(x, t) + Λ21Q̃1(x, t) + Λ22Q̃1(x, t) +G21(x)Q̃1x(0, t)

+ G22(x)Q̃2(0, t), (7.104)
Q̃1(0, t) = 0, (7.105)
Q̃2x(0, t) = −MQ̃2(0, t), (7.106)
Q̃(1, t) = 0, (7.107)
Q̃(x, 0) = Q0(x)− Q̂0(x), (7.108)

is readily derived from (7.1)-(7.5) and (7.92)-(7.97).
The procedure for designing the gain matrices M and G(x) is essentially the same as

that adopted in Sect. 4 to deal with the Dirichlet BC case.
The backstepping transformation (4.12), with a n× n matrix kernel function P (x, y), is

employed to map the error system (7.103)-(7.107) into the target error BVP

Z̃t(x, t) = ΘZ̃xx(x, t)− C̄Z̃(x, t), (7.109)
Z̃1(0, t) = 0, (7.110)
Z̃2x(0, t) = 0, (7.111)
Z̃(1, t) = 0. (7.112)

where C̄ is to be designed in accordance with Theorem 7.1 for enforcing to enforce the
exponential stability of the target error BVP. The IC (4.17) and the BC (4.22) on the kernel
matrix P (x, y) are derived by similar computations to those made in Section 4.1.

Performing lengthy but straightforward computations,which are similar to those of Sec-
tion 4.1, one derives the next relation

Z̃t(x, t)−ΘZ̃xx(x, t) + C̄Z(x, t) =

[ΘP (x, x)− P (x, x)Θ] Z̃x(x, t)− [G(x) + P (x, 0)Θ] Z̃x(0, t)− [G(x)− Py(x, 0)Θ] Z̃(0, t)

−
{
Θ

[
d

dx
P (x, x)

]
+ Py(x, x)Θ + ΘPx(x, x)− Λ− C̄

}
Z̃(x, t)

−
∫ x

0

[
ΘPxx(x, y)− Pyy(x, y)Θ + P (x, y)C̄ + ΛP (x, y)

]
Z̃(y, t)dy (7.113)

which, in contrast to its counterpart (4.23) that was previously obtained in the Dirichlet BC
case, contains the additional term [G(x)− Py(x, 0)Θ] Z̃(0, t). This term is no longer iden-
tically zero due to the different nature of the present plant and target BCs. It is clear that in
order to simplify (7.113) to the PDE (4.13) the right-hand side of (7.113) should be identically
zero.

Let us further exploit the decomposition

P (x, y) =

[
P 1
1 (x, y) P 1

2 (x, y)
P 2
1 (x, y) P 2

2 (x, y)

]
=

[
P1(x, y) P2(x, y)

]
(7.114)

of the n-th order kernel square matrix P (x, y) where the dimensions of the involved matrices
are as follows

P 1
1 (x, y) ∈ Rn1×n1 , P 1

2 (x, y) ∈ Rn1×n2 , P 2
1 (x, y) ∈ Rn2×n1 , P 2

2 (x, y) ∈ Rn2×n2 ,

(7.115)
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and P1(x, y) ∈ Rn×n1 , P2(x, y) ∈ Rn×n2 denote the first n1 columns and the last n2

columns of matrix P (x, y), respectively.
Due to the BC (7.111), only the first n1 entries Z̃1x(0, t) of vector Z̃x(0, t) are nonzero,

due to which the term [G(x) + P (x, 0)Θ] Z̃x(0, t) in the right-hand side of (7.113) will be
identically zero provided that the first n1 columns of matrix [G(x) + P (x, 0)Θ] are forced to
be identically zero as well. This yields the constraint relation

G1(x) = −P1(x, 0)Θ1. (7.116)

Similarly, due to the BC (7.110), only the last n2 entries Z̃2(0, t) of vector Z̃(0, t) are
nonzero, due to which the term [G(x)− Py(x, 0)Θ] Z̃(0, t) will be identically zero provided
that the last n2 columns of matrix [G(x)− Py(x, 0)Θ] are identically zero as well, that yields
the constraint relation

G2(x) = P2y(x, 0)Θ2. (7.117)

Additionally, one can derive from (4.18), evaluated at x = 0, the relation

Q̃x(0, t) = Z̃x(0, t)− P (0, 0)Z̃(0, t). (7.118)

Substituting the BCs (7.105)-(7.106) and (7.110)-(7.111) into (7.118), and noticing that the
equality Z̃(0, t) = Q̃(0, t) is straihforwardly obtained by specifying (4.12) with x = 0, one
derives the condition

[M − P 2
2 (0, 0)]Z̃2(0, t) = 0, (7.119)

resulting in the additional observer gain tuning rule

M = P 2
2 (0, 0). (7.120)

Thus, in order to nullify the right-hand side of (7.113), the BVP

ΘPxx(x, y)− Pyy(x, y)Θ = −P (x, y)C̄ − ΛP (x, y), (7.121)

Θ
d

dx
P (x, x) + ΘPx(x, x) + Py(x, x)Θ = Λ + C̄, (7.122)

P (x, x)Θ = ΘP (x, x), (7.123)
P (1, y) = 0, (7.124)

governing the kernel matrix P (x, y), is straightforwardly derived, and the observer gain tun-
ing rules are obtained in the form

G1(x) = −P1(x, 0)Θ1, (7.125)
G2(x) = P2y(x, 0)Θ2, (7.126)

M = P 2
2 (0, 0). (7.127)

Since the equi-diffusivity case is the only one for which a viable solution for the state-
fedback design has been found, the observer design is now going to be finalized, along with
the associated output feedback controller design, for the equi-diffusivity scenario only.
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7.2.1. Anti-collocated observer and output feedback designs in the equi-diffusivity
case. Specializing system (7.121)-(7.124) with the equi-diffusivity constraint (3.32) and ex-
ploiting the identity d

dxP (x, x) = Px(x, x) + Py(x, x) yield the same BVP (4.37)-(4.39)
that was obtained in the Dirichlet BC case2 whereas the tuning conditions (7.125)-(7.127) are
specified to

G1(x) = −θP1(x, 0), (7.128)
G2(x) = θP2y(x, 0), (7.129)

M = P 2
2 (0, 0) = − 1

2θ

(
Λ22 + C̄22

)
. (7.130)

where the BC (4.38) has been used to derive the right-hand side of relation (7.130),
By similar computations as those made in Section 4.1, relation (4.31) is manipulated to

(4.38), thus yielding the same BVP (4.37)-(4.39) that was shown in Theorem 4.1 to admit
the explicit solution (4.40). Thus, the observer gains become available in explicit form in the
present “heterogenous BCs” case as they were in the previously studied Dirichlet BC case.

The following result summarizes the proposed anti-collocated observer design.

THEOREM 7.4. Let matrix C̄ be selected such that S[C̄] > 0 and σm(S[C̄]) is arbitrarily
large. Then, the observer (7.92)-(7.97), (7.125)-(7.127), where P (x, y) is the explicit solution
(4.40) to the BVP (4.37)-(4.39) reconstructs the state of system (7.1)-(7.5) with the associated
error decay rate σm(S[C̄], obeying the estimate

∥Q̃(·, t)∥H2,n ≤ b∥Q̃(·, 0)∥H2,ne−σm(S[C̄])t, (7.131)

and a positive constant a b, which is independent of Q̃(ξ, 0).
Proof. The proof is based on the developments made in the present subsection and is

formally identical to that of Theorem (4.2).

The output feedback controller is designed, combining the state feedback controller
(7.72), analyzed in Theorem 7.3, and the anti-collocated observer (7.92)-(7.97), (7.125)-
(7.127), analyzed in Theorem 7.4. The over-all analysis is presented next.

THEOREM 7.5. Consider system (7.1)-(7.9) driven by the controller

U(t) =

∫ 1

0

K(1, y)Q̂(y, t)dy (7.132)

and fed by observer (7.92)-(7.97), (7.125)-(7.127). Let the matrices C and C̄ be selected such
that S[C] > 0 and S[C̄] > 0, let K(1, y) be obtained from the solution K(x,y) to the BVP
(7.33), (7.35)-(7.36), (7.42), and let P (x, y) be the explicit solution (4.40) to the BVP (4.37)-
(4.39). Then, the closed-loop system (7.1)-(7.9), (7.92)-(7.97), (7.125)-(7.127), (7.132) is
exponentially stable in the space H2,n ×H2,n.

Proof. Lengthy but straightforward manipulations show that the backstepping transfor-
mation

Ẑ(x, t) = Q̂(x, t)−
∫ x

0

K(x, y)Q̂(y, t)dy (7.133)

2The same BVP was also obtained in [5], where the anti-collocated observer design for the Neumann BC case
was addressed in the equi-diffusivity scenario.
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maps the observer dynamics (7.92)-(7.96) into the system

Ẑt(x, t) = ΘẐxx(x, t)− C̄Ẑ(x, t) + F1(x)
[
Z̃T
1x(0, t)Z̃

T
2 (0, t)

]T
, (7.134)

Ẑ1(0, t) = 0, (7.135)
Ẑ2x(0, t) = 0, (7.136)
Ẑ(1, t) = 0, (7.137)

with

F1(x) =

[
G(x)−

∫ x

0

K(x, y)G(y)dy

]
. (7.138)

The Z̃(x, t)-system, governed by (7.109)-(7.112), is exponentially stable in the space H2,n

as well as the homogeneous part of the Ẑ(x, t)-system (7.134)-(7.137) is if considered sep-

arately with the external term
[
Z̃T
1x(0, t)Z̃

T
2 (0, t)

]T
deliberately set to zero. Following [32,

Sect. 5.1], one notices that the interconnection of the two systems in the (Ẑ, Z̃) coordinates
is in cascade form, and it was shown in Theorem 7.1 that all entries of the forcing term[
Z̃T
1x(0, t)Z̃

T
2 (0, t)

]T
escape “quasi-exponentially” to zero according to (3.8) (see Remark

1). The rest of the proof follows the same arguments used in the proof of Theorem 6.1.
Theorem 7.5 is thus proved.

8. Simulation results. To validate the performance of the proposed state and output-
feedback designs for coupled reaction-diffusion processes, hereinafter n = 2 coupled pro-
cesses with heterogenous BCs at the uncontrolled side are considered for simulation purposes.
The considered plant is governed by the BVP (7.1)-(7.9) specialized with n1 = n2 = 1 and
with parameters

Θ =

[
1 0
0 1

]
, Λ =

[
20 5
5 20

]
(8.1)

The ICs are set to q1(x, 0) = sin(π · x), q2(x, 0) = cos(π/2 · x) so as they meet
the underlying BCs at x = 0. For solving the underlying BVP, a standard finite-difference
approximation method is used where the spatial domain x ∈ [0, 1] is discretized into N = 20
uniformly spaced solution nodes xi = ih, h = 1/(N + 1), i = 1, 2, ..., N . The resulting
20-th order discretized system is subsequently solved in the MatLab/Simulink environment
by fixed-step Runge-Kutta ODE4 method with sampling period Ts = 10−6.

The plant is intentionally chosen to be open-loop unstable, and Figure 8.1 shows the
diverging spatiotemporal evolution of the states q1(x, t), and q2(x, t) in the open-loop test.

We now implement the state-fedback boundary control input (7.72), with the design ma-
trix C = I2×2 that meets the conditions of Theorem 7.3. It is worth to remark that the Kernel
BVP (7.33), (7.35)-(7.36), (7.42) does not posses an explicit solution. Thus, the gain matrix
K(1, y) is evaluated numerically. The profiles of the corresponding kernel gain functions are
displayed in the Figure 8.2.

Figure 8.3 shows the closed-loop spatiotemporal evolution of the systems states q1(x, t)
(left plots) and q2(x, t) (right plots) under the state-feedback boundary controller (7.72). Par-
ticularly, the top plots show the exponentially stable long-term evolution, whereas the lower
plots focus on the initial transient, showing the typical initial peaking of the state, especially
felt near the controlled boundary x = 1.
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FIG. 8.1. Spatiotemporal evolution of q1(x, t) (left plot), and q2(x, t) (right plot) in the open-loop test.
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FIG. 8.2. Spatial distributions of the entries of the Kernel matrix K(1, y).

To highlight the effect of the vanishing extra term, mentioned in the Remark 3, added
to the control law to solve the compatibility issue, a test has been made by implementing
the state feedback law (3.42) with γ = 50. In particular, in Figure 8.4 the spatiotemporal
profiles of q1(x, t) and q2(x, t) with the controller (3.42) are displayed. These plots, and their
comparison with the bottom plots of Figure 8.3, clearly show that the vanishing extra term in
the control law successfully solves the compatibility issue and provides peaking attenuation
as well.

Figure 8.5 shows the exponentially-decaying temporal profile of the Sobolev norm ∥Q(·, t)∥H2,2 ,
which confirms the theoretical findings. Finally, in Figure 8.6 the time evolutions of the
boundary control laws u1(t) and u2(t) without, and with, the vanishing extra term are dis-
played. As it can be seen, thanks to the vanishing extra term, the initial peaking of the control
law, typical of backstepping-based designs, is attenuated significantly.

The response of the closed-loop system with the output-feedback stabilizer (7.132),
combined with the anti-collocated observer (7.92)-(7.97) with the design parameter C̄ =
100 · I2×2, is now discussed. Simulations have been performed with the observer’s states
initialized as follows: q̂1(x, 0) = q̂2(x, 0) = 0, that match the underlying BCs at x = 0.
Figure 8.7 displays the long-term spatiotemporal evolution of the state variables q1(x, t), and
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FIG. 8.3. Spatiotemporal evolutions of q1(x, t) (left plots) and q2(x, t) (right plots) in the closed-loop test
with the state-feedback controller (7.72). Top plots: long-term evolution. Bottom plots: zoom on the initial transient.

FIG. 8.4. Spatiotemporal evolution of q1(x, t) (left plot) and q1(x, t) (right plot) with the state-feedback
controller (7.72).

q2(x, t), which exhibit exponentially vanishing dynamics.
Figure 8.8 shows the temporal evolutions of the state and observation error norms ∥Q(·, t)∥H2,2

(right plot) and ∥Q̃(·, t)∥H2,2 (left plot). Both tend to zero exponentially, thus confirming the
correct functioning of the proposed observer-based output-feedback scheme and thereby sup-
porting the theoretical analysis. In addition, it can be noticed that the observation loop has a
faster convergence than the control loop, according to the adopted choice of design parame-
ters C and C̄.

9. Conclusions. The observer-based output feedback boundary stabilization of some
classes of systems of n coupled parabolic linear PDEs has been tackled by exploiting the
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FIG. 8.5. ||Q(·, t)||H2,2 norm in the closed-loop test with the state-feedback controller.
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FIG. 8.6. Boundary controls u1(t) (left plot), u2(t) (right plot) in the closed-loop test with the state-feedback
controller.

backstepping approach. Controllers and observers, the majority of which given in explicit
form, have been derived to enforce an arbitrarily fast exponential decay of the state in the
space H2,n.

Involving spatially and/or temporally dependent parameters into the proposed synthe-
sis and its extension to broader classes of PDEs (e.g., coupled reaction-diffusion-advection
PDEs) are of practical interest and among actual challenges, calling for further investigation.

The stabilization of coupled PDEs with heterogenous BCs and distinct diffusivity pa-
rameters is another open problem to be addressed by attempting to identify a different ex-
ponentially stable target system BVP yielding a solvable kernel PDE for the state-feedback
design.

Additionally, integration with other design methodologies, such as the sliding mode ap-
proach, is due to enhance the underlying robustness features. Particularly, recent investiga-
tions [26]-[30] are hoped to complement the present approach in order to control uncertain
DPS’ governed by perturbed coupled PDEs of parabolic type.
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FIG. 8.7. Spatiotemporal evolution of the state variables in the closed-loop test with the anti-collocated output-
feedback stabilizer: q1(x, t) (left plot), q2(x, t) (right plot).
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anti-collocated output-feedback stabilizer.

[3] A. BACCOLI, Y. ORLOV, A. PISANO, ”On the boundary control of coupled reaction-diffusion equations
having the same diffusivity parameters”. Proc. 2014 CDC, pp. 5222-5228, Los Angeles (US).

[4] A. BACCOLI, Y. ORLOV, A. PISANO, “Boundary control of coupled reaction-diffusion processes with con-
stant parameters”. Automatica, 54(2015), 4, 80-90

[5] A. BACCOLI, A. PISANO, “Anticollocated Backstepping Observer Design for a Class of Coupled Reaction-
Diffusion PDEs”. Journal of Control Science and Engineering, 164274(2015),

[6] A.G. BUTKOVSKIY “Green’s Functions and Transfer Functions Handbook” Ellis Horwood Lmt., Chichester,
1982.

[7] R.F. CURTAIN, AND H. ZWART. An introduction to infinite-dimensional linear systems theory. Springer,
1995.

[8] F. DI MEGLIO, R. VAZQUEZ, M. KRSTIC AND N. PETIT, ”Backstepping stabilization of an underactuated
3 × 3 linear hyperbolic system of fluid flow equations”. Proc. 2012 ACC, Montreal, Canada.

[9] F. DI MEGLIO, R. VAZQUEZ AND M. KRSTIC, “Stabilization of a System of Coupled First-Order Hyperbolic
Linear PDEs With a Single Boundary Input” IEEE Trans. Aut. Contr., 58(12)(2013), 3097-3111.

[10] P. GRINDROD, ”Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations” Claren-
don Press, 1991.

[11] B.-Z. GUO, F.-F. JIN “Sliding mode control and active disturbance rejection control to the stabilization of
one-dimensional Schrdinger equation subject to boundary control matched disturbance” Int. J. Rob.
Nonlin. Contr., 24(16)(2014), 2194-2212

[12] Z. HIDAYAT, R. BABUSKA, B. DE SCHUTTER, AND A. NUNNEZ, “Observers for linear distributed-
parameter systems: A survey” Proc. 2011 IEEE International Symposium on Robotic and Sensors Envi-
ronments (ROSE 2011), Montreal, Canada, pp. 166.171, 2011.

[13] E.E. HOLMES ET AL. ”Partial differential equations in ecology: spatial interactions and population dynam-
ics.” Ecology, 75(1)(1994), 17-29

[14] L. JADACHOWSKI, T. MEURER, AND A. KUGI, “State estimation for parabolic PDEs with varying pa-
rameters on 3-dimensional spatial domains”. Proc. 18th IFAC World Congress. Milano, Italy, Au-



OUTPUT-FEEDBACK STABILIZATION OF COUPLED REACTION-DIFFUSION PROCESSES 43

gust/September 2011, pp. 13338-13343, 2011.
[15] L. JADACHOWSKI, T. MEURER, AND A. KUGI, “Backstepping observers for linear PDEs on higher-

dimensional spatial domains” Automatica, 51(2015), 85-97.
[16] M.A. KRASNOSELSKII, P.P. ZABREYKO, E.I. PUSTYLNIK, AND P.E. SOBOLEVSKI, “Integral operators in

spaces of summable functions” Noordhoff, Leyden, 1976
[17] M. KRSTIC AND A. SMYSHLYAEV, “Boundary Control of PDEs: A Course on Backstepping Designs” SIAM

Advances in Design and Control Series, 2008, ISBN 978-0-89871-650-4.
[18] M. KRSTIC, “Adaptive control of an anti-stable wave PDE” Dynamics of Continuous, Discrete and Impulsive

Systems Series A: Mathematical Analysis., 17(2010), 853-882.
[19] M. KRSTIC, B.-Z. GUO, AND A. SMYSHLYAEV, “Boundary controllers and observers for the linearized

Schrodinger equation” SIAM Journal of Control and Optimization, 49(2011), 1479-1497.
[20] T. LASIECKA AND R. TRIGGIANI. Control theory for partial differential equations: continuous and approxi-

mation theories, I abstract parabolic systems. Cambridge University Press, 2000.
[21] W. LIU, “Boundary Feedback Stabilization Of An Unstable Heat Equation” SIAM J. Contr. Opt., 42(2003),

3, 1033-1043.
[22] T. MEURER, AND A. KUGI, “Tracking control for boundary controlled parabolic PDEs with varying param-

eters: combining backstepping with flatness.” Automatica, 45(2009), 5, 1182-1194.
[23] T. MEURER, “Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs.” Communications

and Control Engineering Series, Springer-Verlag, 2012.
[24] S. MOURA, J. BENDTSEN, AND V. RUIZ, “Observer Design for Boundary Coupled PDEs: Application to

Thermostatically Controlled Loads in Smart Grids”, Proc. 52nd Conference on Decision and Control
(CDC 2013), pp. 6286 - 6291, Florence, 2013.

[25] Y. ORLOV, D. DOCHAIN, “Discontinuous feedback stabilization of minimum-phase semilinear infinite-
dimensional systems with application to chemical tubular reactor”. IEEE Transactions on Automatic
Control, 47(2002), 8, 1293-1304.

[26] Y. ORLOV, A. PISANO AND E. USAI, ”Continuous state feedback tracking of an uncertain heat diffusion
process”. Systems and Control Letters, 59(2010), 754-759.

[27] Y. ORLOV, A. PISANO AND E. USAI, ”Tracking Control of the Uncertain Heat and Wave Equation via
Power-Fractional and Sliding-Mode Techniques” SIAM J. Contr. Opt., 49(2011), 363-382.

[28] Y. ORLOV, A. PISANO AND E. USAI, ”Exponential stabilization of the uncertain wave equation via dis-
tributed dynamic input extension”. IEEE Trans. Aut. Contr., 56(2011), 212-216.

[29] Y. ORLOV, A. PISANO AND E. USAI, ”Boundary control and observer design for an uncertain wave process
by second-order sliding-mode technique”. Proc. 2013 CDC, Florence, Italy.

[30] A. PISANO, Y. ORLOV, “Boundary second-order sliding-mode control of an uncertain heat process with
unbounded matched perturbation”, Automatica, 48(2012), 1768-1775.

[31] A. SMYSHLYAEV, M. KRSTIC, “Closed-Form Boundary State Feedbacks for a Class of 1-D Partial Integro-
Differential Equations” IEEE Trans. Aut. Contr., 49(12)(2004), 2185-2202.

[32] A. SMYSHLYAEV AND M. KRSTIC, “Backstepping observers for a class of parabolic PDEs”, Syst. Contr.
Lett., 54(2005), 613-625.

[33] A. SMYSHLYAEV, M. KRSTIC, “Boundary control of an anti-stable wave equation with anti-damping on
uncontrolled boundary”, Syst. Contr. Lett., 58(2009), 617-623.

[34] A. SMYSHLYAEV AND M. KRSTIC, “Adaptive Control of Parabolic PDEs” Princeton University Press, 2010,
ISBN 978-0691142869.

[35] D. TSUBAKINO, M. KRSTIC, AND Y. YAMASHITA, ”Boundary Control of a Cascade of Two Parabolic PDEs
with Different Diffusion Coefficients”. Proc. 2013 CDC, Florence, Italy.

[36] D. TSUBAKINO, AND S. HARA, “Backstepping observer design for parabolic PDEs with measurement of
weighted spatial averages, Automatica, Volume 53, March 2015, Pages 179187

[37] A. VANDE WOUWER, AND M. ZEITZ, “State estimation in distributed parameter systems”. In H. Unbehauen
(Ed.), Encyclopedia of life support systems (EOLSS). Oxford, UK: EOLSS Publishers, (Chapter) Control
systems, robotics and automation, Article No. 6.43.19.3, 2001.

[38] R. VAZQUEZ, Boundary control laws and observer design for convective, turbulent and magnetohydrody-
namic flows, Ph.D. thesis, Univ. California, San Diego, CA, USA, 2006.

[39] R. VAZQUEZ, E. SCHUSTER, AND M. KRSTIC, ”Magnetohydrodynamic state estimation with boundary
sensors” Automatica, 44(2008), 2517–2527.

[40] R. VAZQUEZ, E. SCHUSTER, AND M. KRSTIC, ”A Closed-Form Full-State Feedback Controller for Sta-
bilization of 3D Magnetohydrodynamic Channel Flow” ASME J. Dyn. Syst. Meas. Trans. Contr.,
131(2009), .

[41] R. VAZQUEZ, AND M. KRSTIC, ”Boundary Observer for Output-Feedback Stabilization of Thermal-Fluid
Convection Loop” IEEE Trans. Contr. Syst. Tech., 18(4)(2010), 789-797.

[42] R. VAZQUEZ, M. KRSTIC AND J.-M. CORON, ”Backstepping Boundary Stabilization and State Estimation
of a 2 × 2 Linear Hyperbolic System”. Proc. 2011 joint CDC-ECC, Orlando, Florida.

[43] J.-M. CORON, R. VAZQUEZ, M. KRSTIC, AND G. BASTIN, ”Local exponential H2 stabilization of a 2 × 2



44 Y. ORLOV, A. PISANO, A. PILLONI AND E. USAI

quasilinear hyperbolic system using backstepping”, SIAM J. Contr. Opt., 51(2013), 2005–2035.


