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Abstract
The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative 
tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to 
identify cognitive impairment based on the locomotion patterns of the elderly. In this work, we investigate the use of sensor 
data and deep learning to recognize those patterns in instrumented smart-homes. In order to get rid of the noise introduced 
by indoor constraints and activity execution, we introduce novel visual feature extraction methods for locomotion data. Our 
solution relies on locomotion trace segmentation, image-based extraction of salient features from locomotion segments, and 
vision-based deep learning. We carried out extensive experiments with a large dataset acquired in a smart-home test bed from 
153 seniors, including people with cognitive diseases. Results show that our system can accurately recognize the cognitive 
status of the senior, reaching a macro-F

1
 score of 0.873 for the three categories that we target: cognitive health, mild cognitive 

impairment, and dementia. Moreover, an experimental comparison shows that our system outperforms state-of-the-art methods.
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Introduction

Nowadays, different societal factors are determining a 
significant reduction in fertility and an increase in life 
expectancy. As a consequence, we are observing a rapid 
and constant growth of the average population age. This 
phenomenon determines increasing pressure on healthcare 
systems. Indeed, more and more seniors affected by 
noncommunicable diseases (NCDs) need to be hospitalized 
for long periods, and this trend is projected to continue for the 
foreseeable future [1]. Unfortunately, the recent COVID-19 
pandemic has dramatically exposed the fragility of national 
healthcare systems when dealing with increasing numbers 

of patients [2], and the need for innovative technological 
solutions to cope with global health crises has emerged. 
Among the NCDs that affect the elderly population, one of 
the most prevalent is dementia. For instance, the prevalence 
of dementia is estimated to 14% in the U.S. population aged 
70 or older, with a total cost estimated from $157 billion to 
$215 billion, and this cost is projected to triple by 2050 [3]. 
Of course, in addition to monetary costs, dementia and other 
cognitive issues disrupt the quality of life of patients and of 
those caring for them. Hence, in order to prolong independent 
and healthy aging, it is urgent to devise novel tools to 
continuously monitor the mental wellness of seniors and to 
early detect abnormal cognitive decline in an unobtrusive and 
privacy-conscious manner.

In this paper, we contribute to this grand challenge by 
proposing TraMiner, a novel system based on Trajectory Mining 
for continuous cognitive assessment in smart-homes. Our 
system relies on clinical indicators that characterize cognitive 
decline in terms of abnormal locomotion patterns of the elderly. 
Different solutions have been recently proposed to recognize 
those patterns outdoors, including  [4–6]. However, most 
seniors, and especially those experiencing cognitive issues, 
normally spend a large part of their time at home. Hence, indoor 
locomotion traces provide invaluable information for assessing 

 * Daniele Riboni 
 riboni@unica.it

 Samaneh Zolfaghari 
 samaneh.zolfaghari@unica.it

 Elham Khodabandehloo 
 ekhodabandehloo@mail.kntu.ac.ir

1 Department of Mathematics and Computer Science, 
University of Cagliari, Cagliari, Italy

2 Department of Geo-spatial Information Systems, K. N. Toosi 
University of Technology, Tehran, Iran

http://orcid.org/0000-0002-0695-2040
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-020-09816-3&domain=pdf


 Cognitive Computation

1 3

their cognitive health status. Unfortunately, recognizing those 
patterns at home is challenging, since the inhabitant movements 
are constrained by the home environment, and they are affected 
by the execution of daily living activities. The problem of 
indoor abnormal pattern detection for cognitive assessment has 
been investigated in a few previous works. Up to date, most 
of those works rely on manual feature engineering to define 
statistical measures characterizing locomotion traces [7–9]. 
However, locomotion traces encode involved spatio-temporal 
information, which can be only partially captured through 
a fixed set of numerical features. For this reason, we take a 
different approach, representing locomotion traces through 
images and relying on Deep Learning (DL) for the classification 
of those images according to the cognitive health status of 
the inhabitant. Our method relies on specific techniques for 
locomotion data cleaning and segmentation. Each locomotion 
segment is transformed into two images that capture different 
aspects related to the clinical indicators of locomotion 
anomalies. Each couple of images is fed to a DL classifier in 
charge of predicting the anomaly level of the corresponding 
locomotion segment. Since it would be unrealistic to provide 
a hypothesis of diagnosis based on the observation of a 
single trajectory, our system includes a long-term analysis 
module. The latter is in charge of processing the history of DL 
predictions for computing a hypothesis of diagnosis, which is 
provided to clinicians for supporting the neuropsychological 
assessment.

We have developed a prototype of TraMiner system, and 
carried out extensive experiments with a real-world dataset 
gathered in a smart-home test bed with 153 seniors, including 
cognitively healthy subjects, people with Mild Cognitive 
Impairment (MCI) [10], and people with dementia (PwD). 
Results proved the accuracy of TraMiner in predicting the 
cognitive health status of the inhabitants. Indeed, based on 
the observation of the locomotion traces acquired during one 
day per patient, our system achieved a macro-F

1
 score of 

0.873. Moreover, an experimental comparison showed the 
superiority of our approach with respect to state-of-the-art 
techniques. In order to enable the full reproducibility of our 
experiments, we have released the code of all our system 
components, and the used dataset is available on the Web.

A preliminary investigation of this work was presented 
in  [11]. In this paper, we extend our preliminary 
investigation with: (i) support for recognition of MCI, (ii) a 
novel locomotion trace segmentation algorithm, (iii) a new 
visual feature extraction technique, (iv) a novel two-input 
DL architecture, (v) an additional algorithm for long-term 
assessment of the cognitive health status, (vi) experiments 
with a larger dataset, (vii) new experiments to evaluate 
all the components of our system, (viii) an experimental 
comparison with state-of-the-art techniques, and (ix) a 
dashboard accessible on the Web to inspect the visual 
features and the system predictions.

The rest of the paper is structured as follows. Section 2 
introduces preliminary notions and discusses related work. 
Section 3 illustrates our overall system. Section 4 describes 
the techniques for trajectory segmentation and visual feature 
extraction. Section 5 explains our methods for DL-based 
trajectory classification and long-term analysis. Section 6 
reports experimental results. Finally, Section 7 concludes 
the paper and outlines future research directions.

Preliminaries and Related Work

In this section, at first, we illustrate different clinical indi-
cators to recognize cognitive decline based on locomotion 
data, which are the theoretical basis of our work. Then, we 
review existing techniques based on Internet of Things (IoT) 
technologies to automatically detect abnormal locomotion 
patterns that may indicate cognitive decline.

Clinical Indicators of Abnormal Locomotion Patterns

Several studies have attempted to characterize the typical 
locomotion patterns of people experiencing cognitive 
decline. Some models relied on the notion of wandering, 
defined by Algase et al. [12] as a ”syndrome of dementia-
related locomotion behavior having a frequent, repetitive, 
temporally disordered, and/or spatially disoriented nature 
that is manifested in lapping, random, and/or pacing 
patterns”. Other researchers characterized cognitive 
decline based on the observation of subtle gait anomalies. 
In the following, we present the models adopted in this 
work.

Martino‑Saltzman Model

One of the most well-known and widely accepted models 
for categorizing the patterns of wandering behaviors in 
dementia was proposed by Martino-Saltzman [13]. This 
model categorizes the trajectories into one of four distinctive 
patterns of movement: direct, random, lapping, or pacing, 
which are shown in Fig. 1:

– Direct: a simple or uncomplicated trajectory from 
one location to another one.

– Pacing: at least three consecutive back-and-forth 
movements between two locations along very similar 
paths.

– Lapping: at least two circular movements between 
at least three distinct locations.

– Random: a continuous and aimless movement 
across numerous locations with multiple directional 
changes, that generally passes through more than 
four locations.



Cognitive Computation 

1 3

Based on the Martino-Saltzman model, random, pacing, 
and lapping patterns are indicators of cognitive issues. 
As explained in Introduction, several random, pacing, and 
lapping patterns can be observed in the home, which are 
actually due to the normal execution of daily living activities 
by cognitively healthy inhabitants. Hence, in this work, we 
do not aim at explicitly recognizing those patterns, but we 
rely on a supervised learning approach for recognizing 
abnormal locomotion patterns.

Low‑Level Motion Indicators

In addition to clinical indicators based on wandering 
behavior, different low-level indexes were introduced 
in other works as indicative of cognitive decline. Those 
indicators have been used to automatically assess the 
cognitive status in IoT systems [14]:

– Jerk [15] is the rate at which a person’s acceleration 
changes with respect to time.

– Sharp angles [6] are defined as vector angles in a trajec-
tory being equal to or more than 90 degrees.

– Straightness [16] is defined as the ratio of the distance 
between two consecutive trajectory segments and the dis-
tance between the start and end point of these segments.

– Turning angle [9] is defined as the sum of the absolute 
angles between any two subsequent lines in a trajectory.

– Path efficiency [9] is defined as the ratio between the 
distance from the start to the end of a trajectory and the 
trajectory length.

IoT Techniques for Detecting Locomotion Anomalies

In the last few years, different methods have been proposed 
to recognize cognitive issues based on artificial intelligence 
(AI)  [17], and several AI-based solutions have been 
proposed to support active and healthy aging [18–20].

Riboni et al. relied on activity recognition algorithms 
to detect overt errors in the execution of activities of 

daily living, which indicate cognitive decline [21]. Other 
works, including those of Seelye et al. [22] and Dawadi 
et al. [23], rely on sensor activations and activity patterns 
to distinguish PwD subjects from cognitively healthy ones. 
However, activity recognition systems determine privacy 
issue, especially when deployed in homes. Moreover, those 
systems require a dense sensing infrastructure, while in this 
work we rely solely on an indoor positioning system.

Indeed, a promising direction consists in tracking the 
movements of the elderly through unobtrusive positioning 
technologies, and analyzing location traces according to 
clinical indicators as the ones mentioned in Section 2.1. 
Methods based on low-level motion indicators usually rely 
on body-worn sensors. Mc Ardle et al. used accelerometers 
worn by the senior to detect symptoms of cognitive 
impairment  [24]. In that work, the authors extracted 
spatiotemporal features including gait variability, rhythm, 
asymmetry, and postural aspects of gait. An accelerometer-
based method to detect challenging behaviors typical of 
PwD was proposed by Goerss et al. [25]. That method relies 
on the extraction of actimetric movement features from raw 
sensor data. Experiments carried out with 17 seniors in a 
retirement home showed that the long-term observation 
of those features provided relevant information to identify 
the challenging patterns of PwD. The correlation between 
low-level motion behaviors and dementia was assessed in 
different studies, including the one carried out by Kirste et al. 
relying on ankle-mounted three-axis accelerometers [26]. 
However, body-worn systems determine usability issues, 
especially for the senior population [27]. Hence, in our 
work we disregard body-worn sensors, and we rely on fixed 
positioning infrastructures to detect indoor location traces.

Most existing works aimed at recognizing cognitive 
impairment based on locomotion patterns rely on outdoor 
movements. Lin et al. [6] analyzed GPS trajectories outdoors 
for detecting wandering according to the Martino–Saltzman 
model. A smart GPS tracker was devised by Ng and Kong 
for supporting secure and independent outdoor walking 
of the elderly  [5]. That system is based on wandering 

Fig. 1  Travel patterns of people 
according to the Martino-
Saltzman model of wandering 
behavior [13]
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detection and activity recognition and can adapt to personal 
locomotion wandering patterns. Schaat et al. investigated the 
use of GPS and accelerometer data for real time detection of 
disorientation in PwD [4].

Since many elderly people, and especially those who are 
experiencing cognitive decline, spend large part of their time 
at home, indoor locomotion data can be a rich source of 
information to assess their cognitive status. Unfortunately, 
indoor wandering recognition is particularly challenging, 
since movements are constrained by the ambient shape, 
and are impacted by the execution of activities of daily 
living. A few previous works have addressed this issue. 
Vuong et al. applied supervised machine learning methods 
for automatically classifying indoor trajectories according 
to the Martino–Saltzman model [28]. Lin et al. proposed 
a method to identify repetitive locomotion episodes in the 
home according to well-known models of wandering [29]. 
Khodabandehloo and Riboni proposed a collaborative 
mining approach to assess the cognitive status of smart-
home inhabitants based on statistical features extracted 
from their trajectories [7]. Kearns et al. proposed the use of 
accurate localization technologies deployed in a common 
indoor living space of a retirement home, and measured 
the tortuosity of trajectories to recognize wandering 
episodes [8]. In a subsequent study on the same setup, the 
authors found out that other features, including speed, path 
efficiency, and angle-turn, were predictive of dementia [9]. 
Other studies showed that the relation between in-home 
walking velocity and activity patterns was significantly 
correlated to the cognitive status of the inhabitant [30].

However, feature engineering from trajectory data is 
not a trivial task. Indeed, the abundance of spatiotemporal 
information encoded by movement traces, and the presence 
of noise introduced by positioning technologies, make it 
challenging to summarize trajectory data through numerical 
features. In order to overcome the feature engineering 
challenge, a recent research direction consists in representing 
complex information through images, and using Deep Neural 
Networks (DNN) for images classification to solve the AI 
task. This approach is used in different domains, including 
financial forecasting [31], activity recognition [32], and 
predictive maintenance [33], just to name a few. In this 
paper, we pursue this approach. The rationale of our 
choice is that trajectory images may effectively capture 
discriminative features without the need of sophisticated 
feature engineering efforts. This approach was applied to 
trajectory data in few previous studies. In a recent work, 
Wang et al.  [34] proposed an action recognition method 
based on the representation of 3D skeleton sequences as 
2D images. Sequences of movements are represented using 
different color distributions. They used DL, in particular, 
convolutional neural network (CNN), to detect human 
actions. Kieu et al. used trajectories in the form of 3D images 

containing geographical features, together with driving 
behavior features, to predict the identity of drivers [35]. 
They applied unsupervised auto encoder neural networks 
to avoid over-fitting, and supervised neural networks to 
identify drivers. Endo et al. used DNN as an automatic 
feature extraction method, along with handcrafted features, 
for estimating users’ transportation modes from images 
depicting their movement trajectories [36]. Transportation 
modes were then recognized using supervised learning 
algorithms.

In this paper, we investigate the application of image-
based trajectory classification to the domain of cognitive 
assessment. To the best of our knowledge, the only previous 
work that adopted a similar approach to the same domain 
was proposed by Gochoo et al. in [37]. In that work, the 
authors represent trajectories in a two-dimensional grid, 
in which one dimension represents time, while the other 
dimension represents mono-dimensional space. They map 
each three-dimensional spatiotemporal trajectory point 
into the two-dimensional grid. The corresponding binary 
image is then classified using deep convolutional neural 
networks to recognize different patterns of wandering 
behavior. However, as a consequence of the transformation 
from two-dimensional to one-dimensional space, the spatial 
information is partially disrupted, since metric operations 
and topological relationships are not preserved. Indeed, 
points that are close in the two-dimensional geographic 
space are not necessarily close in the one-dimensional space 
of the grid.

In our work, we pursue a different direction, retaining 
the spatial information in trajectories images, and enriching 
them with additional visual features encoding low-level 
motion indicators of cognitive decline. To the best of our 
knowledge, apart from the preliminary investigation that we 
carried out in [11], this is the first work that investigates this 
method for cognitive assessment.

TraMiner System Overview

In this paper, we assume a smart-home infrastructure capable 
of continuously monitoring the inhabitant’s position at a 
fine-grained level. For the sake of this work, we consider the 
case of a person living alone in the home. This is a common 
situation for elderly people. Moreover, seniors living alone 
may have particular benefits from remote monitoring and 
assessment of cognitive functions. In order to support 
seniors living with other people or pets, our system could 
be easily extended by adopting an identity-aware positioning 
system, or by applying a data association algorithm in 
charge of associating each location reading to the individual 
that triggered the corresponding sensor [38]. Our system 
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may extract position information not only from localization 
infrastructures, but also based on the inhabitant’s interaction 
with sensorized objects and appliances with a fixed position 
in the home.

Figure 2 illustrates the TraMiner architecture. Since the 
focus of this paper in on processing locomotion data, the 
core methods of our contribution are largely independent 
from the available sensor infrastructure. We assume 
that a smart-home sensor infrastructure is in charge of 
continuously gathering data about the inhabitant’s position, 
e.g., through passive infrared (PIR) sensors. The smart-
home system communicates raw sensor data to a stream 
processing software platform (e.g., Apache Kafka) for 
integration and temporal synchronization.

Each time a sensor fires, the platform sends a raw sensor 
event rse = ⟨t, s_id, v⟩ to the TraMiner system, where t is the 
timestamp of firing, s_id is the sensor’s unique identifier, and 
v is the generated value. For instance, the raw sensor event:

states that the sensor identified as ’sens5371’ (for instance, 
a sensor attached to the fridge door) fired a value ‘open’ 
at timestamp ‘2020-08-30 16:46:18.323’. Since we assume 
that the home is inhabited by a single individual, we are not 
interested in associating the sensor record to the person that 
triggered it.

The integrated positioning system is in charge of deriving 
spatiotemporal information from raw sensor events. To this 
aim, it relies on a sensor position table storing the relative 
position of each sensor in the home. A record of sensor 
position in that table is a triple: ⟨s_id, x, y⟩ , where (x, y) are 
the relative coordinates of the sensor identified by ’ s_id ’ in 
the home. For the sake of simplicity, we consider only static 
sensors in the home; hence, we assume that the position of 
sensors does not change with time. Each time the integrated 
positioning system receives a raw sensor event, it joins the 
corresponding record with the sensor position table to obtain 
the (x, y) coordinates, producing a user’s position record 
r = ⟨p, t⟩ , where p = (x, y) are the relative coordinates of the 
sensor that fired at time t.

The trajectory segmentation module is in charge of 
reducing noise in the data and partitioning the temporal 
stream of position records into trajectories. A trajectory 
is a temporally contiguous sequence of positions which 
corresponds to a locomotion episode. Each trajectory is 
passed to the modules for traj and speed feature extraction. 
Those modules represent the trajectory as an image each. 
The two images represent the walked trajectory in a two-
dimensional space and highlight different visual features, 
such as speed and intersection points.

The trajectory images classification module is in 
charge of classifying each trajectory as either walked by 

rse = ⟨sens5371, 2020-08-30 16:46:18.323, open⟩,

a cognitively healthy person, MCI individual, or PwD. To 
this aim, it uses a DL classifier processing the two images 
corresponding to each trajectory. The classifier is trained 
on the cloud using a set of anonymous trajectories labeled 
according to the cognitive health status of the individual. 
According to the history of predictions, the long-term 
trajectory analysis module computes a hypothesis of 
diagnosis for the individual. The hypothesis may be 
cognitively healthy, MCI, or PwD. Finally, the hypothesis of 
diagnosis is communicated to the remote healthcare center, 
to support the clinicians in the evaluation of the patient.

Trajectory Segmentation and Visual Feature 
Extraction

This section reports the details of modules in charge of 
trajectory segmentation and visual feature extraction.

Position Data Cleaning and Trajectory Segmentation

As explained before, the integrated positioning system 
continuously provides TraMiner with user’s position 
records. These records instantiate the position history 
H = ⟨r

1
, r

2
,… , rn⟩ , which is the temporal sequence of 

user’s positions records. Inevitably, the position history 
contains inaccuracies because, in real-word conditions, 
sensor data are affected by a relevant level of noise. In this 
regard, noise reduction is an inevitable step in preparing the 
data. For addressing this problem, we manually analysed 
the spatiotemporal information of the dataset used in our 
experiments by plotting movement traces over the home 
layout. We observed several unfeasible deviations from the 
expected trajectories, which were due to wrong position 
detection by the positioning system. Hence, the trajectory 
segmentation module performs the following preliminary 
steps for noise reduction:

– We set a threshold Tv for the maximum possible velocity 
v of a person moving in the home. If the speed between 
any two consecutive position records ⟨ri, ri+1⟩ ∈ H 
is higher than Tv , the record ri+1 is considered a noisy 
reading; hence, it is deleted from H. For the sake of this 
work, we set Tv to 15m∕s.

– By considering the arrangement of sensors in the test-bed 
of our experiments, the maximum distance between any 
two adjacent sensors is below 3m . By carefully analyzing 
the persons trajectories, we observed that some paths 
spatially deviated from the expected trajectory due to 
abrupt movements between non-contiguous sensors. In 
this regard, if the distance between the positions of two 
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Fig. 2  Overview of the TraMiner system
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consecutive records ⟨ri, ri+1⟩ ∈ H exceeds a threshold Td 
(which is set to 5m in this work), we remove ri+1 from H.

After position data cleaning, the trajectory segmentation 
module is in charge of partitioning the denoised H into 
trajectories. In this regard, the position history H is 
partitioned into a set T of non-overlapping trajectories:

where each trajectory t ∈ T  is a temporal sequence of con-
secutive position records:

A trajectory consists of locomotion and non-locomotion 
phases. The non-locomotion phases happen during a time 
interval between any two consecutive sensor activations that 
do not exceed a given threshold Ts . In our experiments, we 
evaluate different values of Ts ranging from 30s to 180s. The 
rationale of our segmentation algorithm is that a phase of 
non-locomotion may happen in a trajectory if no sensor is 
triggered for less than Ts . Otherwise, if no user movement 
is detected for more than Ts , the previous trajectory is 
completed, and a new one is initialized.

Our segmentation algorithm initializes the first trajectory 
with the first entry of H, and each trajectory ti is a temporal 
sequence of consecutive position records from H such that 
the time interval between any two consecutive position 
records does not exceed Ts . The next trajectory is initialized 
with the last entry of the previous trajectory, and continues 
until the threshold condition is met. The algorithm continues 
until the end of H.

Visual Feature Extraction

In order to prepare input data for the DNN, the modules for 
traj and speed feature extraction are in charge of visually 
representing the salient features of each trajectory through 
images. To prepare the images, we use the RGB color model. 
Hence, each image has three colors: red, green, and blue. For 
every pixel, the values related to these colors are represented 
by a byte each. Hence, each pixel is characterized by three 
integer values ranging from 0 to 255. In our work, the 
maximum spatial extent of all the trajectories is the same, 
and corresponds to the home layout.

Choosing the image size is an important aspect for feature 
extraction. By increasing the resolution of the image, the 
sparsity of non-zero pixels in the image increases, and 
may decrease the learning capability of the DNN [36]. 
Low-resolution images can alleviate this issue; however, 
important information in the image could be lost, since 
the values of multiple contiguous pixels could be mixed. 
After considering different resolutions for the images, 

T = {t
1
, t
2
,… , tm},

t = ⟨pj, pj+1,… , pk⟩ ∈ H.

for our experimental setup, we chose image length and 
height of 100 by 130 pixels. By considering the size of our 
smart-home test bed, each pixel in the image correspond to 
approximately 0.1m2.

TRAJ Feature Extraction

Figure 3 shows an example of image obtained using the 
TRAJ feature extraction method from a person’s trajectory 
in our smart-home test bed.

The trajectory path is shown through a monochrome 
line string. The weight of each line is set according to 
the number of times that the corresponding path has been 
walked. The line weight is 1 if the path has been walked only 
once; the weight is 2 if it has been walked twice, and so on. 
Consequently, lines corresponding to paths walked several 
times are bolder than those of paths walked sporadically. 
This feature extraction method allows us to visually capture 
locomotion anomalies corresponding to the pacing and 
lapping patterns defined by the Martino–Saltzman model.

For emphasizing the intricacy of the trajectory, which may 
indicate random walk according to the Martino–Saltzman 
model, the intersection points between the trajectory lines 
are shown in the image as a red circle. By considering the 
image size, the radius of that circle corresponds to 0.25m.

Moreover, the trajectory line string naturally encodes low-
level motion indicators such as sharp angles, straightness, 
turning angle, and path efficiency.

SPEED Feature Extraction

As explained in Section 2.1.2, patterns of locomotion speed 
are important indicators of cognitive decline. However, 
speed information is not captured by the TRAJ feature 
extraction method.

Hence, TraMiner produces a second image of the 
trajectory, using the SPEED feature extraction method. 
Figure  3 shows an image obtained using the SPEED 
method from a person’s trajectory in our experimental 

Fig. 3  Example of visual feature extraction from a trajectory
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test bed. With this method, the trajectory is partitioned 
in sections, such as the speed of the inhabitant is 
steady in each section. The color of each section 
depends on its speed range. When a section is walked 
multiple times, the most recent speed of that section is 
considered for drawing the image. For the sake of this 
work, we consider seven different speed ranges, with 
7 associated colors. In particular, the speed ranges 
are 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, and more 
than 15 m/s, and the corresponding colors are purple, 
violet, blue, cyan, green, yellow, orange, and red, 
respectively. Of course, some of those speed ranges 
are exaggerated when referred to people moving inside 
an apartment. The explanation is that the positioning 
infrastructure used in our experimental test bed has 
approximately 1 meter resolution, and (being based 
on passive infrared technology) the detection range of 
sensors partially overlaps. For this reason, the computed 
speed is inevitably approximated and subject to errors. 
However, as confirmed by our experimental results, 
those approximated speed values are useful to improve 
the recognition performance of our system. The SPEED 
feature extraction method allows to capture the jerk low-
level motion indicator.

DNN Trajectory Classification and Long‑Term 
Analysis

In the following of this section, we present the DNN 
trajectory image classification method and the long-term 
analysis module.

Cloud‑Based Model Training

The goal of the cloud-based model training module is to 
train a DNN model to classify every trajectory as either 
walked by a cognitively healthy subject, by a person with 
MCI, or by PwD. To this aim, we take a collaborative 
approach. That module periodically receives a training 
set of trajectory images from the local instances of the 
TraMiner system, running in the individual homes. 
Each image is labeled with the cognitive status of 
the anonymous inhabitant (i.e., either ’cognitively 
healthy’, ’MCI’, or ’PwD’). Trajectory images are 
locally computed on the edge by the different instances 
of TraMiner, as explained in Section 4. Based on that 
training set, the trusted cloud-based module is in charge 
of training a DNN model for trajectory classification. 
The TraMiner local instances receive the model from 
the cloud, and use it for classifying the trajectories of 
the inhabitant. Note that the TraMiner instances do 
not receive any trajectory image. Indeed, for the sake 

of privacy, trajectory images are processed only by the 
trusted cloud module.

Figure 4 shows the multilayer perceptron (MLP) DNN 
architecture used by the cloud-based infrastructure. For each 
trajectory, the MLP DNN takes as input two images. The first 
one is obtained through the TRAJ feature extraction method 
as shown in Fig. 3, while the second one is obtained through 
SPEED feature extraction as shown in Fig. 3. Since we use 
two images with different features for each trajectory, our 
model relies on ’mixed data’. Developing systems capable 
of handling mixed data is still an open area of research, and 
can be challenging since each input with different feature 
representation may require separate preprocessing steps. 
In order to prepare the trajectories images for training, we 
convert them to flat feature vectors based on their width, 
height, and color values of each pixel. Hence, since images 
have 100 by 130 pixels, and each pixel is represented by 
three color values, each feature vector has size 39,000. So, 
each feature corresponds to the color value of a single pixel. 
Then, we apply binarization to the color values of the image 
to reduce the computational cost of training. Finally, we add 
the labels to the feature vectors before feeding them to the 
DNN for training.

The used MLP DNN for each input is composed of two 
fully connected (dense) layers: one input layer and one 
hidden layer, with 32 neurons for both. The layers used 
the Rectified Linear Units function (ReLU) as the acti-
vation function. Furthermore, for both inputs each layer 
is followed by batch normalization to speed up learning 
and increase the stability of the neural network. In the 
last layer for each of them, there is also a dropout layer 
in order to significantly reduce over-fitting. The fraction 
of drop units has been set to 0.5. Then, we combine the 
output of both inputs (TRAJ and SPEED) and apply one 
more fully connected layer with three neurons followed 
by batch normalization and dropout with same drop 
units. Since we are facing a three-class classification 
problem, we have chosen the softmax function as acti-
vation function on the final output layer. This function is 
used to find a probability distribution of the mentioned 
categories as follows:

where p(k) is the probability of a trajectory to belong to 
the k-th class, gs is a standard exponential function applied 
to each element of the input vector. This function gives a 
positive value above zero, which will be very large if the 
input was large and very small if the input was negative. 
Furthermore, Nc denotes the number of classes, fi is a value 
of ith neuron in the last fully connected layer, wij and hj are 
coefficients of the softmax function [37].

p(k) =
gs

∑Nc

j=1
gj

, gi = max(0,
�

i

fi.wij + hj)
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Fig. 4  Cloud-based model train-
ing MLP DNN architecture
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Furthermore, we have used a low learning rate, set to 
0.00001, with adam optimizer. In this field, this solution 
achieved major improvements over other regularization 
methods  [39, 40]. As a loss function, we have used 
category cross-entropy, which is an effective loss function 
for classification problems which have softmax activation 
function in the output layer. This loss function is based on 
the maximum likelihood estimate approach and it is used for 
single label categorization [41]. In our case, this ensures that 
a trajectory belongs to exactly one class.

We have used a batch size approach to calculate the 
model error and to update the model coefficients. We divided 
the training dataset into small batches of 64 samples which 
are utilized in one epoch. In order to fine-tune the number 
of epochs, we have used the early stopping procedure. We 
tested different numbers of epochs, ranging from 20 to 100 
epochs. According to this procedure, the training is stopped 
when the generalization error increases. Therefore, we 
evaluated the model during training on a holdout validation 
set after each epoch. When the performance of the model 
starts to degrade (i.e., the loss begins to increase), the 
training process is stopped. In the presented configuration, 
the number of epochs was set to 27. With this approach, 
we improved the computational efficiency of the learning 
process, without the need of keeping all training data in 
the main memory. The approach also provides robust 
convergence, avoiding local minima [42].

Long‑Term Trajectory Analysis

As shown in Fig. 2, the trained model is communicated to the 
trajectory images classification module of the individual 
smart-home systems, which uses it for trajectory image 
classification as soon as new trajectories are observed in the 
home. Finally, the classification predictions are processed by the 
long-term trajectory analysis module, which is in charge of 
computing a hypothesis of diagnosis regarding the inhabitant’s 
cognitive health (i.e., cognitively healthy, MCI, or PwD).

The aim of that module is to generate a hypothesis of 
diagnosis based on the long-term predictions of the vision-
based trajectory classifier. Of course, in order to produce a 
reliable hypothesis, the long-term analysis module needs a 
sufficient quantity of trajectory classifications. Therefore, 
it is assumed that the module considers the whole data 
acquired in a given time period; e.g., all the predictions 
about the trajectories observed in the previous 30 days. The 
module analyses the whole history VTC of vision-based 
trajectory classifications produced in that period:

where the value of classi can be either ‘cognitively healthy’, 
‘MCI’, or ‘PwD’. Also, there is a need to compute the 

VTC = {class
1
, class

2
, ..., classm},

number of predictions of each class in VTC. Then, the 
module outputs the hypothesis corresponding to the most 
frequent class fc as follows:

where D = {‘cognitively healthy’, ‘MCI’, ‘PwD’}.

Experimental Evaluation

In this section, we report our experimental evaluation which 
was carried out with real-world locomotion data acquired 
in an instrumented smart-home from a large set of seniors, 
including cognitively healthy seniors, PwD, and persons 
with MCI. Therefore, in the following subsections, we 
explain the used dataset, the experimental setup, and the 
achieved results. We also experimentally compare our tech-
nique with an existing state-of-the-art method.

Dataset

The experiments were carried out considering real-world 
trajectories acquired from 153 individuals in a smart-home 
of the CASAS test-bed [44] and annotated by the researchers 
of the Center for Advanced Studies in Adaptive Systems 
(CASAS) at Washington State University (WSU)  [22]. 
The smart-home layout is represented in Fig. 5. The smart-
home is a two-story apartment equipped with different 
kinds of sensors, and its floor plan includes a living/dining 
room, three bedrooms, a kitchen, and a bathroom. For our 
experiments, we relied on passive infrared (PIR) motion 
sensors and door sensors to track the movements of the 
individuals in the home. PIR sensors are mounted on the 
ceiling and their accuracy is about one meter. In total, the 
apartment included 51 motion sensors and 16 door sensors.

Participants were recruited by advertisement and physician 
referrals. After obtaining informed consent, participants 
underwent multidimensional clinical assessment by 
neuropsychologists, in order to assess the cognitive health status. 
For the sake of anonymity, explicit identifiers of the individuals 
involved in the study were removed, and quasi-identifier 
personal data, such as age, were generalized to age ranges. The 
protocol of recruiting and data collection was approved by the 
Institutional Review Board of WSU [22]. As a consequence of 
clinical examination, each participant was classified as either 
PwD, person with MCI, or cognitively healthy person.

Participants were asked to individually execute scripted 
Day-Out Tasks (DOTs) in the smart-home test-bed. DOTs 
are naturalistic tasks involving the execution of interleaved 
activities for reaching a certain goal [45]. Each participant 
executed the DOTs in a single day for an average of three 
hours. Data collection occurred in the morning or in the 

fc = argmaxclass∈D
|| {cl ∈ VTC ∶ cl = class} ||,
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early afternoon. During the execution of DOTs, the sensor 
infrastructure acquired the sensor data triggered by their 
actions and movements. The detailed descriptions of DOTs, 
together with the collected dataset, are available on the 
Web1. The smart-home setup is described in detail in [46].

While 40 PwD were recruited, only part of them were able to 
participate to the data collection in the smart-home. Hence, in our 
experiments we considered only PwD who were able to carry out 
activities in the home (19 individuals). In our experiments, we 
considered also the data acquired from the 80 seniors aged 60 to 
74 years old, and from the 54 persons with MCI.

Comparison with State‑of‑the‑Art Methods

In order to experimentally compare our method with the 
state of the art, we implemented both a baseline numeric 
feature extraction method, and the image-based method pro-
posed by Gochoo et al. in [37].

State‑of‑the‑Art Numeric Feature Extraction (NFE)

As a comparison, we implemented a baseline feature 
extraction method, in which each feature corresponds to 
a locomotion-based clinical indicator of cognitive decline 
proposed in the literature. We call this method numeric feature 
extraction (NFE). We consider the following indicators:

– Pacing  [13] travel pattern, defined in the Martino-
Saltzman model: this feature counts the number of 
observations of this pattern in the last day.

– Lapping  [13] travel pattern, defined in the Martino–
Saltzman model: This feature counts the number of 
observations of this pattern in the last day.

– Random  [13] travel pattern, defined in the Martino-
Saltzman model: This feature counts the number of 
observations of this pattern in the last day.

– Jerk  [15] is computed as the first time derivative of 
acceleration. This features represents the average jerk 
observed in the individual’s trajectories in the last day.

Fig. 5  The smart-home layout used in our experiments [43]

1 http://casas .wsu.edu/datas ets/asses sment data.zip

http://casas.wsu.edu/datasets/assessmentdata.zip
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– Straightness  [16] represents the average straightness 
computed on the individual’s trajectories of the last day.

– Sharp angles  [6] feature counts the number of sharp 
angles observed in the individual’s trajectories during 
the last day.

In order to compute the above-mentioned features, we adopt 
the algorithms recently presented in [47].

State‑of‑the‑Art Visual Feature Extraction (GVFE)

In the original paper where the method proposed by Gochoo 
et al. was presented [37], the GVFE technique was used 
to recognize those abnormal locomotion patterns that are 
strong indicators of neurocognitive diseases according to 
the Martino–Saltzman model; i.e., pacing, lapping, and 
random patterns. The authors experimented their GVFE 
technique in the same smart-home environment used in our 
experiments, with data acquired from a cognitively healthy 
senior during 21 months. They obtained very good results, 
achieving accuracy above 97%. Those results indicate that 
the GVFE technique is effective in recognizing abnormal 
travel patterns that indicate cognitive impairment. For this 
reason, we experimentally compare the GVFE technique 
with our visual feature extraction method.

In the GVFE technique, images in each trajectory are 
prepared based on the sequence of activation of the position 
sensors. Each trajectory is converted to a binary image, 
where the x axis represents the temporal order of the sensor 
activation, and the y axis represents the numeric identifier 
of the fired sensors. For example, suppose that the temporal 
sequence of activated motion sensors in a trajectory is: 
M005, M003, M005, M010, M011, M001. Then, the only 
non-zero pixels in the image correspond to the following 
coordinates: (1,5), (2,3), (3,5), (4,10), (5,11), (6,1).

Also for this feature extraction method, we apply 
trajectory segmentation using different values of the 
threshold Ts . The width of the corresponding images is 
chosen based on the maximum length of trajectories. For 
example, in our dataset, using Ts = 60 s , the maximum 

length of trajectory for all considered individuals is 32. 
Hence, images computed using that threshold value have 
32 pixels width.

As mentioned before, the y axis represents the 
numerical identifier of the fired sensor. Since in our 
dataset we consider 67 sensors (i.e., 51 PIR sensors 
and 16 door sensors), the y axis includes 67 different 
values. Consequently, the images have 67 pixels height, 
irrespectively from the value of the threshold Ts . For 
thresholds Ts set to 30 s , 60 s , 90 s , 120 s , and 150 s , the 
image size is (14 × 67) , (32 × 67) , (60 × 67) , (110 × 67) and 
(169 × 67) , respectively. Figure 6 shows two samples of 
images obtained using different threshold values.

State‑of‑the‑Art DNN (DCNN)

In order to compare our DNN architecture with a state-
of-the-art one, we consider the Deep Convolutional NN 
(DCNN) used by Gochoo et al. in [37]. As illustrated in 
Fig. 7, that network has three zero padding convolution 
layers and three fully connected layers which are followed 
by max-pooling layers and feature filters size of 5 × 5 . 
The pooling window size is set to 22 and, since max-
pooling creates smaller version of input maps, the output 
images become two times smaller than the input. The first 
convolution layer has 32 kernels, the second one, which 
receives the output of the first max-pooling layer as inputs, 
has 128 feature filters, and the last convolutional layer 
receives the second max pooling layer output and convolutes 
them with 256 feature filters.

Finally, in the fully connected part, the layers are 
flattened, and the output of the third max-pooling layer 
is converted into a feature vector. In this part, the first, 
second, and third fully connected layers have 512, 128 
and 64 neurons, respectively, and neurons of the last fully 
connected layer are connected to all three outputs; i.e., 
cognitively healthy, MCI, PwD. In order to find probability 
the distribution of the classes, the softmax function is 
applied. Since the reference paper [37] does not mention 

Fig. 6  Example of images 
generated through the GVFE 
feature extraction method. 
The left-hand side image is 
extracted from a trajectory 
using T

s
= 90 s . The right-hand 

side image is extracted from a 
trajectory using T

s
= 150 s



Cognitive Computation 

1 3

internal details such as the used optimizer and its rate, or the 
chosen loss function, we used the same parameters chosen 
for our proposed DNN configuration described in Section 5.

Experimental Setup

We developed all the algorithms in Python. The code is 
available on the Web2. For experimenting the NFE technique, 
we used the machine learning algorithms implemented by 
the Weka toolkit  [48]. The code for extracting the NFE 
features is available online3. We have used the Python 
Keras neural network library4 to develop the proposed DNN 

classification systems. In order to support scalability, in the 
general architecture of our system we envision the use of a 
cloud-based system for training the DNN model. However, 
given the relatively small size of the training set used in 
our experiments, we trained the DNN on a departmental 
server. We have run experiments on a Linux server with 
four NVIDIA Tesla p6 graphic boards, a single NVIDIA 
Pascal GP104 graphics processing unit (GPU), and 16 GB 
GDDR5 memory. To evaluate the effectiveness of our TRAJ 
and SPEED visual feature extraction techniques, we have 
experimented with different values of the Ts threshold for 
trajectory segmentation, ranging from 30 seconds up to 180 

Fig. 7  The state-of-the-art deep convolutional neural network (DCNN) used by Gochoo et al. in [37]

Fig. 8  Trajectory images classification: macro-F
1
 score for the different techniques

2 https ://sites .unica .it/domus afe/trami ner/
3 https ://sites .unica .it/domus afe/healt hxai/
4 https ://keras .io/

https://sites.unica.it/domusafe/traminer/
https://sites.unica.it/domusafe/healthxai/
https://keras.io/
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seconds. We also developed the feature extraction method 
and the DNN used by Gochoo et al. [37] to experimentally 
compare our methods with the state of the art.

In all the experiments, we applied a leave one person 
out cross-validation approach: we used the data of one 
individual for the test set, and the data of the other 
persons for training and validation, iterating on each 

person to execute the tests on the whole considered 
participants. With this approach, the data of the same 
person is never used both for training/validation and 
test at the same time. For tuning the hyper-parameters 
of the DNN, training trajectories are split by a fraction 
of 10% of each category for validation and 90% of them 
for training.

Table 1  Results of numeric 
feature extraction (NFE) method

Class Measure Naive Bayes Logistic regr. MLP SVM

Cognitively F
1
 score 0.50 0.69 0.65 0.69

healthy Precision 0.56 0.55 0.53 0.53
Recall 0.45 0.91 0.84 1.00

MCI F
1
 score 0.46 0.32 0.25 0.04

Precision 0.38 0.57 0.39 1.00
Recall 0.59 0.22 0.19 0.02

PwD F
1
 score 0.00 n/a n/a n/a

Precision 0.00 n/a n/a n/a
Recall 0.00 0.00 0.00 0.00

Avg. F
1
 score 0.32 n/a n/a n/a

Precision 0.31 n/a n/a n/a
Recall 0.35 0.38 0.34 0.34

Class Measure kNN Ripper C4.5 Rand. tree RF
Cognitively F

1
 score 0.61 0.68 0.59 0.54 0.64

healthy Precision 0.55 0.53 0.47 0.55 0.56
Recall 0.68 0.93 0.79 0.54 0.74

MCI F
1
 score 0.43 0.21 0.00 0.34 0.39

Precision 0.46 0.50 0.00 0.35 0.44
Recall 0.41 0.13 0.00 0.33 0.35

PwD F
1
 score 0.00 n/a 0.00 0.00 0.08

Precision 0.00 n/a 0.00 0.00 0.20
Recall 0.00 0.00 0.00 0.00 0.05

Avg. F
1
 score 0.35 n/a 0.20 0.29 0.37

Precision 0.34 n/a 0.16 0.30 0.40
Recall 0.36 0.35 0.26 0.29 0.38

Table 2  Trajectory images 
classification: results obtained 
using our TRAJ feature 
extraction method and DCNN 
vs GVFE and DCNN

Class Measure TRAJ and 
DCNN

GVFE and 
DCNN

30s 60s 120s 180 30s 60s 120s 180s

Cognitively F
1
 score 0.54 0.52 0.57 0.57 0.57 0.57 0.56 0.55

healthy Precision 0.57 0.53 0.62 0.6 0.62 0.62 0.6 0.57
Recall 0.51 0.5 0.52 0.53 0.53 0.52 0.53 0.54

MCI F
1
 score 0.34 0.36 0.5 0.38 0.36 0.36 0.4 0.35

Precision 0.33 0.36 0.4 0.37 0.34 0.34 0.39 0.35
Recall 0.35 0.37 0.41 0.39 0.38 0.38 0.41 0.36

PwD F
1
 score 0.12 0.13 0.1 0.12 0.11 0.056 0.13 0.11

Precision 0.1 0.11 0.08 0.08 0.09 0.04 0.1 0.09
Recall 0.14 0.15 0.13 0.18 0.15 0.081 0.17 0.13

Avg. F
1
 score 0.33 0.34 0.39 0.36 0.35 0.33 0.36 0.34

Precision 0.33 0.33 0.37 0.35 0.35 0.33 0.36 0.34
Recall 0.33 0.34 0.35 0.37 0.35 0.33 0.37 0.34
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For the overall performance evaluation, we have used 
the metrics of macro-precision, macro-recall, and macro-
F
1
 score. These metrics are standard ones for imbalanced 

problems. In particular, macro-F
1
 score is a reliable metric 

in imbalanced cases, since it gives equal weights to the 
different classes, despite their size. Since the ’accuracy’ 
performance measure is inappropriate for imbalanced 
classification problems like the one we are tackling, we 
do not consider that measure in our evaluation. Indeed, 
depending on the degree of imbalance, the majority class 
accuracy value would overcome the accuracy value of the 
minority classes.

Results of NFE Technique

At first, we evaluated the numeric feature extraction 
technique explained in Section 6.2.1. For each participant, 
we built the feature vector using all the trajectory data 
collected during the day. Each feature vector was labeled 
with the cognitive status of the individual; i.e., cognitively 
healthy, MCI, or PwD. We experimented several classifiers:

– The well-known Naive Bayes [49] classifier;
– Logistic regression classifier [50], relying on a multino-

mial logistic regression model with a ridge estimator;
– Multilayer perceptron (MLP) feed-forward artificial neu-

ral network algorithm;
– Support Vector Machines [51]
– k Nearest Neighbours (kNN) [52] lazy classifier, with 

k = 5;
– Ripper [53] propositional rule learner;
– C4.5 [54] decision tree;
– Random tree [55] classifier.
– Random forest (RF) [56] classifier.

Results are reported in Table  1. Overall, the results 
achieved by the NFE technique are poor. Indeed, all 
classifiers achieved a macro-average F

1
 score close to the 

one of a random classifier. The classifier achieving the best 
performance in this pool of experiments is the Random 
forest algorithm, with F

1
 score of 0.37. These results seem 

to indicate that, in a home context, numerical statistics 
about locomotion-based indicators of cognitive decline are 
ineffective for automatic cognitive assessment. This fact is 
probably due to the high level of noise introduced by two 
factors that influence the movement patterns; i.e., obstacles 
in the home, and execution of daily living activities.

Table 3  Trajectory images 
classification: results of our 
TRAJ vs SPEED feature 
extraction methods, using our 
MLP DNN

Class Measure TRAJ and 
MLP DNN

SPEED and 
MLP DNN

30s 60s 120s 180 30s 60s 120s 180s

Cognitively F
1
 score 0.62 0.67 0.67 0.64 0.62 0.66 0.72 0.67

healthy Precision 0.56 0.65 0.62 0.59 0.56 0.66 0.7 0.64
Recall 0.68 0.69 0.72 0.69 0.68 0.65 0.74 0.7

MCI F
1
 score 0.5 0.55 0.58 0.56 0.53 0.52 0.59 0.57

Precision 0.46 0.5 0.52 0.52 0.51 0.46 0.55 0.56
Recall 0.56 0.62 0.65 0.6 0.56 0.61 0.64 0.59

PwD F
1
 score 0.35 0.34 0.47 0.33 0.37 0.42 0.39 0.35

Precision 0.58 0.49 0.75 0.54 0.56 0.56 0.51 0.45
Recall 0.25 0.27 0.34 0.24 0.28 0.34 0.31 0.28

Avg. F
1
 score 0.49 0.52 0.57 0.51 0.50 0.53 0.56 0.53

Precision 0.53 0.54 0.63 0.55 0.54 0.56 0.58 0.55
Recall 0.49 0.46 0.57 0.51 0.51 0.53 0.56 0.52

Table 4  Trajectory images classification: results of our TRAJ+SPEED 
model and MLP DNN

Class Measure TRAJ+SPEED 
and MLP DNN
30s 60s 120 180s

Cognitively F
1
 score 0.79 0.82 0.8 0.79

healthy Precision 0.73 0.81 0.76 0.74
Recall 0.86 0.84 0.85 0.84

MCI F
1
 score 0.74 0.74 0.76 0.72

Precision 0.67 0.64 0.68 0.69
Recall 0.84 0.86 0.86 0.78

PwD F
1
 score 0.49 0.56 0.58 0.52

Precision 0.81 0.82 0.89 0.39
Recall 0.35 0.43 0.43 0.77

Avg. F
1
 score 0.67 0.71 0.71 0.67

Precision 0.73 0.75 0.77 0.61
Recall 0.68 0.71 0.71 0.79
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Results of Single Trajectory Image Classification

At first, we experimentally compare the effectiveness of our 
TRAJ feature extraction method with the one achieved using 
the Gochoo’s et al. visual feature extraction method (named 
GVFE). For this experiment, we used the DCNN used by 
Gochoo’s et al., named DCNN. In this regard, we want to 
assess the ability of correctly recognizing the cognitive 
status of a person by the observation of a single trajectory 
walked by him/her.

According to the results shown in Table 2, for both 
techniques, the best results are achieved with the trajectories 
obtained setting Ts = 120s . As it can be observed in Fig. 8, 
the technique using TRAJ and DCNN slightly outperforms 
the one relying on GVFE and DCNN in terms of macro-F

1
 

score.
In a second set of experiments, we compare the 

performance of the TRAJ vs SPEED feature extraction 
methods, using our MLP DNN. Table 3 shows the achieved 
results. The two feature extraction methods achieve 

comparable results. As it can be observed in Fig. 8, for both 
methods, the best results in terms of average macro-F

1
 score 

are obtained using Ts = 120s . It is evident that the results 
obtained using the TRAJ feature extraction method with 
our MLP DNN strongly improved with respect to using the 
DCNN. Indeed, using the MLP DNN we achieve a macro-
F
1
 score larger than 0.57 with less computation time, while 

the best macro-F
1
 score obtained using the more complex 

DCNN was close to 0.36. We believe that this result may 
depend on the relatively limited size of the training set. 
Indeed, using a larger training set, the more complex DCNN 
could possibly outperform the MLP DNN, at the cost of 
additional time and resource consumption. Due to these 
results, in the rest of the experiments we use our MLP DNN 
for performing the classification tasks.

Results of Two Input Trajectory Images Classification

Since the results obtained using separately the TRAJ and 
SPEED techniques are encouraging, we perform additional 

Fig. 9  Trajectory images classification: confusion matrices of our TRAJ+SPEED model and MLP DNN
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experiments using both TRAJ and SPEED trajectory images 
as input to our proposed MLP DNN. Indeed, since TRAJ and 
SPEED images represent different features of trajectories, 
their combined use may increase recognition rates. This 
setup corresponds to the TraMiner architecture shown in 
Figs. 2 and 4.

The achieved results are presented in Table 4. Like in the 
previous experiments, the best results in terms of macro-F

1
 

score are obtained using Ts = 120s . Also in this experiment, 
the worse results are obtained using threshold values of 30s 
and 180s. Considering these results, as also shown in Fig. 8, 
it is evident that the combined use of TRAJ and SPEED 
features significantly improves the recognition performance 
with respect to the use of the single feature extraction 
methods. Indeed, the best achieved F

1
 score is larger than 

0.71, while the single feature extraction methods achieve F
1
 

scores close to 0.57.
The detailed results can be inspected through the 

confusion matrices reported in Fig. 9. By observing the 
confusion matrices, it is evident that the total number of 
samples changes depending on the chosen value of Ts . For 
instance, with Ts = 30s we have 5, 195 trajectories, while 
with Ts = 180s , we have only 540 trajectories. Indeed, in 
general, the lower the threshold for trajectory segmentation, 
the larger the number of generated trajectories. Hence, by 
using larger values of Ts we obtain a smaller number of 
samples, but we can encode more information in the single 
trajectory images, since trajectories are generally longer. 
On the negative side, too large values of Ts may determine 
very involved images, that may confuse the DNN. On the 
contrary, too small values of Ts may determine very short 
trajectories, that do not encode enough information for the 

DNN. According to our experiments, the value Ts = 120s 
provides a good trade-off in this sense.

However, the achieved results, which are computed 
on the classification of single trajectories in isolation, are 
not sufficient for providing a reliable hypothesis about the 
cognitive status of the individual. For this reason, in the 
following experiments we evaluate the performance of the 
module for long-term trajectory analysis, which considers 
the whole history of trajectories acquired during a certain 
period of time.

Fig. 10  Long-term analysis: macro-F
1
 score for the different techniques

Table 5  Long-term analysis: results obtained using two input trajec-
tory images classification (TRAJ + SPEED features) with our MLP 
DNN

Class Measure TRAJ+SPEED 
and MLP DNN
30s 60s 120 180s

Cognitively F
1
 score 0.86 0.93 0.92 0.88

healthy Precision 0.85 0.94 0.95 0.84
Recall 0.87 0.93 0.89 0.92

MCI F
1
 score 0.78 0.82 0.87 0.87

Precision 0.69 0.74 0.8 0.83
Recall 0.9 0.93 0.93 0.9

PwD F
1
 score 0.57 0.67 0.83 0.61

Precision 0.79 0.84 0.89 0.79
Recall 0.44 0.55 0.77 0.5

Avg. F
1
 score 0.73 0.81 0.87 0.78

Precision 0.77 0.84 0.88 0.82
Recall 0.73 0.80 0.86 0.77
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Results of Long‑Term Trajectory Analysis

In these experiments, we apply the algorithm for long-term anal-
ysis described in Section 5.2 with all the different techniques for 
trajectory image classification evaluated in Sections 6.5 and 6.6. 
Figure 10 provides an overview of the achieved results.

As expected, the results achieved using DCNN with the 
TRAJ or GVFE feature extraction methods are rather poor. 
Indeed, those techniques achieve the lowest recognition rates 
for trajectory image classification. In particular, the TRAJ 
method with DCNN achieves an F

1
 score slightly larger 

than 0.4 with Ts = 120s . Its F
1
 score is lower with the other 

values of the threshold. The best result of the GVFE method 
with DCNN is similar, but obtained with Ts = 60s . Overall, 
these two techniques do not provide significant results for 
cognitive assessment, even in the long term.

Results are significantly better using our MLP DNN with 
the TRAJ or SPEED feature extraction methods. For both 
techniques, the best results are obtained using Ts = 120s . 

In particular, the TRAJ method achieves a macro-F
1
 score 

of 0.7, while the SPEED method achieves 0.65 macro-F
1
 

score. With these techniques, the increase of recognition 
performance introduced by the long-term evaluation 
algorithm is evident. Indeed, both techniques obtain a 
lower macro-F

1
 score for trajectory image classification, 

which is close to 0.57. However, the results obtained with 
these techniques are still insufficient for providing reliable 
hypothesis of diagnosis about cognitive assessment.

The best results in this pool of experiments are achieved 
using two input trajectory images classification (TRAJ + 
SPEED features) with our MLP DNN. Indeed, the best 
results are achieved with Ts = 120s , with a macro-F

1
 score of 

0.873. The detailed results are shown in Table 5. As it can be 
observed, the best results with Ts = 120s are achieved for the 
class of cognitively healthy subjects ( F

1
 score = 0.92), which 

is the most frequent one. The class of MCI subjects obtains 
F
1
 score = 0.87, while the class of PwD people achieves F

1
 

score = 0.83.

Fig. 11  Long-term analysis: confusion matrices obtained using two input trajectory images classification (TRAJ + SPEED features) with our 
MLP DNN



Cognitive Computation 

1 3

By closely inspecting the results in the confusion matrices 
shown in Fig. 11, we can observe that, with Ts = 120s , 17 
PwD subjects out of 19 are correctly recognized. Among the 
other ones, one subject is classified as a person with MCI, 
and one as a cognitively healthy person. Hence, the false 
negative rate of PwD is very low. Regarding false-positive 
predictions of dementia, we observe that three persons with 
MCI out of 54 are classified as PwD. Out of 80 cognitively 
healthy subjects, only two are classified as PwD. Hence, 
the false positive rate of PwD is also low. Regarding the 54 
persons with MCI, 43 are correctly recognized, while 8 are 
classified as cognitively healthy, and 3 of them as PwD. We 
consider these results positive, since MCI is an intermediate 
state between cognitive health and dementia, which is 
difficult to diagnose, especially with automatic tools. Among 
the 80 cognitively healthy seniors, we achieved only 4 false 
positives. Indeed, two of them were classified as persons 
with MCI, and two of them as PwD.

Dashboard for Clinicians

In order to allow clinicians inspecting the predictions of our 
system, we have developed a user-friendly dashboard, using 
the Google Data Studio framework. The dashboard allows 
inspecting the predictions obtained through the various 

techniques experimented in our work, achieved using the 
threshold value Ts = 120s . The dashboard can be freely 
accessed on the Web5.

A screenshot of the dashboard is illustrated in Fig. 12. 
The user can select the patient through a drop-down list. 
The actual diagnosis for the current patient is shown in the 
left-hand side of the dashboard. On the right-hand side, the 
user can inspect the predicted diagnosis based on the five 
different methods: ’GVFE and DCNN’, ’SPEED and MLP 
DNN’, ’TRAJ and DCNN’, ’TRAJ and MLP DNN’, and 
’TRAJ+SPEED and MLP DNN’. We remind that the latter 
is the actual method implemented by TraMiner, while the 
other ones are shown only as a reference.

By selecting a patient, the lower part of the dashboard 
shows the history of all input trajectories. For each trajectory, 
the user can visualize the extracted visual features, according 
to the three experimented methods: ’TRAJ’, ’SPEED’, and 
’GVFE’. Those images are available in a table, and can be 
opened in a separate window through a hyperlink. A sample 
of three images in the dashboard for one trajectory is shown 
in Fig. 13.

Fig. 12  A screenshot of the TraMiner dashboard

5 https ://sites .unica .it/domus afe/trami ner/

https://sites.unica.it/domusafe/traminer/
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Discussion and Limitations

Our experimental evaluation shows that the use of our 
combined visual features (TRAJ and SPEED), coupled 
with the use of the MLP DNN, outperforms a state-of-the-
art method based on a different visual feature extraction 
technique and on a more complex DNN. The advantage of 
our solution consists in the encoding of additional features, 
such as speed, intersections, and low-level anomaly 
indicators, that are not captured by existing solutions relying 
on images. Indeed, those locomotion features are known in 
the literature to be reliable indicators of cognitive diseases.

In general, our system achieves better results with more 
frequent classes. Hence, we expect that recognition rates 
may improve using a training set composed of larger sets 
of individuals with MCI and PwD. The achieved macro-F

1
 

score suggests that TraMiner may be a useful support for the 
clinicians to provide a clinical evaluation of the cognitive 
health status of the elderly. However, this hypothesis should 
be confirmed by a large trial with the support of clinicians 
and deployment of our system in real-world conditions.

The experiments show that the recognition performance 
of TraMiner strongly improves by considering the whole 
history of trajectories. In this respect, we recall that, despite 
the dataset having been acquired from more than 150 
individuals, each person was monitored only for few hours 
in one day. Such short observation period may be insufficient 
to reliably predict the cognitive status of all individuals. 
Hence, we expect to achieve more accurate predictions by 
considering a longer history of observations. However, this 
intuition needs to be verified by additional experiments on 
a large trial.

A limitation of our vision-based method is the 
difficulty of manually analyzing the reasons that 
determined the actual hypothesis of diagnosis by 
TraMiner. Indeed, it is not straightforward for a human 
observer to distinguish the trajectory images produced by 
our feature extraction techniques for the different classes 
of seniors. In order to provide explainable AI capabilities, 
TraMiner should be complemented with other methods 
for cognitive assessment, possibly considering other 

behavioral models of cognitive decline based on 
overt [57] or subtle anomalies [58], which are easier to 
interpret by a domain expert. In order to recognize those 
behavioral anomalies, TraMiner should be extended with 
additional sensors and algorithms to recognize activities 
at a fine-grained level.

Given the nature of the dataset used in our experiments, 
all the patients’ data were acquired in the same smart-home 
context. Whether the learned model is portable to a different 
context is still an open research question. We believe that 
advanced transfer learning methods specifically designed for 
image classification may enable training data portability [59], 
but this aspect should be confirmed by additional experiments 
with other datasets. Even without the use of transfer learning 
methods to enhance data portability, our system could be 
applied to important domains. In particular, a residence for 
elderly people may consist of several similar apartments. The 
DNN model could be trained based on the trajectories walked 
by those inhabitants for which a cognitive status diagnosis 
is known. That model could be used for the cognitive 
assessment of the other inhabitants.

Conclusion and Future Work

In this paper, we tackled the challenging issue of recognizing 
symptoms of cognitive decline based on the analysis of 
indoor movements. To this aim, we proposed a technique to 
extract visual features from indoor trajectories, and a two-
input deep learning model for classification. Experiments 
with a real-world dataset collected from cognitively healthy 
seniors, people with MCI, and PwD, showed that our system 
achieves good accuracy for long-term cognitive assessment 
and outperforms state-of-the-art techniques.

Several directions remain open for future research. Visual 
feature extraction could be improved by adding some other 
useful characteristics related to low-level abnormal motion 
indicators. Our neural network model could be refined to 
more extensively exploit visual features. The optimal value of 
the temporal threshold Ts may depend on the kind of activity 
currently performed by the individual, and by the home shape. 
Hence, we will investigate techniques to fine-tune Ts considering 
the current context of the inhabitant. Finally, the system could be 
provided with explainable AI capabilities by adopting additional 
models of abnormal behaviors.
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