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Università di Firenze,

Via Bolognese 52, I-50139 Firenze, Italy.

dallachiara@unifi.it

ROBERTO GIUNTINI, GIUSEPPE SERGIOLI

Dipartimento di Pedagogia, Psicologia, Filosofia,
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Classical and quantum parallelism are deeply different, although it is sometimes claimed
that quantum Turing machines are nothing but special examples of classical probabilistic

machines 7. We introduce the concepts of deterministic state machine, classical proba-

bilistic state machine and quantum state machine. On this basis we discuss the question:
to what extent can quantum state machines be simulated by classical probabilistic state

machines? Each state machine is devoted to a single task determined by its program.
Real computers, however, behave differently, being able to solve different kinds of prob-

lems. This capacity can be modeled, in the quantum case, by the mathematical notion

of abstract quantum computing machine, whose different programs determine different
quantum state machines. The computations of abstract quantum computing machines
can be linguistically described by the formulas of a particular form of quantum logic,

termed quantum computational logic.

Keywords: Quantum computation; quantum computational logics.

1. Introduction

The abstract mathematical model for quantum computers has been often repre-

sented in terms of the notion of quantum Turing machine, the quantum counterpart

of the classical notion of Turing machine. But what exactly are quantum Turing

1

RobertoGiuntini
Preprint of an article published in International Journal of Quantum Information, 14, 4, 2016, ] [Article DOI: 	http://dx.doi.org/10.1142/S0219749916400190] © [copyright World Scientific Publishing Company] [Journal URL: https://www.worldscientific.com/worldscinet/ijqi]



December 16, 2015 21:32 WSPC/INSTRUCTION FILE Vaxjo15˙04

2 Dalla Chiara et al.

machines? So far, the literature has not provided a rigorous “institutional” concept

of quantum Turing machine. Some definitions seem to be based on a kind of “imi-

tation” of the classical definition of Turing machine, by referring to a tape (where

the symbols are written) and to a moving head (which changes its position on the

tape).a These concepts, however, seem to be hardly applicable to physical quantum

computers. Both in the classical and in the quantum case, it is expedient to consider

a more abstract concept: the notion of state machine, which neglects both tapes

and moving heads. Every finite computational task realized in different computa-

tional models proposed in the literature can be simulated by a state machine.b In

order to compare classical and quantum computational parallelism, we will analyze

the concepts of (classical) deterministic state machine, (classical) probabilistic state

machine and quantum state machine. On this basis we will discuss the question:

to what extent can quantum state machines be simulated by probabilistic state

machines?

Each state machine is devoted to a single task determined by its program. Real

computers, however, behave differently, being able to solve different kinds of prob-

lems, which may be chosen by computer-users. In the quantum case, such concrete

computation-situations can be modeled by the mathematical notion of abstract

quantum computing machine, whose different programs determine different quan-

tum state machines. We will see how quantum computations can be linguistically

described by the formulas of a particular form of quantum logic, termed quantum

computational logic.

2. Classical deterministic and probabilistic machines

We will first introduce the notion of deterministic state machine. On this basis,

probabilistic state machines will be represented as stochastic variants of determin-

istic machines that are able to calculate different outputs with different probability-

values.

Definition 1. Deterministic state machine

A deterministic state machine is an abstract system M based on the following

elements:

1. A finite set S of internal states, which contains an initial state sin and includes

a set of halting states Shalt = {shaltj | j ∈ J}.
2. A finite alphabet, which can be identified with the set {0, 1} of the two classical

bits. Any register represented by a bit-sequence w = (x1, . . . , xn) is a word (of

length n). Any pair (s, w) consisting of an internal state s and of a word w

represents a possible configuration of M, which is interpreted as follows: M is

in the internal state s and w is the word written on an ideal tape.

aSee, for instance, Fouché et al.5.
bSee, for instance, Savage 8 and Gudder 6.
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3. A set of words that represent possible word-inputs for M.

4. A program, which is identified with a finite sequence (R0, . . . , Rt) of rules. Each

Ri is a partial function that transforms configurations into configurations. We

may have: Ri = Rj with i 6= j. The number i, corresponding to the rule Ri,

represents the i-th step of the program. The following conditions are required:

4.1 The rule R0 is defined for any configuration (s0, w0), where s0 is the initial

state sin and w0 is a possible word-input. We have: R0 : (s0, w0) 7→ (s1, w1),

where s1 is different from the initial state and from all halting states (if

t 6= 0).

4.2 For any i (0 < i < t), Ri : (si, wi) 7→ (si+1, wi+1), where si+1 is different

from all si, . . . , s0 and from all halting states.

4.3 Rt : (st, wt) 7→ (st+1, wt+1),

where st+1 is a halting state.

Each configuration (si+1, wi+1) represents the output for the step i and the

input for the step i+ 1.

Apparently, each deterministic state machine is devoted to a single task that

is determined by its program. The concept of computation of a deterministic state

machine can be then defined as follows.

Definition 2. Computation of a deterministic state machine.

A computation of a deterministic state machine M is a finite sequence of configu-

rations ((s0, w0), . . . , (st+1, wt+1)), where:

1. w0 is a possible word-input of M.

2. s0, . . . , st+1 are different internal states of M such that: s0 = sin and st+1 is a

halting state.

3. For any i (0 ≤ i ≤ t), (si+1, wi+1) = Ri((si, wi)), where Ri is the i-th rule of

the program.

The configurations (s0, w0) and (st+1, wt+1) represent, respectively, the input and

the output of the computation; while the words w0 and wt+1 represent, respectively,

the word-input and the word-output of the computation.

Let us now turn to the concept of probabilistic state machine. The only difference

between deterministic and probabilistic state machines concerns the program, which

may be stochastic in the case of a probabilistic state machine (PM). In such a case,

instead of a sequence of rules, we will have a sequence (Seq0, . . . , Seqt) of sequences

of rules such that: Seq0 = (R01 , . . . , R0r ), . . . , Seqt = (Rt1 , . . . , Rtl). Each rule Rij
(occurring in the sequence Seqi) is associated to a probability-value pij such that:∑
j pij = 1. From an intuitive point of view, pij represents the probability that the

rule Rij be applied at the i-th step. A deterministic state machine is, of course, a

special case of a probabilistic state machine characterized by the following property:

each sequence Seqi consists of a single rule Ri.
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Any probabilistic state machine naturally gives rise to a graph-structure for

any choice of an input-configuration conf0 = (s0, w0). As an example, consider the

following simple case: a probabilistic state machine PM whose program consists of

two sequences, each consisting of two rules: Seq0 = (R01 , R02), Seq1 = (R11 , R12).

The graph associated to PM for the configuration conf0 is illustrated by Figure 1.

How do probabilistic machines compute? In order to define the concept of com-

putation of a probabilistic machine, let us first introduce the notions of program-path

and of computation-path of a given probabilistic machine.

Definition 3. Program-path and computation-path.

Let PM be a probabilistic state machine with program (Seq0, . . . , Seqt).

• A program-path of PM is a sequence P = (R0h , . . . , Rij , . . . , Rtk), consisting of

t rules, where each Rij is a rule from Seqi.

• For any choice of an input (s0, w0), any program-path P determines a se-

quence of configurations CP = ((s0, w0), . . . , (si, wi), . . . , (st+1, wt+1)), where

(si+1, wi+1) = Rij (si, wi) and Rij is the i-th element of P. This sequence is

called the computation-path of PM determined by the program-path P and by

the input (s0, w0).

The configuration (st+1, wt+1) represents the output of CP.

Figure 1. The graph of PM.

Any program-path P = (R0h , . . . , Rij , . . . , Rtk) has a well determined

probability-value p(P), which is defined as follows (in terms of the probability-

values of its rules): p(P) := p0h · . . . ·pij · . . . ·ptk . As expected, the probability-value

of a program-path P naturally determines the probability-values of all correspond-

ing computation-paths. It is sufficient to put: p(CP) := p(P). Consider now the

set PPM of all program-paths and the set CPPM of all computation-paths of a

probabilistic machine PM. One can easily show that:∑
i {p(Pi)|Pi ∈ PPM} =

∑
i {p(CPi)|CPi ∈ CPPM} = 1.
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On this basis the concept of computation of a probabilistic state machine can

be defined as follows.

Definition 4. Computation of a probabilistic state machine.

A computation of a probabilistic state machine PM with input (s0, w0) is the

system of all computation-paths of PM with input (s0, w0).

Unlike the case of deterministic state machines, a computation of a probabilistic

state machine does not yield a unique output. For any choice of a configuration-

input (s0, w0), the computation-output is a system of possible configuration-outputs

(sit+1, w
i
t+1), where each (sit+1, w

i
t+1) corresponds to a computation-path CPi. As

expected, each (sit+1, w
i
t+1) has a well determined probability-value that is defined

as follows:

p((sit+1, w
i
t+1)) :=

∑
i

{
p(CPi)|the configuration-output of CPi is (sit+1, w

i
t+1)

}
.

One can easily show that the sum of the probability-values of all configuration-

outputs of any machine PM is 1.

3. Quantum state machines

Before introducing the notion of quantum state machine it is expedient to recall

some basic concepts used in quantum computation. Any piece of quantum informa-

tion is mathematically represented as a density operator ρ living in a Hilbert space

H(n) := C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n−times

(where n ≥ 1 and ⊗ is the tensor product). A quregister is a

pure state, represented as a unit-vector |ψ〉 of a space H(n) or, equivalently, as the

corresponding density operator P|ψ〉 (the projection-operator that projects over the

closed subspace determined by |ψ〉). A qubit (or qubit-state) is a quregister of the

space C2. A register (which represents a certain piece of information) is an element

|x1, . . . , xn〉 of the canonical orthonormal basis of a space H(n) (where xi ∈ {0, 1});
a bit is a register of C2. We will denote by D(H(n)) the set of all density operators

of H(n).

Quantum information is processed by (quantum logical) gates: unitary operators

that transform quregisters in a reversible way. In the following we will use three gates

that have a special computational and logical interest: the negation, the Toffoli-gate

and the Hadamard-gate.

Definition 5. (The negation)

For any n ≥ 1, the negation is the linear operator NOT(n) defined on H(n) such that,

for every element |x1, . . . , xn〉 of the canonical basis,

NOT(n)|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗ |1− xn〉.

In particular, we obtain: NOT(1)|0〉 = |1〉; NOT(1)|1〉 = |0〉, according to the

classical truth-table of negation.

Definition 6. (The Toffoli-gate)
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For any m,n, p ≥ 1, the Toffoli-gate is the linear operator T(m,n,p) defined on

H(m+n+p) such that, for every element |x1, . . . , xm〉 ⊗ |y1, . . . , yn〉 ⊗ |z1, . . . , zp〉 of

the canonical basis,

T(m,n,p)|x1, . . . , xm, y1, . . . , yn, z1, . . . , zp〉
= |x1, . . . , xm−1, y1, . . . , yn−1, z1, . . . , zp−1〉 ⊗ |xm, xn, (xm · yn+̂zp)〉,

where +̂ represents the addition modulo 2.

Definition 7. (The Hadamard-gate)

For any n ≥ 1, the Hadamard-gate is the linear operator
√
I
(n)

defined on H(n)

such that for every element |x1, . . . , xn〉 of the canonical basis:

√
I
(n)
|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗

1√
2

((−1)xn |xn〉+ |1− xn〉) .

In particular we obtain:
√
I
(1)|0〉 = 1√

2
(|0〉+ |1〉);

√
I
(1)|1〉 = 1√

2
(|0〉 − |1〉).

The Hadamard-gate represents a “genuine” quantum gate that can create su-

perpositions, starting from register-inputs. At the same time, the negation and the

Toffoli-gate (which always transform registers into registers) can be regarded as

reversible versions of the classical Boolean functions. The Toffoli-gate has a special

logical interest, also because it allows us to define a reversible conjunction AND(m,n)

for all quregisters |ψ〉 of H(m+n):

AND(m,n)|ψ〉 := T(m,n,1)(|ψ〉 ⊗ |0〉)

(where the bit |0〉 plays the role of an ancilla).

All gates can be canonically extended to density operators. Let G be any gate

defined on H(n). The corresponding density-operator gate DG (also called unitary

quantum operation) is defined as follows for any ρ ∈ D(H(n)): DGρ = GρG† (where

G† is the adjoint of G).

We will now introduce the concept of quantum state machine, which can be

intuitively regarded as a kind of quantum superposition of “many” classical deter-

ministic state machines. For the sake of simplicity, we will consider here quantum

state machines whose possible inputs and outputs are represented by pure states.

A generalization to the case of density operators can be obtained in a natural way.

Definition 8. Quantum state machine.

A quantum state machine is an abstract system QM associated to a Hilbert space

HQM = HH ⊗HS ⊗HW , whose unit-vectors |ψ〉 represent possible pure states of

a quantum system that could physically implement the computations of the state

machine. The following conditions are required:

1. HH (which represents the halting-space) is the space H(1)(= C2), where the

two elements of the canonical basis ({|0〉H , |1〉H}) correspond to the states “the

machine does not halt” and “the machine halts”, respectively.
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2. HS (which represents the internal-state space) is associated to a finite set S of

classical internal states. We require that HS = H(m), where 2m is the cardinal

number of S. Accordingly, the set S can be one-to-one associated to a basis of

HS .

3. HW (which represents the word-space) is identified with a Hilbert space H(n)

(for a given n ≥ 1). The number n determines the length of the registers

|x1, . . . , xn〉 that may occur in a computation. Shorter registers |x1, . . . , xh〉
(with h < n) can be represented in the space H(n) by means of convenient

ancillary bits. Let BQM be a basis of HQM, whose elements are unit-vectors

having the following form: |ϕi〉 = |hi〉|si〉|xi1 , . . . , xin〉, where |hi〉 belongs to

the basis of HH , while |si〉 belongs to the basis of HS . Any unit-vector |ψ〉
of HQM that is a superposition of basis-elements |ϕi〉 represents a possible

computational state of QM. The expected interpretation of a computational

state |ψ〉 =
∑
i ci|hi〉|si〉|xi1 , . . . , xin〉 is the following:

• the machine in state |ψ〉 might be in the halting state |hi〉 with probability

|ci|2;

• the machine in state |ψ〉 might correspond to the classical configuration

(si, (xi1 , . . . , xin)) with probability |ci|2.

Hence, the state |ψ〉 describes a kind of quantum co-existence of different

classical deterministic configurations.

4. The set of possible inputs of QM is identified with the set of all computational

states that have the following form: |ψ〉 =
∑
i ci|0H〉|sin〉|xi1 , . . . , xin〉.

5. Like a deterministic state machine, a quantum state machine QM is character-

ized by a program. In the quantum case, a program is identified with a sequence

(U0, . . . , Ut) of unitary operators of HQM, where we may have: Ui = Uj with

i 6= j. The following conditions are required:

a) for any possible input |ψ0〉, U0(|ψ0〉) = |ψ1〉 is a superposition of basis-

elements having the following form: |h1i 〉|s1i 〉|x1i1 , . . . , x
1
in
〉, where all s1i are

different from sin and |h1i 〉 = |0H〉, if t 6= 0.

b) For any j (0 < j < t), Uj(|ψj〉) = |ψj+1〉 is a superposition of basis-elements

having the following form: |0H〉|sj+1
i 〉|xj+1

i1
, . . . , xj+1

in
〉.

c) Ut(|ψt〉) = |ψt+1〉 is a finite superposition of basis-elements having the fol-

lowing form: |1H〉|shaltj 〉|xt+1
i1

, . . . , xt+1
in
〉.

The concept of computation of a quantum state machine can be now defined in

a natural way.

Definition 9. Computation of a quantum state machine.

Let QM be a quantum state machine, whose program is the operator-sequence

(U0, . . . , Ut) and let |ψ0〉 be a possible input of QM. A computation of QM with

input |ψ0〉 is a sequence QC = (|ψ0〉, . . . , |ψt+1〉) of computational states such that:

|ψi+1〉 = Ui(|ψi〉), for any i (0 ≤ i ≤ t). The vector |ψt+1〉 represents the output

of the computation, while the density operator Red3(|ψt+1〉) (the reduced state
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of |ψt+1〉 with respect to the third subsystem) represents the word-output of the

computation.

Consider now a quantum state machine whose program is (U0, . . . , Ut). Each Ui
naturally determines a corresponding word-operator UWi , defined on the word-space

HW . Generally, it is not guaranteed that all word-operators are unitary. But it is

convenient to refer to quantum state machines that satisfy this condition. In this

way, any quantum state machine (whose word-space is H(n)) determines a quantum

circuit, consisting of a sequence (UW0 , . . . , UWt ) of gates, where n represents the

width, while t+ 1 represents the depth of the circuit. Viceversa, we can assume that

any circuit (UW0 , . . . , UWt ) gives rise to a quantum state machine, whose halting

states and whose internal states are supposed to be chosen in a conventional way.

To what extent can quantum state machines be simulated by classical proba-

bilistic state machines? We will discuss this question by referring to a celebrated

quantum experiment, based on the Mach-Zehnder interferometer (represented by

Figure 2).

Figure 2. The Mach-Zehnder interferometer.

The physical situation can be sketched as follows. Consider a photon-beam

(possibly consisting of a single photon) and assume that |0〉 describes the state of

photons moving along the x direction, while |1〉 describes the state of photons mov-

ing along the y direction. All photons go through a first beam splitter that “splits”

them giving rise to the following effect: within the box each photon follows a path

corresponding either to the x-direction or to the y-direction with probability 1
2 .

Soon after, on both paths, all photons are reflected by a mirror that inverts their

direction. Finally, the photons pass through a second beam splitter that determines

the output-state. Suppose that all photons entering into the interferometer-box are

moving in the x-direction. According to a “classical way of thinking” we would
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expect that the photons detected at the end of the process will move either along

the x-direction or along the y-direction with probability 1
2 . The result of the ex-

periment is, instead, completely different: the Mach-Zehnder interferometer always

transforms the input-state |0〉 into the output-state |0〉; while the input-state |1〉
is transformed into |1〉. From a mathematical point of view, such a “surprising”

result can be explained by using, in an essential way, the concept of superposition.

The apparatuses (used in the Mach-Zehnder experiment) can be mathematically

represented by two gates. A beam splitter can be regarded as a physical implemen-

tation of the Hadamard-gate
√
I
(1)

, which transforms the two classical bits |0〉 and

|1〉 into two (different) genuine superpositions. As a consequence, inside the Mach-

Zehnder box, a photon (which is in state 1√
2
(|0〉+ |1〉)) turns out to satisfy at the

same time two alternative properties: the property of moving along the x-direction

and the property of moving along the y-direction. We have here a characteristic

quantum parallelism: a single photon “seems to go along” two different paths at

the same time! The second apparatus of the Mach-Zehnder interferometer (the mir-

ror), can be regarded as a physical implementation of the gate NOT(1). Accordingly,

the Mach-Zehnder circuit can be identified with the following sequence of three

gates (all defined on the space C2):

(
√
I
(1)
, NOT(1),

√
I
(1)

).

Let us now apply the Mach-Zehnder circuit to the input |0〉. We obtain:√
I : |0〉 7→ 1√

2
(|0〉+ |1〉); NOT : 1√

2
(|0〉+ |1〉) 7→ 1√

2
(|0〉+ |1〉);

√
I : 1√

2
(|0〉+ |1〉) 7→ |0〉.

We can see, in this way, how the Mach-Zehnder circuit transforms the input-state

|0〉 into the output-state |0〉. In a similar way, the input-state |1〉 is transformed

into the output-state |1〉.
Is there any natural “classical counterpart” for the Hadamard-gate? A natural

candidate might be a particular example of a probabilistic state machine that we

can conventionally call the classical probabilistic NOT-state machine (PMNOT). Such

machine can be defined as follows:

• The set of possible word-inputs of PMNOT is the set of words {(0), (1)}.
• The program of PMNOT consists of the following sequence of rules:

Seq0 = (R01 , R02),

where:

R01 : (sin, (x)) 7→ (shaltj , (x)) and p(R01) = 1
2 ;

R02 : (sin, (x)) 7→ (shaltj , (1− x)) and p(R02) = 1
2 .

Consider, for instance, the input (sin, (0)). The output will be the following set:{
(shaltj , (0)), (shaltj , (1))

}
.

On this basis, a “classical probabilistic Mach-Zehnder state machine” would deter-

mine (for the word-input (0)) the word-graph illustrated by Figure 3.
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Figure 3. A word-graph for a “classical probabilistic Mach-Zehnder state ma-

chine”.

Such a machine turns out to compute both the words (0) and (1) with probability
1
2 . Interestingly enough, this is the same probabilistic result that is obtained in the

quantum case, when one performs a measurement inside the interferometer-box.

The arguments we have developed seem to confirm the following conjecture:

the characteristic superposition-patterns, that may occur during a quantum com-

putation (when no measurement is performed during the computation-process),

cannot be generally represented by probabilistic state machines. Quantum paral-

lelism (based on superpositions) and classical parallelism are deeply different. This

conclusion seems to be in agreement with a position defended by Feynman in his

pioneering article 4:

Can a quantum system be probabilistically simulated by a classical (proba-

bilistic, I’d assume) universal computer? In other words, a computer which

will give the same probabilities as the quantum system does. If you take the

computer to be the classical kind I’ve described so far (not the quantum

kind described in the last section) and there’re are no changes in any laws,

and there’s no hocus-pocus, the answer is certainly, No! This is called the

hidden-variable problem: it is impossible to represent the results of quantum

mechanics with a classical universal device.

4. Quantum circuits and quantum computational logics

Quantum circuits can be linguistically described in the framework of a particular

form of quantum logic, termed quantum computational logic (QCL). Let us briefly

recall the basic features of this logic, whose formulas are supposed to denote pieces

of quantum information (density operators living in some Hilbert spaceH(n)), while

the logical connectives correspond to some particular gates. Accordingly, the lan-

guage L of QCL contains atomic formulas (q,q1,q2, . . .) including two privileged

formulas t (the Truth) and f (the Falsity) that denote, respectively, the density

operators P|1〉 and P|0〉 (which correspond to the bits |1〉 and |0〉). The connectives

of L are at least the following : the negation ¬ (corresponding to the gate NOT(n)),

the ternary Toffoli-connective ᵀ (corresponding to the gate T(m,n,p)), the square
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root of identity
√
id (corresponding to the gate

√
I
(n)

). Hence, any formula will

have one of the following forms: q, ¬α,
√
idα, ᵀ(α, β, γ). Recalling the definition of

AND(m,n), a binary conjunction ∧ can be defined in terms of the Toffoli-connective:

α ∧ β := ᵀ(α, β, f) (where f plays the role of a syntactical ancilla).

By atomic complexity of a formula α we mean the number At(α) of occurrences

of atomic subformulas in α. For instance, the atomic complexity of the (contradic-

tory) formula α = q∧¬q = ᵀ(q,¬q, f) is 3. The number At(α) plays an important

semantic role, since it determines the semantic space Hα = H(At(α)), where any

density operator representing a possible informational meaning of α shall live. We

have, for instance, Hᵀ(q,¬q,f) = H(3). Any formula α can be naturally decomposed

into its parts giving rise to a special configuration, called the syntactical tree of α

(STreeα). Roughly, STreeα can be represented as a sequence of levels consisting

of subformulas of α. The bottom-level is (α), while all other levels are obtained by

dropping, step by step, all connectives occurring in α. Hence, the top-level is the

sequence of atomic formulas occurring in α. For instance, the syntactical tree of the

formula α = ᵀ(q,¬q, f) is the following sequence of levels:

(Levelα3 = (q,q, f), Levelα2 = (q,¬q, f), Levelα1 = (ᵀ(q,¬q, f)).

For any α, STreeα uniquely determines the gate-tree of α: a sequence of gates

all defined on the space Hα. As an example, consider again the formula, α =

ᵀ(q,¬q, f). In the syntactical tree of α the second level has been obtained (from

the third level) by repeating the first occurrence of q, by negating the second

occurrence of q and by repeating f ; while the first level has been obtained (from

the second level) by applying the Toffoli-connective. Accordingly, the gate-tree of

α can be naturally identified with the following gate-sequence:

(DI(1) ⊗ DNOT(1) ⊗ DI(1), DT(1,1,1)).

This procedure can be naturally generalized to any α.

We consider here a holistic version of the quantum computational semantics 3,

based on the notion of holistic model : a special map Hol that assigns to each level of

the syntactical tree of any formula α a global informational meaning , represented by

a density operator living in the semantic space of α. This global meaning determines

the contextual meanings of all subformulas occurring in the syntactical tree of α.

Suppose that Levelαi = (βi1 , . . . , βir ). It is natural to describe Hol(Levelαi ) as a

possible state of a composite quantum system consisting of r subsystems. Hence,

the contextual meaning of the occurrence βij (in STreeα) can be identified with

the reduced state of Hol(Levelαi ) with respect to the j-th subsystem. On this basis,

a holistic model of the language L can be defined as a map Hol that satisfies the

following conditions for any formula α:

1) Hol(Levelαi ) ∈ D(Hα).

2) Hol assigns the same contextual meaning to different occurrences of one and

the same subformula of α (in STreeα).
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3) The contextual meanings of the true formula t and of the false formula f are

the density operators P|1〉 and P|0〉, respectively.

4) Hol preserves the logical form of α by interpreting the connectives of α as the

corresponding gates.

Finally, the meaning assigned by a model Hol to a formula α is identified with the

density operator that Hol assigns to the bottom-level of the syntactical tree of α.

Any formula α of the language L can be regarded as a synthetic logical de-

scription of a quantum circuit Cα, determined by the gate-tree of α. For instance,

the Mach-Zehnder circuit (
√
I
(1)
, NOT(1),

√
I
(1)

) turns out to be described by the

formula
√
id¬
√
idq. Given a formula α, any model Hol fixes a possible input and

the corresponding output for the circuit Cα. The input is represented by the density

operator ρin that Hol assigns to the top-level of the syntactical tree of α, while the

output is the density operator ρout associated by Hol to the bottom-level of the

same tree. Accordingly, we can write: Cα(ρin) = ρout. Due to the correspondence

between quantum circuits and quantum state machines, it turns out that any for-

mula α of the quantum computational language can be associated to a particular

quantum state machine QMα (whose halting states and whose internal states are

supposed to be chosen in a conventional way).

5. Abstract quantum computing machines

State machines represent rigid systems: each machine has a definite program, de-

voted to a single task. Real computers, however, behave differently, being able to

solve different kinds of problems (which can be chosen by computer-users). We will

now investigate a “more liberal” concept of machine that will be called abstract

quantum computing machine.The intuitive idea can be sketched as follows. Con-

sider a finite gate-system G = (G
(n1)
1 , . . . , G

(nt)
1 ), where each G

(ni)
i is defined on a

word-space H(ni).c The system G determines an infinite set of derived gates that

can be obtained as appropriate combinations of elements of G, by using gate-tensor

products and gate-compositions. An interesting example is represented by the gate

system

G∗ = (I(1), NOT(1),
√
I
(1)
, T(1,1,1)),

where I(1) (the identity-gate), NOT(1) (the negation-gate),
√
I
(1)

(the Hadamard-

gate) are defined on the space H(1) (= C2), while T(1,1,1) (the Toffoli-gate) is de-

fined on the space H(3). Notice that for any n,m, p ≥ 1, the gates NOT(n),
√
I
(n)

,

T(m,n,p) can be represented as derived gates of the system G∗. We have, for instance,

NOT(n) = I(1) ⊗ . . .⊗ I(1)︸ ︷︷ ︸
(n−1)−times

⊗ NOT(1).

cFor the sake of simplicity, we are considering here gates G that are unitary operators (of a space
H(n)). Of course, the procedure can be easily generalized to the case of density-operator gates
DG.
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Any gate-system G gives rise to an infinite family CG of circuits

GC(n)j = (GG
(n)
1 , . . . , GG

(n)
t ),

where each GG
(n)
i is a derived gate of G, defined on the space H(n). For instance,

the Mach-Zehnder circuit (
√
I
(1)
, NOT(1),

√
I
(1)

) represents an example of a circuit

that belongs to CG∗
(the circuit-family determined by the gate-system G∗).

On this basis, it seems reasonable to assume that any choice of a finite gate-

system G determines an abstract quantum computing machine AbQCMG whose

programs correspond to the circuits that belong to the family CG . Since any circuit

can be associated to a particular quantum state machine, any abstract quantum

computing machine can be also regarded as an infinite family of quantum state

machines, corresponding to different programs that the abstract machine can per-

form. Accordingly, any circuit GC ∈ CG, applied to an appropriate input, represents

a computation of the abstract machine AbQCMG. We can say that AbQCMG

computes the output |ψ〉out for the input |ψ〉in iff there is a circuit GC ∈ CG such

that GC|ψ〉in = |ψ〉out.
An interesting question concerns the possibility of a universal abstract quan-

tum computing machine, that can play the role of the universal Turing machine in

classical computation. This question has a negative answer: one can prove that no

abstract quantum computing machine can be perfecly universal. This is a conse-

quence of the following theorem 1,9,2.

Theorem 1. For any space H(n) there is no finite system of gates (defined on

H(n)) such that any gate G of H(n) can be represented as a finite combination of

elements of the system.

At the same time, one can usefully have recourse to a notion of approximately

universal gate system, which is justified by the following theorem 1,9,2.

Theorem 2. For any gate G of H(n) and for any choice of a non-negative real

number ε there is a finite sequence of gates (G1, . . . , Gu) (of H(n)) such that:

• (G1, . . . , Gu) is a circuit belonging to the family CG∗
.

• For any vector |ψ〉 of H(n), ‖G|ψ〉 −G1 . . . Gu|ψ〉‖ ≤ ε.

On this basis, the machine AbQCMG∗
can be reasonably represented as an

approximately universal abstract quantum computing machine. Notice that all cir-

cuits in the family CG∗
(hence all programs of AbQCMG∗

) can be syntactically

represented by means of formulas expressed in the language L of quantum com-

putational logic (whose connectives are: the negation ¬, the Hadamard-connective√
id and the Toffoli-connective ᵀ). Both CG∗

and the set of all formulas of L are

denumerable sets. At the same time, the set of all possible inputs and outputs of

quantum computations is, obviously, non-denumerable. Unlike classical computa-

tions, quantum computations cannot be faithfully represented in a purely syntac-

tical way (in the framework of a denumerable language). One of the basic tasks
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of quantum computational semantics is creating a link between the (denumerable)

world of circuits and the (non-denumerable) world of possible inputs and outputs

of quantum computations.

What can be said about the computational power of AbQCMG∗
? One can

easily realize that AbQCMG∗
is able to compute in an exact way all recursive

numerical functions. For, any sequence of natural numbers can be represented as a

register and any computation of a recursive function (applied to a register-input)

can be represented as an appropriate combination of the “Boolean” gates (the

negation and the Toffoli-gate). Thus, the machine AbQCMG∗
is able to compute

whatever the universal Turing machine is able to compute. Is AbQCMG∗
able

to compute anything else in the domain of natural numbers? In other words, are

there any G∗-circuits (where the Hadamard-gate plays an essential role) that can

approximately compute (with arbitrary precision) some non-recursive functions? A

discussion about this hard problem (which is obviously connected with the validity

of the Church-Turing thesis) goes beyond the limits of our article.
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