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Perturbative hysteresis and emergent resummation scales

V. Bertone®,"” G. Bozzi®,>>" and F. Hautmann

4.5.6,%

YRF U, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
2Dipartiment0 di Fisica, Universita di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
*INFN, Sezione di Cagliari, Cittadella Universitaria, 1-09042 Monserrato (CA), Italy
*CERN, Theoretical Physics Department, CH 1211 Geneva, Switzerland
SElementaire Deeltjes Fysica, Universiteit Antwerpen, B 2020 Antwerpen, Belgium
Theoretical Physics Department, University of Oxford, Oxford OX1 3PU, United Kingdom

® (Received 9 February 2022; accepted 14 April 2022; published 2 May 2022)

We investigate hysteresis effects in the perturbative solution of renormalization group equations (RGEs).
We present examples for the QCD running coupling and proton’s parton distribution functions (PDFs),
relevant to precision physics at the Large Hadron Collider and future collider experiments. We propose the
use of resummation scales to take into account the theoretical uncertainties from the solution of the RGEs.
As a case study, we consider the F, structure function in a region relevant to the extraction of PDFs.
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I. INTRODUCTION

Experimental studies of fundamental interactions and
searches for new physics at high-energy colliders call for
increasingly high precision in Standard Model theoretical
predictions [1]. A large effort has thus been, and continues
to be, devoted to quantum chromodynamics (QCD) cal-
culations of collider cross sections at finite perturbative
order [2], as well as to QCD resummations to all orders of
perturbation theory [3.4].

With the quest for increasing precision, the need arises
for reliable estimates of theoretical uncertainties in QCD
calculations. This work is devoted to investigating potential
sources of theoretical uncertainties associated with the
solution of renormalization group equations (RGEs) that
enter calculations based on QCD factorization. The theory
uncertainties we focus on stem from equations for a generic
renormalized quantity R, function of the strong coupling «a,
and renormalization scale y of the form

dInR
dlnpy

(s as () = (e (u)), (1)

where the anomalous dimension y can be expanded in
powers of ay as follows:
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Introducing the evolution operator G connecting R at any
two given scales y; and p,,

Ry, ag(py)) = Guy uo)R(pa, a5 (1)), (3)

the effects we examine cause the identity G(u,pg) X
G(ug, po) = G(uy, p) to be violated for an arbitrary scale
Uo as a result of the expansions in «, performed to solve
Eq. (1) analytically. That is, one has

G(ﬂl’ﬂO)G(/‘O’/‘Z) # G(ﬂhﬂz) (4)

due to formally subleading terms in the @, expansion.

Examples corresponding to the behavior (4) for the
Sudakov form factor have been studied in Refs. [5,6] in
the context of analytic resummation and in Ref. [7] in the
context of resummation by angular-ordered parton branch-
ing. In this work we observe that effects of the type in Eq. (4)
show up also in the case of single-logarithmic resumma-
tions. Specifically, we analyze the case of the QCD coupling
a, and of the parton distribution functions (PDFs). We refer
to such effects, embodied in Eq. (4), as perturbative
hysteresis. We will leave the treatment of Sudakov form
factor and evolution of transverse momentum dependent
distributions [4] to a separate publication [8].

In this work, we point out that the perturbative hysteresis
can be traced back to additional theory uncertainties arising
in the predictions for physical observables besides those
associated with the renormalization and factorization
scales. These uncertainties are associated with the solution
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of the RGE and can be estimated by introducing resum-
mation scales in a manner analogous to what is usually
done in Sudakov resummation (see e.g., [9]). To illustrate
how this can be achieved, we generalize the formalism of
the g functions to the evolution of running coupling and
PDFs, discussing the emergence of resummation scales. As
an application, we evaluate the resummation-scale uncer-
tainties on the deep-inelastic-scattering (DIS) structure
function F,, potentially relevant to future determinations
of PDFs [10] and to phenomenology at future lepton-
hadron collider experiments [11,12].

We will proceed as follows. We will start with the case of
running coupling, introducing the g-function formalism
and illustrating the size of the perturbative hysteresis and
the associated uncertainty. We will next briefly discuss the
case of PDF evolution along similar lines. We will finally
present the implications of these results on predictions for
the DIS structure function F,.

II. RUNNING COUPLING

Consider the RGE in Eq. (1) for the case of the running
coupling, in which R = a,/4x = a, and y = —-8zf/a,,
where /3 is the QCD beta function [13]. At leading order, the
RGE can be solved exactly in closed form, giving the
leading-logarithmic (LL) resummation of the running
coupling [13]. From next-to-leading logarithmic (NLL)
accuracy on, however, the RGE gives rise to a transcen-
dental equation for which a closed-form solution does not
exist. Therefore, one has to resort to either a numerical or an
analytic solution based on perturbation expansions.

By extending techniques frequently applied to soft-gluon
resummation, we write the analytic solution for the running
coupling in terms of appropriate g functions [8],

k

AN () = ay(uo) Y ak(uo)gls (A), (5)
=0
with
o n HRes
A= ag(po)Pol < o > (6)

where pp.s = ki 1s the “resummation” scale with x ~ 1.
The ¢ functions necessary up to NLL read

o) =1,
. p
9 (i)—(l_w[—lﬁéln(l—l)—ﬁolnx}. (7)

The functional form of the gfﬁ) for i > 2 is straightfor-

wardly obtained from the corresponding N*~'LL expansion
of the running coupling.
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FIG. 1. Perturbative hysteresis for the NLL evolution of the

strong coupling a.

Equation (5) bears the feature that, by evolving a; from
Uo to u and then back to g, one does not reobtain the initial
value. We illustrate this at NLL in Fig. 1, which displays the
behavior of the NLL analytic solution with n; = 5 active
flavors evolved from a,(M,) = 0.118 down to 1 GeV and
then back to M. Backward and forward evolution curves
do not coincide, leading to a mismatch in the value of
ag;(My), which is a manifestation of the perturbative
hysteresis.

The resummation scale ug. in the analytic solution
enables subleading corrections to be modeled through
variations of the parameter k. This allows one to estimate
missing higher orders to the anomalous dimension and
reflects the fact that the analytic solution beyond LL
violates its RGE by subleading terms. Even when using
the numerical solution, we may define a strategy to perform
scale variations at the level of the  function. To be specific,
by displacing the scale u by a factor £, we obtain

P = a1+ o) [ - 2 ne] )

+ O(ad). (8)

This effectively defines a new f function that differs from
the original one by subleading corrections. The difference
between the solution obtained with the original f(u) and
the one in Eq. (8) gives an estimate of the effect of higher-
order corrections, much as variations of the resummation
scale do for the analytic solution. In fact, it can be shown
that at NLL accuracy the f# function generated by the
analytic solution in Eq. (5) can be recast in the same form as
Eq. (8) provided that x = ¢&.

Figure 2 shows the effect of varying the factor « in the

functions g,(»ﬂ ) in Eq. (7) and the factor £ in Eq. (8). In order
to account for the possible nonmonotonicity of the varia-
tions, the bands are obtained as the maximum spread due to
the variation of either x or ¢ in the respective ranges. The
size of the two bands is comparable with the noticeable

difference that the band for the numerical solution
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NLL evolution, a,(Mz) = 0.118
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FIG. 2. Analytic and numerical evolution of the strong coupling
a, at NLL. The bands indicate the uncertainty computed by
varying the factors x and & in the range [0.5:2].

consistently shrinks to zero as u approaches M ,, where the
boundary condition is set.

III. PARTON DISTRIBUTION FUNCTIONS

As a second application, we consider the RGE Eq. (1) in
which the quantity R is identified with the Mellin transform
f of a nonsinglet parton distribution. By introducing the
formalism of the g functions, we write the evolution of f
from the initial scale pq to the final scale y as

k

YLy = N () exp [2 at (uo)gT) u)} Fluo)- (9)

=0

The g functions for the NLL evolution read

(NNLL 3y 1/ B A
90 (4) + as(ﬂo)ﬂo <}’1 fo o7

g (2) :—;—Zln(l—ﬂ),
(r) YoBiIn(1=2)+ Flnk
(A):_,B_(Z) 1-2 .

(10)

The procedure can be extended to NFLL accuracy by

including the appropriate gl(-y)’s, with i < k + 1, along with

the O(a*) corrections to g(()y) N The g functions in Eq. (9)
are written in terms of the A variable given in Eq. (6)
automatically allowing for resummation-scale variations.
Such variations can be used to probe higher-order correc-
tions to the anomalous dimensions.

To estimate higher-order corrections in the case of the
numerical solution, we shift the argument of « appearing
in the expansion of the anomalous dimension by a factor &.
This effectively defines a new anomalous dimension differ-
ing from the previous one by subleading terms. At NLL it
reads
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FIG. 3. Perturbative hysteresis for the NLL evolution of the
gluon PDF.

7(u) = ay(Eu)yo + a3 (Eu)ly1 — Poro Inél.

(11)

The effect of perturbative hysteresis associated to the
procedure outlined above is shown in Fig. 3. The gluon
PDF from the MSHT20 [15] LHAPDF set is evolved using
the numerical (red curve) and the analytic (blue curve)
solution from 5 to 100 GeV, and then back to 5 GeV, and
compared to the original distribution at 5 GeV (black
dashed curve). The evolution range [5:100] GeV is chosen
in order not to cross any heavy-quark thresholds during the
evolution. Looking at the lower inset we observe that, as
expected, the numerical solution guarantees that the origi-
nal distribution is recovered. Conversely, the analytic
solution displays a discrepancy of a few percent in the
low-x region.

To assess the quantitative impact of varying the param-
eters k and £ in the analytic and numerical solutions,
respectively, in Fig. 4 the NLL evolution is shown for the
nonsinglet combination f,; — f; = f 4. The evolution runs
from py =100 GeV down to u =35 GeV with n; =35
active flavors. The bands correspond to variations of the
parameters k and & in the range [0.5:2]. Varying the scales
gives rise to similar deviations in both solutions.

NLL evolution from py = 100 GeV to p =5 GeV
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FIG. 4. Analytic and numerical NLL evolution of the non-
singlet combination f; — f; = f4 from py = 100 GeV down to
u =5 GeV. The bands indicate the theoretical uncertainty
computed by varying the factors x and & in the range [0.5:2].
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IV. IMPLICATIONS FOR THE
F, STRUCTURE FUNCTION

As a phenomenological example, we study the impact of
the RGE theory uncertainties on predictions for the DIS
structure function F,. Using the APFEL code [14], we
compute F, at next-to-leading order (NLO) and next-to-
next-to-leading order (NNLO) and perform variations of
renormalization and factorization scales, iy and yy, and of
the resummation-scale parameters ¢ introduced in Egs. (8)
and (11) for the running coupling and the PDFs, respec-
tively. In Fig. 5 we show results for F, versus x at Q =
10 GeV using the MSHT20 PDFs [15] at Oy = 2 GeV and
a,(M;) =0.118 [16] as RGE inputs.

We see that the resummation-scale uncertainties associated
with the solution of the RGEs are generally non-negligible
with respect to renormalization- and factorization-scale
uncertainties. In particular, the left panel (NLO) shows that
the £ppp contribution dominates in the low-x region while the
up contribution dominates at the largest x. The size of the
uncertainties is significantly reduced when going to NNLO
(right panel). It is worth noting that the resummation-scale
uncertainties become larger relative to the ug and pup
uncertainties as Q increases, so that they eventually become
dominant also in the large-x region.

In Fig. 6 we investigate the O dependence of the relative
variation AF,/F, due to the four different uncertainty

MSHT20 at Qo = 2 GeV, NLO, Q = 10 GeV, a,(My) = 0.118

sources under consideration at NLO (left) and NNLO
(right) at x = 1072, The &ppp contribution (green band)
starts from zero at Q,, grows rapidly with the evolution
scale O, and remains significant out to large Q. In contrast,
the ur contribution (blue band) is largest at low Q and
decreases with increasing Q. Analogously, the up contri-
bution (red band) is important at low Q and decreases with
O, while the &, contribution (yellow band) is subdominant
at low Q but becomes relevant at high Q. As expected, the
bands shrink when going to NNLO. We also point out that
the size of the &ppr band grows as x decreases.

In conclusion, Figs. 5 and 6 demonstrate that the &ppr
contribution stays comparatively significant in the kin-
ematic region of large Q and low x. This corresponds to
higher-order perturbative corrections to the PDF anomalous
dimension dominating the low-x region [17] for sufficiently
large Q. In general, due to their cumulative origin, the
uncertainties associated to both &ppr and &, become more
and more significant as the evolution interval grows. We
thus expect the resummation-scale uncertainties to be
especially important for reliable predictions at high scales.

We observe that the results above for the resummation-
scale uncertainties depend on the boundary condition.
Specifically, we have used Q, = 2 GeV as a starting scale
for PDF evolution, which is close to the input scale usually
employed for PDF fits. This implies that, due to the large

MSHT20 at Qo = 2 GeV, NNLO, Q = 10 GeV, a,(Mz) = 0.118
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FIG.5. The x dependence of the structure function F, at NLO and NNLO in perturbation theory with the uncertainty bands associated
with variations of renormalization and factorization scales, ug and up, and resummation scales &, and &ppp.

MSHT20 at Q, = 2 GeV, NLO, & = 0.01, a,(Myz) = 0.118
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FIG. 6. Q dependence of the relative variation AF,/F, at NLO and NNLO associated with variations of renormalization and
factorization scales, ug and pp, and resummation scales &, and Eppg.
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evolution range, resummation-scale uncertainties can
become sizeable for very energetic processes, such as jet
and top production at the LHC. The analysis of this paper
suggests that one may achieve a better control on such
uncertainties by choosing an alternative input scheme, e.g.,
a higher Q, scale.

V. CONCLUSION

In this paper we have studied the theoretical uncertainties
stemming from the solution of RGEs and the associate
perturbative hysteresis. We proposed to treat the RGE
uncertainties on strong coupling and PDFs by means

of g-function formalism and corresponding resummation
scales. This enabled us to quantify for the first time the
effect of RGE uncertainties in the case of a collider
observable, i.e., the DIS structure function F,. Our numeri-
cal results show that RGE uncertainties are significant in a
kinematic region relevant for PDF extractions and collider
phenomenology.
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