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Abstract

Convolutional Neural Networks (CNNs) are nowadays ubiquitously used in a wide
range of applications. While usually CNNs are designed to operate on images for
computer vision (CV) tasks, more recently, they have been applied in multiple
other embedded domains, to analyze different information and data types.

A key research topic involving CNNs is related to methodologies and instru-
ments implementing a shift from cloud computing to the edge computing paradigm.
The classic implementation of CNN-based systems relies on the cloud: an embed-
ded system samples data acquired by adequate sensors and sends them to a remote
cloud computing facility, where the data is analyzed on high-performance process-
ing platforms. However, to really enable ubiquitous use of CNNs, some use-cases
require moving the classification/recognition tasks at the edge of the network, ex-
ecuting the CNN inference near-sensor, directly on embedded processing systems.
At-the-edge data processing has multiple potential benefits: it improves respon-
siveness and reliability, avoids disclosure of private information, and reduces the
communication bandwidth requirements posed by the transmission of raw sensor
data.

Among the possible technology substrates that may be used to implement such
embedded platforms, a widely used solution relies on processing systems integrat-
ing Field Programmable Gate Arrays (FPGAs). The Digital Signal Processing
(DSP) slices available in modern FPGAs are very well suitable for the execution of
multiply-and-accumulate operations, representing the heaviest workload in CNNs.
In particular, All-Programmable Systems on Chip (AP-SoCs), i.e. heterogeneous
processing systems designed to exploit the cooperation between general-purpose
processing cores and FPGA resources, can accommodate quite effectively both
the highly parallel data-crunching operations in the network and the other more
control-like and housekeeping-related actions surrounding them within the overall
software applications.

The work in this thesis focuses on CNN inference acceleration on AP-SoCs. It
starts from a reference architecture, an FPGA-based CNN inference accelerator
named NEURAghe [73], and extends it to assess its flexibility to different target
devices and its applicability to a wider range of design cases and network topology.
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To this aim, in the first phase of the work, we have aggressively parameterized
the architecture, to be capable of shaping it into different configurations to be
implemented on various device sizes.

In a second phase, we have tested and studied modifications to extend
NEURAghe’s approach from mainstream CNNs, whose execution is widely sup-
ported by multiple accelerators in literature, to less deeply explored algorithm
flavours, namely:

• Temporal Convolutional Network (TCN), operating with mono-dimensional
dilated kernels on sequences of samples;

• Depthwise separable convolutions, that reduce the number of Multiply-
Accumulate operations (MACs) to be performed per layer and, consequently,
if countermeasures are not taken, reduce the utilization rate of hardware
MAC modules in NEURAghe;

• Event-based Spiking Neural Networks (SNNs), that requires an entirely dif-
ferent architecture pattern, that needs to be finely tuned and integrated into
the NEURAghe system template to be effectively used on FPGA;

From the first phase results, it is possible to show how a parametrized archi-
tecture could lead to different configurations suitable to different scenarios and
adaptable to different target devices by trading-off between performance in terms
of GOPS/s, target device cost, and power consumption.

The activities towards TCN support show how the same architectural pattern
used in NEURAghe could be adapted to cope with the peculiarities of these kinds
of networks, additionally increasing the overall flexibility. The resulting architec-
ture extends its processing capabilities with the introduction of the support to
freely selectable parameters and a dedicated processing scheduling which enable
TCN execution. Results show that the architecture is capable to reach up to 96%
of efficiency, in a specific TCN use case, considering the highest GOPS/s rate
with respect to the peak achievable by the configuration. These improvements
enhance also classical CNNs execution when dealing with irregular network pat-
terns showing an improvement of 40% in terms of execution time in the considered
experiments.

The exploration concerning the introduction of the Depthwise separable sup-
port in NEURAghe with a non-invasive approach, suggests that it is worth recon-
sidering the standard convolutional scheme while dealing with these kinds of oper-
ators to face its otherwise inevitable inefficiency given by the partial exploitation
of the reconfigurable logic processing capabilities. Results show that re-designing
the accelerator to offer specific support to these operators also by changing the
data processing pattern, improves the efficiency with respect to non-invasive ar-
chitectural solutions with regard to NEURAghe.
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Finally, the integration of an SNN accelerator in FPGA pursued by applying the
NEURAghe model also to Spiking Neural Networks sets the basis for the develop-
ment of a topology agnostic architecture results in an execution timing comparable
with a referenced work in literature allowing to be more flexible towards different
layer characteristics without reconfiguration.
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Introduction

Deep Convolutional Neural Networks have become the go-to solution for a wide
range of AI-related problems. Thanks to their outstanding results, they repre-
sent the state-of-the-art in image recognition [43], [65], [113], face detection [96],
speech recognition [42] and text understanding [109], [110] among other tasks. The
widespread use of Convolutional Neural Networks (CNNs), combined with the high
computational load typically associated with their execution, has led researchers
to extensively work on the development of hardware accelerators for CNN infer-
ence [121][17][9][19]. The availability of this kind of hardware is key in embedded
use-cases involving near-sensor processing of data, according to the edge comput-
ing paradigm [104]. Among the different solutions available in the literature, an
important role is played by Field Programmable Gate Array (FPGA) based ar-
chitectures, and, in more detail, by solutions exploiting the cooperation between
general-purpose processors and FPGAs available in modern All-Programmable
Systems on Chip (APSoCs), e.g. Zynq-7000 and Zynq Ultrascale+ devices by Xil-
inx, that take profit from the efficient implementation of Multiply-And-Accumulate
(MAC) operations on a large amount of Digital Signal Processing (DSP) Slices
available [75].

Moreover, over the years, the diffusion of CNN has meant differentiation, en-
tailing a wide range of approaches, kernel shapes and techniques, opening the
way for the second-generation of CNN algorithms. Several methods have been
developed, alongside classical approaches, that, for example, differ in the way they
apply filters or in the way they deal with input features during the convolutional
step, giving also their name to the particular computational step. This is the case
of the dilated convolution [91] and the deconvolution (or transposed convolution)
[119].

Modern techniques subvert the general trend of making deeper and more com-
plicated networks pursuing higher accuracy, as these advances are not necessary
when targeting edge-oriented applications where tasks need to be carried out in a
timely fashion on a computationally limited platform and architectures need to be
more efficient with respect to size and speed ([48]) as it happens in the embedded
domain. This class of networks are known as mobile networks and they often rely
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Introduction 2

on the Depthwise Separable Convolution operator [92].
Another CNN use case can be found when it comes to dealing with time se-

quence modelling, a task historically associated with Recurrent Neural Networks
(RNNs) [34]. To cope with their training complexity ([14]), over time, two major
alternatives have become widespread, namely Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRUs) which try to reduce RNN complexity. How-
ever, in contrast with the predominant sequence modelling/RNN association, a
very promising alternative approach is based on Temporal Convolutional Net-
works (TCNs) [13], namely, mono-dimensional CNNs characterised by different
kernel sizes and dilation parameters. These networks have proven to outperform
generic recurrent architectures such as LSTMs and GRUs opening the way for an
investigation on the acceleration of their execution in the embedded domain, as it
happened with classical CNNs.

Pursuing the energy efficiency requirement while dealing with deep learning in-
ference at the edge, many accelerators take advantage of the diffusion of quantized
networks.

On the other hand, a more recent approach that changed the landscape of
the algorithms is the introduction of a promising third-generation of Artificial
Neural Networks (ANNs), namely the Spiking Neural Networks (SNNs). They
have the benefit of an event-based computation, i.e. the execution takes place
only when a new event is detected thus reducing the total number of operations
required and allowing an energy proportional data processing. In these networks,
neurons feature an internal state, updated over time. Thus inputs and outputs of
each layer are binary spikes that indicate when this state has crossed a threshold.
Among different neuron models, varying in complexity, the Leaky-Integrate and
Fire [54] simplifies hardware design allowing to build SNNs with convolutional
layers comparable with those found in CNNs with the additional time dimension.
The characteristics of SNNs adapt well to new sensing devices which have evolved
in the direction of an efficient data transmission that minimizes power consumption
while remaining responsive to external changes as in the case of event-based sensors
like Event vision sensors (EVSs).

The proposed Ph.D. thesis moves in such a multi-faceted context, aiming to
explore how a flexible adaptation of the edge-oriented hardware acceleration task
could be carried out to target the above-mentioned classes of Artificial Neural
Networks.

In particular, the focus lies on the category of FPGA-based inference acceler-
ators, starting from the architectural template deployed in the Electric and Elec-
tronic Engineering Department of the University of Cagliari in collaboration with
the Digital Circuits and Systems Laboratory of ETH Zurich, called NEURAghe.
Its original approach lies in the cooperation between the ARM-based processing
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system and programmable soft-core integrated into the Convolution Specific Pro-
cessor implemented in the reconfigurable logic. In this way, the ARM cores are
released from the majority of the supervision duties enabling a finer accelerator
control.
The main contribution described in this thesis are:

• The exploration of the capabilities offered by taking advantage of the refer-
ence architecture flexibility when it comes to adapting to different compu-
tational scenarios regarding the traditional CNN inference task. The archi-
tecture, aggressively parameterized, has been tested with different use-cases
and devices that differ for cost, sizes and resources availability. The results
are shown in Chapter 2.

• An in-depth analysis of how such an architectural template could be im-
proved to be adaptable towards any kernel size and dilation rate parameters
of bi-dimensional convolution network architectures, but in particular how it
can be enabled to execute mono-dimensional convolutional networks (TCN)
considering different timing constraints. A methodology for the optimal
execution/scheduling of data transfers that takes advantage of the specific
sequence-based structure of data in TCNs and a methodology for improving
efficiency based on sequence buffering are also presented. This analysis is
shown in Chapter 3.

• An evaluation of the efficiency drawbacks for a non-invasive Depthwise sepa-
rable support introduction while maintaining the same architectural scheme
and conversely the necessity to adopt a specific hardware configuration to
obtain an advantageous execution. A comparison between results offered by
different strategies shows the subsequent performance improvement in terms
of efficiency with respect to the theoretical peak performance achievable,
justifying the choice made. The discussion can be found in Chapter 4.

• The FPGA implementation of an Application Specific Integrated Cir-
cuit (ASIC) conceived Spiking Neural Network Engine by exploiting the
NEURAghe architectural infrastructure to speed up the integration process.
After a required mapping of some processing and memory elements onto the
FPGA slices, we will analyze the resource utilization constraints that emerge
to let the architecture fit into a specific target board. Performance results
in terms of execution latency of the obtained architecture will be analysed
with respect to different SNN activity rates (Chapter 5).





1 | Context

This chapter will provide the basics to contextualise the scope of this thesis work.
Firstly, we identify how the work presented in this thesis collocates in the

multifaceted field of edge computing. Then we describe the Convolutional Neu-
ral Networks salient characteristics, with a particular focus on the convolutional
operator. Then an overview of the CNN inference accelerator landscape will be
given. Lastly, a thorough description of the reference accelerator for this work will
be provided.

1.1 Edge-computing paradigm

Over the past few years, the Edge computing paradigm has gained popularity as
it provides low latency, mobility, location awareness, proximity to the user and
security support to delay-sensitive applications and in applications where a near-
sensor/near-data elaboration is required. The name is given for the way computing
power is brought to the “edge” of a device or network, more precisely it is moved
closer to where data is generated, usually a sensor. By processing data at a net-
work’s edge, there is a reduction of the large amounts of data travelling between
servers, the cloud, and devices or edge locations. This solves the infrastructure
issues found in conventional data processing, such as latency and bandwidth. A
recent survey by Khan et al. gives an overview of the edge computing paradigm
landscape by identifying three main sub-categories, namely Cloudlets, Fog com-
puting and Mobile Edge computing [60].

The edge computing paradigm enables also faster data elaboration and
sovereignty which is particularly important for modern applications such as data
science and AI.

However, edge computing should not only be considered as a computation
offload of a certain workload from a centralized data centre to different nodes in
the network. It also covers a multifaceted landscape of different cases, including
self-exhaustive applications with limited data transmission over the network, like,
for example, AI vision applications where data security is mandatory (self-driving

1



1 | Context 2

cars, healthcare).
This allows the edge computing paradigm definition to enclose a wide range of

applications as general Internet of Things (IoT) and AI-related tasks with different
degrees of computational load and also a broad landscape of target devices which
differ mostly in technology (i.e. Application Specific Integrated Circuit, ASIC
or Field Programmable Gate Array, FPGA), power consumption, cost and form
factor.

IoT applications usually demand for relatively simple, ultra-low power and
low-cost devices with a tiny form factor. They usually leverage custom or general-
purpose processing units with limited capabilities which expose a task-related in-
terface to the environment (sensors). The budget of energy consumption ranges
from µW to mW [72, 26]. Nowadays, IoT devices face also AI-related problems
implementing also an in-place data processing that must be done in a highly op-
timized way to fit in the device [107]. It is the case of some lightweight nodes for
healthcare monitoring [86].

When it comes to supporting AI applications by providing a significant de-
gree of computational power at the edge it is possible to employ different devices
depending on the specific use case. Despite this, among their common characteris-
tics, there are a small form factor and limited power consumption. As an example,
NVIDIA gives an overview of their AI edge-oriented devices from the Jetson family
[4]. They mostly exhibit a power consumption from 5W to 20W , reaching higher
values, up to 50W , in a few cases.

Given these baseline characteristics, as said, different hardware solutions could
be taken into account. A chip-down development, where a custom circuit board
is designed from scratch, has its advantages as it will result in a highly optimized
device. On the other hand, it can take significant development time and cost
to reach production readiness. Moreover, the pace of AI innovation is incredibly
rapid. Fixed silicon devices that implement AI can quickly become obsolete due
to the emergence of newer, more-efficient AI models.

One of the most promising technologies, for AI-enabled edge applications, is
adaptive computing [2]. It includes reconfigurable hardware such as FPGAs, highly
optimisable for specific applications, which in modern Systems-on-Chip (SoCs)
are coupled with multi-core CPUs. This configuration allows rapid and flexible
deployment of a hardware-tailoring application while ensuring adaptation when
needed. Additionally, FPGAs usually provides a good compromise between power
consumption and performance given by the high level of parallel and pipelined
computation available.

The work presented in this thesis moves in the field of edge-oriented AI ap-
plications, developed in modern MPSoCs leveraging the cooperation between an
FPGA and a general-purpose processor. More precisely we focus on a sub-class
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of the Deep Learning algorithms, namely the class of Artificial Neural Network
known as Convolutional Neural Networks (CNNs) implemented on Xilinx devices
belonging to the Zynq-7000 and Zynq Ultrascale+ families.
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1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a class of deep feed-forward brain-
inspired Artificial Neural Networks (ANN) where data propagate and are pro-
cessed in a unique direction from the input to the outcome. These networks can
generically be represented as directed graphs where edges are represented by data
tensors, and each node represents an operation (a layer) transforming one or more
inbound tensors into an outbound tensor. Most often the data tensors considered
in CNNs for image processing applications are three-dimensional, with one dimen-
sion representing different channels or feature maps plus two spatial dimensions.
In the final layers of a CNN, some of these tensors can be “collapsed” to 1D vec-
tors, where the spatial notion is lost. Operations commonly performed in a node
are convolutions, followed by a non-linear activation (often rectification), pooling,
and fully connected layers.

Convolution

Convolutional layer transforms a 3D tensor of size IW×IH×I CH into a new 3D
tensor of size OW ×OH ×O CH, by applying the convolution operator between
the tensor given as input to the layer and the filter tensor of size KS × KS ×
I CH × O CH. IW , IH, OW and OH are the input and output spatial feature
sizes respectively, while I CH and O CH are input and output channels and KS
is the kernel size. Figure 1.1 highlights these concepts.

Usually, the tensor obtained after passing through a convolution layer is called
feature map or activation map as the convolution aims to extract some kind of
features from the original input thus becoming an abstract representation of it.
Feature extraction is made possible by the filter tensor, a vector of weights kernels
applying a specific function to the values that belong to the receptive field of
the input feature. The receptive field is usually an area of square values of size
KS ×KS. Weight values are learned during the training process.

Equation 1.1 gives a mathematical representation of the convolution operator:
W is the tensor of weights, b is the one of biases (generally one bias per O CH is
summed), x and y are input and output tensors. ki and ko indexes select among
tensor features and the corresponding kernel among weight tensor.

ko ∈ 0...O CH − 1, y(ko) = b(ko) +
I CH−1∑
ki=0

W(ko, ki)⊗ x(ki) (1.1)

Figure 1.2 gives a 2D demonstration of how the convolution works in CNN.
The stride parameter represents the amount of shifting done by the kernel while
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Figure 1.1: Convolutional Layer: a KS×KS×I CH×O CH filter tensor applied
to an IW × IH × I CH input tensor produces an OW × OH × O CH output
tensor

sliding the input feature; the zero-padding parameter can be seen as a zero frame
applied around the feature to preserve the same size in output, it is usually KS−1

2
.

ReLU and Pooling

As said, convolution is often followed by a non-linear activation. The most com-
monly used are rectifiers or ReLU (Rectifier Linear Unit) which, for example, apply
a ramp function to each output feature sample (Figure 1.3b).

Pooling layers operate a feature map down-sampling by sliding a 2D filter in
order to summarize the presence of features in patches lying within the region
covered by the filter. Commonly used are max pooling (Figure 1.3a) and average
pooling.
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Figure 1.2: Convolutional operator applied to a 2D feature with a KS=3 kernel
size and zero padding and stride unitary.
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Figure 1.3: Pooling operator application and ReLU with function f(x) =
max(0, x)

Fully Connected Layer

Fully connected layers are the final layers to be applied. In this case, every neuron
produced depends on every input neuron from the input tensor which usually is
flattened. The mathematical structure is similar to the convolution one, but they
operate on 1D vectors resulting in a matrix-vector multiplication:

y = b+W · x (1.2)
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1.3 Accelerating CNN inference on FPGA:

a SoA overview

The landscape of FPGA-based accelerators for CNN is crowded and multifaceted
[39]. Several approaches have been proposed in recent years, focusing both on
the embedded domain and on architectures aimed to speed-up execution on cloud
servers. However, work on FPGA acceleration has mainly focused on classic CNN
networks.

Convolutional Neural Network accelerators

Yu et al. [117] developed an FPGA acceleration platform that leverages a unified
framework architecture for general-purpose CNN inference acceleration at a data
centre achieving a throughput comparable with the state-of-the-art GPU in this
field, with smaller latency.

Zhang et. al. [120] proposed Caffeine, a hardware/software library to effi-
ciently accelerate CNNs on FPGAs, leveraging a uniformed convolutional matrix
multiplication representation.

Ma et. al. [70] presented a Register-Transfer level (RTL) CNN compiler that
automatically generates customized FPGA hardware for the inference tasks of
CNNs to enable fast prototyping from software to FPGA.

These frameworks provide huge performance gains when compared to state-of-
the-art accelerators and general-purpose CPUs and GPUs. However, they leverage
large FPGA devices such as Virtex7 and Arria 10, mainly targeting server applica-
tions exploiting batching to improve memory access performance and bandwidth
utilization.

When it comes to design cases in the embedded domain, slightly different ob-
jectives need to be taken into account. First, cost and power budget, thus the
target setup usually involves smaller FPGAs with less processing and storage re-
sources. Second, latency is an important metric. Images/samples under classifi-
cation/recognition belong to a single acquisition stream and batch size must be
very limited, often constrained to one. Third, systems are usually required to be
autonomous, thus designers often focus on etherogeneous systems-on-chip, empow-
ered by processing systems in charge of data management, network connectivity
and other housekeeping tasks independently. Thus, closer to this work, there are
more resource-constrained approaches, mostly validated on smaller devices, e.g.
Zynq APSoCs, usually XC7Z045 or smaller, or Zynq Ultrascale+ MPSoCs.

Venieris et. al. [100] presented a latency-driven design methodology for map-
ping CNNs on FPGAs. As opposed to previously presented approaches mainly
intended for bandwidth-driven applications, this work targets real-time applica-
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tions, relying on Xilinx high-level synthesis tools for mapping (i.e. Vivado HLS),
demonstrated on relatively simple CNN such as AlexNet, and a very regular one
such as VGG16 featuring only 3×3 kernels, providing a peak performance of 123
GOps on a Xilinx XC7Z045 SoC.

Some recent more structured works provide a complete framework to help
design CNNs into FPGA. hls4ml [29] has the objective of translating machine
learning algorithms for FPGA implementation using Python. It is based on an
open-source code design workflow supporting network pruning and quantization
also towards low-power inference implementations. Their support is extended over
mono and bi-dimensional CNNs [3]. FINN-R [15] represents the evolution of FINN
presented in [98]. It automates the creation of fully customized inference engines
on FPGAs especially targeting Quantized Neural Networks (QNNs) from training
to deployment. Both hls4ml and FINN-R leverages High-Level Synthesis (HLS)
tools.

Despite the unquestionable value of these works, they leverage an automated
flow based on HLS and network graph transformation which transfer the entire
network into the device, thus requiring re-programmation for different use-cases.

Other works focus on a template-based approach based on programmable or
customizable RTL accelerators [70][33][81]. This is also the context in which it
moves this thesis, referring to ready-to-use architectural templates controlled di-
rectly by software-APIs and designed to deal with more standard data formats
(8 and 16 bits) so that pre-trained networks can be executed with good accuracy
without re-training.

SnowFlake [33] exploits a hierarchical design composed of multiple compute
clusters. Each cluster is composed of four vectorial compute units including a vec-
torial Multiply-Accumulate (MAC), vectorial max, a maps buffer, weights buffers
and trace decoders. SnowFlake provides a computational efficiency of 91%, and
an operating frequency of 250 MHz (best-in-class for CNN accelerators on Xilinx
XC7Z045 SoC). However, although the vector processor-like nature of the accel-
erator is very flexible, delivering significant performance also for 1×1 kernels, it
prevents fully exploiting the spatial computation typical of application-specific ac-
celerators, which leads to overheads due to load/store operations necessary to fetch
weights and maps from the buffers. This is highlighted by the low utilization of
the DSP slices available on the FPGA (i.e. only 256 over 900), and by the perfor-
mance when executing end-to-end convolutional neural networks, which is lower
than that of other architectures including the template referenced by this work
even though the operating frequency of the CNN engine is significantly higher.

Several approaches tackling FPGA architectures for image-processing CNN
have explored the reduction of the precision of arithmetic operands to improve en-
ergy efficiency. Although most of the architectures available in literature feature a
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precision of 16-bit (fixed-point)[100, 33, 70] numerous reduced-precision implemen-
tations have been proposed recently, relying on 8-bit, 4-bit accuracy for both maps
and weights, exploiting the resiliency of CNNs to quantization and approximation
[81].

Qiu et. al. [81] proposed a CNN accelerator implemented on a Xilinx XC7Z045
platform exploiting specific hardware to support 8/4 bit dynamic precision quanti-
zation, at the cost of 0.4% loss of classification accuracy. Other extreme approaches
to quantization exploit ternary [80] or binary [98] neural-networks accelerators for
FPGA. This approach significantly improves the computational efficiency of FPGA
accelerators, allowing to achieve performance levels as high as 8 TOPS [80].

Recent work by Rasoulinezhad et al. [82], starting from the Xilinx DSP slices,
proposed an optimized DSP block called PIR-DSP to efficiently map 9, 4 and 2 bits
data precision MAC operations. It is implemented as a parameterized module gen-
erator targeting both FPGAs and Application Specific Integrated Circuits (ASICs)
reaching an estimated run time energy decrease of up to 31% for a MobileNet-v2
implementation compared with a standard DSP mode. Other works, like Wang et
al. [105], leverage FPGA Look-Up Table (LUT) blocks as inference operators for
Binary Neural Network (BNN) achieving up to twice the area efficiency compared
to state-of-the-art binarized NN implementations and against several standard
network models.

Moreover, while extremely reduced precision networks can easily reach good
classification accuracy on small datasets, like MNIST, CIFAR10, SVHN, GTSRB,
training quantized versions of larger networks, such as VGG or ResNet [23], capable
of dealing with more complex datasets and tasks, is still a big challenge. The
usability of extreme quantization is also not demonstrated for TCN-related tasks,
sequence classification and modelling.

This thesis focuses on NEURAghe [73] which exploit the cooperation, in mod-
ern Xilinx Zynq MPSoCs, between ARM cores and a convolution specific co-
processor deployed in the reconfigurable logic. The co-processor has the pecu-
liarity to embed a programmable soft-core releasing the ARM cores from most of
the supervision duties and allowing the accelerator to be controlled by software at
a fine granularity. This opens the way for an evaluation of both the ease of use of
such a pre-designed template and its flexibility towards different devices allowed
by the configuration of some architectural parameters. This evaluation has been
completed in 2020 with the publication in [74].

Meanwhile, Xilinx released its proprietary FPGA-based acceleration engine
called Deep Learning Processing Unit (DPU) [5]. It is probably the most powerful
currently available DNN accelerator for FPGA. It provides an integrated frame-
work, called Vitis AI [6], that helps designers in mapping CNNs on a templated soft
IP. The DPU provides impressive performance on CNNs, using quantization and
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high clock frequency in DSP slices. Quantization is required and can be applied
automatically using a dedicated tool included in VitisAI. DSP slices are clocked
at a very high frequency, using a DSP Double Data Rate (DDR) technique [7],
which uses a 2x frequency domain to increase peak performance. Despite this,
in some cases, the support for different network topologies is limited. For exam-
ple, the support for TCN is affected by the lack of arbitrary dilation and kernel
size support and the Vitis AI quantization process does not support 1D convolu-
tions. Moreover, although the DPU offers the support for the Depthwise Separable
convolution, it suffers from an inherent inefficiency given by the fact that the com-
putational pattern is the same as in regular CNNs thus halving the exploitable
parallelism.

For these reasons, subsequent phases of this work focused on these aspects.
To the best of our knowledge, there were no published FPGA-based accelerators
tuned to speed-up inference for generic TCNs at the time of the work presented
in Chapter 3 which led to the published paper [16].

Lightweight Convolutional Neural Networks accelerators

The need to make CNNs more lightweight in terms of trainable parameters (mem-
ory footprint) and computational burden leads to the development of the so-called
lightweight convolutional neural networks (LW-CNNs) such as MobileNet [48],
ShuffleNet [122], SqueezeNet [51]. They have emerged to enable fast inference
on embedded and mobile systems. However, the introduction of different opera-
tors like the Depthwise Separable convolution, calls for more specific accelerators.
In literature, there is a non-negligible number of FPGA-based accelerators that
specifically tackled this issue.

The work of Srivastava et al. [93] proposes an approach to depthwise separable
convolution by implementing an FPGA based compute engine for this kind of
operator in CNN. It is demonstrated for a single layer only and is intended to be
a starting point in exploring mobile network components in FPGA.

Jiang et al. [55] presented a more structured architecture based on custom
multiplexed processing elements supporting two dataflow modes in order to cus-
tomize traditional convolution and depthwise separable convolution dataflow. It is
implemented on a Xilinx XC7Z020 and tested on a simplified network architecture
with the CIFAR10 dataset reaching up to 100 fps in the classification task.

The work of Liao et al. [69] has shown an implementation of the MobileNet
model on the Xilinx XC7Z045 platform, designing a parallel acceleration scheme
to increase the frame rate, and minimize the resource and power consumption in
the form of multiplexing and configurability design. The maximum frame rate of
this design is 5.52fps.

Bai et al. [12] proposed a scalable depthwise separable convolution CNN ac-
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celerator designed to fit in FPGA of different sizes. It encloses all network layers
into a Matrix Multiplication Engine (MME) Array unit composed of different pro-
cessing elements. Despite its scalable nature, the sole implementation given on an
Arria 10 SoC FPGA at 133 MHz leads to 266fps performance on a MobileNet
execution.

Similar to this, in the work of Wu et al. [112] a multi-devices suitable ar-
chitecture supporting depthwise separable convolution acceleration deployed in
the Xilinx XCZU2EG and XCZU9EG MPSoCs has been presented. It is centred
around two engines supporting different execution phases in parallel.

A slightly more complex approach deals with the reformulation and decompo-
sition of the lightweight operations to reach a more efficient acceleration. It is the
case of Light-OPU [118], an FPGA-based software programmable overlay proces-
sor with a compilation flow for general LW-CNN accelerations. It achieves 5.5x
better latency and 3.0x higher power efficiency on average compared with edge
GPU NVIDIA Jetson TX2.

Our approach tries to cope with the inherent inefficiency given by the under-
utilization of the FPGA processing capabilities, while dealing with the Depthwise
Separable operator, by designing a dedicated accelerator that changes the tradi-
tional convolutional processing pattern, as will be described in Chapter 4.

Spiking Neural Network accelerators

The call for near-sensor efficient computation has brought not only a CNN model
lightning trend but also to the diffusion of a new approach that relies on an event-
based computation. This third generation of ANNs are called Spiking Neural
Networks (SNNs) and are characterized by an internal neuron state, updated over
time, which enables a data processing that begins only if the state surpasses a
certain threshold. This event proportional data processing is ideal to reduce the
application workload and to enhance energy efficiency by binding execution to
events. As the execution in SNN is run-time dependent, exploiting classical hard-
ware accelerators will result in efficiency drops.

The deployment of devices suitable to specifically accelerate SNN inference
goes hand-in-hand with its growing interest, especially in applications at the edge
[115]. Some solutions rely on custom hardware (ASIC) both for training and
inference. TrueNorth [8] scalable chip consists of several cores implementing a
function of synapses configured to map spikes to neurons. SpiNNaker [32], in-
stead, is made up of small ARM processors featuring a custom interconnect com-
munication scheme designed to be suitable for a large number of small spike-like
messages. Loihi [25] is a many-core mesh comprising 128 neuromorphic cores with
1024 spiking neural units each communicating through an asynchronous Network
on Chip (NoC). On the other hand, there is some work proposing FPGA-based
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SNN accelerator designs. Bluehive [76] is a particular example of such a category.
It is a large-scale real-time SNN simulation platform developed using Bluespec
SystemVerilog consisting of 64 FPGA supporting up to 64k neurons implementing
the complex Izhikevich model [53]. Minitaur [77] is an event-driven neural network
accelerator implementing up to 65536 LIF neurons and 16.8 million synapses. It
employs on-chip DSPs to carry out the fixed-point computation. It also main-
tains a hardware event queue that requires a sorting operation for each incoming
event to support spikes with delays; this increases design complexity and run-time
latency. S2N2 [61] is a streaming accelerator for spiking neural networks built
upon FINN [98] platform, that relies on a custom method (streaming events in-
stead of tick-batching) to reduce the memory utilization for inputs with a large
temporal dimension. Gupta et al. [40] described an architecture for Simplified
Spiking Neural Network which is implemented on FPGA and optimized for low
power embedded applications with real-time learning, combining the neuron mem-
brane model and a simplified on-line spike-time dependent plasticity (STDP [50])
learning. In the work of Han et al. [41] it has been proposed an FPGA-based SNN
module implementation that relies on an enhanced hybrid updating algorithm re-
sulting in a module that supports up to 16384 neurons. Also in the work of Ju et
al. [56] it is possible to find a hardware architecture to enable the implementation
of SNNs, with all layers in the network map on one chip, aiming to reduce latency
by executing different steps in parallel. Fang et al. show a holistic optimization
framework for encoder, model, and architecture design of FPGA based neuromor-
phic hardware [30]. They present a neural coding scheme and training algorithm
to enable fast inference, a model in which SNNs are represented as networks of
Infinite Impulse Response (IIR) filters and an end-to-end framework to optimize
and deploy FPGA implementation.

Many of these works focus their attention on the implementation of Networks
with Fully Connected layer while only a few of them rely on networks with a
structure similar to the one found in the CNNs. However, the majority of them
are fully integrated into the device.

Differently, we have tried to apply the NEURAghe model also to SNNs, so
that it is possible to execute different network topologies without reconfiguring
the device by exploiting the cooperation between ARM processors and the soft-
core in programmable logic to decompose the execution. Our work result of the
collaboration with the Digital Circuits and Systems group of ETH Zurich starts
from the adaptation of an ASIC-tailored Spiking Neural Engine to FPGA and
sets the basis for the development of an FPGA-based SNN accelerator topology
agnostic.
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1.4 Reference Architecture: NEURAghe

NEURAghe [73] is a CNN inference accelerator architecture that exploits the
cooperation between an ARM Processing System (PS) and the Programmable
Logic (PL) in Xilinx Zynq devices. Communication at the PS-PL interface is
allowed by two high-performance 64-bit ports to access the memory-mapped off-
chip DDR, and two general-purpose 32-bit ports for memory-mapped control of
the NEURAghe architecture and standard output. As can be seen in Figure 1.4,
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Figure 1.4: NEURAghe architecture

the Programmable Logic hosts a Convolution Specific Processor (CSP), dedicated
to accelerating compute-bound tasks (convolution), while the processing system
acts as a General Purpose Processor (GPP), in charge of executing tasks that are
hard to accelerate. With such a template the accelerator can support the deploy-
ment of arbitrary CNN topologies by offloading the execution of its layers to the
GPP or CSP according to their characteristics.

NEURAghe can be programmed by defining a network described in C lan-
guage, which acts as a front-end application to be executed by the GPP, which
can include calls to adequate APIs, outsourcing tasks to the CSP, or actual pro-
cessing functions executed on the ARM processors. To enable this paradigm,
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NEURAghe integrates a RISC-V1 based lightweight processor inside the CSP. The
RISC-V core runs a back-end firmware (middleware). Upon the receipt of a CSP-
triggering command, issued by the GPP, the middleware schedules data transfers
and convolutions implementing the requested operation, without PS intervention,
leaving the latter available for actual computation workload. As an example, the
referenced work of Meloni et al. [73] has shown how the ARM cores can be used
to build a balanced software pipeline in cooperation with the CSP implemented
on the PL.

1.4.1 Convolution Specific Processor

The Convolution Specific Processor is made by various System Verilog HDL de-
scribed sub-modules. As said above, the soft-core manages operation scheduling
inside the CSP and relies upon an instruction memory, loaded by the GPP and a
private memory to be used during execution. There are two Direct Memory Access
(DMA) Modules, one to transfer the weights inside the Weight Memory (WM) and
the other to transfer activations both inside and outside the tightly-coupled data
memory (TCDM). This is the main CSP memory in charge to store input and out-
put data and partial computation results. It is composed of several independently
accessible banks, made up of the dual-port BRAM slices of the FPGA partitioned
in two sections and connected both to the ADMA and the Convolutional Engine
(CE) that can access at the same time. TCDM banks dual-port nature and its
partitioning allow the implementation of a double-buffering technique. Indeed,
when the CE is reading inputs for the actual computation phase from one of the
sections of the banks, ADMA could transfer those for the next phase. In a similar
way, when the CE is writing actual output results, ADMA could transfer to the
DDR those from the previous computational phase.

Convolution Engine

Figure 1.5 shows the CE configuration. It is the main CSP module and the compu-
tational core of the architecture dedicated to accelerate Multiply and Accumulate
(MAC) operations execution, it is composed of a MAC Matrix of Ncols columns by
Nrows rows of Sum of Product (SoP) units in charge of calculate the contribution
of 3 × Ncols or Ncols input features (IFs) (depending on kernel size dimension)
to Nrows output features (OFs). Nrows Shift Adder modules sum together partial
results from SoPs in each row with data values resulting from the Ncols previously
computed input feature partial results that are read from on-chip memory, enabling
successive accumulation over multiple CE runs. The architecture is designed to

1RISC-V is an open standard reduced instruction set architecture provided with open source
licenses.



1 | Context 15

process convolutions with a 16-bit fixed-point data format without restrictions on
the number of fractional bits in the specific layer configuration. Input feature data
are fed through a set of line buffers modules, incorporated in the Activation source
module of the Figure 1.5, that by caching values from the input feature lines are
capable to load an entire image window to be convoluted, at every new input pixel,
with weight filters. In particular, each SoP receives two square convolution win-
dows per cycle performing MAC operation by applying to them the bi-dimensional
kernels loaded by the Weights source through an inner Weight Loader module.
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Figure 1.5: Convolution Engine. Nrows ×Ncols MAC Matrix

By looking at the Figure 1.4, the Weight Memory Region is the one containing
the WM, while Activation Memory Region and Output Memory Region are com-
posed by TCDM banks which are in charge of storing activation and partial/output
results respectively (depicted as in figure for ease of representation).

Line Buffers

Each SoP in the CE is fed with a Line Buffer whose internal structure is depicted
in Figure 1.6.

LB blocks are realized by means of 32-bit wide shift registers thus, after an
initial preloading phase they are capable of reading 2 pixels per cycle and feeding
SoPs with two square convolution windows per cycle. Line Buffers are capable of
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Figure 1.6: Linebuffer structure

adapting at run-time to two different kernel sizes, 5 × 5 and 3 × 32, by means of
some selection circuitry, which is configured by the middleware through memory-
mapped registers accessible by the soft-core. In particular, with a fixed number of
Slice Registers (dark and light grey coloured in Figure 1.6) and the necessary glue
logic, LBs are capable of supplying SoP with up to two sets of 27 pixels per cycle,
as they contain two independent sets of pipelined and cascaded DSPs, as will be
described in the next section. The 27 pixels can be used as three independent
sets of 3× 3 convolution windows from three different input features or as a single
5 × 5 convolution window from a unique input feature (leaving two LB registers
and SoP DSP unused in this case). Additional logic is used to apply zero-padding
when needed and to allow the right LB-to-SoP connection.

SoP modules

Each Sum of Products unit in the MAC Matrix are pipelined with a structure
made up of trellises of multiply and add operations (a multiplier, an adder and two
pipeline registers), as shown in Figure 1.7, to maximize mapping efficiency on the

2These are the only two natively supported kernel sizes by this version of the CE (the most
adopted by SoA networks at the time of the architecture design). Different sizes could be handled
by means of the GPP cooperation [73]. This drawback, on the other hand, motivated the
improvements carried out in subsequent versions and described in the following chapters
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Figure 1.7: Single and Multi-trellis SoP cascade

FPGA DSP resources. To deal with the throughput of two convolution windows
per cycle produced by the LBs, each SoP module includes two sets of parallel
trellises, for a total of 2 ×N2 DSP blocks (where N is the size of the 2D kernel).
The multi-trellis disposition in the right side of Figure 1.7 is an architectural
choice made with the purpose to avoid restrictive placement constraints in the
FPGA place & route phase.

1.4.2 Execution scheduling

The RISC-V soft-core in the CSP runs a Middleware coded in C, loaded and
activated at the startup of the system. Once received the GPP programming
commands with convolutional layer characteristics and the starting trigger, the
core partitions layer executions in sub-parts.

First of all, it activates DMAs to load in a bank section of the WM and TCDM
a number of input features and kernels such that it is possible to activate the entire
MAC Matrix and thus by feeding it with 3×Ncols or Ncols IFs, depending on the
kernel size (3 or 5 respectively) and with a number of kernels that is related to
the number of IFs and OFs which are to be produced in a single matrix activation
(multiple of the Nrows parameter).

The baseline for the MAC Matrix full execution, except for corner cases3, is
what outlined below:

IF = 3×Ncols, kernels3×3 = 3×Ncols ×Nrows → OF = Nrows

IF = Ncols, kernels5×5 = Ncols ×Nrows → OF = Nrows

which are the contribution of 3 × Ncols or Ncols IFs to Nrows OFs by applying
3×Ncols ×Nrows or Ncols ×Nrows kernels.

3A corner case is when the multiplicity of one of the layer parameters (IF or OF) is not an
integer multiple of one of the MAC Matrix parameter (Ncols or Nrows) for which there will be
an execution phase when the matrix will not be fully active.
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However, to exploit data reuse, when allowed by the architectural configuration,
IFs are kept in memory to let the MAC Matrix calculate their contribution to a
number of OFs multiple of Nrows namely an output group (OG). This requires also
loading a number of kernels that grows proportionally with OG. After the first
loading phase, the Middleware triggers the execution phase, activating the MAC
MAtrix. Meanwhile, it programs DMAs to load the data for the next execution
phase in the other bank section both of the WM and the TCDM (double-buffering),
ready to be used in the forthcoming execution phase.

Once the contribution of all IFs to the actual OG has been calculated, the
Middleware schedules a store operation where the DMA transfers OFs from the
TCDM to the DDR.

A scheme of the alternation of these phases is depicted in Figure 1.8.

Activation 
load (0)

Weight load (0)

Store (0)

Activation 
load (1)

Weight load (1)

execution (0)

Activation 
load (0)

Weight load (0)

execution (1)

Activation 
load (1)

Weight load (1)

execution (0)

Activation 
load (0)

Weight load (0)

execution (1)

Activation 
load (1)

Weight load (1)

execution (0)execution (1) 

…

…

…

…

…

…

Load and execution for data in the first 
subpart of the of the memory blocks reserved 
for activations and weights respectively 

Store of data from the first subpart 
of the memory blocks reserved for 
computational results

Figure 1.8: Scheduling scheme

In addition to the double-buffering technique, to keep the execution pipeline as
balanced as possible, according to the layer characteristics, it is possible to choose
an appropriate value of OG to let execution phases cover as much as possible
transfer phases.



2 | Exploring device parameteri-
sation

The wide scope of use-cases that can be found when dealing with AI-related prob-
lems at the edge ranges from low power and low-cost devices to more resource
consuming ones. In this chapter, starting from the NEURAghe accelerator, de-
scribed in Section 1.4, we explore the capabilities of this architectural template to
scale at design-time to different MPSoCs with different costs, sizes and resources
availabilities by leveraging on its tunable parameters like the number of CSPs, the
MAC Matrix size and the data precision. We test different solutions over a range
of target boards demonstrating that this architectural template is able to support
different trade-off optimization scenarios.

2.1 Parameter exploration

Figure 2.1 shows the architectural template while it is configured to host multiple
Convolution Specific Processors (CSPs). Its number can grow according to the
target board capabilities in terms of resources depending on the PS-PL commu-
nication port. They can be used in parallel to map independent layers. In this
case, CSPs can be considered as independent IPs to be instantiated at design time
in a relatively easy way, by properly connecting PS-PL ports. Their activation is
managed by the GPP.

As depicted in Figure 1.5 the MAC Matrix is composed of a parametrizable
number of SoP Units that can be chosen (at design time) acting to the Ncols and
Nrows parameters, according to the target board characteristics, namely, for exam-
ple, available DSP slices. Furthermore, it is worth considering that the number of
SoPs is directly related to the input and output features processed.

Another selectable parameter is data precision. It can be 16-bit (as in the
original version) or 8-bit (introduced ad-hoc) and it can be chosen at design or
run-time. In any case, all data will have the same bit width representation and
the trade-off will be between performance and accuracy.

19
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Figure 2.1: NEURAghe architectural template with multiple CPSs

8-bit support

To support 8-bit data precision we introduce a low-impact modification to as few
as possible components of the CSP, resulting in architecture whose congestion level
is comparable with the original version.

The main change concerns DSP configuration and the resulting changes to the
datapath of SoP modules. Following the technique depicted in the Xilinx white
paper of Fu et al. [31], we enable DSPs to exploit its internal pre-adder module
by summing together 8-bit input pixels, a and d, belonging from two adjacent
convolutional windows, by means of the two 25-bit wide pre-adder input registers.
One of the two pixels is 17-bit left-shifted while the other is sign-extended such that
the pre-adder output register preserves both input values in its Least Significant Bit
(LSB) and Most Significant Bit (MSB) section respectively, resulting in a · 217+ d.
This value feeds the internal multiplier together with the sign-extended weight
value b, and again, preserving the two independent multiplication results in the
45-bit wide multiplier output register1, a · 217 · b and d · b, in the MSB and LSB

1For the MSB part this is true only if d ·b is non-negative, otherwise it corresponds to a ·b−1,
which is equivalent to sum the sign bit.
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parts respectively.
The DSP surrounding circuitry into SoP modules has been slightly modified

to allow the proper data propagation to the DSP input registers and to ensure
support for both data precision. The same happens for LBs and Shift Adders
modules. The data precision selection mechanism depends on a memory-mapped
value which is defined by the GPP during its CSP programming phase and is
propagated through the aforementioned modules.
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2.2 Experimental results

Given this range of choices, aiming to provide a broad scope of scenarios, the con-
figurations that have been evaluated are those in Table 2.1. For each one we report
the target SoC, the number of CSPs instantiated, the MAC Matrix dimension and
the resource utilization for the relevant FPGA slices. All reference devices belong
to the Xilinx Zynq-7000 family but differ in size, cost, power consumption and
resource utilization.

Table 2.1: Resource occupation on different configurations

Target Soc XC7Z045 XC7Z045 XC7Z020 XC7Z007S

CSP num 1 2 1 1

SoPs 4× 4 2× 4 2× 2 1× 1

DSP 864 (96%) 864 (96%) 216 (98%) 54 (82%)

LUTs 99546 (51%) 101352 (46%) 43880 (83%) 12610 (87%)

BRAMs 320 (59%) 288 (53%) 136 (97%) 44 (88%)

The bigger XC7Z045 SoC is capable of hosting two configurations with different
MAC Matrix shapes and numbers of CSP, while XC7Z020 and XC7Z007S host
decreasing matrices sizes. Each configuration has been evaluated for both available
data precisions.

MAC Matrix Size

Table 2.2 reports a performance evaluation for different MAC Matrix configu-
rations over different Xilinx Zynq SoCs operating on ResNet-18, VGG-16 and
SqueezeNet target networks. The choice of the Matrix size could be done willing
to optimally exploit the DSP slice usage of the target device. As it can be seen,
implementations over bigger SoCs lead to higher absolute performances, while
smaller ones benefit from higher efficiency with respect to the peak achievable by
the architecture, as depicted in the roofline model in Figure 2.2.

For smaller configurations the operational intensity required to approach the
peak is limited by the available resources, thus it is easier to be reached while pro-
cessing the majority of the convolution layers. On the other hand, larger matrices
require a greater number of operations to be performed to reach the maximum
level of performance without being restricted by the PS-PL bandwidth. This can
be seen in Figure 2.3 showing the efficiency trend for some of the different config-
urations with respect to ResNet-18 and VGG-16 convolutional layers: an increase
in layer operational intensity has a direct consequence on the achievable efficiency.
General lower performance for ResNet-18 layers is due to their particular charac-
teristics requiring often the GPP intervention.
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Figure 2.2: Roofline model for the 4×4 (blue) and 2×2 (red) configurations. The
vertical dashed line represents the average operational intensity of a convolutional
layer.

Figure 2.3: Comparison of the performance efficiency, achieved on all the convolu-
tion layers (L) in ResNet-18 and VGG-16, by different configurations, estimated as
the ratio between actual performance (GOps/s) and peak performance (GOps/s).
Efficiency for the double cluster configuration on ResNet-18 is not reported as it
is mainly limited by the GPP

Multiple CSPs

In order to exploit advantages of bigger devices with those of smaller matrix size,
we evaluate a particular configuration by instantiating multiple CSPs with a 2× 4
matrix. Characteristics are shown in Table 2.1 and performance has been evaluated
over ResNet-18 and VGG-16. As can be seen, the overall performance is better
for regular layers like VGG ones as they do not need the relevant intervention of
the GPP for accessory operations like data marshalling.
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Table 2.2: Performance evaluation for different MAC Matrix configurations

MAC Matrix 4× 4 2× 2 4× 4 2× 2 1× 1

SoC XC7Z045 XC7Z020 XC7Z045 XC7Z020 XC7Z007S
(Price) ($2500) ($450) ($2500) ($450) ($89)

Freq [MHz] 140 120 140 120 80

Benchmark net ResNet-18 ResNet-18 VGG-16 VGG-16 SqueezeNet

GOps/s (16-bit) 61.9 16.1 172.67 42.5 7.46
GOps/s/W (16-bit) 6.19 4.6 17.26 12.56 2.98
GOps/s/k$ (16-bit) 25 37.78 69 97.5 95

GOps/s (8-bit) 111.12 29.04 335.09 84.77 14.05

Table 2.3: Performance evaluation for multiple CSPs

MAC Matrix dual 2× 4 dual 2× 4

SoC XC7Z045 XC7Z045
(Price) ($2500) ($2500)

Freq [MHz] 140 140

Benchmark net ResNet-18 VGG-16

GOps/s (16-bit) 59.8 188
GOps/s/W (16-bit) 5.98 18.8
GOps/s/k$ (16-bit) 21.4 75.2

GOps/s (8-bit) 63.9 370.4

Arithmetic Data Precision

Both Table 2.2 and 2.3 show performance trends for each configuration with respect
to 16-bit and 8-bit data precision. As can be seen the increment in performance is
almost of a factor 2 for the latter choice. This is because, in this case, exploiting
the DSP capabilities it is possible to map 2 MAC operations which are executed
together at every cycle [31].
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2.3 Comparison and summary

In summary, architectural parameterisation leads to different configurations that
can be used in different contexts to fit in different SoCs ranging from more expen-
sive but resourceful to cheaper ones. In the literature is not easy to find the same
degree of design-time flexibility and runtime selection of data precision. Table 2.4
shows a comparison with some works with respect to the execution on VGG-16. In
some cases, the performance results are comparable but this architecture delivers
more flexibility while in other cases also better results are achieved. Furthermore,
the implementation of an extremely low-cost device is a rarity in the landscape of
FPGA-based hardware accelerator for classic CNN inference.

Table 2.4: Comparison with alternatives in literature

NEURAghe [101] [88] [38] NEURAghe [103] [38]

SoC XC7Z020 XC7Z020 XC7Z020 XC7Z020 XC7Z045 XC7Z045 XC7Z045
Freq[MHz] 120 125 150 214 140 125 150
GOps/s
(16bit) 42.5 48.53 31.38 - 172.67 155.81 137
GOps/s
(8bit) 84.77 - - 84.3 335.09 - 292
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Convolutional Neural Networks have become popular for computer vision applica-
tions, such as image recognition [43, 65, 113], object detection [96] or video frame
classification [59], which are inherently bi-dimensional applications. However, con-
volutional networks have also been extended to deal with time sequences (sequence
modelling task). These CNN variations are usually indicated as Temporal Convo-
lutional Networks (TCNs) [66]. Multiple TCN architectures have been proposed,
reaching impressive performance on edge-related tasks such as sentence classifi-
cation [63], speech recognition [42], text understanding [111], Natural Language
Processing tasks [85] and, more recently, machine translation [58], audio synthesis
[99], language modeling [24] or signal sequence analysis in the healthcare domain,
as action detection [62] or ECG classification [35]. Research work of Bai et al. [13]
demonstrates that the exploitation of a Temporal Convolutional Network for typi-
cal sequence modelling tasks can convincingly outperform older and better-known
Recurrent Neural Networks [46] [18]. In particular, they leverage a residual block
unit implementing a dilated causal convolution with different dilation factors as
the baseline for their network architectures. The dilation factor is a key concept
in TCNs as it enables an output at the top level to represent a wider range of
inputs, thus effectively expanding the receptive field (defined in the following) of
the network without increasing its depth and thus its parameters.
Thus, the rapidly increasing interest in TCNs pushes for investigating on accel-
eration for these networks. Especially in the embedded domain, where (near)
real-time analysis of sequences of data samples acquired by sensors is a common
case, accelerating this kind of workload on reconfigurable devices is a very ap-
pealing approach. While FPGA based inference accelerators for classic CNNs are
widespread, the literature is lacking in a quantitative evaluation of their usability
on inference for TCN models.

In the following, this chapter will show:

• An exploration of the capabilities of a state-of-the-art CNN inference accel-
erator [73] specifically enriched to provide the flexibility needed in TCNs, to

26
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support freely selectable kernel sizes and dilated convolutions, with freely
selectable dilation rates and stride values ;

• A performance evaluation (the first to the best of our knowledge) over various
benchmark TCNs, focusing on implementation on low-cost and low-power
all-programmable SoCs, more suitable for the integration of edge-computing
and IoT processing nodes, considering two widely accessible devices in the
Zynq and the Zynq Ultrascale+ families;

• A methodology for the optimal execution/scheduling of data-transfers ex-
ploiting the specific sequence-based structure of data in TCNs;

• A methodology for improving efficiency based on sample batching (sequence
buffering);

Results are reported on absolute execution time as well as on the efficiency of the
execution with respect to the peak performance imposed by the device resources.
Finally, the efficiency of the FPGA-based acceleration will be assessed, comparing
with software execution and with state of the art accelerators on bi-dimensional
CNNs.
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3.1 TCN model generalities

Time sequence modelling with artificial neural networks is historically associated
with Recurrent Neural Networks (RNNs) [28][108][36]. These types of networks
are dedicated sequence models that maintain a vector of hidden activations that
are propagated through the time where its state acts as a representation of what
has been seen so far in the sequence. Their memory capabilities leverage feed-
back loops. Thanks to decades of research efforts focusing on their improvement
and their applications, such networks are extremely popular and used with huge
success in language modelling [94][37][45] and machine translation [95][10]. How-
ever, there is common knowledge about difficulties associated with the training of
RNNs [14][79], partially moderated by the introduction of Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Units (GRUs). Their aim is to resolve RNN’s
training vanishing gradient problem introduced by feedback loops by simplify-
ing the network structure (GRU) or using memory cells in addition to standard
units (LSTM) [21]. In the end, however, they still exhibit an inherent complex-
ity. This has driven the research of alternative solutions to RNN, often focusing
on convolution-based operators. A very promising alternative approach is based
on TCNs. In [13], authors propose a thorough comparison between TCNs and
recurrent architectures on benchmarks commonly used to assess RNN variants.
Although highlighting some potential disadvantages of TCNs, such as requiring
more memory than RNN during inference and being less prone to the applica-
tion of transfer learning techniques, authors define several key advantages that
can be exploited during network design and training, such as, for example, inher-
ent parallelism to be exploited to speed-up computation, adaptability to different
domains requiring different memory requirements, and stability of the gradient
during training.

3.1.1 Mono-dimensional dilated convolution

A dilated convolution operation F on element s of a sequence [13] can be defined
as:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (3.1)

where x ∈ Rn is a 1-D input sequence, f : {0, ..., k − 1} ∈ R is a kernel of size
k and d is the dilation rate.

The sequence of samples that constitute the input of a TCN can be processed
both off-line or in real-time streaming. The second case is very useful in appli-
cation cases requiring continuous analysis of the input sequence, e.g. aimed at
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t
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Figure 3.1: TCN execution graph. For this example, see (3.2), receptivefield =
1 + (2− 1)× 1 + (3− 1)× 2 + (4− 1)× 3 = 15

the identification of specific events and/or at promptly closing the loop on data-
triggered actuations. This implies that the sequence must be analyzed at every
time step, after being updated with a new sample. It is possible to identify the
minimal sequence size to produce a valuable output sample as the receptive field
that depends on convolutional layer parameters such as the kernel size and the
dilation rate:

receptivefield = 1 +
L∑
l=1

[k(l)− 1]× d(l) (3.2)

where l ∈ 1, 2...L is a layer of the network. This can be thought of as a sliding
processing window for the input sequence.

Figure 3.1 highlights and generalizes these concepts. In particular, for the fic-
titious network shown, dilation rates increase linearly through the depth of the
network, although it is common practice to use an exponentially growing value
[13],[66],[99]. This is probably a property inherited from signal processing elab-
oration [47],[27],[90], but it can be generalized [116]. It is worth noticing that
increasing the dilation parameter leads to an increase of the network’s memory
without affecting its depth.
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3.2 TCN supporting hardware features

In order to support TCN execution, the NEURAghe CPS IP has been enhanced
with new features to improve flexibility. This required substantial modification of
the Convolution Engine (CE), and an improvement of the circuitry and procedures
managing transfers to/from the DDR memory.

As seen in Section 1.4, in its original version, each MAC module inside the
CE was composed of a multi-trellis cascade structure of DSP slices, optimized to
execute convolutions featuring a fixed range of kernel shapes. Different shapes
and sizes of the kernel had to be implemented reusing the MAC module over
time to compose bigger kernels or underutilizing it to implement smaller ones,
resulting in significant performance loss. Such an organization fits well with CNNs,
where kernel sizes are usually square and selected among a quite limited number
of options. In TCNs, the variability is higher. Thus, MAC modules have to
be re-designed to be more flexible, as described in more detail in Section 3.2.1.
Moreover, to efficiently deal with bi-dimensional windows of pixels, as it is common
in CNNs, pixel loading in [73] was implemented using a line buffer at each input
port of the CE. In this way, several lines of pixels are stored in the buffer and every
pixel loaded by the accelerator enables a new convolution at every cycle. This,
unfortunately, makes the implementation of dilation and strides complicated, thus
it is not a good practice for TCNs, that require very often highly variable strides
and dilation rates. Thus, we have modified the memory access circuitry, depriving
activation source of line buffers and adding flexible and programmable memory
management modules, that are described in more detail in Section 3.2.2. In order
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to increase the bandwidth to external memory, we have also added a second Weight
DMA (WDMA) unit. The two WDMAs work simultaneously sharing the load of
weight transfer needed by each computational phase. Finally, we have adapted
the scheduling of DMA transfers and convolutions, implemented in the previously
mentioned middleware, to the characteristics of TCNs, considering each layer’s
receptive field to determine the number of samples and weights that have to be
transferred for every CE activation, as described in more detail in Section 3.2.3
and 3.2.4. Considering what said above, the CE has to be designed according to
the following accelerator principles:

• It has to be kernel size agnostic;

• It must execute convolutions with multiple stride values without performance
overhead;

• It must support freely selectable dilation values.

3.2.1 Freely selectable kernel sizes

To support arbitrary kernel sizes, every DSP cell is dedicated to an entire convo-
lution kernel computation, reusing it over a number of cycles depending on the
kernel size. A new sample of the output feature under production is thus produced
after kernel size cycles and is ready to be sent to the Shift Adder module. Using
one single DSP cell per kernel can easily require the instantiation of a very high
number of SoPs, with the aim of exploiting as many resources as possible among
those available on the target device. To keep the MAC Matrix growth feasible,
SoPs are designed to be composed of 4 Xilinx DSP48E primitives, performing
4 MACs/cycle, operating in parallel on 4 different 16-bit samples, as visualized
in Figure 3.3, from 4 neighbour convolution windows in an input feature.

DSPDSPDSPDSP

Input samples

Kerne size = 3 

Output samples

SoP
0000 1111 2222

4 MACs/cycle for 3 cycles 

Figure 3.3: SoP elaboration scheme

Figure 3.4b represents the organization of a SoP. Considering the template in
Figure 3.4a (already presented in Section 1.4), the MAC Matrix implementation
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requires a deterministic number of DSP48E primitives, as indicated by Equation
3.3.

NDSPs = Nrows ×Ncols × 4 (3.3)
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Figure 3.4: MAC Matrix (a) and Sum of Product Unit (b)

3.2.2 Flexible activations and weights fetching

To enable arbitrary stride and dilation values, the fetching of input samples from
the internal memory has been designed to be very flexible. Figure 3.5 shows
such an organization. Each CE port dedicated to input samples is endowed with
a programmable Activation Source module, while weight kernels are fetched from
Weight Memory banks by means of Weights Source modules. Such source modules
can be programmed at start-up according to stride, dilation, aspect ratio and size
of activations and weight kernels. Fetching of bi-dimensional memory sections is
enabled, to support generic CNN execution.
The memory subsystem has been designed to enable conflict-less loading of neigh-
bour convolution windows, in the following manner. The Activation Source module
controls Ncols ports of the convolution engine. Each one loads samples from a ded-
icated Block-RAM (BRAM) module. Considering that four samples, belonging to
different windows, can be loaded in the same cycle, to support stride values up
to 3 samples, each module of the activation memory has to be composed of at
least 8 different independently accessible RAMB18 modules. Figure 3.6 represents
an example where a different configuration of RAMB18 modules can determine a
conflict.



3 | TCN inference optimization on FPGA-based accelerator 33

A
ct

iv
at

io
n

so
u

rc
e

In
p

u
t 

A
ct

iv
at

io
n

 
M

em
o

ry
 R

eg
io

n

Memory mapped regs
kernel_size

dilation
stride

feat_width

feat_height

feat_size
base_addr

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

0 1 2 3 4 5 6 7

BRAM MOD 0

re
q

_n
co

l-
1

 [
4

]

ad
d

r_
n

co
l-

1
 [

4
][

3
2

]
d

at
a_

n
co

l-
1

 [
4

][
1

6
]

re
q

_0
 [

4
]

ad
d

r_
0

 [
4

][
3

2
]

d
at

a_
0

 [
4

][
1

6
]

NCOL

Convolution Engine

Weight source

Mem mapped regs
kernel_size

Address 
Genbase_addr

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

0 1 2 3 4 5 6 7

BRAM MOD ncol-1

req_0

addr_0 [32]
data_0 [16]

Weight Memory region

NROW x NCOL R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

req_nrow*ncol-1

addr_nrow*ncol-1 [32]
data_nrow*ncol-1 [16]

Pa
rt

ia
l r

es
u

lt
s

so
u

rc
e

O
u

tp
u

t 
M

em
o

ry
 R

eg
io

n

Mem mapped regs

feat_width
feat_height

feat_size
base_addr

re
q

_n
ro

w
-1

ad
d

r_
n

ro
w

-1
 [

3
2

]
d

at
a_

n
ro

w
-1

 [
6

4
]

re
q

_0

ad
d

r_
0

 [
3

2
]

d
at

a_
0

 [
6

4
]

NROW
R

A
M

B
1

8
R

A
M

B
1

8
R

A
M

B
1

8
R

A
M

B
1

8

BRAM MOD nrow-1

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

BRAM MOD 0

Address 
Gen

Address 
Gen

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

BRAM MOD 2nrow-1

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

BRAM MOD nrow
O

u
tp

u
t

si
n

k

Mem mapped regs

feat_width
feat_height

feat_size
base_addr

re
q

_n
ro

w

ad
d

r_
n

ro
w

[3
2

]
d

at
a_

n
ro

w
[6

4
]

NROW

Address 
Gen

re
q

_2
n

ro
w

-1

ad
d

r_
2

n
ro

w
-1

 [
3

2
]

d
at

a_
2

n
ro

w
-1

 [
6

4
]

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

R
A

M
B

1
8

Figure 3.5: CE memory transfers configuration. Communication between memory
regions and CE is made by means of configurable source modules which have
access to BRAM modules through the exposed B-ports. Each source module can
be programmed according to layer characteristics and it is able to feed each SoP
Unit with 4 input samples/cycle from the Activation Memory Region and weight
kernel elements from Weight Memory Region, both composed by independently
accessible memory banks. Moreover, with the same behaviour, a source and a
sink module handle transfers from Output Memory Region by feeding Shift Adder
Modules with partially computed values from the previous step and storing actual
results.
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Figure 3.6: BRAM read conflict example. Samples are stored in BRAM modules
using interleaving. Consecutive samples are stored in adjacent RAMB18 banks. 4
DSP slices in a SoP unit, with stride 2, in the first cycle of the convolution, load
respectively samples 0,2,4,6. With four RAMB18 banks, samples 0-4 and 2-6 are
on the same bank, creating a conflict. The bottom part shows how the conflict is
avoided by doubling the number of banks.

A stride value of 3 is sufficient to support most of the TCN use-cases available
in literature. However, following the same method, this support could be further
extended. But that would have meant reconsidering the overall bank slices dis-
tribution depriving other sections of the design thus resulting in a smaller MAC
Matrix size and therefore a poor DSP utilization. Considering that a stride value
wider than 3 is very unlikely to be used in convolutional layers, we choose the
aforementioned configuration. Moreover, the Weight source module controls one
port per SoP in the matrix, which has to be implemented by at least one RAMB18
module.
Finally, the CE has a set of ports that are used to write results and to load
previously computed partial results, when a convolution requires to accumulate
over several accelerator operations. These ports are controlled by a Partial Result
Source module and by an Output Sink module. Each of these modules controls
Nrows ports, each one writing/reading four samples simultaneously. Thus BRAM
modules in the corresponding memory region are composed of at least 8 RAMB18
modules each.
Samples and weights, in the experiments presented in this work, are all using a
16-bit data format, thus RAMB18 modules are configured to expose two 16-bit
addressable ports and can be 1024 words deep.
Considering the described organization, a given architectural configuration requires
a number of RAMB18 primitives that can be deterministically estimated as indi-



3 | TCN inference optimization on FPGA-based accelerator 35

cated in Equation 3.4.

NBRAMs = Nrows ×Ncols +Ncols × 8 + (Nrows × 2)× 8 + 32 (3.4)

The first component corresponds to weight memory, the second to the modules
storing input activations, the third to output and partial results memories. 32
blocks are used to implement the RISC-V scheduler instruction memory and pri-
vate memory.

3.2.3 TCN support in firmware

As depicted in Section 1.4, from the software point of view, the execution model in
NEURAghe leverages the cooperation between the ARM-based processing system
and the RISC-V soft-core implemented in the programmable logic. When the CSP
has to be used, the program in the PS sends commands describing the layer to be
executed. The RISC-V soft-core decodes the command and decomposes the layer
in sub-operations, namely partial convolutions in the accelerator and data transfers
from/to the off-chip memory, executing an optimized firmware which is also coded
in C. The firmware uses a double-buffering technique, to allow the accelerator
to overlap transfers phases with convolutions, reducing as much as possible idle
times in the CE to exploit the processing capabilities of DSP slices with maximum
efficiency.

When considering TCN executions, the previously described paradigm has to
be applied to the characteristics of the algorithm. For every Convolutional Layer
in a TCN, given its kernel size and a dilation, it is possible to consider a local
receptive field, indicated as RFlocal in Equation 3.5, that is the minimum amount
of layer’s input samples per channel needed to produce a valuable output sample.

RFlocal = 1 + (k − 1)× d (3.5)

RFlocal

New Sample

Layer N+1 (Kernel size = 2, Dilation = 2)Layer N (Kernel size = 2, Dilation = 3)

CE

DMA

TCDM

CE

DMA

TCDM

RFlocal

Figure 3.7: TCN execution on NEURAghe: batch size = 1

Figure 3.7 shows how input and output transfers are implemented for TCNs.
At every new time step, the input to a layer is updated by adding one new sample
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to the input features. In order to execute the layer, the firmware triggers Direct
Memory Access (DMA) transfers to load RFlocal samples per each input feature to
the activation input memory. After the execution, one output sample is produced
per output feature. Output samples are sent to DDR using an output DMA
transfer, to be stored until the next time step.

3.2.4 Improving through batch processing

Although the previous approach provides the minimum classification/recognition
latency, executing the network every time a new sample is available to update
the input sliding window, it can determine performance to be bandwidth limited.
This is because all network parameters/weights must be loaded for every layer. So,
despite the double-buffered scheduling strategy, transfer and computation phases
hardly overlap, affecting the operational intensity of the application. The roofline

Batch size = 1

Batch size = 8

Batch size = 348

1
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3 30 300
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P
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OPS/byte

C.S.P. Roofline Model

Figure 3.8: Use case benchmark’s Roofline Model for the Convolution Specific
Processor (12x4 MAC Matrix in Z-7020 SoC) with respect to different batch sizes

model in Figure 3.8 shows performance trends starting from the sample-by-sample
processing (leftmost red cross), on a use-case that will be presented in the following
section.

If the latency constraint is not extremely tight, it is possible to pre-buffer in-
put samples to process longer sample sequences (sample batching) and produce
more output with every execution. To implement such a strategy, sample acqui-
sition and sequence processing were decoupled using a buffer mechanism. For
example, an independent task, executed timely, e.g. triggered by a timer, can
acquire samples from a sensor and make them available inside an adequate buffer
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for further processing. Real-time execution, in this case, requires the processing
task to sustain a sufficient throughput to avoid a buffer overrun. Such a sample
batching mechanism takes profit from the fact that in sequence processing, differ-
ent execution of the network operates on successive snapshots of the same sliding
window, sharing part of the receptive field. Thus, every iteration reuses part of
the intermediate results produced in previous instants to derive the output of the
network. This can be exploited with adequate scheduling of the I/O data transfers
to improve efficiency. Figure 3.9 shows the transfer scheduling when batch size is
increased. As the batch size increases the architecture gets closer and closer to
the computational limit (rightmost red mark on the roofline plot of Figure 3.8)
because of the growing number of operations performed. This way, it is possible
to increase the utilization of computing resources and to gain efficiency. As it may
be noticed in Figure 3.8, when sample batch size is small, besides being on the
bandwidth-limited region of the plot, points in the roofline model are also distant
from the theoretically achievable performance. This is due to overheads related to
CE programming/warm-up, and to initial and final input/output transfers, which
cannot overlap with convolutions. The impact of this overhead is limited when
the operational intensity increases, reducing the distance between points and the
theoretical roofline model.

New Samples (B)

CE

DMA

TCDM

CE

DMA

TCDM

Layer N (Batch size = B) Layer N+1 (Batch size = B)

Figure 3.9: TCN execution on NEURAghe: batch size = B
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3.3 Hardware Implementation Evaluation

3.3.1 Design Space Exploration

A designer willing to use the NEURAghe template, on a given target SoC, has
multiple possible architectural configurations available. In order to perform a
careful selection, it is possible to perform a simple design space exploration and
to choose a near-optimal setup from the performance point of view. To select the
architectures presented in this chapter, a simple grid search was used. It evaluates
multiple configurations, featuring different values of Nrows and Ncols, to maximize
the number of SoPs, while keeping the number of used DSPs and BRAMs in
the range of availability imposed by the target SoC. Table 3.1 shows utilization
numbers estimated using the Equations 3.3 and 3.4. Light-grey coloured cells in
the table indicate which configurations are not implementable in a Xilinx XC7Z020
SoC, due to excessive DSP or BRAM utilization. Darker-coloured cells indicate
configurations that are not feasible in a Xilinx XCZU3EG device. After the design
space exploration, it is possible to select, for the considered target device, the
configurations that maximize the number of implementable MAC modules, and,
consequently, the peak performance of the architecture to be implemented, as the
red and blue full line circled configuration in Table 3.1. However, as will be shown
in the following, similar configurations with slightly lower utilization of the device
could sometimes be clocked at higher frequencies, compensating for a lower count
of MAC modules, as, for example, the dashed blue circled configuration in Table
3.1. An empirical evaluation of top design points in terms of maximum sustainable
frequency can be used to identify prospectively efficient alternatives among top-
utilization configurations.

3.3.2 Implementation on different SoCs

Architecture configurations have been implemented with different Convolution En-
gine’s MACMatrix shapes, selected after the DSE process, on two target platforms:
a Xilinx XC7Z020 and a Xilinx XCZU3EG featuring the Ultrascale+ technology.
For the XC7Z020 two configurations have been selected, featuring a similar number
of DSP slices and similar clock frequencies. Table 3.2 shows resource occupation
on the reconfigurable logic of a first configuration implemented on the XC7Z020,
featuring a 12×4 MAC matrix of SoP units, that can be clocked up to 120 MHz,
providing peak performance of 46 GOPS/s. Table 3.3 shows results related to a
similar configuration that integrates an 11×5 MAC matrix, using slightly more
DSPs but clockable up to 110 MHz, with a peak performance of 48.4 GOPS/s.
Finally, Table 3.4 describes the results of the implementation of a configuration,
featuring a 9×10 MAC matrix of SoP modules, on the XCZU3EG. This design
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Table 3.1: RAMB18 and DSP utilization in NEURAghe architecture with respect
to the MAC Matrix shape

Ncols

144 156 168 180 192 204 216 228 240
4

64 80 96 112 128 144 160 176 192
164 177 190 203 216 229 242 255 268

5
80 100 120 140 160 180 200 220 240
184 198 212 226 240 254 268 282 296

6

N
r
o
w
s

96 120 144 168 192 216 240 264 288
204 219 234 249 264 279 294 309 324

7
112 140 168 196 224 252 280 308 336
224 240 256 272 288 304 320 336 352

8
128 160 192 224 256 288 320 352 384
244 261 278 295 312 329 346 363 380

9
144 180 216 252 288 324 360 396 432
264 282 300 318 336 354 372 390 408

10
160 200 240 280 320 360 400 440 480
284 303 322 341 360 379 398 417 436

11
176 220 264 308 352 396 440 484 528
304 324 344 364 384 404 424 444 464

12
192 240 288 336 384 432 480 528 576

4 5 6 7 8 9 10 11 12

avail. avail. out of
RAMB18 DSP selected resources

XC7Z020 280 220
XCZU3EG 432 360

RAMB

DSP

uses all the DSP slices on the chip and can be clocked at 180 MHz, providing a
peak of 129.6 GOPS/s.
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Table 3.2: Resource occupation on a Xilinx XC7Z020 (12x4 MAC matrix)

DSP BRAM LUTs LUTs Regs
(logic) SR

Used 192 120 47230 259 26942
Available 220 140 53200 53200 106400

% 87.27 85.71 88.78 1.49 25.32

Table 3.3: Resource occupation on a Xilinx XC7Z020 (11x5 MAC matrix)

DSP BRAM LUTs LUTs Regs
(logic) SR

Used 220 128 42964 283 26962
Available 220 140 53200 53200 106400

% 100 91.4 80.76 1.63 25.34

Table 3.4: Resource occupation on a Xilinx XCZU3EG (9x10 MAC matrix)

DSP BRAM LUTs LUTs Regs
(logic) SR

Used 360 354 47857 159 26463
Available 360 432 70560 70560 141120

% 100 81.94 67.82 0.4 18.75
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3.4 Experimental Results

The actual level of performance reachable using the accelerator has been tested
on three different benchmarks, trying to cover the landscape of TCNs presented
in literature as much as possible:

• A plain TCN network for ECG monitoring and classification (Goodfellow et
al. [35]), that performs classification over single lead ECG waveforms and
reaches around 90% average accuracy, ECG in the following. This bench-
mark exposes real-time constraints and can be used to assess the usability
of our accelerator in this kind of context.

• A TCN for 3D human action recognition (Kim et al [62]), called hereafter
Res-TCN, based on residual units, with a structure taken from the Resnet
family [44]. In this TCN authors started from a 3D human action recognition
dataset with 3D full skeleton annotations to extract a 1D feature represen-
tation per frame resulting in a 150-dimensional vector. Applications for this
kind of task range from video surveillance, robotics and skill evaluation.

• A more complex network, based on WaveNet (Van Den Oord et al. [99]), for
Polyphonic Note Transcription of Time-Domain Audio Signal [71] (WN-PNT
in the following).

Each of these tasks, depending on the application context, may require a near
sensor data processing. As it happens, for example, in ECG monitoring devices
or in video surveillance that pose a privacy issue for which network data sharing
is discouraged, or in robotics, where latency for cloud data offload could not be
tolerable.

Three system implementations using NEURAghe have been considered, two of
them, 11×5 and 12×4, implemented on a Zedboard development board featuring
the XC7Z020 SoC, and one implemented on the Ultra96 development board fea-
turing the XCZU3EG MPSoC, with the MAC matrix respectively clocked at 70
MHz, 80 MHz and at 180 MHz, selected to match the speed-grade of the device
available on the development boards. For each implementation of each bench-
mark, performance efficiency has been reported computed as the ratio between
measured performance and the peak performance theoretically achievable by the
specific configuration (depending on the number of MACs and clock frequency).
Single-layer efficiency and average efficiency for the whole network will be shown.

Table 3.5 shows the comparison between on-chip memory capabilities for each
system implementation and the memory footprint of each use-case network that
involves the overall occupation of weight kernels and input features through all
layers, considering the sample batch size values that will be used in the following
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subsections. As it may be noticed, all the networks must be adequately managed
with the scheduling strategy presented in section 3.2.3, since their activation and
weight memory footprint exceeds the memory available on the considered low-cost
hardware platforms.

Table 3.5: Implementation related on-chip memory capabilities and use-case net-
works memory footprint

input features [kB] weight kernels [kB]
12x4 on XC7Z020
on-chip memory

192 96

11x5 on XC7Z020
on-chip memory

176 110

9x10 on XCZU3EG
on-chip memory

144 180

ECG: B=1 B=8 B=348
memory footprint 216,8 250,8 1696,5 11495,6

Res-TCN: B=1 B=144
memory footprint 37,3 511,5 5424,8

WN-PTN: B=1 B=504
memory footprint 553,5 5846,49 3328,8
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3.4.1 ECG classification use-case

The network consists of several computational blocks made of a 1D Convolutional
layer, a batch normalization layer, a ReLU, a pooling layer and a dropout stage.
Layers are followed by a Global Average Pooling and a Softmax function. The
network operates on streams of 16-bit samples, acquired at 300 Hz frequency.

Table 3.6: Convolutional Layer characteristics for Network ECG [35]

type 1 type 2 type 3 type 4 type 5 type 6 type 7 type 8
inputfeatures 1 320 256 256 128 128 128 64
outputfeatures 320 256 256 128 128 128 64 64
Kernel size 24 16 16 8 8 8 8 8
dilation rate 1 2 4 4 6 8 8 8

We have assessed three different operating modes:

• minimum latency mode,

• maximum throughput mode,

• real-time execution.

The first one provides classification in output after minimum latency. The network
is executed as soon as possible per every input sample. In the second operating
mode, sample batching is used extensively, to maximize throughput without con-
sidering latency as an optimization objective. In the third mode, sample batching
is exploited just enough to reach a throughput that allows respecting the real-time
constraint posed by the input sampling frequency (300 Hz).

Figure 3.10 shows the performance achieved on this benchmark by configura-
tions implemented on the Zedboard and the Ultra96-V2, while Figure 3.11 shows
execution times. As expected, without sample batching, performance is signifi-
cantly bandwidth-limited. In minimum latency mode (B = 1), efficiency is very
low for every layer, and consequently on the whole network. DSPs have very long
idle times and actual performance is very far from the peak. Execution time is
around 17 ms with the 12×4 matrix, a bit higher with the 11×5 (20,6 ms), while
the fastest version is the 9×10 (7,58 ms) due to the higher clock frequency and
the higher number of SoP modules.

To design the maximum throughput mode, an iterative test exploiting different
batch size values was performed, in order to identify the values saturating the ben-
efits achievable with sample batching. For this benchmark, such value is B=348,
corresponding to a latency of around 1.2s. In this case, all configurations can op-
erate very near to the peak performance, with an average efficiency of around 0.9
and a best per-layer efficiency of 0.96 achieved by the 12×4 configuration. Some
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Figure 3.10: Efficiency trend on ECG [35] for different batch sizes for NEURAghe 12×4
and 11×5 MAC matrix configurations in XC7Z020 and 9×10 MAC Matrix configuration
in XCZU3EG

layers, especially Type 1, are still less efficient, however, their contribution to the
overall execution time is limited. In maximum throughput mode, for the XC7Z020
implementations, each network execution takes around 140 ms, producing in out-
put classification of 348 sample consecutive sample sequences, corresponding to
one sample every 0.4ms, while for the XCZU3EG execution time is 34.5 ms corre-
sponding to around 0.1 ms per sample.

Finally, the real-time constraint requires processing one sequence in less than
3.3ms. To design the real-time operating mode, by exploring the batch size, B = 8
is identified to be the lowest value enabling compliance on such requirements in
XC7Z020 cases. Execution time is around 17 ms, corresponding to around 2 ms
per sample. The XCZU3EG implementation can use B = 4.

Since 12×4 is more efficient than 11×5 in all modes, in this case, higher fre-
quency is more important than the number of MACs, due to better utilization
with the specific layer characteristics (the matrix is partially unused in the final
operations of a convolution when the number of output features is not a multiple
of 5).
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Figure 3.11: Execution Time comparison on ECG [35] for NEURAghe (a): 12×4
and 11×5 MAC matrix configurations in XC7Z020 and (b): 9×10 MAC Matrix
configuration in XCZU3EG
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3.4.2 Res-TCN use-case

This use case considers the execution of the network presented in [62], made of
stacked units, composed of 1D convolutions, batch normalization and ReLU layers
featuring a residual connection, ending with a Global Average Pooling layer and
a Softmax function. Table 3.7 shows the characteristics of the different types of
Convolutional Layers in the network.

Table 3.7: Convolutional Layer characteristics for Res-TCN [62]

type 1 type 2 type 3 type 4 type 5 type 6
inputfeatures 150 64 64 128 128 256
outputfeatures 64 64 128 128 256 256
Kernel size 8 8 8 8 8 8

stride 1 1 2 1 2 1

Figure 3.12 shows efficiency and execution time on this benchmark, highlighting
contributions of the single layers. Its behaviour is similar to the ECG use case on
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Figure 3.12: Efficiency trend on Res-TCN [62] for different batch sizes for NEURAghe
12×4 and 11×5 MAC matrix configurations in XC7Z020 and 9×10 MAC Matrix config-
uration in XCZU3EG

both boards. Executing the processing after each sample (B = 1), the efficiency is
very limited for all the layers. Increasing B, the accelerator provides much better
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throughput. The layers executed less efficiently are the early layers, especially
the first type, that pays for a significant under-utilization of the MAC Matrix,
due to the low number of input features. However, its contribution to the overall
efficiency is marginal. Layers that show longer execution time are placed at the
end of the TCN graph. These layers account for the highest contribution to the
overall workload and, as shown in Figure 3.12, are executed quite efficiently (0.86
as the best per-layer value in 12× 4 configuration) when sample batching is used
(B = 144). Sample batching is more effective on the Zedboard, which integrates
a MAC Matrix with less input and output ports, thus requiring longer runs to
complete convolution, which reduces the impact of data transfer and accelerator
warm-up overheads.
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Figure 3.13: Execution Time comparison on Res-TCN [62] for different batch sizes
for NEURAghe 12×4 and 11×5 MAC matrix configurations in XC7Z020 and 9×10
MAC Matrix configuration in XCZU3EG



3 | TCN inference optimization on FPGA-based accelerator 48

3.4.3 WN-PNT use-case

This case considers a network derived from WaveNet (Van Den Oord et al. [99]) for
Polyphonic Note Transcription of Time-Domain Audio Signal [71]. It is made of
20 stacked blocks composed by a 1×1 skip connection and a Dilated Convolutional
block of 128 channels each, interspersed with a sigmoid and a tanh funcions and
featuring a residual connection between subsequent blocks. Filter Size is 2 and the
dilation factor grows at 2k where the residual block index k ∈ {0, 1, 2...9, 0, 1, 2...9}.
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Figure 3.14: Efficiency trend on WN-PNT [71] for different batch sizes for
NEURAghe 9x10 matrix configuration in XCZU3EG

This case is especially challenging, due to the small size of kernels
(kernel size = 2 in most layers) and because the sample acquisition frequency
is 16KHz, posing tight constraints on the real-time execution. Thus the focus is
given on the Ultra-96 board, relying on its higher clock frequency to achieve the
required throughput. As may be noticed in Figure 3.14, in general, this use case is
executed less efficiently on the platform, none of the layers reaches more than 0.56
efficiency. This is because the execution of the actual convolution kernels takes
only two cycles and thus hardly overlaps with input data transfers. Batch size
can be used to increase the reuse of weights, once they are loaded to the weight
memory region, but at the same time, has an impact on the duration of input and
output transfers. To compensate for this issue, considering that the total size of
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the local receptive fields in the network allows for the continuous storage on the
on-chip memory for almost all layers (except for types 8, 9 and 10), the schedul-
ing described in Figure 1.8 has been slightly modified. In this use case, transfers
to/from DDR involve only new output/input samples, while keeping the rest of
the local receptive fields in the on-chip memory. As shown in Figure 3.15, using
B = 504 we can process 504 samples in around 19ms, thus respecting the real-time
constraint required by the use-case.
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3.4.4 Assessment of hardware vs. software speed-up

To evaluate the benefits obtained by FPGA acceleration, the execution of the
convolution-related load of the three benchmarks on NEURAghe has been com-
pared with two other software-programmable processing systems. The first selected
term of comparison is the execution on an A53 quad-core ARM processor, using
the ARM Compute Library optimized functions to implement convolution layers1.
As it may be noticed, NEURAghe provides up to 10.8x, 10.4x and 5.7x speed-up
on the three reference benchmarks with respect to the A53, and considering the
power consumption of the two platforms (around 0.9 W for the A53 cores and
around 3.3 W for NEURAghe2), PL-based acceleration provides an improvement,
in terms of power efficiency, corresponding to 33,8 GOPS/s/W , 25,3 GOPS/s/W
and 15 GOPS/s/W (around 3.5x, 3x and 2x with respect to A53) respectively.
The term for comparison has been the Jetson Nano, a GPU-endowed System-on-
Module, featuring an NVIDIA Maxwell GPU and a Quad-core ARM Cortex-A573.
Figure 3.16a shows that Jetson Nano outperforms NEURAghe in terms of abso-
lute performance (around 2x speed-up) on the ECG net benchmark, which exposes
higher operational intensity, mainly due to its higher clock frequency. On the other
hand, execution times on the remaining two benchmarks are comparable. Consid-
ering the module power consumption, which ranges from around 4W to around
7W depending on the Jetson Nano utilization in a specific layer, NEURAghe still
provides higher power efficiency, up to around 2x for WN-PTN. While this experi-
ment confirms that a significant gap exists in terms of overall performance, between
the two compared platforms, it also confirms that in some specific benchmarks,
improvement of hardware flexibility and data loading strategies may compensate

1Since ARM-CL does not support dilated 1D convolution, for the sake of comparison, the
evaluated execution time on the A53 on analogous convolution layers has been done without
dilation. Considering that in dilated convolutions input samples are not adjacent in memory, the
exploitation of the vector processing in the ARM-CL could be sub-optimal, thus the execution
time reported in Figure 3.16a for the A53 could be underestimated. Our software implementation
(unoptimized) of a dilated convolution performs one order of magnitude slower than what is
reported for ARM-CL.

2Power consumption for the APSoC has been evaluated using Xilinx Power Evaluator, fed
with resource utilization numbers coming from Vivado after the implementation and switching
activity figures obtained by RTL-simulation on Mentor QuestaSim. NEURAghe configurations
implemented on the Xilinx XC7Z020, with a 12x4 and 11x5 MAC Matrix, have a power con-
sumption of 2.85 W and 2.91 W respectively.

3The execution time has been measured executing Conv layers in the reference benchmarks as
ONNX [11] operators, using the trtexec utility provided in https://github.com/NVIDIA/Tensor
RT. Power has been measured accessing the INA3221 power monitor available on the module and
by considering tensors in input to layers to be sized according to the proposed sample batching
method, to compare over the same number of operations. Time and power consumption values
result from an average of 40 successive executions.

https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT
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for this gap. Moreover, opening TCNs to FPGA-based acceleration will prospec-
tively enable some of the advantages that reconfigurable devices usually provide
with respect to GPUs, such as exploitation of custom data formats and aggressive
quantization.
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Figure 3.16: Execution time and power efficiency comparison between software
execution on a Cortex-A53 quad-core and NEURAghe (XCZU3EG).
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3.4.5 Comparison to other APSoC based accelerators

As mentioned, the literature is lacking TCN evaluations on FPGA-based acceler-
ators. The only attempt available at the time of the work depicted in this chapter
was that of Hussain et al. [49], which is strictly customized for an autoregressive
TCN and is implemented on a high-end board not usable in the embedded domain.
However, the design of the TCN-supporting version of NEURAghe considers the
compatibility with 2D convolutions for classic CNN acceleration. Moreover, the
improved flexibility of the architecture, in terms of kernel size and stride, allows
for some improvements with respect to other approaches in the literature targeting
low-to-mid-end all-programmable SoCs. Table 3.8 reports comparative results with
the state-of-the-art on two well-known networks for image classification, ResNet-18
and VGG-16, and to other accelerator architectures, (including the version pre-
sented in Chapter 2) [89] and [102], that are implemented on the same kind of
hardware and use the same 16-bit data precision4. On VGG-16, which exposes
quite regular kernel sizes and stride values, this work shows comparable perfor-
mance with respect to the alternatives. It executes convolutions slightly faster than
the accelerator version presented in Chapter 2 and the work in [89] and around
13% slower than [102]. On ResNet-18, which exposes more variable kernel sizes
and strides, a lot of overheads that must be paid by more static architectures can
be reduced, executing the whole convolution workload 40% faster than the version
in Chapter 2.

Table 3.8: Comparison between NEURAghe version describend in this chapter
(NEURAghe TCN), the previous version (Chapter 2) and other works on ResNet-
18 and VGG-16. Xilinx XC7Z020

NEURAghe NEURAghe NEURAghe NEURAghe
TCN Chap.2 TCN Chap.2 [102] [89]

ResNet-18 VGG-16
Xilinx Zynq SoC XC7Z020 XC7Z020 XC7Z020 XC7Z020 XC7Z020 XC7Z020

Freq. [MHz] 120 120 120 120 125 150
GOPS/s 26,5 16,1 42,62 42.48 48.53 31.38

4Comparison concerns implementation on XC7Z020 only as it was one of the target SoC for
the referenced works and also the NEURAghe version depicted in Chapter 2
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3.5 Summary

This chapter presents the improvements made to the accelerator architecture
NEURAghe, in supporting Temporal Convolutional Networks. To serve this spe-
cific computing pattern some features have been introduced, such as the capability
of supporting arbitrary kernel size, dilation rate and stride values without over-
head. We show also how data transfers from-to off-chip memory can be managed
in TCNs and how performance improves by changing the computational paradigm,
going from a latency constrained approach to a batched approach, that trades off
latency for throughput. This method has been applied to three notable TCNs and
uses two different SoCs as a target, analyzing throughput, latency and efficiency
results, and the capabilities of the system to respect real-time constraints. Results
show that using sample batching, it is possible to achieve efficiency up to 0.96,
0.86 and 0.57 on the three use-cases, with respect to the peak achievable by each
configuration. In the two use-cases with real-time requirements, adequate sample
batching can be used to achieve sufficient throughput to timely process all input
samples. Comparing the execution of the use-cases on a Cortex A53 quad-core
and on an NVIDIA Maxwell GPU, to evaluate the achievable speedup, it is pos-
sible to notice, with respect to the first, up to 10x execution time reduction, in
NEURAghe, with an improvement in power efficiency that ranges from 2x to 3.5x
depending on the benchmark and, for the second, a power efficiency improvement
up to around 2x, despite NEURAghe being outperformed in terms of absolute
performance. Finally, the compatibility evaluation of proposed architectural so-
lutions with state-of-the-art CNNs used in the image processing domain shows
similar performance with respect to CNN-targeting alternatives when regular net-
work topologies are targeted and showing up 40% improvement when targeting
more irregular patterns.
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As seen in the introductory chapters, the high computing intensity required from
classical CNNs justified the development of specific platforms to support their
execution. However, the deployment of such networks in tiny embedded devices
is often not an easy task. Recent approaches for edge-oriented and mobile ap-
plications seek to reduce the number of network parameters, i.e. its memory
footprint, fostering the development of different types of convolution schemes.
Following this trend, a new group of networks, called LightWeight CNNs (LW-
CNNs) ([20, 51, 48, 84, 97]), emerge with the advantages of faster inference time
and smaller model sizes compared with conventional CNNs. While LW-CNNs
dramatically cut down on the model size, they also introduce new operators, like
Depthwise Separable convolutions and Inverted Residual blocks (MBConv) which
bring with them an intrinsic inefficiency when processed by conventional CNN
accelerators.

In the following subsection, we will explore possible non-invasive solutions to
adapt the NEURAghe architectural template towards the Depthwise Separable
convolution support. Subsequently, we change the traditional convolutional pat-
tern while designing a new IP to support the Depthwise separable operator and
MBConv. Results show how this new pattern allows reaching better efficiency
with respect to the theoretical peak performance achievable compared to the non-
invasive solutions.

54
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4.1 Depthwise Separable Convolution and MB-

Conv

Depthwise separable convolution (DW Sep) is a form of factorized convolutions
that factorize a standard convolution into a depthwise convolution and a 1 × 1
convolution called a pointwise convolution (PW).

While in a standard convolution the two phases of filtering and combining
inputs in a new set of outputs are done in one step, as already shown in Section
1.2 (Figure 1.1), in a DW Sep convolution these phases are separated, resulting in
two layers (Figure 4.1).
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Figure 4.1: Depthwise Separable Convolution

In the first one, a filter is applied to each input channel (I CH), without any
summation, resulting in an output feature with no changes in depth. The second is
substantially a standard convolution with output channel (O CH) set of filters of
size 1×1×I CH, used to create a linear combination of the output of the depthwise
layer, generally increasing the number of channels. The advantage in using this
decomposition is in the reduced computational cost and a reduced number of
parameters.

A standard convolution layer takes as input a IH×IW×I CH feature map and
produces a OH×OW×O CH feature map by applying aKS×KS×I CH×O CH
convolution kernel, where IH × IW and OH ×OW are the height and the width
of the input and output feature and KS ×KS are the filter size, while I CH and
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O CH are their depth. In this case, the computational cost is:

OH ×OW × I CH ×KS ×KS ×O CH (4.1)

In a Depthwise Separable Convolution the depthwise phase has a computational
cost of OH × OW × I CH ×KS ×KS, while the pointwise phase has a cost of
OH ×OW × I CH × 1× 1×O CH, resulting in:

OH ×OW × I CH × (KS ×KS +O CH) (4.2)

which leads to a computational cost reduction of:

OH ×OW × I CH × (KS ×KS +O CH)

OH ×OW × I CH ×KS ×KS ×O CH
=

1

O CH
+

1

KS ×KS
(4.3)

Moreover, the number of parameters goes from KS × KS × I CH × O CH
to I CH × (KS × KS + O CH). Given these characteristics, if properly used,
this technique could lead to the above-mentioned advantages with only a small
reduction in accuracy ([48]).

MobilNetV2 [84] is an example of such a lightweight model. It relies on partic-
ular layers called Inverted Residual blocks or Mobile Bottleneck layers (MBConv)
which is a configuration where a DW Sep layer is preceded by a PW step.

Following this trend, the possibility of including this functionality directly
within the architecture shown in previous chapters, with a few modifications has
been assessed. As it will be shown, due to its own configuration, handling DW Sep
offloading on the described configuration would not be particularly advantageous
(Section 4.2).

With the aim of exploiting the advantages of MBConv layer (and DW Sep
layer if required), while trying to avoid such inefficiencies, we design a new IP that
specifically supports these types of layers, resulting in an architectural template
for MBConv acceleration with a design-time selectable functionality. Moreover, we
introduce a scheduling scheme that maximises the use of Digital Signal Processing
Slices, especially when working on the PW phase.
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4.2 Exploring unobtrusive solutions

For a Depthwise separable convolution implementation in NEURAghe this op-
eration could be considered in its double phase nature: a depthwise phase and a
pointwise phase. The second one is a standard convolution with mono-dimensional
kernel size and it is already supported. For the depthwise phase, without introduc-
ing too much congestion through new hardware components, NEURAghe manage-
ment could be performed as shown in Figure 4.2. In particular, for each processing
phase, a batch of N COL input features and weight kernels feeds the MAC ma-
trix and produces N COL output feature ready to be stored back without further
elaboration.
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Figure 4.2: NEURAghe DW phase handling

Unfortunately, although this method introduces very few modifications, it leads
to a poor MACMatrix utilization that will result in very poor performance. To face
this problem with non-invasive modifications, we identified two possible solutions.
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First Solution: SoPs re-configuration

Trying to exploit reuse made possible by the DW Sep convolution with both
phases, NEURAghe and in particular, its MAC Matrix can be slightly reorga-
nized, introducing a few modifications to be activated while processing these types
of layers. One possible solution is the one summarized in Figure 4.3. As shown,
each Sum of Product unit could be equipped with some more logic to let the ma-
trix manage different execution phases. The bottom of the figure shows a possible
operation scheduling.
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Figure 4.3: Exploiting depthwise separable reuse in NEURAghe: full matrix

At first, N COL input features and depthwise weight kernels are loaded into
activation and weight memory banks ready to feed the matrix. Originally, each
SoP that belongs to a column was fed with the same input feature so that it was
possible to calculate its contribution to N ROW output features. In the case of
depthwise convolution, each input feature contributes to just one output feature
of the depthwise layer. In this case, without introducing further hardware compli-
cations, it is possible to spread the same N COL input feature to each row of a
column. Once the data are loaded, the depthwise execution phase can start. For
each column (feature), NEURAghe will take KS×KS cycles to produce 4 samples
by applying four depthwise convolution kernels to four adjacent convolution win-
dows. To avoid an immediate store and a future re-load, each new sample, once
ready, could be saved in a SoP inner register in charge to re-feed the DSP during
the pointwise phase. To this aim, simultaneously with the depthwise execution,
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a batch of pointwise kernels can be loaded in weight memory and then used to
calculate the contribution of the 4 registered samples to other 4 samples belonging
to a number of OG composed by N ROW output features, in the way the MAC
matrix is already able to do.

This process must be repeated for each different N COL group of input fea-
tures to obtain their overall contribution to the output groups of N ROW output
features and then iterated for other groups until all output features have been ob-
tained. Despite the high resource utilization, this method implies some drawbacks.
For example, during the depthwise phase, although all SoPs are active, their only
effective contribution is limited to a row of N COL, because others are performing
the same operation on the same data. This results in KS ×KS inactivity cycles
for (N ROW − 1) × N COL SoPs which returns OW×OH

4
times for the number

of N COL groups of input feature and for each of the OG groups composed by
N ROW output features.
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Second Solution: SoPs partial re-configuration

Another possibility is shown in Figure 4.4. The idea, when a DW Sep layer must
be processed, is to split the matrix up into two parts and dedicate a row to the
depthwise phase while the rest of the matrix is for the pointwise phase. In this
case, only N COL SoPs must be modified to manage depthwise sample buffering
and propagation towards the sub-matrix so that it can calculate their contribution
to N ROW − 1 output samples.
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Figure 4.4: Exploiting depthwise separable reuse in NEURAghe: DW sub-matrix

The scheduling of the operations starts the same way as in the previous solution.
Once the first depthwise samples have been calculated by the N COL SoPs, they
must be stored in a queue (the reason will be clarified in a while) from which
they can feed the sub-matrix for pointwise convolution. After that, both a new
depthwise and pointwise processing can start. The first one has a duration of
KS × KS cycles while the second lasts OG cycles. If OG = KS × KS then
the execution iterates with the full matrix active until all the groups of N COL
have been processed to calculate their contribution to OG groups composed by
N ROW − 1 output features (last cycles concern only remaining OG pointwise
operations).

Otherwise, if OG ̸= KS × KS, another group of cycles must be taken into
account. The first one is forKS×KS > OG, in which there will beKS×KS−OG
cycles where only N COL SoPs are active and the sub-matrix must wait. The
second is for KS × KS < OG in which there will be OG − KS × KS cycles in
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which the depthwise N COL SoPs can start processing the following samples to
be stored in the queue. The depth of the queue is given by OG

KS×KS
rounded up to

the first integer.
For this last solution, there will be the whole matrix active except for the final

queued samples to be processed. In both cases, an MBConv layer execution is fully
supported if a PW phase execution precedes the DW Sep execution as depicted
above.

Unfortunately, even if these solutions seem to be a good trade-off between adap-
tivity (with the pre-existing hardware) and execution capabilities, they hide some
drawbacks from the maximum performance with respect to the peak achievable by
the architecture. Indeed, apart from MAC Matrix under-utilization in the depth-
wise phase, there is an inherent inefficiency in the pointwise phase handling if
compared to a convolution with an n × n kernel. Surely for a 1 × 1 convolution
kernel transfers are faster compared to an n×n, but the consumption rate is faster
too as the number of operations is smaller: 1

2×n×n
. Besides, considering the DSP

utilization, their capabilities are halved as the pointwise phase does not need an
inter-kernel accumulation so only the multiplication part of a MAC operation is
used. All this leads to a situation where the global per-layer execution time is
faster if compared with its equivalent with a standard convolution but it still re-
sults in poor efficiency due to the available processing power under-utilization and
the shorter amount of time elapsed in a computation phase which is not able to
overlap transfer phases and architectural overheads. The situation will not improve
considering an MBConv layer, namely an additional pointwise phase with its own
transfers between internal and external memory. Table 4.1 shows MobileNet-V2
MB Conv layer characteristics with their multiplicity, feature dimensions, kernel
size for the DW phase, input and output channels and stride. Each layer is iden-
tified by: (IN-chan) (DW-chan) (OUT-chan) where DW-chan is the number of
channels for the DW phase.

Table 4.1: MobileNet-V2 MBConv layer characteristics

kernel output
input size channels # stride

32 32 16 1122 × 32 3 16 1 1

16 96 24 1122 × 16 3 24 2 2

24 144 32 562 × 32 3 32 3 2

32 192 64 282 × 32 3 64 4 2

64 384 96 142 × 32 3 96 3 1

96 576 160 142 × 32 3 160 3 2

160 960 320 72 × 32 3 320 1 1
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Processing these types of layers with the outlined architectural choices con-
firms the previous discussions about achievable performance in terms of efficiency,
as depicted in Figure 4.5a. Results are obtained by executing on one of the ar-
chitectural configurations introduced in the previous chapter, with a 9×10 MAC
matrix of SoP modules and synthesised on the Xilinx Zynq Ultrascale+ ZU3EG
clocked at 180 MHz.
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Figure 4.5: Efficiency trend and execution time on Mobilenet-V2 MBConv layers
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4.3 Specific support for lightweight operators

Trying to avoid the issues highlighted in the previous section while exploiting full
DSP capabilities, we have chosen to design a new design-time selectable Convolu-
tion Engine IP to natively support DW Sep and MBConv layers. One of the key
strategies has been processing a batch of samples belonging to an input feature
map considering its depth rather than processing every single feature according to
its horizontal dimensions. In this way, it is possible to exploit both the multiplier
and the adder within the DSP units even during the pointwise phase. Furthermore,
performing unnecessary transfers between phases for MBConv layers are avoided
with a per-phase dedicated MAC Matrix. Figure 4.6 shows the architecture con-
figuration.
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Figure 4.6: Architecture Overview

Thanks to the particular PW processing methodology, as soon as a batch of
samples have been processed for all the feature depth, a batch of complete output
feature samples is ready to feed the subsequent DW phase that in turn will feed
the last PW phase, arranging different phases in a pipeline fashion.

Figure 4.7 shows the Convolution Engine inner organization. It is composed of
three Processing Unit Matrices, one for each MBConv phase, fed by filter and input
memory banks. A Transfer Unit module orchestrates transfers between memory
banks in the memory region.

Each Matrix is composed of Nrows × Ncols Processing Units wrapping a DSP
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Slice and some extra circuitry to handle saturation on successive accumulations
during a MAC operation. It receives samples from Ncols input feature maps (IF)
to produce samples for Nrows output feature maps (OF).
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Figure 4.7: Convolution Engine Organization

Figure 4.8 shows the efficiency trend and execution time on Mobilenet-V2 MB-
Conv layers, considering an implementation of the described architecture on an
Avnet Ultra-96V2 development board featuring a Xilinx XCZU3EG MPSoC. The
whole system is clocked at a frequency of 150 MHz thus being able to reach an
average efficiency of 67% with respect to the theoretical peak performance of 97,2
GOPS/s considering that the proposed implementation exploits 324 (90%) of the
actual available DSP slices in the Programmable Logic of the board.



4 | Adapting for mobile network operators 65

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

32_32_16 16_96_24 24_144_32 32_192_64 64_384_96 96_576_160 160_960_320

Ef
fi

ci
en

cy

Efficiency MobileNetV2 MB Conv Layers

(a)

0.90 1.57 1.16 0.73 1.57 1.38 1.03

8.33

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Total

Layer

Execution Time [ms] MB Conv Layers

32_32_16 16_96_24 24_144_32 32_192_64 64_384_96 96_576_160 160_960_320 total

(b)

Figure 4.8: Efficiency trend and execution time on Mobilenet-V2 MBConv layers
processed with the specific engine
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4.4 Summary

Motivated by the growing diffusion of the so-called LW-CNN, particularly attrac-
tive in edge-related domains, this chapter presents an assessment of the feasi-
bility of introducing the Depthwise Separable and MBConv support within the
NEURAghe architectural template with a non-invasive approach. After an analy-
sis of possible solutions implementing different hardware strategies, we conduct a
performance evaluation resulting in a poor efficiency achievable and thus motivat-
ing the implementation of a custom accelerator IP that is design-time deployable.
This custom IP relies on dedicated MAC Matrix engines to deal with different exe-
cution phases and dedicated memory resources to avoid unnecessary data transfers.
Moreover, thanks to a smart feature handling it enables a better exploitation of
FPGA Digital Signal Processing slices resulting in a notable performance improve-
ment in terms of efficiency and execution time.
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In the field of edge computing, where a near-sensor efficient computation must be
performed, both devices and models must evolve in the direction of lower power
consumption with high computational efficiency. In such a scenario, the third
generation of Artificial Neural Networks (ANNs) emerged, namely Spiking Neu-
ral Networks (SNNs), whose processing paradigm is related to incoming events
thus generating an event-proportional workload, required bandwidth and energy
consumption. They are biologically inspired neural networks composed of Spike
Neurons characterised by an activation behaviour related to their internal state
that propagate information by using spikes. Unlike what happens for conventional
CNNs, where the activation function of a neuron define its output given the input,
in an SNN the output depends on a mathematical model that defines an internal
state (membrane potential), a decay constant and a firing rule, namely, a thresh-
old that the membrane potential must surpass to allow an output production.
Although more complex mathematical models such as Izhikevich [53] can accu-
rately model a biological neuron’s behavior, simpler models such as Integrate and
Fire (IF) and Leaky Integrate and Fire (LIF) are more prevalent in current SNN
applications ([54],[78],[68],[56]). Given their nature, data in SNNs are represented
by binary values, and input and output feature maps are binary tensors, where
the presence of a non-zero value represents a neuron spike produced at a certain
time.

The accuracy level achieved by this class of networks has become comparable
with classical networks [87].

Despite its benefits, SNN characteristics such as reduced computation waste
given by event-based processing and the derived data sparsity require a dynamic
event managing that creates a run-time dependency and therefore potentially irreg-
ular memory accesses, resulting in more difficult parallelism exploitation compared
to CNNs.

Because of this, traditional computing architectures are not ideally suited for
SNNs. The situation for CPUs, already lacking in performance for the CNN task,

67
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becomes even worse in an event-driven scenario. Also GPUs, that can exploit
the network parallelism, are not suited to event-driven computation. This makes
the deployment of hardware support for SNN inference particularly challenging
making near-sensor neuromorphic computing not simple.

In such a context, the Digital Circuits and Systems group of ETH Zurich
proposes a Spiking Neural Engine, SNE, an ASIC targeting highly parallel and
modular computational engine designed with the aim to efficiently accelerate SNN
inference at the edge. This accelerator is capable to perform parallel execution
exploiting an explicit input event address encoding to maximize input data and
weight reuse and reduce the temporary data memory footprint.

To enable the benefits allowed by the FPGA flexibility and its fast prototyping
capabilities, in the last part of the work presented in this thesis, the collaboration
with the above-mentioned group, laid the foundations for the deployment of this
accelerator to FPGA. In particular, by applying the NEURAghe model also to the
SNN execution results in an FPGA-based SNN inference accelerator capable to
process different network topologies without reconfiguration.

In the next sections, we will show some SNE key features as the neuron model
and the general architecture organization. Subsequently, we will show key features
for accelerator’s porting such as standard cells to FPGA’s common slices mapping
and parameter scaling as a result of overall architectural analysis. Lastly, integra-
tion results will be reported in terms of FPGA resource utilization with respect to
an ”as it is” configuration, maximum operating frequency and performance with
respect to the peak achievable by the particular implementation for a use-case
experiment.
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5.1 Spiking Neural Engine

Figure 5.1: SNE architecture overview

Figure 5.1 shows a general overview of the SNE architecture. It is made up of
a parametric set of computational engines, called slices, that operate in parallel.
Slice data transfers are performed by two streamers (DMAs) through a combi-
natorial synaptic crossbar (c-xbar). A port is in charge to carry programming
for internal registers making the accelerator configuration similar to a memory-
mapped peripheral, which exploits the Advanced Peripheral Bus (APB) protocol1.
Each slice consists of a parametric number of computational units called clusters
containing the neuron data-path designed to calculate a neuron state update in a
single clock cycle. Clusters can operate also as multiple neurons by exploiting a
time-domain multiplexing technique that leverages a local buffer to store neuron
states. In this version, the local state memory can contain up to 64 neuron states
(8-bit wide), resulting in 64 neurons per cluster. Synaptic weights are 4-bit wide.
The neuron model implemented is the Leaky-Integrate and Fire (LIF) model with
an approximate exponential membrane potential decay. Below is the deployed
equation for the membrane potential update (5.1) and the firing rule (5.2). L is
the leakage quantity subtracted at every time step, Θ is the Heaviside step function
and Vth is the threshold.

1That is part of the Advanced Microcontroller Bus Architecture (AMBA) family [1]
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Vmem[t+ 1] = −L+
∑
j

WijSi[t] (5.1)

S[t] = Θ(Vmem[t]− Vth) (5.2)

As the SNN with LIF model acts as an Event-based CNN, namely, a standard
convolution with the additional time dimension propagated through the layers,
the convolution should be performed at each time step updating the neuron state
variable. To optimize execution, in SNE, input events are encoded explicitly, so
that it can consume single events instead of sliding the entire tensor and output
neurons are updated according to explicit addressing by a direct filter selection
from a filter buffer. An SNE input event is a 32-bit word composed of two bytes
for the x and y feature positions respectively, a byte for the time reference, 4 bits
as operation identifier and 4 bits as the channel identifier. As said, slices and
cluster are parametric SNE elements, in particular, the configuration under study
is exactly that which is shown in Figure 5.1 with 8 slices each composed by 16
clusters.
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5.2 Mapping to FPGAs

Since SNE has been designed to be implemented in a custom chip, many elements
belong to Standard Cell libraries (i.e. memory slices). Furthermore, the architec-
tural template described in Section 5.1 could be exploited only within a more com-
plex infrastructure that is capable of communicating with the APB programming
module and streamers that expose interfaces to an external memory system. To
achieve the SNE to FPGA porting objective, the architecture has been reviewed
and revised to let some elements be mapped by using typical FPGA slices and
subsequently, in favour of rapid implementation, it has been integrated within the
NEURAghe infrastructure, effectively replacing the Convolutional Engine (1.4.1).
A specific board has been targeted for this implementation, namely the Avnet
Ultra96-V2 equipped with the Xilinx XCZU3EG MPSoC.

Figure 5.2: SNE Neuron data-path

It is a well-known issue that some arithmetical operations could be particu-
larly wasteful in terms of resources if implemented with FPGAs Lookup Tables
(LUTs), like multi-bit multiplications that, as seen in previous chapters, might be
more effectively mapped to DSP slices instead. The first step towards an FPGA
integration has been that of mapping memory elements to typical Block RAMs
(BRAMs) of the FPGA and to map, as far as possible, neuron data-path multiply
and accumulation operation to DSP slices.

Figure 5.2 shows the original neuron data-path configuration. It is possible to
notice two main paths, one for the membrane potential update and the second
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for the adaptive threshold, both containing a Lookup Table to approximate the
potential decay and both are made by various multiply and add operations.

A preliminary synthesis of the simple neuron (with Xilinx Vivado) results in
a resource utilization of 365 LUTs, i.e. none of the operations is mapped on
DSP slices. For the architecture parameters mentioned above, by considering the
available resources on XCZU3EG, resource utilization for neurons only is reported
in Table 5.1a.

Table 5.1: SNE Neurons occupation before (a) and after (b) MAC ops mapped on DSPs

(a)

DSP BRAM LUTs LUTs Regs
(logic) (Mem)

Used 0 0 46720 0 0

Avail 360 432 70560 28800 141120

% 0 0 66.21 0 0

(b)

DSP BRAM LUTs LUTs Regs
(logic) (Mem)

Used 256 0 25984 0 0

Avail 360 432 70560 28800 141120

% 71.11 0 36.82 0 0

LUT utilization is about 71% of those available for the whole device, which
may result in congestion problems when synthesizing the whole architecture. By
modifying and instrumenting the HDL code to exploit DSP’s datapath capabilities
in terms of data-width and internal components (Pre-adder, Multiplier and ALU)
it is possible to embed MAC operations on DSP slices, resulting in the Neuron
datapath shown in Figure 5.3 and in the resource occupation shown in Table 5.1b.
This solution reduces by about 50% the number of LUTs employed in the first
one.
The second step concerns memory resources management. Internal Memory con-
figuration is made up of several SRAM blocks used to store kernel weights, weights,
both as status memory for events, as well as for streamers for context switch pur-
poses. An explicit mapping of memory resources in FPGA integrated RAMB18
slices is necessary to avoid inefficiencies or resource waste of LUT and LUTRAM
resources. A 2 KB RAMB18 Slice is the minimum instantiable memory resource
for the target device which is sufficient to serve SNE units. In particular, as clus-
ters need two independent accessible memory banks, working as event buffers, plus
a private kernel memory bank, the total number of requested RAMB18 banks per
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Figure 5.3: SNE Neuron Datapath: Ops to DSP mapping

SNE Slice unit are 16× 2+5. Additionally, streamers need one independent bank
each, for context switch purposes.
Despite the above-mentioned optimizations, an 8 (slices) × 16 (clusters) archi-
tecture is still too demanding with respect to the XCZU3EG available hardware
resources. Table 5.2a (red) shows the overuse, especially of LUTs as Logic.

Table 5.2: SNE 8x16 (a) and 2x16 (b) architecture synthesis (Xilinx XCZU3EG)

(a)

DSP BRAM LUTs LUTs Regs
(logic) (Mem)

Used 256 298 106203 0 59340

Avail 360 432 70560 28800 141120

% 71.1 68.9 150.51 0 42

(b)

DSP BRAM LUTs LUTs Regs
(logic) (Mem)

Used 64 76 48238 0 26867

Avail 360 432 70560 28800 141120

% 17.7 17.6 68.3 0 19

Scaling the Slice parameter to 2 leads to more suitable resource utilization, as
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shown in Table 5.2b, leaving the space for the infrastructure needed to complete
the integration.

5.2.1 Exploiting NEURAghe infrastructure

Figure 5.4 shows the resulting architectural template after SNE integration within
the NEURAghe infrastructure. A comparison with the base architecture depicted
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Figure 5.4: SNE integration within the NEURAghe infrastructure

in Figure 1.4 makes it possible to notice the substantial reuse of all the accelerator
interface components along with some inter-PL IPs. In particular, regarding the
re-configurable logic area, the obtained version maintains the micro-controller soft-
core along with its private data and instruction memory, the AXI bus interconnect,
a memory region and a DMA. Meanwhile the PS-PL port interface and the software
stack have been entirely kept intact, apart for some slight enhancement to the
accelerator offloading APIs to support SNE configuration and data transfer.

Thanks to the infrastructure flexibility it has been possible to do the integration
in a relatively simple way resulting in an SNN accelerator where SNE could be
seen as an external IP selectable at design time.

Streamer interfaces can easily communicate through its memory ports, directly
connected to the memory region, to fetch DMA pre-loaded weight and event words
during the inference phase. On the other hand, the APB node that exposes an APB
protocol interface port needs a conversion logic from a peripheral protocol. APB
configuration and scheduling parameters come directly from the programmable



5 | Spiking Neural Engine to FPGA adaptation 75

soft-core running an SNE personalized middleware, which, as already discussed
(Section 1.4), is programmed from the GPP and is in charge to handle synchro-
nization among PL IPs.

5.2.2 Implementation Results

The architecture depicted in Section 5.2.1 has been synthesised using the Vivado
Design Suite resulting in the resource occupation shown in Table 5.3a, reaching
the maximum operational frequency of 60 MHz.

Table 5.3: SNN accelerator architecture resource occupation (XCZU3EG): without
(60 MHz) and with (85 MHz) critical path optimization

(a)

DSP BRAM LUTs LUTs Regs
(logic) (Mem)

Used 64 172 63297 123 32658

Avail 360 432 70560 28800 141120

% 17.7 39.8 89.7 0.42 23.1

(b)

DSP BRAM LUTs LUTs Regs
(logic) (Mem)

Used 64 172 63346 123 33293

Avail 360 432 70560 28800 141120

% 17.7 39.8 89.8 0.42 23.6

As can be seen, despite the already described optimizations of the SNE, the
overall LUT utilization is high (about 90%). This is partly due to the inherent
accelerator dimension and partly to the specific SNE logic which in some cases
must be completely combinatory (i.e. neuron data-path), resulting in architectural
congestion that affects the critical path and limits the operating frequency. In order
to overcome this issue, where feasible, some pipeline stages have been added to
cut critical paths around neuron data-path, making it possible to reach 85 MHz,
with a very slight LUT usage increment (Table 5.3b).
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5.3 Experimental Results

As already stated, in the literature, there are other examples of SNN inference
FPGA accelerators. The majority of them rely on MNIST data-set [67] to test
their network architecture. Usually, they operate a conversion between a pixel-
based 28 × 28 input frame to an event-based one, by mapping each pixel to a
spike train with an activity rate that depends on pixel intensity with different
methods ([77], [57], [114], [83]). Some of those implement a Multi-Layer Perceptron
(MLP) like network, with few hidden fully connected layers aiming to maximise
the fan-in/fan-out characteristics ([61], [30], [41], [40]) and, in some cases, by
deploying the entire network model within the target FPGAs. The work of Irmak
et al. [52] rely on Dynamic Partial Reconfiguration (DPR) to adapt an FPGA-
based accelerator to work both on CNN and SNN by mean of different types of
Processing Elements (PEs). The SNE PE has been tested on MNIST with a four
fully connected layers architecture totally implemented into the FPGA. Also in
the work of Corradi et al. [22] authors implement different SNN fully connected
network topologies. In particular, they are designed for the sensory fusion cropland
classification task on top of a Xilinx XCZU4EV and XCZU9EG MPSoCs. Kiselev
et al. proposed an evolution of Minutaur [77] called n-minitaur [64] which is able
to receive and process real-time spikes from up to three event-based sensors. It
implements fully-connected networks on a Spartan-6 FPGA which has been tested
on top of the MNIST dataset where generate spike trains depend on pixel intensity.
Another approach is given by the work of Wang et al. [106] in which is shown
the implementation of an hardware architecture for simulating large-scale and
structurally connected spiking neural networks using simple LIF neurons trying to
achieve the human brain scale and thus by relying on an Altera Stratix V FPGA,
comprising 100 million neurons.

The miscellaneous context makes it not easy to carry out a fair comparison.
Moreover, the SNN performance depends on various parameters such as the con-
sidered timing window (or encoding window for converted data sets), the spike
activity, which in turn depends on the network’s training parameters.

In [30] the authors propose a convolutional SNN architecture fully deployed in
the Xilinx XCZU9EG FPGA, synthesised with the Vivado High-Level Synthesis
(HLS) Software, reaching a maximum operating frequency of 125MHz. Network
characteristics are those shown in Table 5.4.

Table 5.4: [30] convolutional SNN architecture

input conv pool conv pool fc fc

28x28 32x3x3 32x2x2 32x3x3 32x2x2 256 10



5 | Spiking Neural Engine to FPGA adaptation 77

The authors test the design with the MNIST dataset by applying their own
encoding model with an encoding window Te = 10. Trained parameters are of
16-bit fixed-point type. They state that the classification task has a latency of
7.53ms and the architecture is capable to process up to 2124 MNIST frame per
second.

With the aim to compare the work of Fang et al. [30] with this work, we
evaluate the execution time of the network in Table 5.4 with a growing global
average neuron activity rate, by assuming to use the same encoding window of
Te = 10. Results are shown in Figure 5.5
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Figure 5.5: SNE latency trend with respect to the activity rate

As expected latency grows almost linearly with the neuron activity rate. From
previous experiment on NMNIST a typical layer average activity rate, is 5%.
Considering this value throughout all layers, the FPGA ported SNE architecture
achieves a latency of 11.3ms.

Table 5.5: A quantitative comparison between this work and [30].

[30] This work

frame rate 2124 88.49
frequency [MHz] 125 85
frame rate/dsp 1.184 1.383

Table 5.5 shows a quantitative comparison between the referenced work and
this work. In particular, as authors in [30] declare a DSP utilization of 71.2% on
the XCZU9EG MPSoC featuring a total of 2520 DSP slices, the ratio between the
frame rate and the DSP count is 1.184. On the other hand, in this work, the target
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device is a XCZU3EG MPSoC with an utilization of 64 to 360 DSP slices resulting
in a frame rate to DSP ratio of 1.384.

Although the work in [30] offers generally better performance, implementing all
the network architecture in a bigger device, the advantage in using SNE relies on
its flexibility towards different layer characteristics that do not require an FPGA
reconfiguration while changing the network topology.
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Convolutional Neural Networks lead Artificial Neural Networks algorithms when
it comes to dealing with Computer Vision tasks such as, for example, image recog-
nition, object detection or video frame classification, among others.

Their widespread diffusion during the years has brought researchers to question
the opportunity to declinate their primary mission towards different use cases,
resulting in the development of different approaches and devices.

This is the case, among others, of Temporal Convolutional Networks,
LightWeight CNNs and Spiking Neural Networks which have also carried with
them different ways to deal with data with respect to the classical ones, such as
mono-dimensional management, event-driven processing and (specifically concern-
ing the convolutional operator) various kernel sizes and dilation rate, depthwise
separable convolution and its derived Mobile Bottleneck layer.

Moreover, motivated by the computational effort required to execute these
kinds of networks, in parallel with the evolution of the algorithms, there has been
also a growing interest in the deployment of specific hardware capable to accelerate
their inference task, especially when an efficient, near-sensor data processing is
required, as in the case of the edge computing field.

To cope with these needs, one of the most adopted solutions has been exploit-
ing the capabilities of modern Multiprocessor Systems on-chip (MPSoCs) equipped
with a general-purpose processor and FPGAs, among which those that belong to
the Xilinx Zynq-7000 and Zynq Ultrascale+ families represent one of the most re-
markable examples. This is the case of NEURAghe, a CNN inference accelerator
whose processing model relies on the synergy between the ARM-based cores and
a Convolution Specific Processor equipped with a programmable soft-core imple-
mented in the reconfigurable logic.

In such a context the objective of this Ph.D. thesis has been to explore how
a flexible adaptation of the edge-oriented FPGA-based acceleration task could be
carried out with respect to the above-cited CNN related networks starting from
the CNN inference accelerator NEURAghe.

First of all, we tested the flexibility of this accelerator leveraging its tunable
parameters like the MAC Matrix size, the number of CSPs and the data precision.

79
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This exploration leads to a variety of configurations that may be used in different
use-cases to fit in different target architectures. This offers different trade-off
optimization scenarios with respect to performance, cost, and power consumption.

Subsequently, following the trend that reconsiders the common association be-
tween Recurrent Neural Networks and sequence modelling tasks, in favour of a
convolutional-based computation paradigm while dealing with time sequences [13],
we presented the improvements made to the NEURAghe accelerator, in supporting
Temporal Convolutional Networks.

The new features include the capability of supporting arbitrary kernel size,
dilation rate and stride values without overhead and a methodology for the TCN
scheduling exploiting its sequence-based structure. We show the TCN data transfer
management and performance of two computational paradigm approaches trading
latency for throughput. This method has been applied to three use-case networks
and uses two different SoCs as a target. Results with sample batching translate
in up to 0.96, 0.86 and 0.57 of efficiency on the three use-cases, with respect
to the peak achievable by each configuration. In the two use-cases with real-
time requirements, adequate sample batching can be used to achieve sufficient
throughput to timely process all input samples. Comparing the execution of the
use-cases on a Cortex A53 quad-core and on an NVIDIA Maxwell GPU, it is
possible to notice an execution time reduction and a power efficiency improvement
respectively. Furthermore, the compatibility evaluation toward classical state-of-
the-art CNNs shows 40% improvement when targeting irregular patterns.

Chapter 4 shows an analysis with respect to possible hardware solutions aim-
ing to adapt the architectural template to the depthwise separable convolution
and MBConv support without introducing excessive changes. The poor efficiency
achievable pushed for a change in the computational paradigm while dealing with
these kinds of operators and a Convolution Engine redesign which results in a
design-time selectable IP capable to offer specific support to mobile network oper-
ators and layers, leading to a notable performance improvement highlighted com-
paring executions over MobileNetV2 MBConv layers.

Finally, from the collaboration with ETH Zurich, we presented a Spiking Neu-
ral Network accelerator FPGA integration. After an in-depth study of their ASIC
targeting Spiking Neural Engine, SNE, we tackled the problem of conversion from
standard cells to FPGA typical slices such as BRAMs and DSPs. This led also
to a better resource utilization that, as a consequence, has requested for an archi-
tecture scaling to better exploit resources made available by the chosen Zynq Ul-
trascale+ board. We then apply the NEURAghe architectural template to exploit
its peculiarity in the ARM/soft-core cooperation resulting in a topology agnostic
FPGA-based SNN inference accelerator. The converted SNE IP could be quite
easily integrated and thought of as an external engine to be chosen at design time
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when it comes to dealing with SNNs. Despite difficulties for a fair SoA comparison,
as performance for these kinds of networks are layer activity rate constrained, the
referenced work results in general better performances, considering its greater op-
erating frequency enabled by the bigger MPSoC targeted, but SNE relies on better
flexibility exploitation towards different layer characteristics without requiring an
FPGA reconfiguration.

The work described in this Ph.D. thesis produced the following publications:

• P. Meloni et al., ”Exploring NEURAghe: A Customizable Template for
APSoC-Based CNN Inference at the Edge,” in IEEE Embedded Systems Let-
ters, vol. 12, no. 2, pp. 62-65, June 2020, doi: 10.1109/LES.2019.2947312.

• M. Carreras et al., ”Optimizing Temporal Convolutional Network Inference
on FPGA-Based Accelerators,” in IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 10, no. 3, pp. 348-361, Sept. 2020, doi:
10.1109/JETCAS.2020.3014503.
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