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Abstract— This letter illustrates two multi-agent greedy
demand-side response control schemes for networks of
Thermostatically Controlled Loads. The objective is to pro-
vide simple but effective local control actions such that the
overall power consumption tracks an aggregated desired
profile. Compared with the existing literature the novelties
are twofold. Since model-free, our schemes possess cer-
tain robustness features to the model deterioration and
exogenous disturbances. Since greedy, they are of easy
implementation also on cheap development boards which
do not support optimization software, moreover because
asynchronous do not require any network-wide synchro-
nization event. Specifically, Algorithm 1 is very simple but
it is applicable only on K-regular communication topolo-
gies. Such prerequisite is then removed in Algorithm 2 by
including within its instruction list a dynamic consensus
protocol to estimate the mean network power consumption.
Performance analysis and numerical simulations confirm
the effectiveness of the schemes.

Index Terms— Demand Response, Greedy Control, Multi-
agent Systems, Thermostatically Controlled Loads.

I. INTRODUCTION

THE widespread installation of Renewable Energy Sources
(RES), and the fact they do not contribute to the power

system inertia could make the future power systems and micro-
grids particularly sensitive to frequency variations. Among the
options to overcome this problem, in some countries National
Electricity Distributors, which are responsible for maintaining
the Quality-of-Service (QoS) and the frequency nadir no lower
than 49.2 Hz (in Europe), announced a new market for
Energy Service Providers (ESPs), aimed to respond within
one second to frequency variations [1] (ten times faster than
conventional frequency control). Among other options such
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as energy storage systems [2], studies confirmed the Demand-
side Response (DSR) is the most cost-effective solution for
the deployments and optimal management of the power flows
within a microgrid. Although statistics may vary across coun-
tries, a significant part of the residential energy demand is
due to the Thermostatically Controlled Loads (TCLs) (e.g.
water heaters, radiators, air conditioners, etc.). Thus, their
coordinated control could be crucial for DSR success. Studies
focused on TCL-DSR programs in the United Kingdom [3],
California [4], and Sardinia [5] authenticate this claim.

A. Literature review

TCL-DSR can aim for various objectives within a mi-
crogrid. For instance, strategies for provisioning frequency
response are [3], [5]. Specifically, TCLs monitor the microgrid
frequency, then respond to deviations by decreasing (if the
frequency is lower than a threshold) or increasing (if higher)
their consumption by means of model-based considerations.
Peak load shaving programs which aim to desynchronise
the TCLs’ consumption are [6]–[8]. Then, [9]–[12] study
the so-called load-following programs, where the TCLs are
coordinated such that the overall network demand tracks a
given time-varying desired profile provided by the ESP. This
letter aims at this control objective.

To control the consumption of a TCL one can act on the
thermostat, or modify its temperature setpoint. Nonetheless,
the ENTSO-E states the customer’s right to set the temperature
of his/her own TCL has to be reserved [13]. Thus, the DSR
cannot override the TCL temperature ranges, and of course,
it cannot create disservices to the users. As a consequence,
strategies aimed to modify the temperature (or hysteresis) set-
points, thus providing an additional degree of control, such
as [7], [11], are no more considered legit.

TCL-DSR programs can be seen as large-scale constrained
mixed-integer optimization problems [8]. Moreover, to keep
computationally tractable the optimizations, it is common to
approximate the dynamics of TCLs as LTI systems [8], [12],
[14] thanks to which is predicted when the TCL will/would
be switched on/off. Those predictions are however strongly
influenced either by parameters deterioration or disturbances,
such as water withdrawal, season changes, etc.

To confirm this claim, it is worth to mention [15], which
found that both first and second-order LTI models are signifi-
cantly inaccurate in describing the TCL behaviour. It follows
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that model-free approaches are desirable because inherently
robust to model uncertainties.

From a control perspective, most of the recently published
load-following DSR schemes are, semi- ( [10], [11]), or fully-
centralized ( [16], [17]). Thus, within the control architecture
there exists a central coordinator, or a set of coordinator
agents, gathering information and making choices to be
forwarded to all, or to a subset of TCLs participating in
the DSR program. These architectures carry however cyber-
security vulnerabilities since misbehavior on the coordinator(s)
threatens the whole system performance. Multi-agent system
(MAS) architectures where instead the decision-making is
distributed among peer autonomous agents can instead sig-
nificantly improve the process resilience and flexibility and
the risk of cascading failures.

B. Statement of contributions
This letter investigates two distributed model-free TCL-

DSR programs. In the literature, the most relevant and related
approach (because classified to be model-free) is [18]. Therein,
it is proposed a priority-based optimization method, aimed
to smooth out the power demand by controlling TCLs. To
achieve the task the algorithm exploits information on the TCL
temperatures and “nominal” duty-cycle, whereas it dispenses
the explicit use of the temperature model. Then, each TCL
autonomously takes actions in accordance with its own score
and the result of the optimization. In the following the main
differences between [18] and our proposals are given:
• The objective of [18] is the peak shaving, while our goal

is the load-following which is a more challenging task.
• The algorithm in [18], in its distributed-setting implemen-

tation, needs each agent broadcasts its own priority score
to all the participating loads, thus needing a complete
communication graph.

• Although classified to be model-free, [18] needs the
TCL duty-cycle for solving optimizations. However, this
function depends on the TCL temperature parameters
and unknown disturbances (water withdrawal, season
changes, aging effects, etc). This clearly makes [18], also
sensitive to performance degradation since the effective
duty cycle varies during operations. Moreover, it will also
require periodic identification procedures as for classical
model-based schemes. In contrast, our proposal does not
need any physical TCL parameters.

Thus, compared to the known literature, the main contribu-
tions in this letter can be summarized as follows:
• Our algorithms are model-free and even the TCL duty

cycle is not required for solving local optimizations.
• Our algorithms are fully distributed, do not require any

central coordinator, and do not suffer from single-point
failures. Specifically, Algorithm 1 requires a K-regular
graph (even directed), whereas Algorithm 2 a common
undirected topology.

• In our algorithms the decision-making is taken by each
TCL autonomously (by exploiting only the neighbours
thermostat states), and asynchronously (no need for
network-wide periodic synchronization events).

• Our algorithms are greedy and thus well suited to be
implemented on cheap development boards which do not
support any optimization solver.

• Our algorithms are compliant with the ENTSO-E guide-
lines, which is instead not the case of [7], [11], [12].

II. PROBLEM FORMULATION

Consider a MAS consisting of V = {1, 2, . . . , n} TCLs.
Each TCL is equipped with certain sensing, actuation and
communication capabilities. The communication topology
at time tk ≥ 0 is encoded by a digraph G(tk) =
(V, E(tk)) where E(tk) ⊆ V × V . Specifically, (i, j) ∈ E(tk)
if TCL i is enabled to receive information from j, whereas
N in
i (tk) : {j ∈ V \ {i} : (i, j) ∈ E(tk)} and N out

i (tk) : {j ∈
V \ {i} : (j, i) ∈ E(tk)} are the in- and out-neighbourhood of
TCL i. Then, let Pi ∈ R+ be the rated power absorbed by the
TCL when its thermostat hi(tk) ∈ {0, 1} is high, then

pi(tk) = Pi · hi(tk), (1)

approximates its absorbed power at time tk ≥ 0, with k ∈
N0, while dispensing the use of power sensors. For water
heaters and radiators, the thermostat state is generally updated
in accordance with the reverse hysteretic control

hi(tk+1) :=


0 if Ti(tk) > Tmax

i , (2a)
1 if Ti(tk) < Tmin

i , (2b)
hi(tk) otherwise, (2c)

where Ti(tk) ∈ R is the temperature of TCL i, and Tmax
i ≥

Tmin
i > 0 denote the hysteresis window. On the other hand,

in refrigerators or cold flow conditioners the high and low
conditions in (2a)-(2b) are reversed. Finally, each TCL is
assumed measuring if Ti(tk) ∈ [Tmin

i , Tmax
i ] as well as the

Boolean thermostat status hi(tk).
Let us now define the overall (total) instantaneous absorbed

power associated with the network of TCLs as

P t(tk) =

n∑
i=1

pi(tk), (3)

and let the corresponding normalized value, computed with
respect to the total nominal installed power, be as next

ζt(tk) =
P t(tk)∑n
j=1 Pj

. (4)

Let us further define P d(tk) ∈ R+ as the desired overall
instantaneous power demand broadcasted, for instance, by the
ESP to the MAS, and let

ζd(tk) =
P d(tk)∑n
j=1 Pj

(5)

be, as for (4), the corresponding normalized desired power
demand, then our objective is to locally control the status
of hi(tk) in (2c), in a such a way P t(tk) tracks P d(tk), or
equivalently demonstrate that ζt(tk) tracks ζd(tk).

Remark 1: Override the thermostat is common in TCL-
DSR. This is justified by the fact most of the existing policies
consider smart TCLs. Specifically, among [3]- [11], only [8]
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considers instead off-the-shelf TCLs, and thus there, the DSR
is implemented by using networked smart sockets. �

III. MAIN RESULTS

In the following, Two model-free distributed and asyn-
chronous greedy load-following programs operating under
different and detailed networking assumptions are presented.

A. Load-following DSR for K-regular TCL networks
Robustness to node or communication failure in MAS

largely depends on the graph connectivity. Although connec-
tivity can be improved by adding edges or by increasing
the neighbours of each node, since an edge stands for some
communications/physical links, adding edges increases the
infrastructure costs. A family of well-connected yet sparse
graphs, is that of K-regular graphs (connected digraphs where
each node has the in- and out-degree equal to K). Their
disadvantage is that they are generally difficult to be computed,
especially in distributed fashion. On the other hand, there exist
algorithms which allow networks to self-organize their graphs
into a K-regular graph, e.g. [19]. Thus, in this subsection is
assumed the following.

Assumption 1: The graph G(tk) is K-regular,
namely |N in

i | = |N out
i | = K, ∀ i ∈ V,K ∈ N, tk ≥ 0. �

Finally, because of each TCL cannot access the network
power demand P t(tk), as well as is corresponding normalized
consumption ζt(tk) in (4), we further define the following,
local, in-neighbourhood normalized consumption

ζ`i (tk) =
p`i(tk)

P `i (tk)
=

∑
j∈{i}∪N in

i
pj(tk)∑

j∈{i}∪N in
i
Pj

. (6)

We are now in position to present our Algorithm 1.

Algorithm 1 (Implemented within each TCL i ∈ V)
1: Initialize hi(tk), Ti(tk), Pi, ζd(tk) and ∀ tk do:
2: Gather Pj and hj(tk) for all j ∈ N in

i (tk)

3: Update P `i (tk) =
∑
i∪N in

i (tk) P
`
j (tk) and p`i(tk) =∑

i∪N in
i (tk) Pjhj(tk)

4: Let ζ`i (tk) = p`i(tk)/P
`
i (tk) as in (6)

5: Compute ζ`
′

i (tk) = (p`i(tk) + Pi(1− 2hi(tk)))/P
`
i (tk)

6: If Ti(tk) ∈
[
Tmin
i (tk), T

max
i (tk)

]
AND |ζ`′i (tk) −

ζd(tk)| < |ζ`i (tk)− ζd(tk)| then hi(t
+
k ) = 1− hi(tk

7: else hi(t+k ) = hi(tk)

8: endif

Algorithm 1 is model-free, and asynchronous, in the sense
that each TCL calls Algorithm 1 with respect to its own clock,
and no network-wide synchronization events are required.
Moreover, during its execution, the amount of memory storage
required at node i is independent from n, and equal to 6+K
variables, where K =

∣∣N in
j

∣∣, thus it is scalable to large n.
Last, if G(tk) is sufficiently connected (K is large), then the
Mean Square Error (MSE) defined as

MSE =
1

Tf

Tf∑
tk=0

(P d(tk)− P t(tk))
2, (7)

is reduced. The numerical results of Fig. 3 show a K ≥ 40
minimizes such error.

Further note Algorithm 1 controls the thermostat status
hi(tk) in such a way the normalized in-neighbourhood con-
sumption (6) is kept close to the desired setpoint (5). More-
over, instruction “6” guarantees at each iteration the tracking
error either decreases, or at most does not increase, namely
|ζ`i (t

+
k ) − ζd(tk)| ≤ |ζ`i (tk)− ζd(tk)|, where t+k > tk repre-

sents the instant of time after the algorithm execution at time
tk ≥ 0. Let us now show that if ζ`i (tk) tracks ζd(tk) ∀ i, then
P t(tk) is tracking P d(tk).

Theorem 1: Let Assumption 1 be satisfied. If ζ`i (tk) =
ζd(tk) holds ∀ i ∈ V , then P t(tk) = P d(tk).

Proof: Firstly note that, independently from the consid-
ered digraph G(tk), the following identity holds

n∑
i=1

( ∑
j∈N in

i

pj(tk)

)
=

n∑
i=1

∣∣N out
i

∣∣ pi(tk). (8)

From (8) and (3), and by simple manipulations one may further
obtain the following one-to-one relationship holds

n∑
i=1

( ∑
j∈N in

i

pj(tk)

)
−

n∑
i=1

( ∣∣N out
i

∣∣− 1
)
pi(tk)=P

t(tk). (9)

Then, by exploiting Assumption 1, we have |N out
i | = K, ∀

i ∈ V . Thus, (9) is rewritten as next

P t(tk) =

n∑
i=1

( ∑
j∈N in

i

pj(tk)

)
− (K − 1)

n∑
i=1

pi(tk). (10)

Consider now (5) and (6). Since in the theorem’s statement
is assumed ζ`i (tk) = ζd(tk), then (10) is rewritten as

P t(tk)=

n∑
i=1

(
ζd(tk)

∑
j∈N in

i

Pj

)
−(K − 1)

n∑
i=1

pi(tk). (11)

Then, by simple manipulations it further results

P t(tk) = ζd(tk)

n∑
i=1

∑
j∈N in

i

Pj − (K − 1)P t(tk). (12)

Now, by applying the same argument we used for
∑n
i=1 pi(tk)

in (9), to
∑n
i=1

∑
j∈N in

i
Pj , it further results

n∑
i=1

∑
j∈N in

i

Pj =

n∑
i=1

Pi + (K − 1)

n∑
i=1

Pi = K

n∑
i=1

Pi. (13)

Finally, by replacing (13) into (12), yields

P t(tk) = ζd(tk)K

n∑
i=1

Pi − (K − 1)P t(tk), (14)

which after simplifications can be rewritten as next

P t(tk) = ζd(tk)

n∑
i=1

Pi. (15)

Then, from (15) and (5), one can further note that
P t(tk) = P d(tk), thus concluding this proof.

Remark 2: Since algorithms for forming regular graphs are
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generally sub-optimal, thus it may happen few nodes may
have either K + 1 or K + 2 neighbours, see e.g. [19]. If so,
Assumption 1 would no longer be satisfied, and therefore the
identity used in (9) is no longer valid. Nevertheless, if K is
big enough such that K+1 ≈ K, then also P t(tk) ≈ P d(tk).
Thus, the results of Theorem 1 do not change significantly. �

Remark 3: Consider sparse K-regular graphs makes Algo-
rithm 1 resilient to failures and malicious attacks. Specifi-
cally, let K ′ be the number of compromised agents sending
wrong/false data. It is reasonable to assume K ′ < K. Thus,
these K ′ agents will influence only a few in-neighbourhood,
each for a weight that is 1/K. Thus, the majority of agents
will instead continue to work correctly. �

B. Load-following DSR for undirected mesh TCL
networks

Building large K-regular networks from an arbitrarily mesh
network is problematic in practice, not only for the reasons
discussed in Section III-A. In fact, it may also happen that due
to the different population densities some nodes would have a
larger degree than others. Thus, to achieve the load-following
goal on mesh networks, in this subsection it is assumed the
following.

Assumption 2: The interaction graph G(tk) is connected
and undirected, and the network size n ∈ N is known. �

Remark 4: In our load-following DSR, the knowledge of n
is not restrictive since TCLs participating in the DSR should,
in general, “login” to a web-server to receive P d(tk) by
the ESP. Thus, at least the ESP knows n and can send this
information to the agents while preserving the privacy of their
power consumption. In addition, even if n is not available
for any reason, distributed network size estimation algorithms,
such as [20], can be used to estimate n. �

To consider mesh networks an extra cost in terms of
information each agent has to deliver and compute must be
paid. Specifically, to achieve our goal we need to provide
each TCL with an estimation P t

e (tk) of (3). To do that, and
similarly with [8], we could thus embed within our DSR
program a dynamic average consensus protocol to estimate
P t(tk). Due to its simplicity in implementation and tuning, the
fact it is randomized, and that the convergence is only required
the graph is connected and undirected, here it is considered
the dynamic consensus protocol proposed in [21]. It is
worth mentioning that the iterations of the dynamic average
consensus algorithm need to occur at a greater frequency than
those of Algorithm 2 to ensure a time-scale separation between
the two algorithms. Specifically, let zri be the r-th state of a
m-stages cascaded consensus filter of the form

z1
i (κ+ 1) = δ pi(tk) + (1− δ) z1

i (κ) − ε
∑

j∈N in
i

(
z1
i (κ)− z1

j (κ)
)

z2
i (κ+ 1) = δ z1

i (κ) + (1− δ) z2
i (κ) − ε

∑
j∈N in

i

(
z2
i (κ)− z2

j (κ)
)

...
zmi (κ+ 1) = δ zm−1

i (κ) + (1− δ) zmi (κ)− ε
∑

j∈N in
i

(
zmi (κ)− zmj (κ)

)
(16)

where pi(tk) = Pi · hi(tk) in (1) is the filter’s input, zmi (κ)
is its output at the κ-th iteration. Finally, let the next tuning

rules be satisfied

ε < (2Kmax)
−1, δ < 1− εKmax, (17)

where Kmax = maxi{ki} ≤ N is the maximun node’s degree,
then zmi (k) will converges to the mean total consumption of
the network, namely to P t(tk)/n. Notice that the distributed
dynamic consensus on average algorithm only estimates
averaged quantities, thus we need n to reconstruct P t(tk).
We are now in position to present our Algorithm 2.

Algorithm 2 (Implemented within each TCL i ∈ V)
1: Initialize hi(tk), Pi, Ti(tk), P d(tk), n and ∀ tk do:
2: Estimate by means of (16) P t

e (tk) = n · zmi (κ)
3: If Ti(tk) ∈

[
Tmin
i (tk), T

max
i (tk)

]
AND P t

e (tk) > P d(tk)+γ then hi(t
+
k ) = 0

4: else if Ti(tk) ∈
[
Tmin
i (tk), T

max
i (tk)

]
AND P t

e (tk) < P d(tk)−γ then hi(t
+
k ) = 1

5: else hi(t+k ) = hi(tk)
6: endif

Notice that in Algorithm 2, each TCL firstly executes the dy-
namic consensus (16), which implementation, following [21],
can be randomized, and where at each iteration κ, a set of
random edges is selected from its neighbourhood. Then, by
exploiting n, P t(tk) is estimated. Finally, as for Algorithm 1,
the thermostat state hi(tk) is controlled in such a way P t(tk)
is kept close to the desired demand P d(tk). Finally, γ > 0 is
a threshold related to the total power consumption estimation
accuracy, formalized in Theorem 2.

Remark 5: Since the proposed algorithms may override the
thermostat status if only Ti ∈ [Tmin

i (tk), T
max
i (tk)], namely

in (2c), then if P d(tk) at a given time is exceptionally low
while many TCLs have a low temperature then a tracking error,
possibly large, could be observed. This is a consequence that
the priority, in accordance with [13], is given to the QoS of the
TCL owners. Nevertheless, as time passes, TCLs coordinate
itself to track P d(tk). �

Remark 6: It is worth mentioning that there may exist
several TCLs planning solutions that meet the temperature
constraint, Ti ∈ [Tmin

i (tk), T
max
i (tk)], and the solution ob-

tained by our proposed algorithms may not be the optimal
one with respect to the MSE index defined in (7). However,
we have relaxed many restrictions such as the computational
burden and the need for a mixed-integer optimization solver,
the requirement of a central coordinator, and the use of any
model information such as the temperature model dynamics
or the duty-cycle knowledge. �

We now show that Algorithm 2 does not cause any incre-
ment of the load-following tracking error during its executions.

Theorem 2: Consider a network consist of n TCLs. Let
Assumption 2 hold and let P t(tk) and P t(t+k ) be the overall
absorbed power by the TCLs at time tk and t+k (immediately
after an iteration of Algorithm 2), respectively. Let zmi (k) be
the estimation of P t(tk)/n by dynamic consensus protocol in
(16) and P d(tk) represent the desired load profile at time tk. If
|zmi (k)− P t(tk)/n| < γ/2n ∀ i ∈ V , and γ ≥ maxi∈V {Pi},
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Table 1 Water heater model parameters

ρ Water density 1 [kg/dm3]
cp Water specific heat 4186 [J/(C◦kg)]
Ri Thermal resistance 0.0488 [m2C◦/W]
Si Tank surface 0.536 [m2]
Vi Tank volume 100 [dm3]
Pi Heater power 1500 [W]

0 4 8 12 16 20 24
0

5

0 4 8 12 16 20 24
0

0.1

Fig. 1. Top: Aggregated daily hot water demand for the considered
network of water heaters. Bottom: Daily water demand for a generic
water heater.

then ∣∣P t(t+k )− P
d(tk)

∣∣ ≤ ∣∣P t(tk)− P d(tk)
∣∣ .

Proof: First notice that as discussed in [21], the dynamic
consensus protocol (16) can track the average TCLs power
consumption with the desired accuracy by tuning design
parameters. Thus, recalling that γ in Algorithm 2 is lower
bounded, since the accuracy of the dynamic consensus proto-
col in [21] is upper bounded, it is always possible to find a
large enough γ that satisfies |zmi (k)− P t(tk)/n| < γ/2n.

According to the definition of P t
e (tk) in Step 2 of

Algorithm 2, |zmi (k)− P t(tk)/n| < γ/2n, leads to
|P t
e (tk)− P t(tk)| < γ/2 , from which we observe that the

term [P t
e (tk) > P d(tk)+γ] in Step 3 is logically true only if

P t(tk) > P d(tk) + γ/2. (18)

Since the result of applying a control action in Step 3 can be
only hi(t+k ) = 0, therefore only two events are feasible.
Case 1 (hi(tk) = hi(t

+
k ) = 0): In this case P t(t+k ) = P t(tk),

therefore
∣∣P t(t+k )− P d(tk)

∣∣ =
∣∣P t(tk)− P d(tk)

∣∣ and the
desired result is achieved.
Case 2 (hi(tk) = 1 and hi(t

+
k ) = 0): In this case

P t(t+k ) + Pi = P t(tk). Thus, noticing that γ = max
i∈V
{Pi},

P t(t+k ) + γ ≥ P t(tk), and from (18), one finally obtains

P t(t+k ) ≥ P
d(tk)− γ/2. (19)

Noticing that P t(t+k ) < P t(tk), (18) and (19) yield to∣∣P t(t+k )− P d(tk)
∣∣ < ∣∣P t(tk)− P d(tk)

∣∣. By a similar argu-
ment, one can reach to same result for Step 4. The proof is
thus concluded.

Remark 7: Although privacy issues go beyond the scope of
this work, it is worth mentioning both our algorithms keep
private the Ti(tk) measurements and share only hi(tk) and Pi
to their neighbourhood for the decision making. Moreover,
note that in the presence of malicious interference, due to
the local temperature constraints within each algorithm, in

the worst case, it may happen that the tracking fails, but no
disservices to the TCL’s users will be observed. �

IV. NUMERICAL EXAMPLE

To evaluate the proposed algorithms a network of n =
1000 perturbed TCLs is considered. Specifically, each TCL
is modelled as a water heater, which temperature Ti(tk),
following [22], is updated accordingly with the next discrete-
time dynamic model

Ti(tk+1) = AkTi(tk) +Bk

(
αiT

r
i + βi(tk)T

in
i + γihi(tk)

)
,

Ak = e−(αi+βi(tk))∆t, Bk =

(
1− e−(αi+βi(tk))∆t

)
αi + βi(tk)

, (20)

αi =
Si

ρcpRiVi
, βi(tk) =

wi(tk)
Vi

, γi =
cpPi

ρVi
, (21)

where hi(tk) plays as the DSR control input, that is adjusted
to keep Ti(tk) between Tmin

i = 50◦C and Tmax
i = 60◦C.

Then, T ri = 20◦C is the room temperature, wi(tk) in (21) is
an unknown disturbance aimed to model the cold water refill
process within the water heater after a water withdrawal, and
finally T in

i = 15◦C is the inlet cold water temperature. The re-
maining model parameters are listed in Table III-B. During the
simulation, the TCL’s temperatures are randomly initialized
such that Ti(0) ∈ [Tmin

i , Tmax
i ], and only the 50% of them,

at the start-up, have hi(0) = 1. It is also worth mentioning
that wi(tk) is an ad-hoc designed stochastic process aimed to
model higher hot water demand at the peak hours, as depicted
in Fig. 1. Finally, calls to the proposed randomized algorithms
are modelled as a Poisson point process with a mean rate of
10 calls per second.

Regarding the developed tests, since Algorithm 1 requires a
K-regular network, whereas Algorithm 2 an undirected topol-
ogy, for the sake of comparison, undirected randomly gen-
erated K-regular graphs are considered. Specifically, Case 1
consider K = 100 and Case 2 a K = 10. Finally, the
Algorithm 2 parameters are set as next

Case 1 (K = 100) : m = 3, ε = 0.0045, δ = 0.1
Case 2 (K = 10) : m = 3, ε = 0.045, δ = 0.1

whereas the mean number of interactions κ of the dynamic
consensus algorithm given in (16) is 10 per second.

The network response to the case studies is shown in Fig. 2.
Specifically, the left-subplots consider a sinusoidal desired
demand of the form P (d)(tk) = 0.75 − 0.1 sin(2πtk/τ) with
period a τ of 12 hours (purple signal), whereas in the right-
subplots a constant set-point, P d = 0.75 MW is taken into
account. The blue signals denote the network consumption
in the uncontrolled case, whereas the red and yellow lines
are the consumption under the control of Algorithm 1 and
Algorithm 2. As it can be seen, both algorithms provide
good tracking despite the constraint on Ti(tk), which must
be kept within the range [Tmin

i , Tmax
i ]. In fact, the tracking is

missed only at the end of the first peak, because the expected
consumption was very high, and half of the TCLs came from
a “off” condition, at the start-up. Finally, note that the tracking
accuracy of Algorithm 1 reduces as the network connectivity
decreases. This is fairly reasonable because of the very low
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Fig. 2. Network response under different DSR policies, and dif-
ferent K-regular communication networks (one per row, resp., 100
and 10), and different desired demand profile: Pd(tk) = 0.75 −
0.1 sin(2πtk/τ) MW (left column) and Pd = 0.75 MW (right
column).
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Fig. 3. MSE (7) comparison for differentK-regular graphs, and different
desired demand profiles: Pd(tk) = 0.75−0.1 sin(2πtk/τ) MW (left
column) and Pd = 0.75 MW (right column).

number of executions of the algorithm we selected and the
small neighbourhood.

In Fig. 3 is shown in how our steady state accuracy vary as
K increase, for test which length is of Tf = 24 hours These
numerical results show a K ≥ 40 minimizes MSE (7).

V. CONCLUSION

The major advantage of the proposed DSR programs is
that both are model-free, thus they are inherently robust
to model uncertainties and unknown disturbances. Both are
asynchronous, thus dispensing the need to implement periodic
network-wide synchronization events. Finally, it is worth men-
tion both are simple and well-suited to be implemented even
on hardware with limited capabilities. A natural extension of
this study is to reduce the need for some local measurements,
such as TCLs’ temperatures, as well as the formal charac-
terization of the steady-state accuracy of our algorithms by
means of probabilistic arguments. Finally, also the study of the

practical concerns related to the presence of malicious agents
and the data privacy issues appear of particular interest.
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