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Abstract. The paper presents the results of an experimental study and numerical simulation of dynamic deformation of dry clay at 
strain rates of ~103 s-1. The main physical and mechanical characteristics of the clay were determined using the modified Split 
Hopkinson Pressure Bar method for testing of lowly cohesive media in a rigid cage. Three series of experiments were carried out at 
strain rates of 1400 s-1, 1800 s-1 and 2500 s-1. The maximum values of the realized in the experiment axial stresses in clay were about 
400 MPa and maximum pressures were 250 MPa. Based on the results of the experiments, the dependences of axial stresses on axial 
deformations x-x, shear stresses on pressure -P and pressure on volumetric deformation P-e (curves of volumetric 
compressibility) were plotted. The shear resistance of clay is noted to be well described by the Mohr-Coulomb law. The obtained 
deformation diagrams are found to be practically independent of deformation rate. The clay behavior under dynamic loads is shown 
to be essentially nonlinear. On the basis of the obtained experimental data, a parametric identification of the clay deformation 
model in the form of Grigoryan's constitutive relation was carried out, which was implemented in the framework of the LS-DYNA 
software in the form of MAT_SOIL_AND_FOAM model. Using the LS-DYNA computational complex, a numerical simulation of the 
deformation process of a sample under real experimental conditions was carried out. In the computational experiment, the clay 
behavior was described by the identified model. Good agreement was obtained between numerical and experimental results. 

Keywords: Strain rate, impact loading, measuring bar, dry clay, numerical simulation, experiment, volumetric compressibility, 
identification. 

1. Introduction 

Investigation of the impact interaction of deformable and solid bodies with soil media is of great scientific and applied 
importance. When studying the mechanisms of penetration into soils, both computational and experimental methods are widely 
used. Computational methods make it possible to simulate and reveal some features of the collision process, which cannot always 
be detected in the course of experiment. When carrying out calculations, various software systems are employed: LS-Dyna, Ansys, 
Logos, Abaqus, etc. However, to obtain adequate calculation results, it is necessary to carefully select the existing mathematical 
models from software systems and set their parameters that most fully reflect the dynamic properties of interacting media. This 
requires a wide range of experimental studies of the dynamic properties of soil media. 

It should be noted that for a number of soil media, the dynamic properties have been studied quite fully. In particular, shock 
adiabats (axial deformation diagrams) and compressibility curves were obtained for sand in a wide range of load amplitudes [1-11]. 
Sand shear properties were studied in [12-14]. In these works, for a sandy medium, the effect of moisture, particle size distribution 
on the shock adiabat parameters, deformation diagrams and yield strengths at high deformation rates 102-105 s-1 and load levels 
were investigated. The data obtained make it possible to equip mathematical models of sand behavior and precisely set their 
parameters in a wide range of load changes depending on the initial physical and mechanical characteristics of the sand. A detailed 
review of experimental studies of the dynamic properties of sand is given in [16]. In [17], the deformation diagrams of clay samples 
subjected to uniaxial stress were determined experimentally using the Split Hopkinson Pressure Bar (SHPB) method. Clay samples 
were pre-loaded at different load levels. The experiments were carried out at strain rates ranged from 60 to 600 s-1 and stress levels 
up to 4 MPa. The dynamic strength of the samples and strain fracture are observed to increase with increasing strain rate and 
preloading value. In [18], wet clay was investigated using the SHPB method within the stress range up to 12 MPa. On the basis of the 
data obtained, the parameters of the criterion of soil flow in the form of Mohr-Coulomb were determined. In [19], the shock 



982 Aleksandr Konstantinov et. al., Vol. 8, No. 3, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 981-995   

compressibility of clay with different water content (0%, 4.8%, 7.5%, and 10%) was studied within the pressure range up to 3.5 GPa. 
According to the results of the experiments, the parameters of shock adiabats were determined, which turned out to be practically 
the same at different water contents in the samples. In [20], plane-wave experiments were carried out to determine the shock 
compressibility of loess, the density of which was 1.8 g / cm3, and the degree of water saturation was 22%. The shock adiabat was 
obtained under stress levels ranged from 0.2 to 1.6 GPa. In [21], dynamic studies of plasticine are presented using the SHPB method, 
which simulates wet clay soil. Deformation diagrams of specimens in a rigid cage in the range of longitudinal stresses up to 150 
MPa were obtained. The parameters of the Mohr-Coulomb equation for the plasticine yield point are determined. In [22], the 
dynamic properties of wet clay samples in a rigid cage were investigated. The experiments were carried out on a setup with an 
SHPB in the range of longitudinal stresses up to 200 MPa. Compressibility curves and the dependence of shear stresses on pressure 
in the Mohr-Coulomb form are obtained. Plane-wave experiments were also carried out to determine the shock adiabat of wet clay 
in the pressure range up to 2 GPa. 

The literature analysis has shown that the dynamic properties of clay soils have not been sufficiently studied. There is a limited 
number of works devoted to the study of clay properties at high strain rates and high stress amplitudes. This work aims at filling 
the gap in the region of strain rates ~103 s-1. 

2. Method of Experimental Research 

A modified Split Hopkinson Pressure Bar method is used to carry out dynamic tests of the soil media [12-15]. The scheme of this 
method is shown in Fig. 1. 

The tested soil sample was located between the ends of the measuring bars a rigid cage limiting its radial distribution (Fig. 2). 
A gas gun, used as a loading device, excites a compression pulse I in one of the measuring bars, which, upon reaching the soil 
sample, loads it. Due to the different acoustic impedances of the bar and the sample, this pulse is split into two pulses - reflected 
R and transmitted through the sample into the second measuring bar T. As a result of multiple waves reflection in the sample, its 
stress-strain state becomes homogeneous, in a time noticeably shorter than the duration of the load. 

Since the radial deformation of the sample is impeded by a rigid cage and the radial deformation is much less than the axial 
one, then, as will be shown below, after some time, an axisymmetric volumetric stress state and a one-dimensional strained state 
is seen to appear in the sample. 

Then the main components of the stress and strain tensors in the sample will have the form: 

1 2 3 1 2 3; ; ; 0x r xσ σ σ σ σ ε ε ε ε= = = = = =   

where x and x are axial stresses and strains, r is radial stress. 
 

 

Fig. 1. Scheme of a setup that implements the modified Split Hopkinson Pressure Bar method: 1 - striker, 2 - loading bar, 3 and 6 - strain gauges, 4 - 
sample, 5 – supporting bar, 7 – damper, 8 - elastic cage  

 

 

Fig. 2. Cage scheme 
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The axial components of stress x(t), strain x(t) , and strain rate ε�x(t) in the sample are determined by strain gauges that record 
strain pulses on measuring bars using the traditional SHPB method [23]. 

( ) ( ) ( ) ( )( )0 02
I R T

s

S S

P EA
t t t t

A A
σ ε ε ε= = + +  (1) 

( ) ( ) ( ) ( )( )
0

I R T
s

C
t t t t

L
ε ε ε ε= ⋅ − −ɺ  (2) 

( ) ( ) ( ) ( )( )
0

0

t
I R T

s

C
t t t t dt

L
ε ε ε ε= − − ⋅∫  (3) 

where I, R, T are deformations in incident, reflected and transmitted pulses in measuring bars. 
The value of the radial component of the stress tensor can be obtained by solving the problem of elastic deformation of a thick-

walled cylinder under the action of internal pressure. The relationship between the internal pressure Pi and the circumferential 
deformation of the cage (t) ~ has the form [12]: 

( ) ( ) ( ) ( )2 2
1 22

2

1
2r it P t E R R t

R θσ ε = = −    (4) 

where E is Young's modulus of the cage material, R1 and R2 are the outer and inner radii of the cage, respectively. The required radial 
stresses r are the internal pressure Pi, under the action of which the cage undergoes small elastic deformations. Thus, according 
to the strain gauges readings on the outer surface of the cage (t), it is possible to determine the radial component of stresses r(t) 
in the sample. 

Further, from the obtained parametric dependences x(t), x(t), ε�x(t) and r(t), after their mutual synchronization, time as a 
parameter is excluded and a diagram of uniaxial deformation of the sample x~x and the history of the strain rate change ε�x~x are 
constructed. 

The combination of two stress components in the sample, x(t) and r(t), makes it possible to calculate the basic properties of 
the tested material. 

The maximum shear stresses (shear resistance) will be on planes located at an angle of 45о to the X axis, and their values on 
these planes will be: 

( ) ( ) ( )1
2 x rt t tτ σ σ = −   (5) 

The pressure P(t) in the sample is determined through the principal stresses as follows: 

( ) ( ) ( )1
2

3 x rP t t tσ σ = +   (6) 

The volumetric deformation will be equal to: 

( ) ( )xt tθ ε=  (7) 

Thus, this technique allows one to calculate the following properties of the test material: shear strength ( )tτ , lateral pressure 
(expansion) coefficient ( )tξ , pressure P(t) in the sample, volumetric deformation ( )tθ , stress intensity ( )i tσ  and the intensity of 
deformations ( )i tε . Therefore, the used version of the SHPB method, in addition to obtaining a diagram of uniaxial compression of 
a sample under conditions of passive limitation of radial deformation, is used to obtain a curve of volumetric compressibility P~ 
and the dependence of shear resistance on pressure ~P. 

When loading a soil sample placed in a metal cage, some radial expansion still occurs due to the elastic deformation of the 
cage; therefore, it is of practical interest to determine the magnitude of radial deformations in order to assess their contribution to 
volumetric deformation and intensity of deformations. 

 

   

(a)      (b) 

Fig. 3. Determination of the stress-strain state of a thick-walled cylinder 
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To obtain a theoretical formula that will make it possible to determine the radial deformation of the sample from the 
deformation impulse recorded on the outer cage surface, let us consider the stress-strain state of a rigid metal cage (Lamé's 
problem). The cage is a thick-walled elastically deformable cylinder under the action of internal pressure pi, and the radial stresses 
of the sample make up the pressure P (Fig. 3 a). The values of tensile stresses and elongation strains will be taken with the plus 
sign, and, conversely, we will take negative values of the compressive stresses and shortening strains. The values of stresses at 
points lying on a circle of radius R inside the cylinder wall, which act in the plane of the drawing along the radius r and 
perpendicular to it t, are determined by the formulas [24]: 

2 2 2 2
2 1 2 1

2 2 2 2 2 2
1 2 1 2

1 ;   1r t

pR R pR R

R R R R R R
σ σ

   
   = − = +   − −   

  

Since the cylinder under consideration does not have a bottom, the third principal stress z, acting in the cage perpendicular to 
the plane of the drawing (Fig. 3a) and caused by bottom pressure is equal to zero. 

The deformation of the cylinder consists in its elongation and in radial displacement of all points of its cross-sections. The 
elastic deformation of a part of a narrow ring of material with radius R and thickness dR inside the cylinder wall is considered (Fig. 
3b). The values of the relative displacements of points lying on a circle of radius R inside the cylinder wall and deformations r and 
t in the direction of the corresponding stresses r and t [24] will be related by the ratio: 

[ ] [ ]1 1
;  r r t t t r

du u

dR E R E
ε σ νσ ε σ νσ= = − = = −   

where u is the radial displacement of points lying on a circle of radius R inside the cylinder wall, du is the increase in the thickness 
of the selected element, and E and  are the modulus of elasticity and Poisson's ratio of the cage material, respectively. 

Thus, the values of stresses r1 and t1 at the points of the outer surface of the metal cage and the corresponding relative elong
ations r1 and t1 will be equal (in the notation of physical quantities for points on the outer surface of the cage, we will take index 
1): 
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At points on the inner surface of the metal cage, the values of stresses r2 and t2 and the corresponding relative deformations 
r2 and t2 will be equal (in the notation of physical quantities for points on the inner surface of the cage, we take index 2): 
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Since the sample during loading is in close contact with the inner surface of the cage, the value t2 = u2/R2 will be the desired 
radial deformation of the sample r,specimen. The magnitude of the relative elongation t1 can be determined from the strain gauge 
readings glued on the outer cage surface . To calculate t2 through the function t1, we perform the following mathematical 
transformations. Substitute expressions (10) and (11) into (12). Then: 
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Let us express p in terms of (8), taking into account (9) 
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Equating the right-hand sides of equations (13) and (14), we obtain 
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or finally 
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The resulting last formula (19) allows one to determine the radial deformation of the sample r,specimen from the deformation 
impulse recorded on the outer cage surface . Taking into account the presence of radial deformation, the values of volumetric 
deformation and the intensity of sample deformations are determined by the formulas: 

х1 2 3 2 rθ ε ε ε ε ε= + + = +  

( )х

2 2 2
1 2 2 3 3 1

2 2
( ) ( ) ( )

3 3 riε ε ε ε ε ε ε ε ε= − + − + − = +  
 

To assess the radial deformation, we take the maximum deformation , measured by strain gauges on the cage surface at the 
maximum striker speed (30 m/s) equal to 0.001. Using formula (15), we calculate the maximum value of the radial deformation r 
equal to 0.002. The maximum change in the value of the longitudinal deformation x is 0.2. Thus, the contribution of transverse 
deformation to volumetric deformation does not exceed 2% of its value and can be neglected. Thus, the assumption of a one-
dimensional strained state and bulk stress state is fulfilled. 

In the experiments, we used measuring bars with a diameter of 20 mm, made of steel with a yield point of more than 2 GPa. 
The loading bar was 1500 mm long and the supporting bar 2900 mm long. Small base seam strain gauges were glued on the surface 
of the loading bar at a distance of 810 mm from the sample, and on the supporting bar at a distance of 420 mm from the sample. 

The loading was performed by the impact of a steel bar 300 mm long against the end face of the loading bar. A striker with a 
diameter of 19.8 mm was accelerated to the required speed in the barrel of a 20 mm gas gun. A pulse shaper made of annealed 
copper with a thickness of 0.8 mm was placed on the impact end of the measuring bar. This made it possible to obtain sufficiently 
smooth leading and trailing edges of the incident pulse (Fig. 4). 

 

Fig. 4. Strain pulses in measuring bars (I,R,T) and cage () in experiment No. 51. (I - incident impulse, R - reflected impulse, T - transmitted 
impulse,  - circumferential deformation impulse in the cage) 

 

Fig. 5. Synchronized deformation pulses in measuring bars (I, R, T) in experiment No. 51 
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Fig. 6. Diagram of a device for forming a sample 

 

Fig. 7. Measuring cage design 

 
Figure 5 shows synchronized strain impulses in measuring bars. For simplicity all impulses (compressive and tensile) are 

considered positive. It is clearly seen that the sample is in a state close to homogeneous since the strain values in the transmitted 
pulse are practically equal to the sum of deformations in the incident and reflected pulses, which indicates the equality of the 
forces acting on the sample from the side of the loading and supporting bars at each moment of time. 

3. Method of Samples Fabrication 

The samples were made from clay taken from a depth of 1 m in the Bogorodsky district of Nizhny Novgorod region. The clay 
was dried in air at room temperature for a long time to completely remove moisture. Then the pieces of clay were crushed to a 
powdery state. To form the samples, ground clay was mixed with water in an amount of 20% by weight of the clay. The wet clay was 
thoroughly mixed to ensure uniformity. Clay specimens with a length of about 10 mm were molded in special cylindrical holders 
(Fig. 6). A strictly defined mass of wet clay was put into a cage between two punches. Then the punches were as close as possible to 
obtain the required sample volume. After the formation of the sample, the upper punch was removed from the cage. Then the 
samples were dried in air until the added moisture was completely removed. It should be noted that upon moisture evaporation, 
the samples shrank in diameter; therefore, the cage diameter for samples forming was selected in such a way that, with complete 
water evaporation, the samples diameter was 20.5 mm and corresponded to the inner diameter of the cage. 

 

Table 1. The parameters of the tested samples and the experimental conditions 

Experiment no. Sample density g/cm3 Sample length, mm Remaining sample length, mm Striker speed, m/s Maximum strain rate, s-1 

49 1,95 10,05 8,75 18,9 1470 
51 1,96 10,05 8,7 19,4 1360 

54 1,97 9,95 8,4 24,9 1710 
55 1,98 9,9 8,4 24,9 1830 

59 1,97 10,0 8,3 30,6 2630 
61 1,98 9,95 8 30,3 2550 
65 1,95 9,9 8,4 25,2 1910 

66 1,95 9,7 8,1 24,6 1980 
67 1,97 9,7 8,65 19,8 1380 

68 1,96 9,7 8,4 19,8 1480 
69 1,97 9,7 8,6 19,2 1520 

70 1,98 9,7 - 30,8 2740 
72 1,98 9,7 8,2 24,5 1920 
73 1,98 9,7 8,2 24,5 2480 

74 1,96 9,8 - 30,3 2480 
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4. Results of the Experimental Study 

After complete drying, the samples were inserted into a cage with strain gauges glued to it external surface for measuring 
circumferential deformations . The length of the working part of the cage was 10 mm, so the samples had a length close to that 
of the working part of the cage. The inner cage diameter was 20.5 mm, which provided a sufficiently small gap between the cage 
and the side surface of the measuring bars. The outer diameter was 35 mm. Since the lengths of the samples and working part of 
the cage practically coincided, thin-walled cylinders with a wall thickness of 1.85 mm (Fig. 7) and a length of 5 mm were left at the 
cage edges to ensure the centering of the cage relative to the bars. As shown in [14], these centering sleeves did not affect the 
measurement results. 

The sample was placed inside the working part of the cage. Then the sample was pressed from both sides with measuring bars 
to eliminate gaps. The experiments were carried out under three loading modes, differing in the speed of the striker: ~ 20, 25, and 
30 m/s. The deformation rate also differed accordingly: 1400, 1800, and 2500 s-1. Five experiments were carried out for each loading 
mode. The parameters of the tested samples and the experimental conditions are shown in Table 1. 

According to the results of experiments using formulas (1-3), the time dependences of longitudinal deformation, longitudinal 
stress, and strain rate of the sample were determined. By formula (4), the radial stress in the sample was determined as a function 
of time. These dependencies were used to construct the main diagrams of deformation, the dependence of strain rate on 
deformation, the dependence of pressure on deformation, as well as the dependence of shear strength on pressure. Pressure P and 
shear stress  were determined by formulas (5,6). These dependences for each loading mode were averaged to obtain average curves 
and standard deviation. Deformation diagrams were obtained in the stress range up to 400 MPa. An example of deformation 
diagrams and dependences of the strain rate on longitudinal deformation, obtained at a striker speed of close to 20 m/s, is shown 
in Fig. 8. Technical deformation is plotted along the abscissa. 

 

(a)       (b) 

Fig. 8. Deformation diagrams of clay specimens at impact velocities of 20 m/s (a), deformation rate of clay samples at an impact velocities of about 
20 m/s (b) 

 

Fig. 9. Deformation diagrams of clay specimens at different impact velocities 
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Comparison of the obtained average diagrams of clay deformation for different loading conditions is shown in Fig. 9. It is clearly 
seen that the load branches of the obtained diagrams practically coincide within the scatter of the experimental data, i.e. do not 
depend on the strain rate, and the values of the achieved stresses and strains depend on the amplitude of the applied load. The 
slope of the unloading branches of the diagrams is close to linear for different experiments and does not depend on the strain rate. 

The loading branch of the true deformation - longitudinal stress dependence can be described by the expression [25]: 

( )

2
0

2
1

x
x

x

A

B

ρ ε
σ

ε
=

−
  

where A and B are  parameters of the shock adiabat, written in the form D = A + BU (D is the shock wave velocity, B is the mass 
velocity of the substance behind the front). 

The load branches of the diagrams are well approximated by this dependence with the parameters A = 500 m/s, B = 1.9. The 
unloading branches of the diagrams have a slope in the linear section, characterized by a modulus of 11300 MPa. 

Since the volumetric deformation practically coincides with the longitudinal deformation - the difference is less than 2% of its 
value, it is possible to construct a summary curve of compressibility in volumetric deformations 

The course of the curves characterizing the pressure dependence on volumetric deformation practically does not depend on 
the strain rate (Fig. 10). 

Determination of the shear properties of the studied soil is of considerable interest. For many soil media, the yield point as a 
function of pressure can be described by the Mohr-Coulomb relation. The dependences ⁓P determined in the experiments for the 
loading mode with an impact velocity of 25 m/s are shown in Fig. 11. It is clearly seen that these dependences have two different 
branches - loading and unloading, which have different slopes. The averaged dependences of the shear strength  on the pressure 
P are shown in Fig. 12. 

 

Fig. 10. Pressure versus volumetric deformation at different impact velocities 

 

 

Fig. 11. Shear stress as a function of pressure at impact velocity of 25 m/s 
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Fig. 12. Shear stress as a function of pressure at different impact velocities 

 

Fig. 13. Curve of volumetric compressibility in the MAT_SOIL_AND_FOAM model [28] 

 
The dependence of the shear strength on pressure in the active load section is described by a linear function of the form  = C 

+ kP. At projectile velocities of 20 and 25 m/s, C = 2.5 MPa, k = 0.4, and at an impact velocities of 30 m/s, C = -0.5 MPa, and k = 0.38. 
The branches of the ⁓P dependence during unloading are well approximated by straight lines with different slopes for different 
test conditions. At 20 m/s, C = -19 MPa, and k = 0.62. At 25 m/s, C = -25 MPa, and k = 0.58. At 30 m/s, C = -35 MPa, and k=0.53. 

5. Analysis of Experimental Results and Construction of a Mathematical Deformation Model of Clay 

A constitutive relation in the form of Grigoryan's model was chosen for modeling the clay behavior [26]. This model is widely 
used to simulate the behavior of soft soil media under dynamic loads. Soft soil is considered as an elastoplastic medium that 
provides nonlinear resistance to compression and shear [27]. In this model, to describe the nonlinear behavior of the soil medium, 
it is necessary to specify the dependence of pressure on volumetric deformation (or density), as well as the dependence of the flow 
stress on pressure. 

In LS-DYNA computational code, a similar model is implemented in the form of material: MAT_SOIL_AND_FOAM [28]. This is a 
fairly simple model and is recommended for describing soils, concretes, and foams. The volumetric compressibility curve is shown 
schematically in Fig. 13. As part of the model implementation in LS-DYNA, there are two options for material behavior during 
unloading. In the first case, unloading occurs along the same curve as the load (gray arrows in Fig. 12). In the second, unloading is 
performed in a straight line, the slope of which is set by the module of all-round compression K. During tension, the maximum 
pressure is limited by the Pressure Cutoff. 

The pressure is considered positive when compressed. Volumetric deformation is determined by the natural logarithm of the 
relative volume: 

0

e
V

ln
V

=   

here V is the current volume, V0 is the initial volume. The P(e) curve is specified as a table function. 
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Table 2. Dependence of pressure on volumetric deformation. 

ln (V/V0) 0 -0.05 -0.1 -0.125 -0.15 -0.175 -0.2 -0.22 

P, MPa 0 20 53 75 105 150 220 275 

 
The plastic behavior of the medium is described using the ideal plastic flow function: 

2
2 0 1 2J a a P a Pφ  = − + +     

here J2 is the second invariant of the stress tensor deviator: 

2

1
2 ij ijJ s s=   

here sij are the components of the stress tensor deviator. 
On the flow surface: 

2
2

1
3 YJ σ=   

whereY is the flow stress at a uniaxial stress state. 
Thus: 

( )
1

22
0 1 23Y a a P a Pσ  = + +     

The considered model does not imply strain hardening. The plastic behavior of the material is determined by the values of the 
material parameters a0, a1, a2. 

Model identification for clay was carried out on the basis of data obtained during the experimental determination of the 
dynamic compressibility of clay using a modified SHPB method described above. 

As a result of the performed experimental studies, the dependences of pressure on volumetric deformation, as well as stress 
intensity on pressure, were obtained for three loading modes, which correspond to striker velocities of 20, 25, and 30 m/s. The 
dependences of pressure on the logarithm of the relative volume of the sample, grouped by loading modes, are shown in Fig. 10. 
There is a good repeatability of the results of experiments carried out under the same conditions. Fig. 12 illustrates the shear stress 
as a function of pressure for three loading modes. It can be noted that the nature of volumetric compressibility curves is practically 
independent of the loading rate. It should be noted that the unloading curves in the deformation diagrams differ significantly from 
the load ones. The load branches of the diagrams are actually repeated for different load intensities. The only difference is the 
maximum volumetric deformation achieved in the test (and, accordingly, the pressure). At the highest strain rate, maximum 
pressures of the order of 250 MPa appear in the sample. Dependences of stress intensity on pressure in the loading section are 
practically linear. The slope of these sections is practically independent of the loading rate. 

The data shown in Fig. 10 were approximated to equip the MAT_SOIL_AND_FOAM model with the necessary parameters and 
constants. The left part of Fig. 14 shows the approximation of the curves of volumetric compressibility by a tabular function. The 
table function itself is presented in Table 2. 

Unloading within the framework of the considered model is carried out along a straight line with a given inclination angle. The 
modulus of the unloading branch was determined by approximating the experimental data (Fig. 14a). The modulus of volumetric 
compression K during unloading was 11383 MPa. 

The procedure for determining the parameters of the Grigoryan’s model based on the test data of soft soils in the limiting cage 
is described in [29]. 

The loading path parameters on the stress plane under conditions of a uniaxial deformed state can be obtained analytically. 
The loading path is formed by three segments. The first segment corresponds to the plastic loading of the soil from zero in the 
initial state to the maximum stress value, determined by the amplitude of the load pulse. The second segment corresponds to the 
elastic deformation of the soil at the initial stage of unloading from the achieved state. The third segment is associated with the 
transition of the soil from elastic to plastic state. 

  

(a)      (b) 

Fig. 14. (a) approximation of the volumetric compressibility curve, (b) - approximation of the dependence of the flow stress on pressure 
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The slope of the first section is related to the lateral pressure coefficient (determined experimentally), which in turn is related 
to the coefficient in the linear dependence of the yield stress on pressure. The dependence of the flow stress on pressure is well 
described by a linear function (Fig. 14b): 

0.81Y k P b Pσ = ⋅ + = ⋅   

The value of the slope of the first section of the loading path: 

1 3
1 2 3

r
I

x

kd
K

kd
σ σ

σ

−
= =

+ ⋅
  

For k = 0.81, we get IKσ = 0.474. 

The slope of the second section (elastic) is determined by the formula, which for G = kK/2, where K & G – volumetric and shear 
unloading modules will have the form: 

2 13 3
4 213 3

II

kGK
K

G kK

σ

β

β

⋅− −
= =

⋅ ⋅+ +
  

where  is a numerical parameter determined experimentally. 
In the case of the tested soil, the value  = 1.32 gives a good approximation of the experimental data on the elastic section of 

the unloading branch (Fig. 6). Thus, G = 6085 MPa, IIKσ = 0.376. 
The third (plastic) section of the loading path has a slope: 

1 3
21 3

III

k
K

k
σ

+
=

⋅−
  

For k = 0.81, we get IIIKσ = 2.76. 
The thus constructed approximation of the experimental loading trajectory by the three-link model is shown in Fig. 15. 
It should be noted that the indicated solution was obtained analytically for the case of one-dimensional deformation of the 

sample. Since the cage in real experiments is pliable and undergoes elastic deformations, the parameter  was determined by 
selection when modeling the deformation process of the sample in the confining cage. The value of the parameter obtained using 
the analytical solution was taken as the initial approximation. The simulation scheme is described in detail below. Figure 16 
illustrates the deformation trajectory of the sample in the x - r axes for different values of the  parameter. It can be seen that the 
best agreement with the experimental data is observed at  = 1.13, which corresponds to the unloading shear modulus G = 5200 
MPa. 

The coefficients of the MAT_SOIL_AND_FOAM model are determined as follows: 

2 2 2
0 0

0 1 2

2
75,  8.26,   0.2187

3 3 3
k k

a a a
σ σ⋅ ⋅

= = = = = =   

here 0 is the dynamic yield stress of clay, determined by using the classical version of the SHPB method in compression under 
conditions of a uniaxial stress state. The average value of this stress in the dynamic range of strain rates was about 15 MPa. 

The complete set of model constants, presented in the form of an input map of the LS DYNA PP, is shown in Fig. 17. 

 
 

Fig. 15. Approximation of the clay loading trajectory Fig. 16. Determination of the parameter  taking into account the 
cage flexibility 
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Table 3. Model parameters for describing the behavior of measuring bars and a cage. 

 Density, kg/m3 Young's modulus, MPa Poisson's ratio 

Measuring bars 8050 185000 0.28 
Cage 7850 210000 0.28 

6. Results of Numerical Simulation of Sample Compression in the Cage 

Experiments on shock compression of clay specimens in a confining cage were numerically reproduced using the LS-DYNA PP. 
Figure 18 shows a fragment of the model: the area near the sample in the bounding cage. The numbers indicate: 1 - cage, 2 - 
measuring bars, 3 - sample. Geometric dimensions are given on Fig. 7. The length of the loading measuring bar in the computational 
experiment, as in the full-scale test, was 1.5 m, and that of the reference bar, 2.9 m. In the experiments, measuring bars with a 
diameter of 20 mm made of high-strength steel were used. Since the measuring bars and the cage within the framework of the 
method work in the elastic region, their behavior was described by the linear elastic MAT_ELASTIC models. Model parameters are 
shown in Table 3. 

The behavior of a clay sample, as mentioned above, was described by the MAT_SOIL_AND_FOAM model, the parameters of which 
were defined earlier. Since the behavior of the material did not show a visible dependence on the strain rate, an experiment was 
simulated with the maximum load amplitude (striker speed - 30 m/s). A pressure pulse L(t) acting on the end face of the loading 
bar was set as the load. The shape of this impulse was determined from the incident deformation impulse recorded in the 
corresponding full-scale test according to the formula: 

( ) ( )I
L t E tσ ε=− ⋅   

here E is the modulus of elasticity of the measuring bar, I (t) is the deformation impulse recorded in the measuring bar. 
The resulting time dependence of the voltage pulse is shown in Fig. 19. 
The problem was solved in an axisymmetric setting. An explicit scheme was used to integrate the equations over time. Area-

weighted axisymmetric Lagrangian finite elements (type 14) were used to discretize the space. 
Figure 20 (a-d) provides a comparison of simulation results and field test data. The components of the stress tensor in the 

computational cell corresponding to the sample were determined numerically. Blue lines in the figures correspond to field test data, 
black lines correspond to simulation results. In Fig. 20a pressure versus strain is compared. Figure 20b shows curves in axial stress-
radial stress axes. Figures 20c and 20d compare the time dependences of axial and radial stresses in the sample, respectively. In 
general, it can be noted that the identified mathematical model based on the results of the experiment allows quite accurately, 
both qualitatively and quantitatively, to reproduce the main features (including nonlinear behavior) of the material under study. 

 
 

 

Fig. 17. Parameters of the clay model for PP LS-DYNA 

 

 

Fig. 18. Fragment of the model Fig. 19. Voltage impulse (load) 
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(a)       (b) 

 

(c)       (d) 

Fig. 20. Comparison of simulation results and field tests 

7. Conclusion 

It was found in the experiments that the deformation diagrams and compressibility curves of the studied soil practically 
coincide in the load section at different strain rates in the range of 1300-2500 s-1. It should be noted that similar behavior is typical 
for other types of soils (in particular, for sandy ones). The unloading branches of the deformation diagrams and compressibility 
curves under different loading conditions also have a similar slope, which does not depend on the strain rate. The dependence of 
the shear strength on pressure for dry clay is also practically independent of the strain rate. Comparison with the results for wet 
clay [22] shows that wet clay has a much lower compressibility than dry clay, while when wet clay is compressed, maximum stresses 
are achieved at deformations that are significantly lower than for dry clay. The shear strength for wet clay is also significantly lower 
than for dry clay. The coefficient K, which determines the slope in the Mohr-Coulomb law, is two times higher (0.4) for dry clay than 
for wet clay (0.2). The experimental information obtained was used to identify the parameters of the material model in the Grigoryan 
form. Numerical simulation of dynamic tests has shown that the identified model makes it possible to adequately describe the 
behavior of clay under dynamic load when the sample is in a confined state. Further refinement of the model is planned to be 
carried out using experiments under uniaxial stress conditions.  
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