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We investigate hysteresis effects in the perturbative solution of renormalization group equations (RGEs).
We present examples for the QCD running coupling and proton’s parton distribution functions (PDFs),
relevant to precision physics at the Large Hadron Collider and future collider experiments. We propose the
use of resummation scales to take into account the theoretical uncertainties from the solution of the RGEs.
As a case study, we consider the F2 structure function in a region relevant to the extraction of PDFs.
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I. INTRODUCTION

Experimental studies of fundamental interactions and
searches for new physics at high-energy colliders call for
increasingly high precision in Standard Model theoretical
predictions [1]. A large effort has thus been, and continues
to be, devoted to quantum chromodynamics (QCD) cal-
culations of collider cross sections at finite perturbative
order [2], as well as to QCD resummations to all orders of
perturbation theory [3,4].
With the quest for increasing precision, the need arises

for reliable estimates of theoretical uncertainties in QCD
calculations. This work is devoted to investigating potential
sources of theoretical uncertainties associated with the
solution of renormalization group equations (RGEs) that
enter calculations based on QCD factorization. The theory
uncertainties we focus on stem from equations for a generic
renormalized quantity R, function of the strong coupling αs,
and renormalization scale μ of the form

d lnR
d ln μ

ðμ; αsðμÞÞ ¼ γðαsðμÞÞ; ð1Þ

where the anomalous dimension γ can be expanded in
powers of αs as follows:

γðαsðμÞÞ ¼
αsðμÞ
4π

X∞
n¼0

�
αsðμÞ
4π

�
n
γn: ð2Þ

Introducing the evolution operator G connecting R at any
two given scales μ1 and μ2,

Rðμ1; αsðμ1ÞÞ ¼ Gðμ1; μ2ÞRðμ2; αsðμ2ÞÞ; ð3Þ

the effects we examine cause the identity Gðμ1; μ0Þ×
Gðμ0; μ2Þ ¼ Gðμ1; μ2Þ to be violated for an arbitrary scale
μ0 as a result of the expansions in αs performed to solve
Eq. (1) analytically. That is, one has

Gðμ1; μ0ÞGðμ0; μ2Þ ≠ Gðμ1; μ2Þ ð4Þ

due to formally subleading terms in the αs expansion.
Examples corresponding to the behavior (4) for the

Sudakov form factor have been studied in Refs. [5,6] in
the context of analytic resummation and in Ref. [7] in the
context of resummation by angular-ordered parton branch-
ing. In this workwe observe that effects of the type in Eq. (4)
show up also in the case of single-logarithmic resumma-
tions. Specifically, we analyze the case of the QCD coupling
αs and of the parton distribution functions (PDFs). We refer
to such effects, embodied in Eq. (4), as perturbative
hysteresis. We will leave the treatment of Sudakov form
factor and evolution of transverse momentum dependent
distributions [4] to a separate publication [8].
In this work, we point out that the perturbative hysteresis

can be traced back to additional theory uncertainties arising
in the predictions for physical observables besides those
associated with the renormalization and factorization
scales. These uncertainties are associated with the solution
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of the RGE and can be estimated by introducing resum-
mation scales in a manner analogous to what is usually
done in Sudakov resummation (see e.g., [9]). To illustrate
how this can be achieved, we generalize the formalism of
the g functions to the evolution of running coupling and
PDFs, discussing the emergence of resummation scales. As
an application, we evaluate the resummation-scale uncer-
tainties on the deep-inelastic-scattering (DIS) structure
function F2, potentially relevant to future determinations
of PDFs [10] and to phenomenology at future lepton-
hadron collider experiments [11,12].
We will proceed as follows. We will start with the case of

running coupling, introducing the g-function formalism
and illustrating the size of the perturbative hysteresis and
the associated uncertainty. We will next briefly discuss the
case of PDF evolution along similar lines. We will finally
present the implications of these results on predictions for
the DIS structure function F2.

II. RUNNING COUPLING

Consider the RGE in Eq. (1) for the case of the running
coupling, in which R ¼ αs=4π ¼ as and γ ¼ −8πβ=αs,
where β is the QCD beta function [13]. At leading order, the
RGE can be solved exactly in closed form, giving the
leading-logarithmic (LL) resummation of the running
coupling [13]. From next-to-leading logarithmic (NLL)
accuracy on, however, the RGE gives rise to a transcen-
dental equation for which a closed-form solution does not
exist. Therefore, one has to resort to either a numerical or an
analytic solution based on perturbation expansions.
By extending techniques frequently applied to soft-gluon

resummation, we write the analytic solution for the running
coupling in terms of appropriate g functions [8],

aN
kLL

s ðμÞ ¼ asðμ0Þ
Xk
l¼0

alsðμ0ÞgðβÞlþ1ðλÞ; ð5Þ

with

λ ¼ asðμ0Þβ0 ln
�
μRes
μ0

�
; ð6Þ

where μRes ¼ κμ is the “resummation” scale with κ ∼ 1.
The g functions necessary up to NLL read

gðβÞ1 ðλÞ ¼ 1

1 − λ
;

gðβÞ2 ðλÞ ¼ 1

ð1 − λÞ2
�
−
β1
β0

lnð1 − λÞ − β0 ln κ

�
: ð7Þ

The functional form of the gðβÞi for i > 2 is straightfor-
wardly obtained from the corresponding Ni−1LL expansion
of the running coupling.

Equation (5) bears the feature that, by evolving αs from
μ0 to μ and then back to μ0, one does not reobtain the initial
value. We illustrate this at NLL in Fig. 1, which displays the
behavior of the NLL analytic solution with nf ¼ 5 active
flavors evolved from αsðMZÞ ¼ 0.118 down to 1 GeV and
then back to MZ. Backward and forward evolution curves
do not coincide, leading to a mismatch in the value of
αsðMZÞ, which is a manifestation of the perturbative
hysteresis.
The resummation scale μRes in the analytic solution

enables subleading corrections to be modeled through
variations of the parameter κ. This allows one to estimate
missing higher orders to the anomalous dimension and
reflects the fact that the analytic solution beyond LL
violates its RGE by subleading terms. Even when using
the numerical solution, we may define a strategy to perform
scale variations at the level of the β function. To be specific,
by displacing the scale μ by a factor ξ, we obtain

β̄ðμÞ ¼ asðξμÞβ0
�
1þ asðξμÞ

�
β1
β0

− 2β0 ln ξ
��

þOðα3sÞ: ð8Þ

This effectively defines a new β function that differs from
the original one by subleading corrections. The difference
between the solution obtained with the original βðμÞ and
the one in Eq. (8) gives an estimate of the effect of higher-
order corrections, much as variations of the resummation
scale do for the analytic solution. In fact, it can be shown
that at NLL accuracy the β function generated by the
analytic solution in Eq. (5) can be recast in the same form as
Eq. (8) provided that κ ¼ ξ.
Figure 2 shows the effect of varying the factor κ in the

functions gðβÞi in Eq. (7) and the factor ξ in Eq. (8). In order
to account for the possible nonmonotonicity of the varia-
tions, the bands are obtained as the maximum spread due to
the variation of either κ or ξ in the respective ranges. The
size of the two bands is comparable with the noticeable
difference that the band for the numerical solution

FIG. 1. Perturbative hysteresis for the NLL evolution of the
strong coupling αs.
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consistently shrinks to zero as μ approachesMZ, where the
boundary condition is set.

III. PARTON DISTRIBUTION FUNCTIONS

As a second application, we consider the RGE Eq. (1) in
which the quantity R is identified with the Mellin transform
f of a nonsinglet parton distribution. By introducing the
formalism of the g functions, we write the evolution of f
from the initial scale μ0 to the final scale μ as

fN
kLLðμÞ ¼ gðγÞ;N

kLL
0 ðλÞ exp

�Xk
l¼0

alsðμ0ÞgðγÞlþ1ðλÞ
�
fðμ0Þ: ð9Þ

The g functions for the NLL evolution read

gðγÞ;NLL0 ðλÞ ¼ 1þ asðμ0Þ
1

β0

�
γ1 −

β1
β0

γ0

�
λ

1 − λ
;

gðγÞ1 ðλÞ ¼ −
γ0
β0

ln ð1 − λÞ;

gðγÞ2 ðλÞ ¼ −
γ0
β20

β1 ln ð1 − λÞ þ β20 ln κ
1 − λ

: ð10Þ

The procedure can be extended to NkLL accuracy by

including the appropriate gðγÞi ’s, with i ≤ kþ 1, along with

theOðaksÞ corrections to gðγÞ;N
kLL

0 . The g functions in Eq. (9)
are written in terms of the λ variable given in Eq. (6)
automatically allowing for resummation-scale variations.
Such variations can be used to probe higher-order correc-
tions to the anomalous dimensions.
To estimate higher-order corrections in the case of the

numerical solution, we shift the argument of αs appearing
in the expansion of the anomalous dimension by a factor ξ.
This effectively defines a new anomalous dimension differ-
ing from the previous one by subleading terms. At NLL it
reads

γ̄ðμÞ ¼ asðξμÞγ0 þ a2sðξμÞ½γ1 − β0γ0 ln ξ�: ð11Þ

The effect of perturbative hysteresis associated to the
procedure outlined above is shown in Fig. 3. The gluon
PDF from the MSHT20 [15] LHAPDF set is evolved using
the numerical (red curve) and the analytic (blue curve)
solution from 5 to 100 GeV, and then back to 5 GeV, and
compared to the original distribution at 5 GeV (black
dashed curve). The evolution range ½5∶100� GeV is chosen
in order not to cross any heavy-quark thresholds during the
evolution. Looking at the lower inset we observe that, as
expected, the numerical solution guarantees that the origi-
nal distribution is recovered. Conversely, the analytic
solution displays a discrepancy of a few percent in the
low-x region.
To assess the quantitative impact of varying the param-

eters κ and ξ in the analytic and numerical solutions,
respectively, in Fig. 4 the NLL evolution is shown for the
nonsinglet combination fd − fd̄ ¼ fd− . The evolution runs
from μ0 ¼ 100 GeV down to μ ¼ 5 GeV with nf ¼ 5

active flavors. The bands correspond to variations of the
parameters κ and ξ in the range ½0.5∶2�. Varying the scales
gives rise to similar deviations in both solutions.

FIG. 2. Analytic and numerical evolution of the strong coupling
αs at NLL. The bands indicate the uncertainty computed by
varying the factors κ and ξ in the range ½0.5∶2�.

FIG. 3. Perturbative hysteresis for the NLL evolution of the
gluon PDF.

FIG. 4. Analytic and numerical NLL evolution of the non-
singlet combination fd − fd̄ ¼ fd− from μ0 ¼ 100 GeV down to
μ ¼ 5 GeV. The bands indicate the theoretical uncertainty
computed by varying the factors κ and ξ in the range ½0.5∶2�.
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IV. IMPLICATIONS FOR THE
F2 STRUCTURE FUNCTION

As a phenomenological example, we study the impact of
the RGE theory uncertainties on predictions for the DIS
structure function F2. Using the APFEL code [14], we
compute F2 at next-to-leading order (NLO) and next-to-
next-to-leading order (NNLO) and perform variations of
renormalization and factorization scales, μR and μF, and of
the resummation-scale parameters ξ introduced in Eqs. (8)
and (11) for the running coupling and the PDFs, respec-
tively. In Fig. 5 we show results for F2 versus x at Q ¼
10 GeV using the MSHT20 PDFs [15] atQ0 ¼ 2 GeV and
αsðMZÞ ¼ 0.118 [16] as RGE inputs.
We see that the resummation-scale uncertainties associated

with the solution of the RGEs are generally non-negligible
with respect to renormalization- and factorization-scale
uncertainties. In particular, the left panel (NLO) shows that
the ξPDF contribution dominates in the low-x regionwhile the
μF contribution dominates at the largest x. The size of the
uncertainties is significantly reduced when going to NNLO
(right panel). It is worth noting that the resummation-scale
uncertainties become larger relative to the μF and μR
uncertainties as Q increases, so that they eventually become
dominant also in the large-x region.
In Fig. 6 we investigate the Q dependence of the relative

variation ΔF2=F2 due to the four different uncertainty

sources under consideration at NLO (left) and NNLO
(right) at x ¼ 10−2. The ξPDF contribution (green band)
starts from zero at Q0, grows rapidly with the evolution
scale Q, and remains significant out to large Q. In contrast,
the μF contribution (blue band) is largest at low Q and
decreases with increasing Q. Analogously, the μR contri-
bution (red band) is important at low Q and decreases with
Q, while the ξαs contribution (yellow band) is subdominant
at low Q but becomes relevant at high Q. As expected, the
bands shrink when going to NNLO. We also point out that
the size of the ξPDF band grows as x decreases.
In conclusion, Figs. 5 and 6 demonstrate that the ξPDF

contribution stays comparatively significant in the kin-
ematic region of large Q and low x. This corresponds to
higher-order perturbative corrections to the PDF anomalous
dimension dominating the low-x region [17] for sufficiently
large Q. In general, due to their cumulative origin, the
uncertainties associated to both ξPDF and ξαs become more
and more significant as the evolution interval grows. We
thus expect the resummation-scale uncertainties to be
especially important for reliable predictions at high scales.
We observe that the results above for the resummation-

scale uncertainties depend on the boundary condition.
Specifically, we have used Q0 ¼ 2 GeV as a starting scale
for PDF evolution, which is close to the input scale usually
employed for PDF fits. This implies that, due to the large

FIG. 5. The x dependence of the structure function F2 at NLO and NNLO in perturbation theory with the uncertainty bands associated
with variations of renormalization and factorization scales, μR and μF, and resummation scales ξαs and ξPDF.

FIG. 6. Q dependence of the relative variation ΔF2=F2 at NLO and NNLO associated with variations of renormalization and
factorization scales, μR and μF, and resummation scales ξαs and ξPDF.
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evolution range, resummation-scale uncertainties can
become sizeable for very energetic processes, such as jet
and top production at the LHC. The analysis of this paper
suggests that one may achieve a better control on such
uncertainties by choosing an alternative input scheme, e.g.,
a higher Q0 scale.

V. CONCLUSION

In this paper we have studied the theoretical uncertainties
stemming from the solution of RGEs and the associate
perturbative hysteresis. We proposed to treat the RGE
uncertainties on strong coupling and PDFs by means

of g-function formalism and corresponding resummation
scales. This enabled us to quantify for the first time the
effect of RGE uncertainties in the case of a collider
observable, i.e., the DIS structure function F2. Our numeri-
cal results show that RGE uncertainties are significant in a
kinematic region relevant for PDF extractions and collider
phenomenology.
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