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Recently unpolarized and polarized J=ψðϒÞ production at the Electron-Ion Collider (EIC) has been
proposed as a new way to extract two poorly known color-octet NRQCD long-distance matrix elements:

h0jOJ=ψ
8 ð1S0Þj0i and h0jOJ=ψ

8 ð3P0Þj0i. The proposed method is based on a comparison to open heavy-quark
pair production ideally performed at the same kinematics. In this paper we analyze this proposal in more
detail and provide predictions for the EIC based on the available determinations of the color-octet matrix
elements. We also propose two additional methods that do not require comparison to open heavy-quark pair
production.

DOI: 10.1103/PhysRevD.103.074012

I. INTRODUCTION AND FORMALISM

Semi-inclusive J=ψ and ϒ production in deep-inelastic
lepton-proton scattering, i.e., ep → e0J=ψðϒÞX, where
both the electron and the proton are unpolarized, is
sensitive to unpolarized as well as linearly polarized
transverse momentum dependent gluon distributions
(TMDs) [1–3]. The latter lead to azimuthal cos 2ϕT

modulations of the cross section differential in the trans-
verse momentum of the J=ψ orϒ with respect to the lepton
scattering plane [4–6]. Unfortunately, predictions for the
asymmetries are hampered by the dependence on two
poorly known color-octet (CO) NRQCD long-distance

matrix elements: h0jOJ=ψ
8 ð1S0Þj0i and h0jOJ=ψ

8 ð3P0Þj0i.
In Ref. [4], taking ratios with spin-dependent asymmetries
was suggested to cancel out these quantities. It was also
pointed out in Ref. [4] that ratios with the analogous
expressions for unpolarized open heavy-quark pair pro-
duction could be used to cancel out the gluon TMDs so as
to determine the CO matrix elements experimentally. This

can hopefully help reduce their uncertainty and, as a
consequence, forgo the need for comparison to spin
asymmetries. In this paper we look into the determination
of COmatrix elements in more detail, providing the general
expressions and their current estimates, which can be of
help in the study of these quantities at the EIC.
Following the calculations of Ref. [4], we study the

semi-inclusive deep-inelastic (SIDIS) process of quarko-
nium production

eðlÞ þ pðPÞ → eðl0Þ þQðPQÞ þ X; ð1Þ

whereQ is either a J=ψ or aϒmeson. Besides unpolarized
quarkonium production we also examine the cases in which
the quarkonium is longitudinally or transversely polarized
with respect to its direction of motion in the γ�p center-of-
mass frame. The reference frame is such that both the
exchanged virtual photon γ� and the incoming proton move
along the ẑ-axis. Azimuthal angles are measured with
respect to the lepton scattering plane. In order for TMD
factorization to apply, the component of the quarkonium
momentum transverse to the lepton plane, i.e., qT ≡ PQT ,
should be small compared to the virtuality of the photon Q
and to the mass of the quarkonium MQ

1 The differential
cross section can then be written as
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dσ½ep→e0QPX� ¼ 1

2s
d3l0

ð2πÞ32E0
e

d3PQ

ð2πÞ32EQ

Z
dxd2pTð2πÞ4δ4ðqþ p − PQÞ

×
1

x2Q4
Lμρðl; qÞΓgνσðx; pTÞHμν

γ�g→QP
H⋆ρσ

γ�g→QP
; ð2Þ

where Γg is the gluon correlator and Lðl; qÞ is the lepton
tensor. For details of the intermediate calculation we refer
to Ref. [4]. Sticking to the notation of Ref. [4], the
differential cross section will be denoted by

dσUPðϕTÞ≡ dσ½ep→e0QPX�

dzdydxBd2qT
; ð3Þ

which depends on the variable z ¼ P · Pψ=P · q, on the
inelasticity y ¼ P · q=P · l, on Bjorken-x xB ¼ Q2=2P · q,
and on the transverse momentum qT ¼ PQT of the quar-
konium stateQ (P2

QT ¼ −P2
QT) with an azimuthal angle ϕT

with respect to the lepton plane (ϕl ¼ ϕl0 ¼ 0). The
variables y and xB are related to the total invariant mass
squared s ¼ ðlþ PÞ2 ≈ 2l · P and to the photon virtu-
ality Q2 ¼ −q2 ≡ −ðl − l0Þ2 through the relation
s ¼ 2P · q=y ¼ Q2=xBy. The superscript UP ¼ UU;UL
or UT denotes an unpolarized proton and a polarization
state P for the quarkonium which can be either unpolarized
(U), longitudinally polarized (L) or transversely polarized
(T) with respect to the direction of its three-momentum in
the photon-proton center-of-mass frame.
For the calculation of the cross section, we adopt the

TMD factorization framework in combination with non-
relativistic QCD (NRQCD) [9–11]. In NRQCD, the non-
perturbative hadronization process of the heavy-quark pair
into a quarkonium bound state is encoded in long-distance
matrix elements (LDMEs) [12]. Observables are evaluated
by means of a double expansion in the strong coupling
constant αs and in the average velocity v of the heavy quark
in the quarkonium rest frame [13], where v2 ≃ 0.3 for
charmonium and v2 ≃ 0.1 for bottomonium. In SIDIS to
leading order (LO) in αs, the heavy quark-antiquark pair
can only be produced in a color-octet (CO) state. The CO
LDMEs are typically determined from fits to data on J=ψ
and ϒ yields [14–18]. The extracted values are not
compatible with each other, even within the large

uncertainties. Therefore, any new method to determine
the CO matrix elements with better precision is worth
exploring. Moreover, the methods to be discussed partly
rely on experimental determination of the polarization
states of the produced quarkonia, which is not only
beneficial for the extraction of the CO matrix elements
but also to the understanding of the production mechanism,
which is still incomplete. Although NRQCD successfully
explains many experimental observations, describing all
cross sections and polarization measurements for charmo-
nia in a consistent way still poses challenges [19–21].
In the process under study, at LO in the strong coupling

constant αs, the QQ̄ pair forms a bound state with spin S,
orbital angular momentum L, and total angular momentum
J, for which we employ spectroscopic notation: 2Sþ1LJ.
Since to LO accuracy there is no gluon emission in the final
state, z ¼ 1. The relevant CO matrix elements for J=ψ
production are h0jOJ=ψ

8 ð1S0Þj0i and h0jOJ=ψ
8 ð3PJÞj0i, with

J ¼ 0, 1, 2, and the subscript 8 denotes the color configu-
ration. The color singlet (CS) production mechanism is

possible only at Oðα2sÞ, where the QQ̄ is formed in a 3Sð1Þ1

state together with a gluon, hence 0 ≤ z ≤ 1. The CS
contribution is, therefore, suppressed relatively to the CO
one by a perturbative coefficient of the order αs=π [22,23]
and vanishes at z ¼ 1. On the other hand, h0jOJ=ψ

8 ð1S0Þj0i
and h0jOJ=ψ

8 ð3PJÞj0i are suppressed compared to

h0jOJ=ψ
1 ð3S1Þj0i by v3 and v4, respectively. As a result

the CO contribution should be enhanced by about a factor
v3π=αs ≈ 2 with respect to the CS contribution. In the
analysis of Ref. [22] this factor turned out to be larger (≈4)
for values of Q2 > 4 GeV2. Based on these findings, we
restrict our study to the CO contributions at leading order
in αs.
The cross section for ep → e0QPX in Eq. (3) can be cast

in the following form:

dσUP ¼ N
�
AUPfg1ðx; q2TÞ þ

q2T
M2

p
BUPh⊥g

1 ðx; q2TÞ cos 2ϕT

�
δð1 − zÞ; ð4Þ

where the unpolarized gluon TMD fg1 and the linearly polarized gluon TMD h⊥g
1 depend, besides on the transverse

momentum, also on the momentum fraction x given by

x ¼ xB þM2
Q

ys
¼ M2

Q þQ2

ys
¼ xB

M2
Q þQ2

Q2
: ð5Þ
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The normalization factor N reads

N ¼ ð2πÞ2 α2αse2Q
yQ2MQðM2

Q þQ2Þ ; ð6Þ

with eQ denoting the fractional electric charge of the quark
Q. The expressions for AUP and BUP are

AUP ¼ ½1þ ð1 − yÞ2�Aγ�g→QP
UþL − y2Aγ�g→QP

L ; ð7Þ

BUP ¼ð1 − yÞBγ�g→QP
T : ð8Þ

where the subscripts U þ L, L, T refer to the specific
polarization of the photon [24,25]. Using heavy-quark spin
symmetry relations [12]

h0jOJ=ψ
8 ð3PJÞj0i ¼ ð2Jþ 1Þh0jOJ=ψ

8 ð3P0Þj0iþOðv2Þ; ð9Þ

one obtains to leading order in v:

Aγ�g→QU
UþL ¼ h0jOJ=ψ

8 ð1S0Þj0i þ
12

Nc

7M2
Q þ 3Q2

M2
QðM2

Q þQ2Þ h0jO
J=ψ
8 ð3P0Þj0i; ð10Þ

Aγ�g→QU
L ¼ 96

Nc

Q2

ðM2
Q þQ2Þ2 h0jO

J=ψ
8 ð3P0Þj0i; ð11Þ

Bγ�g→QU
T ¼ −h0jOJ=ψ

8 ð1S0Þj0i þ
12

Nc

3M2
Q −Q2

M2
QðM2

Q þQ2Þ h0jO
J=ψ
8 ð3P0Þj0i: ð12Þ

Similarly, the expressions for longitudinally polarized quarkonium production are

Aγ�g→QL
UþL ¼ 1

3
h0jOJ=ψ

8 ð1S0Þj0i þ
12

Nc

M4
Q þ 10M2

QQ
2 þQ4

M2
QðM2

Q þQ2Þ2 h0jOJ=ψ
8 ð3P0Þj0i; ð13Þ

Aγ�g→QL
L ¼ Aγ�g→Q

L ¼ 96

Nc

Q2

ðM2
Q þQ2Þ2 h0jO

J=ψ
8 ð3P0Þj0i; ð14Þ

Bγ�g→QL
T ¼ −

1

3
h0jOJ=ψ

8 ð1S0Þj0i þ
12

Nc

1

M2
Q

h0jOJ=ψ
8 ð3P0Þj0i: ð15Þ

Since dσUU ¼ dσUL þ dσUT , this determines the corresponding expressions for transverse polarization of the quarkonium:

Aγ�g→QT
UþL ¼ 2

3
h0jOJ=ψ

8 ð1S0Þj0i þ
24

Nc

3M4
Q þQ4

M2
QðM2

Q þQ2Þ2 h0jO
J=ψ
8 ð3P0Þj0i; ð16Þ

Aγ�g→QT
L ¼ 0; ð17Þ

Bγ�g→QT
T ¼ −

2

3
h0jOJ=ψ

8 ð1S0Þj0i þ
24

Nc

1

M2
Q

M2
Q −Q2

M2
Q þQ2

h0jOJ=ψ
8 ð3P0Þj0i: ð18Þ

One can isolate the angular independent term of the cross section and the azimuthal modulation by (weighted)
integration:

DQP ≡
Z

dϕT
dσUP

dydxBd2qT
¼ 2πNAUPfg1ðx; q2TÞ; ð19Þ

NQP ≡
Z

dϕT cos 2ϕT
dσUP

dydxBd2qT
¼ πNBUP q2T

M2
p
h⊥g
1 ðx; q2TÞ: ð20Þ

The hard scales of the process ep → e0QX are the photon virtuality Q and the quarkonium mass MQ ≈ 2MQ. To avoid
ratios of the two it is convenient to choose Q ¼ MQ, but there are also advantages to varying Q. In the case of P ¼ U and
writing Q2 ¼ cM2

Q we find that (as a function of the heavy-quark mass MQ rather than the quarkonium mass MQ)
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AUU ¼ ½1þ ð1 − yÞ2�OS
8 þ

�
2ð1 − yÞ 7þ 3c

1þ c
þ y2

7þ 2cþ 3c2

ð1þ cÞ2
�
OP

8

M2
Q
; ð21Þ

BUU ¼ −ð1 − yÞ
�
OS

8 −
3 − c
1þ c

OP
8

M2
Q

�
; ð22Þ

where OS
8 ≡ h0jOQ

8 ð1S0Þj0i and OP
8 ≡ h0jOQ

8 ð3P0Þj0i.
These two long-distance matrix elements have been de-
termined with quite large uncertainty from fits to data (see
below), but in all cases OP

8 =M
2
Q ≤ OS

8 , in accordance with
the scaling rules OP

8 ∼ v4 and OS
8 ∼ v3. Using the Q2- and,

to a lesser extent, y-dependence offers one method to
extract the two matrix elements or at least their ratio if the
gluon TMDs are not yet known. In AUU, the prefactor
multiplying OP

8 is largest when y is smallest, and has a
stronger y- and c-dependence than the one multiplying OS

8 .

Considering larger Q2 will reduce the contribution from
OP

8 . More specifically, for y ¼ 0.1 and c ¼ 1 the prefactor
multiplying OP

8 is approximately 5 times the one multi-
plying OS

8 , whereas for large c it reduces to a factor 3
independently of y. In BUU, the contribution from OP

8 is
completely independent of y and flips sign when c ¼ 3.
Therefore, especially the Q2-dependence could be ex-
ploited to change the relative contributions from OS

8 and
OP

8 to the terms in Eqs. (19) and (20).
If one is able to determine the polarization of the

quarkonium state, then there is another method to extract
the two LDMEs. For longitudinally polarized quarkonium
P ¼ L one obtains

AUL ¼ 1

3
½1þ ð1 − yÞ2�OS

8 þ
�
2ð1 − yÞ 1þ 10cþ c2

ð1þ cÞ2 þ y2
1þ 2cþ c2

ð1þ cÞ2
�
OP

8

M2
Q
; ð23Þ

BUL ¼ ð1 − yÞ
�
−
1

3
OS

8 þ
OP

8

M2
Q

�
: ð24Þ

Compared to AUU, theOP
8 term in AUL has a different y and

c dependence, which has quite important implications as
we will discuss now. For y ¼ 0.1 and c ¼ 1 the prefactor
multiplyingOP

8 in AUL is around 9 times larger than the one
multiplying OS

8 , whereas for large c it reduces to a factor 3
independently of y. This means that the prefactor of OP

8 in
AUL can not only compensate for OP

8 =M
2
Q being smaller

than OS
8 (OP

8 could be smaller than OS
8 by as much as an

order of magnitude), but it can also lead to a significant
deviation of AUL from AUU=3 (and of AUT from 2AUU=3),
signaling the production of polarized J=ψ mesons. This
would be in contradiction to the recent conclusion of
Ref. [23], i.e., that the dominance of the contribution of

the 1S½8�0 cc̄ state to the cross section for the electron-hadron
scattering process eh → J=ψX implies that the produced
J=ψ meson will likely be unpolarized. This is presented as
a robust test of NRQCD factorization and as a way to shed
light on the J=ψ production mechanism. As opposed to this
statement from a collinear factorization analysis, our TMD
factorization study indicates that the production of polar-
ized J=ψ mesons is not necessarily in contradiction with

NRQCD, as it could simply signal a kinematic enhance-
ment factor in front of the matrix element OP

8 .
For BUL there is no c-dependence, only the overall y-

dependence of 1 − y. Analogous expressions can be
obtained when the J=ψ meson is transversely polarized,
namely

AUT ¼ ½1þ ð1 − yÞ2�
�
2

3
OS

8 þ 2
3þ c2

ð1þ cÞ2
OP

8

M2
Q

�
; ð25Þ

BUT ¼ ð1 − yÞ
�
−
2

3
OS

8 þ 2
1 − c
1þ c

OP
8

M2
Q

�
: ð26Þ

Due to the fact that in most fits (see below)
OP

8 =M
2
Q ≪ OS

8 , the Q2-dependence in AUP and BUP is
numerically strongly suppressed. Therefore, the experi-
mental observation of Q2-dependence in these observables
would directly indicate the relevance of the OP

8 matrix
element with respect toOS

8 . Note that, through the prefactor
in Eq. (6), the cross sections fall of as 1=c2 at large c, where
also experimental uncertainties will increase. Hence, the
most relevant kinematic region for our purposes is the one
where c ≈ 1.
For c ¼ 1, we obtain for the production of unpolarized

quarkonium states, from Eqs. (19), (20), (21), and (22):

DQU ¼ π3
α2αse2Q
8M5

Q

�
1þ ð1 − yÞ2

y
OS

8 þ
10 − 10yþ 3y2

y
OP

8

M2
Q

�
fg1ðx; q2TÞ; ð27Þ
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NQU ¼ π3
α2αse2Q
16M5

Q

�
1 − y
y

��
−OS

8 þ
OP

8

M2
Q

�
q2T
M2

p
h⊥g
1 ðx; q2TÞ; ð28Þ

while for longitudinally polarized quarkonium states, from Eqs. (19), (20), (23), and (24):

DQL ¼ π3
α2αse2Q
8M5

Q

�
1

3

1þ ð1 − yÞ2
y

OS
8 þ

6 − 6yþ y2

y
OP

8

M2
Q

�
fg1ðx; q2TÞ; ð29Þ

NQL ¼ π3
α2αse2Q
16M5

Q

�
1 − y
y

��
−
1

3
OS

8 þ
OP

8

M2
Q

�
q2T
M2

p
h⊥g
1 ðx; q2TÞ: ð30Þ

To our present LO accuracy in αs, the ratios DQL=DQU and NQL=NQU are independent of the TMDs:

DQL

DQU
¼ ð1þ ð1 − yÞ2ÞOS

8=3þ ð6 − 6yþ y2ÞOP
8 =M

2
Q

ð1þ ð1 − yÞ2ÞOS
8 þ ð10 − 10yþ 3y2ÞOP

8 =M
2
Q
; ð31Þ

NQL

NQU
¼ OS

8=3 −OP
8 =M

2
Q

OS
8 −OP

8 =M
2
Q

: ð32Þ

These ratios offer another method to extract the two CO matrix elements if the polarization of the quarkonium state can be
determined. Analogous ratios can be defined for transversely polarized quarkonium states,

DQT ¼ π3
α2αse2Q
4M5

Q

1þ ð1 − yÞ2
y

�
1

3
OS

8 þ
OP

8

M2
Q

�
fg1ðx; q2TÞ; ð33Þ

NQT ¼ −π3
α2αse2Q
24M5

Q

�
1 − y
y

�
OS

8

q2T
M2

p
h⊥g
1 ðx; q2TÞ; ð34Þ

see Eqs. (19), (20), (25), and (26). Notice that NQT depends
only on one of the two matrix elements, namelyOS

8. Again,
the ratios DQT =DQU and NQT =NQU are independent of the
TMDs, as are the ratios DQT =DQL and NQT =NQL .
The third and last method to be discussed is the one first

suggested in Ref. [4]. For this, we will compare the above
expressions to the analogous ones for the process
ep → e0QQ̄X, where Q is either a charm or bottom quark.
The differential cross section for the process

eðlÞ þ pðP; SÞ → e0ðl0Þ þQðKQÞ þ Q̄ðKQ̄Þ þ X; ð35Þ

in which the quark-antiquark pair is almost back to back in
the plane orthogonal to the direction of the proton and the
exchanged virtual photon, is written as [24,26,27]

dσQQ̄ ≡ dσQQ̄

dzdydxBd2K⊥d2qT
: ð36Þ

In the γ�p center-of-mass frame, the difference of the
transverse momenta of the outgoing quark and antiquark,
K⊥ ≡ ðKQ⊥ − KQ̄⊥Þ=2, should be much larger than the
vector sum qT ≡ KQ⊥ þ KQ̄⊥. The angles ϕT and ϕ⊥ are
the azimuthal angles of qT and K⊥ with respect to the
lepton plane, respectively. Furthermore, z ¼ KQ · P=q · P.
The process ep → e0QQ̄X depends on three large scales:

MQ, Q, and K⊥ ≡ jK⊥j. Since MQ ≈ 2MQ, it is most
convenient to chooseK⊥ ¼ Q ¼ 2

ffiffiffi
c

p
MQ. With this choice

we obtain

DQQ̄ ≡
Z

dϕTdϕ⊥
dσQQ̄

dzdydxBd2K⊥d2qT
¼ π

α2αse2Q
M4

Qcyzð1 − zÞ
dQQ̄

2½1þ 4cð1þ zð1 − zÞÞ�3 f
g
1ðx; q2TÞ;

NQQ̄ ≡
Z

dϕTdϕ⊥ cos 2ϕT
dσQQ̄

dzdydxBd2K⊥d2qT
¼ π

α2αse2Q
M4

Qcy
nQQ̄

2½1þ 4cð1þ zð1 − zÞÞ�3
q2T
M2

p
h⊥g
1 ðx; q2TÞ; ð37Þ
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where

dQQ̄ ¼ ð1þ ð1 − yÞ2Þ½ð1þ 4cÞ2 − 2zð1 − zÞ½1 − 4cðz2 þ ð1 − zÞ2Þ þ 8c2ð2 − 9zþ 11z2 − 4z3 þ 2z4Þ��
− 128y2c2z2ð1 − zÞ2; ð38Þ

nQQ̄ ¼ −ð1 − yÞ½1þ 4czð1 − zÞ�2: ð39Þ

In order to avoid the necessity for TMD evolution in the comparison to the quarkonium production case, we fix c ¼ 1, i.e.,
we take K⊥ ¼ Q ¼ 2MQ. Assuming furthermore that the energy is approximately equally distributed to the heavy quark
and antiquark, we choose z ¼ 1=2. Therefore, from Eqs. (37) and (39), we get [26]

DQQ̄ ≡
Z

dϕTdϕ⊥
dσQQ̄

dzdydxBd2K⊥d2qT
¼ π

α2αse2Q
54M4

Q

�
26 − 26yþ 9y2

y

�
fg1ðx; q2TÞ; ð40Þ

NQQ̄ ≡
Z

dϕTdϕ⊥ cos 2ϕT
dσQQ̄

dzdydxBd2K⊥d2qT
¼ −π

α2αse2Q
108M4

Q

�
1 − y
y

�
q2T
M2

p
h⊥g
1 ðx; q2TÞ: ð41Þ

The comparison to quarkonium production then yields the following two independent observables

R≡ DQU

DQQ̄
¼ 27π2

4

1

MQ

½1þ ð1 − yÞ2�OS
8 þ ð10 − 10yþ 3y2ÞOP

8 =M
2
Q

26 − 26yþ 9y2
; ð42Þ

Rcos 2ϕT ≡ NQU

NQQ̄
¼ 27π2

4

1

MQ

�
OS

8 −
1

M2
Q
OP

8

�
: ð43Þ

Since they appear in two distinct combinations, the LDMEs
OS

8 and OP
8 can be extracted from experimental measure-

ments of the above ratios. It should be stressed that the
presented expressions are LO in αs and order v3 in the
NRQCD velocity parameter v. Next-to-leading order
(NLO) corrections in αs will reintroduce sensitivity to
the gluon as well as quark TMDs, which in turn will
introduce a qT-dependence inR andRcos 2ϕT . Since the LO
CO contribution, which we consider here, is expected to
dominate over the NLO CS and CO contributions, para-
metrically by a factor v3π=αs ≈ 2 and in practice by a larger
factor for high Q2 [22], we expect this dependence to be
small. Another source of qT-dependence inR andRcos 2ϕT ,
however, may come from final state smearing effects.
Indeed, in NRQCD the outgoing quarkonium state has
the same transverse momentum as the QQ̄ pair, which is of
course an idealization. While adding some additional
uncertainty, the effects from smearing are expected to be
mild [4], entering merely as an overall qT-dependent
prefactor which is independent of the orbital angular
momentum (L) of the CO state, at least in the perturbative
region [28]. Thus, whenever a qT-dependence is observed
inR and/orRcos 2ϕT , final state smearing effects in terms of
shape functions [28–30] should be considered next to the
higher-order contributions from TMDs. Differences in the
qT-dependence of the OS

8 and OP
8 contributions would

signal higher order terms or an L-dependence in the shape
functions.
In case the quarkonium polarization state can be deter-

mined, additional expressions can be obtained which can be
used for consistency checks as they involve different
combinations of the same CO matrix elements. For
longitudinally polarized quarkonium production, one
obtains:

RL ¼ 9π2

4

1

MQ

½1þ ð1 − yÞ2�OS
8 þ 3ð6 − 6yþ y2ÞOP

8 =M
2
Q

26 − 26yþ 9y2
;

ð44Þ

Rcos 2ϕT
L ¼ 27π2

4

1

MQ

�
1

3
OS

8 −
1

M2
Q
OP

8

�
; ð45Þ

and for transversely polarized quarkonium production:

RT ¼ 9π2

2

1

MQ

½1þ ð1 − yÞ2�OS
8 þ 3ð2 − 2yþ y2ÞOP

8 =M
2
Q

26 − 26yþ 9y2
;

ð46Þ

Rcos 2ϕT
T ¼ 9π2

2

1

MQ
OS

8: ð47Þ
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These expressions satisfy:

Rcos 2ϕT
L þRcos 2ϕT

T ¼ Rcos 2ϕT ; ð48Þ

RL þRT ¼ R: ð49Þ

Note that the measurement of Rcos 2ϕT
T directly probes the

matrix element OS
8 ¼ h0jOQ

8 ð1S0Þj0i. Selecting photon
virtualities such that Q ≃MQ ensures that this relation is
not spoiled by large logarithmic corrections. The polarized
quarkonium expressions also allow to assess the impact of
higher order contributions, because these are different for
the unpolarized and polarized cases and do not cancel in the
ratios.
In order to assess the potential of this third method we

perform a numerical investigation of the various ratios in
the next section.

II. NUMERICAL RESULTS

In Tables I and II we list various available determinations
of the CO matrix elements. These have been used in the
calculation of the cross section σCO for the production of
unpolarized J=ψ and ϒ mesons presented in Tables III and
IV, respectively. The results are obtained within the
collinear factorization framework at LO in the strong
coupling constant, in the kinematic region defined by

y ¼ 0.1,Q ¼ 2MQ and
ffiffiffi
s

p ¼ 100 GeV, which imply xB ¼
0.01 for J=ψ production (Mc ¼ 1.5 GeV) and xB ¼ 0.09
for ϒ production (Mb ¼ 4.88 GeV). Moreover, we have
adopted the LO MSTW parametrization for the gluon
distribution function [31], with the hard scale taken to
be equal to Q ¼ 2MQ. The ratio with the CS background,
σCO=σCS, is shown as well. Note that all the LDME
extractions were performed at NLO accuracy, except the
Sharma &Vitev set which is LO. The negative cross section
corresponding to the NLO LDMEs of Butenschön &
Kniehl is due to the dominant contribution of the negative
matrix elementOP

8 for the process and the kinematic region
under investigation. Although σCO=σCS strongly depends
on the choice of the J=ψ LDME set, we find that it is
possible to suppress the CS contribution by requiring
z > 0.9. Such a cut will not affect the CO contribution,
for which z ¼ 1 at LO and neglecting smearing effects.
However, the results presented in Tables III and IV should
be regarded as indicative and taken with caution. Indeed,
including smearing effects and/or NLO corrections to the
hard part will soften the z-distribution of the CO contri-
bution when z ≈ 1, and lead to smaller ratios σCO=σCS

than the ones presented, especially when considering the
z > 0.95 cuts.
The results for R and Rcos 2ϕT are displayed in Fig. 1,

where for fit 2 we assumed Mc ¼ 1.5 GeV. Possible
correlations between the errors of the two fitted LDMEs

TABLE I. Fit values of the CO LDMEs from J=ψ production (with some corrections with respect to [4]).

Fit No. Reference h0jOJ=ψ
8 ð1S0Þj0i h0jOJ=ψ

8 ð3P0Þj0i=M2
c

Units Mc

1 Butenschön & Kniehl [14] 4.50� 0.72 −0.54� 0.16 ×10−2 GeV3 1.5 GeV
2 Chao et al. [15] 8.9� 0.98 0.56� 0.21 ×10−2 GeV3 Not specified
3 Sharma & Vitev [16] 1.8� 0.87 1.8� 0.87 ×10−2 GeV3 1.4 GeV
4 Bodwin et al. [17] 9.9� 2.2 0.49� 0.44 ×10−2 GeV3 1.5 GeV

TABLE II. Fit values of the CO LDMEs from ϒð1SÞ production.
Fit No. Reference h0jOϒð1SÞ

8 ð1S0Þj0i h0jOϒð1SÞ
8 ð3P0Þj0i=ð5M2

bÞ Units Mb

5 Sharma & Vitev [16] 1.21� 4.0 1.21� 4.0 ×10−2 GeV3 4.88 GeV

TABLE III. The values for σCO and σCO=σCS for J=ψ production, calculated at y ¼ 0.1; Q ¼ 2Mc ¼ 3 GeV and xB ¼ 0.01, with
different cuts on the variable z. The results are obtained using the fits for the CO LDMEs given in Table I. For the CS matrix element, we
adopted the values 1.32 GeV3 (fit 1), 1.16 GeV3 (fit 2), and 1.2 GeV3 (fits 3,4).

Fit No. Reference σCO σCO=σCS σCO=σCSðz > 0.9Þ σCO=σCSðz > 0.95Þ
1 Butenschön & Kniehl [14] −24.2 pb −1.7 −7.6 −14
2 Chao et al. [15] 27.2 pb 2.2 9.7 18
3 Sharma & Vitev [16] 83.3 pb 6.5 29 53
4 Bodwin et al. [17] 24.2 pb 1.9 8.3 15
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have not been taken into account, i.e., the errors are simply
added in quadrature. This may imply an overestimate of the
uncertainty. From these results it is clear that different fits
give quite different results. For instance, fit 1 gives a result
compatible with zero forR but not forRcos 2ϕT , whereas for
fit 3 it is the other way around. These results give the
general impression thatRcos 2ϕT may be significantly larger
than R, perhaps even by as much as a factor of 10.
Note that the ratios are not normalized to [0, 1] for R or

to ½−1; 1� forRcos 2ϕT . However, one can relate their ratio to
a ratio of asymmetries that are normalized:

Rcos 2ϕT

R
¼ hcos 2ϕTiQ

hcos 2ϕTiQQ̄
; ð50Þ

where hcos 2ϕTiX ¼ NX=DX for X ¼ Q or X ¼ QQ̄. From
this one can see that even though hcos 2ϕTiQ and
hcos 2ϕTiQQ̄ are not known, a rough average of the fits
shows that the cos 2ϕT asymmetry could be substantially

larger in J=ψ production than in open charm production.
This would suggest that a study of the linearly polarized
gluon TMD may be even more promising in J=ψ produc-
tion than in open charm production. Indeed, this seems to
be supported by studies in a small-x model, where
hcos 2ϕTiQQ̄ was found to be at the 5%–10% level [26]
and hcos 2ϕTiQ around 10–20% [4], in both cases increas-
ing with increasing values of qT . Since we consider gluon
induced processes, smaller x values may be beneficial
because the gluon TMDs would be enhanced. On the other
hand, nonlinear QCD evolution was seen to have a
suppressing effect on the hcos 2ϕTiQ asymmetry as x
becomes smaller [4]. At the EIC, the smaller the x value,
the smaller the Q values covered, and the smaller the qT-
range for which TMD factorization is expected to hold.
Therefore, one has to keep a balance between the x- andQ-
ranges.
Similarly, the results for the P ¼ L and P ¼ T cases are

given in Figs. 2 and 3. The figures show only a moderate y-
dependence, most pronounced for large y-values. Note that

FIG. 1. The values for R and Rcos 2ϕT obtained using the fits for the CO LDMEs given in Tables I and II. R is shown for y ¼ 0.1
fixed in the left panel, and as function of y in the middle one, for the central values of the 5 fits. The right figure shows Rcos 2ϕT and
holds for all y.

TABLE IV. The values for σCO and σCO=σCS for ϒ production, calculated at y ¼ 0.1, Q ¼ 2Mb ¼ 9.76 GeV [16], and xB ¼ 0.09,
with different cuts on the variable z. The results are obtained using the fits for the CO LDMEs given Table II. For the CS matrix element,
we adopted the value 10.9 GeV3.

Fit No. Reference σCO σCO=σCS σCO=σCSðz > 0.9Þ σCO=σCSðz > 0.95Þ
5 Sharma & Vitev [16] 7.0 × 10−3 pb 8.2 29 54

FIG. 2. The values for RL and Rcos 2ϕT
L obtained using the fits for the CO LDMEs given in Tables I and II. RL for y ¼ 0.1 fixed is

shown in the left panel, and as function of y in the middle one, for the central values of the 5 fits. The right figure shows Rcos 2ϕT
L and

holds for all y.
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althoughRcos 2ϕT
P has no y-dependence, both numerator and

denominator have a prefactor (1 − y), hence vanish at
y ¼ 1. It is also worth remarking that, for the ϒ meson,
the error bars for Rcos 2ϕT

T are significantly smaller than
those forRcos 2ϕT

L andRcos 2ϕT . This is due to the fact that in
the P ¼ T case, this ratio only depends on the LDME OS

8 .
We end this section with a comment on the Q2 or c-

dependence of the various R ratios. The cross sections in
both the numerator and the denominator fall off as 1=c2 for
large c, therefore, this dominant behavior cancels.
Nevertheless, the ratios exhibit a stronger c-dependence
than the moderate dependence of AUP and BUP. This leads
to larger differences between different fits for increasing c.
However, as mentioned, at larger c the experimental
uncertainty will also increase, therefore, for the R ratios
there is only limited advantage in exploiting the c-depend-
ence over a broad range above c ¼ 1. Considering different
c-values can nevertheless put further constraints on the fits.

III. SUMMARY AND CONCLUSIONS

In this paper we have presented several methods to use
J=ψ and ϒ production in unpolarized SIDIS at the EIC to
obtain improved determinations of two CO LDMEs,
h0jOJ=ψ

8 ð1S0Þj0i and h0jOJ=ψ
8 ð3P0Þj0i, which are currently

poorly known. The first method exploits the y- and Q2-
dependence of the ϕT-integrated and cos 2ϕT-weighted ϕT-
integrated cross sections. The second method exploits the
polarization states of the produced quarkonium state, and is
independent of the gluon TMDs. The third method is based
on the comparison of the process ep → e0J=ψðϒÞX with
ep → e0DD̄ðBB̄ÞX. Estimates based on the available fits of
the CO matrix elements were presented for this third
method. Since the available fit values are not compatible
with each other, any new method to determine the CO
matrix elements with better precision will be worth explor-
ing. Despite the large uncertainty the estimates show
sizable ratios. These results suggest that the cos 2ϕT
asymmetry that arises from linearly polarized gluons inside
the unpolarized proton could be substantially larger in J=ψ
production than in open charm production. For typical EIC
kinematics, this is corroborated by the small-x model

studies in Refs. [26,4], where asymmetries around 5–
10% and 10-20% were found for open charm and J=ψ
production, respectively.
The experimental determination of the polarization states

of the produced quarkonia will not only be very helpful in
the determination of the CO matrix elements, it could also
help improve the understanding of the quarkonium pro-
duction mechanism in NRQCD, which still poses chal-
lenges [19–21]. In contrast to the recent conclusion of
Ref. [23] that J=ψ mesons produced in electron-hadron
collisions will likely be unpolarized and thus can provide a
rigorous test of NRQCD, we find, from our LO TMD
factorization analysis, that polarized production of J=ψ
mesons is not necessarily a stringent NRQCD prediction.
The robustness of our results is ensured by the following

considerations. First, TMD factorization is applicable to
SIDIS in the kinematic region where q2T ≪ Q2.
Considering an outgoing quarkonium state instead of a
light meson is not expected to spoil the factorization,
provided one allows for a q2T-dependence of the LDMEs
(the shape functions, Refs [28–30]). However, in Ref. [28]
it was shown that for large q2T , the final state smearing is
independent of the orbital angular momentum of the bound
state, hence the same for the S- and P- wave CO states, and
thus drops out in the ratios at LO. We have assumed this to
hold for all q2T ≪ Q2, but otherwise the restriction M2

p ≪
q2T ≪ Q2 could be considered. Second, based on the
velocity scaling rules, NLO CS contributions are sup-
pressed by a factor v3π=αs ≈ 2 with respect to the LO CO
contributions which we consider here. In an actual numeri-
cal study (in the collinear framework), we showed that this
suppression can be even stronger, especially for the LDME
sets of Ref. [16], and the CS contributions can be made
negligible if one imposes a lower cut on z. In turn, the
possible diffractive background that becomes important at
high z, as well as potential corrections from higher-twist
effects, can be suppressed by looking at sufficiently high
virtualitiesQ2 [22]. Third, the asymmetries that we propose
are always the ratios of two cross sections. Hence, besides
being independent of the normalizations of the cross
sections, they are also expected to be less sensitive to
higher-order corrections or to other sources of uncertainties

FIG. 3. The values forRT andR
cos 2ϕT
T obtained using the fits for the CO LDMEs given in Tables I and II. The left figure showsRT for

y ¼ 0.1, and the middle figure as function of y for the central values of the 5 fits. The right figure shows Rcos 2ϕT
T and holds for all y.
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such as the exact value of the charm and bottom mass or the
final state smearing effects. The importance of higher order
corrections and final state smearing effects will make
themselves apparent in the possible qT-dependence of
the various ratios that were presented, and can be included
as needed.
We conclude that our findings show that heavy-quark

final states at EIC are very promising tools to provide
improved determinations of CO LDMEs.
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