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Abstract. In this paper we adopt an alternative, analytical approach to Arnol’d problem [4]
about the existence of closed and embedded K -magnetic geodesics in the round 2-sphere
S
2, where K : S

2 → R is a smooth scalar function. In particular, we use Lyapunov-Schmidt
finite-dimensional reduction coupledwith a local variational formulation in order to get some
existence and multiplicity results bypassing the use of symplectic geometric tools such as
the celebrated Viterbo’s theorem [21] and Bottkoll results [7].

1. Introduction

We deal with the motion γ = γ (t) of a particle of unit mass and charge in R
3, that

experiences the Lorentz force F produced by a magnetostatic field B. If the particle
is constrained to the standard round sphere S

2 ⊂ R
3, the motion law reads

γ ′′ + |γ ′|2γ = K (γ )γ ∧ γ ′ , (1.1)

where

K (p) := −B(p) · p , p ∈ S
2 .

A trajectory γ (t) satisfying (1.1) is called K-magnetic geodesic.
Let us recall the elementary derivation of (1.1). We have F(γ ) = γ ′ ∧ B(γ );

due to the constraint |γ | ≡ 1, the vectors γ and γ ′ are orthogonal along the motion.
It follows that the projection of F on Tγ S

2 = 〈γ 〉⊥ is proportional to γ ∧ γ ′, and
in fact FT(γ ) = −(B(γ ) · γ )γ ∧ γ ′ = K (γ )γ ∧ γ ′. Finally, by differentiating the
identity γ · γ ′ ≡ 0, we see that the tangent component of the acceleration vector
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is γ ′′ − (γ ′′ · γ )γ = γ ′′ + |γ ′|2γ , and thus Newton’s law gives (1.1). Notice that
γ ′′ − (γ ′′ · γ )γ = ∇S

2

γ ′ γ ′, where ∇S
2
is the Levi-Civita connection of S

2.

Two remarkable facts immediately follow from (1.1). First, we have 2γ ′′ ·γ ′ =
(|γ ′|2)′ = 0. Thus the particle moves with constant scalar speed, say

|γ ′| ≡ c ,

for some c > 0. In particular, γ is a regular curve. Secondly, we learn from differ-
ential geometry that γ has geodesic curvature

κ(γ ) = γ ′′ · γ ∧ γ ′

|γ ′|3 = K (γ )

c
.

Next, let c > 0 and K : S
2 → R be given. In [4], see also [5, Problems 1988/30,

1994/14, 1996/18], Arnol’d proposed the following question (actually in a more
general setting, where S

2 is replaced by an oriented Riemannian surface (�, g)):

Find closed and embedded K -magnetic geodesics γ ⊂ S
2 with |γ ′| ≡ c.

(PK ,c)

Problem (PK ,c), together with its generalizations, attracted the attention of many
authors and has been studied via different mathematical tools, such as symplectic
geometric [4,10,11,13,17] and variational arguments for multivalued functionals
[6,15,19,20].

The relation betweenProblem (PK ,c) and symplectic geometry canbe explained
as follows. Let us consider on S

2 the (restriction of the) two-form β := iB(dx ∧
dy∧dz) and let us define on the cotangent bundle T ∗

S
2 endowed with coordinates

(q, p) the symplectic form

� = c dq ∧ dp − π∗β

where dq ∧ dp = ∑2
i=1 dqi ∧ dpi denotes the standard symplectic form on T ∗

S
2

and π : T ∗
S
2 → S

2 is the canonical projection.
It is not hard to show, via a straight calculation, that K -magnetic geodesics on

S
2 having constant speed c are exactly the projections π(γ ) of the integral curves

of the vector field on T ∗
S
2 defined by

dH = iX�, (1.2)

where H = 1
2 |p|2. In the language of symplectic geometry, X is the Hamiltonian

vector field given by the Hamiltonian function H . Notice also that since γ ′ as
observed above has constant speed, then H(γ ) is constant and then by (1.2) we
have iγ ′� = 0, which by definition means that γ is a characteristic of �.

Now, for any smooth K and every c > 0 large enough the existence of a solution
to (PK ,c) can be deduced via this symplectic geometric approach by applying the
celebrated Viterbo result [21] on the existence of closed characteristics on compact
hypersurfaces of contact type. It is worth to notice that this result can be generalized
to any closed oriented surface �, yielding the existence of a solution for high
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energies c in every free homotopy class that can be represented by a non-degenerate
geodesic [11, Theorem 2.1 (ii)].

For the case of low energy levels we cite [11, Theorem 2.1 (i)] and [17], where
the author proves the existence of contractible periodic solutions for almost all
sufficiently small energy levels and for arbitrary smooth magnetic fields.

The existence of at least two distinct solutions to (PK ,c) in the case of the round
two-sphere follows, always for c > 0 large enough, from a general result of Bottkoll
[7] (see also [1]) about the number of periodic orbits of the flow of a Hamiltonian
vector field which is close to a flow generating a free circle action (in our case, the
geodesic flow on the round two-sphere), which implies that such periodic orbits are
at least as many as one plus the cup-length of S

2, i.e. two.
For other available results for (PK ,c) showing the existence of at least

two distinct solutions for arbitrary metrics on S
2 let us mention [11, Theo-

rem 2.1 (i) and Theorem 2.7], [18], [16]. Notice that all these results require that K
has constant sign: indeed, in [11] the assumption K > 0 guarantees that� = Kdσ

is a symplectic form on S
2; in [18], [16] an index-based topological argument is

used to prove the existence of two distinct solutions for any c > 0, and the assump-
tion K > 0 is needed to prove some crucial a-priori bound on the length of simple
and closed K -magnetic geodesics. Schneider’s multiplicity result is indeed sharp,
that is, Problem (PK ,c) might have exactly two distinct solutions, see [18, Theorem
1.3].

Let us however notice that from the physical point of view it is important to
include sign-changing functions K , unless the existence of magnetic monopoles is
admitted. In fact, the Gauss law for magnetism in absence of magnetic monopoles
implies that

ˆ

S2

K (p)dσp = 0,

see also [4, Problem 1996-17].
The aimof this paper is twofold. Firstly,we provide amore direct, self-contained

and analytical approach to Viterbo’s and Bottkoll’s results, in the special case of the
round sphere. Secondly, we provide sufficient conditions on K to obtain as many
solutions as we wish, provided that c is large enough.

Our main results are stated in Sects. 4 and 5, see Theorems 4.1 and 5.2, respec-
tively.

For the proofs we took inspiration from the breakthrough paper [2], where
Ambrosetti and Badiale showed how merging the Lyapunov-Schmidt finite-
dimensional reduction with variational arguments allows to obtain extremely pow-
erful tools to get existence and multiplicity results. This idea has been applied
to tackle quite a large number of variational problems arising from mathemati-
cal physics and differential geometry, see the exhaustive list of references in the
monograph [3].

We agree that the curves γ1(t), γ2(t) are distinct if γ1 = γ2 ◦ g, for any diffeomorphism
g.
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Notice however that Arnol’d problem on K -magnetic geodesics in S
2 does

not admit a (standard) variational formulation through a (non-multivalued) energy
functional, due to obvious topological obstructions. To overcome this difficulty, we
take advantage of a ”local” variational approach which is developed in Sect. 2.

Notation.
The Euclidean space R

3 is endowed with Euclidean norm |p|, scalar product
p · q, and exterior product p ∧ q. The canonical basis of R

3 is {eh , h = 1, 2, 3}.
We isometrically embed the unit sphere S

2 into R
3, so that the tangent space

TzS2 at z ∈ S
2 is identified with 〈z〉⊥ = {p ∈ R

3 | p · z = 0}. We denote by
Dρ(z) ⊂ S

2 the geodesic disk of radius ρ ∈ (0, π
2 ] about z ∈ S

2.
It is convenient to regard at S

1 as the unit circle in the complex plane.
Function spaces. Let m ≥ 0, n ≥ 1 be integer numbers. We endow Cm(S1, R

n)

with the standard Banach space structure. If f ∈ C1(S1, R
n), we identify f ′(x) ≡

f ′(x)(i x), so that f ′ : S
1 → R

n .
We write Cm(S1) instead of Cm(S1, R) and Cm instead of Cm(S1, R

3). For
U ⊆ S

2 we put

Cm
U := Cm(S1,U ) = {u ∈ Cm | u(x) ∈ U for any x ∈ S

1} .
We identify U with the set of constant functions in C2

U , so that C
2
U \U = C2

U \ S
2

contains only nonconstant curves.
The Hilbertian norm in L2 = L2(S1, R

3) is

‖u‖2L2 =
 

S1

|u(x)|2dx = 1

2π

ˆ

S1

|u(x)|2dx ,

and the orthogonal to T ⊆ C0 with respect to the L2 scalar product is given by

T⊥ = {ϕ ∈ C0 |
 

S1

u · ϕdx = 0 for any u ∈ T }.

We regard at C2
S2

as a smooth complete submanifold of C2. If u ∈ C2
S2
, the tangent

space to C2
S2

at u is

TuC
2
S2

= {ϕ ∈ C2 | u · ϕ ≡ 0 on S
1 }.

If u is regular, that means u′(x) = 0 for any x ∈ S
1, then

TuC
2
S2

= {g1u′ + g2u ∧ u′ | g = (g1, g2) ∈ C2(S1, R
2) }.

Rotations. Any complex number S
1 is identified with the rotation x �→ ξ x . Recall

that det(R) = +1 and R−1 =t R for any R ∈ SO(3), where SO(3) is the group of
rotations of R

3 and tR is the transpose of R.
It is well-known that SO(3) is a connected three-dimensional manifold. More

precisely, it is a Lie group whose Lie algebra is given by the skew-symmetric
matrices, and the tangent space TId3 SO(3) at the identity matrix is spanned by

T1 =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , T2 =
⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠, T3 =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ .
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A simple explanation of this elementary fact follows by introducing the matrices

Rξ
1 =

⎛

⎝
1 0 0
0 ξ1 −ξ2
0 ξ2 ξ1

⎞

⎠ , Rξ
2 =

⎛

⎝
ξ1 0 −ξ2
0 1 0
ξ2 0 ξ1

⎞

⎠, Rξ
3 =

⎛

⎝
ξ1 −ξ2 0
ξ2 ξ1 0
0 0 1

⎞

⎠

for ξ = ξ1+iξ2 ∈ S
1. Clearly Rξ

h is a rotation about the 〈eh〉 axis. By differentiating
Rξ
h with respect to ξ ∈ S

1 at ξ = 1 one gets Th = dRξ
h
∣
∣ξ=1

, and thus infers that {Th}
is a basis for TId3 SO(3). In accordance with the Lie group structure of SO(3), the
tangent space to SO(3) at R ∈ SO(3) is obtained by rotating TId3 SO(3). Hence

TRSO(3) = 〈RT1, RT2, RT3〉.

Finally, for any q ∈ S
2 we denote by dR the differential of the function SO(3) →

S
2, R �→ Rq, so that dR(Rq)τ ∈ TRqS

2 for any τ ∈ TRSO(3). We have the
formula

dR(Rq)(RTh) = R(eh ∧ q) = Reh ∧ Rq. (1.3)

2. A “local” variational approach

We put ε = c−1 and study Problem (PK ,ε−1 ) for ε close to 0. We take advantage of
its geometrical interpretation to rewrite it in an equivalent way. Let γ be a solution
to (PK ,ε−1 ), and letLγ be its length. Extend γ to an εLγ -periodic function onR and

consider the curve u ∈ C2
S2
, u(eiθ ) = γ

( εLγ

2π θ
)
. Evidently u and γ have the same

length Lγ and curvature εK . Moreover |u′| ≡ Lγ /2π and u solves the system

u′′ + |u′|2u = |u′|εK (u)u ∧ u′ on S
1, (2.1)

because γ solves (1.1). Conversely, any solution u ∈ C2
S2

\ S
2 to (2.1) has constant

speed |u′|, curvature εK (u) and gives rise to a solution to (PK ,ε−1 ).
The main goal of the present section is to show that for any point p ∈ S

2, the
problem of finding solutions to (2.1) in C2

S2\{p}, that is an open subset of C2
S2
, can

be faced by using variational methods. First, we need to introduce the functional

L(u) =
( 

S1

|u′|2dx
) 1

2
, L : C2

S2
\ S

2 → R. (2.2)

Notice that the Cauchy-Schwarz inequality givesLu ≤ 2πL(u), and equality holds
if and only if |u′| is constant. Moreover, it holds that

L(Ru ◦ ξ) = L(u) for any ξ ∈ S
1, R ∈ SO(3). (2.3)
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Finally, we notice that L is Fréchet differentiable at any u ∈ C2
S2

\ S
2, with differ-

ential

L ′(u)ϕ = 1

L(u)

 

S1

u′ · ϕ′dx = 1

L(u)

 

S1

(−u′′ − |u′|2u) · ϕdx for any ϕ ∈ TuC
2
S2

.

(2.4)

In the next lemma we provide a variational reading of the right-hand side of (2.1),
see also [15] and [11, Remark 2.2].

Lemma 2.1. Let K ∈ C0(S2) and let U, V be open and contractible subsets of S
2.

i) There exists a unique C1 functional AU
K : C2

U → R, such that AU
K (u) = 0 if u

is constant, and

(AU
K )′(u)φ =

 
S1

K (u)φ · u ∧ u′dx for any u ∈ C2
U , φ ∈ TuC

2
S2

; (2.5)

i i) If R ∈ SO(3), ξ ∈ S
1 and u ∈ C2

U , then ARU
K◦tR(Ru ◦ ξ) = AU

K (u);
i i i) If U ∩ V is nonempty and contractible, then AU

K (u) = AV
K (u) for any u ∈

C2
U∩V ;

iv) Let u ∈ C2
S2
. The function p �→ AS

2\{p}
K (u) is constant on each connected

component of S
2 \ u(S1);

v) Let u ∈ C2
U be a positively oriented parametrization of the boundary of a

regular open set �u ⊂ U. Then

AU
K (u) = − 1

2π

ˆ

�u

K (q)dσq .

Proof. Take a 1-form βU
K on U , such that

dβU
K = −K (q)dσq , (2.6)

where dσq is the restriction of the volume form on the sphere. We put

AU
K (u) =

 

S1

u∗βU
K =

 

S1

βU
K (u)u′dx , u ∈ C2

U .

It is evident that AU
K (u) = 0 if u is constant. Formula (2.5) can be derived by

using Lie differential calculus or local coordinates, like in the proof of [6, Lemma
3]. Elementary arguments and (2.5) give the C1 differentiability of the functional
AU

K . Uniqueness is trivial, because C
2
U is a connected manifold. In particular, for

u ∈ C2
U the real number AU

K (u) does not depend on the choice of βU
K .

To prove i i) take a 1-form β in the domain RU such that dβ = −(K ◦t R)dσq .
Clearly R∗β is a 1-form in U , and d(R∗β) = R∗(dβ) = −K (q)dσq . Thus we can
take βU

K = R∗β in formula (2.6) and we obtain

ARU
K◦tR(Ru) =

 

S1

(Ru)∗β =
 

S1

u∗(R∗β) = AU
K (u)
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for any u ∈ C2
U . The invariance of the area functional with respect to composition

with rotations of S
1 is immediate.

Now we prove i i i). If V ⊂ U and u ∈ C2
V , then the restriction of βU

K to V
can be used to compute AV

K (u). Thus AV
K (u) = AU

K (u). It follows that if two
open, connected sets U, V have contractible intersection and u ∈ C2

U∩V , then
AU∩V

K (u) = AU
K (u) and AU∩V

K (u) = AV
K (u).

Claim iv) readily follows from i i i). In fact, take p0 ∈ S
2 \ u(S1) and a small

disk Dδ(p0) ⊂ S
2 \ u(S1). For any p ∈ Dδ(p0) we have

AS
2\{p}(u) = AS

2\Dδ(p0)(u) = AS
2\{p0}(u).

We proved that the function p �→ AS
2\{p}(u) is locally constant on S

2 \ u(S1), and
hence is constant on each connected component of S

2 \ u(S1).
For the last claim we use Stokes’ theorem to get

2πAU
K (u) =

ˆ

S1

u∗βU
K =

ˆ

∂�u

βU
K =

ˆ

�u

dβU
K = −

ˆ

�u

K (q)dσq

by (2.6). The lemma is completely proved. ��
From now on we write

AK (p; u) = AS
2\{p}
K (u) , p ∈ S

2 , u ∈ C2
S2\{p}.

By Lemma 2.1, the functional AK enjoys the following properties,

A1) The functional AK (p; ·) is of class C1 on C2
S2\{p}, and

A′
K (p; u)φ =

 
S1

K (u)φ · u ∧ u′ dx for any u ∈ C2
S2\{p}, φ ∈ TuC

2
S2

.

A2) If R ∈ SO(3), ξ ∈ S
1, and u ∈ C2

S2\{p}, then AK◦tR(Rp; Ru ◦ ξ) = AK (p; u).

A3) Let u ∈ C2
S2
. The function p �→ AK (p; u) is locally constant on S

2 \ u(S1).

A4) Let u ∈ C2
S2\{p} be a positively oriented parametrization of the boundary of a

regular open set �u ⊂ S
2 \ {p}. Then

AK (p; u) = − 1

2π

ˆ

�u

K (q)dσq .

Remark 2.2. To find an explicit formula for AK (p; · ) let �p : S
2 \ {p} → R

2 be
the stereographic projection from the pole p. If u ∈ C2

S2\{p}, then �p ◦ u is a curve

in R
2 and (�−1

p )∗(Kdσq) = (K ◦ �−1
p )detJ

�−1
p

(z)dz is a 2-form on R
2. Let β̃

p
K

be a 1-form on R
2 such that dβ̃

p
K = (�−1

p )∗(Kdσq). Then

AK (p; u) =
 

S1

u∗(�∗
p β̃

p
K ) =

 

S1

(�p ◦ u)∗β̃ p
K .
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For instance, if K ≡ 1 is constant one can take

A1(p; u) =
 

S1

p

1 − u · p · u ∧ u′dx = 2
 

S1

p

|u − p|2 · u ∧ u′dx .

The next lemma provides the predicted "local" variational approach to (2.1).

Lemma 2.3. Let K ∈ C0(S2).
i) For any p ∈ S

2, the functional

EεK (p; u) = L(u) + εAK (p; u), EεK (p; · ) : C2
S2\{p} \ S

2 → R

is of class C1, with differential

L(u)E ′
εK (p; u)ϕ =

 

S1

( − u′′ + L(u)εK (u)u ∧ u′) · ϕdx, for any ϕ ∈ TuC
2
S2

.

(2.7)

In particular, any critical point u ∈ C2
S2\{p} \ S

2 for EεK (p; · ) solves (2.1).

i i) If R ∈ SO(3), ξ ∈ S
1 and p ∈ S

2, then EεK◦tR(Rp; Ru ◦ ξ) = EεK (p; u)

for any nonconstant curve u ∈ C2
S2\{p}, and thus

E ′
εK (p; u)u′ = 0 for any u ∈ C2

S2\{p} \ S
2. (2.8)

i i i) Let u ∈ C2
S2

\ S
2. The function EεK ( · ; u) : S

2 \ u(S1) → R is locally
constant.

iv) If K ∈ C1(S2) then the functional EεK (p; · ) is of class C2 on its domain.

Proof. Formula (2.4) and the property A1) of the area functional give the C1

regularity of EεK (p; · ) and (2.7). Let u be a critical point for EεK (p; · ). Take
any ϕ ∈ C2 and put ϕ� = ϕ − (ϕ · u)u ∈ TuC2

S2
. We have ϕ · u ∧ u′ = ϕ� · u ∧ u′

on S
1, and u′ · (ϕ�)′ = u′ · ϕ′ − (ϕ · u)|u′|2 because u′ · u ≡ 0. Since

0 = L(u)E ′
εK (p; u)ϕ� =

 

S1

(
u′ · (ϕ�)′ + L(u)εK (u)ϕ� · u ∧ u′)dx

=
 

S1

(
u′ · ϕ′ − (ϕ · u)|u′|2 + L(u)εK (u)ϕ · u ∧ u′)dx ,

and therefore u solves u′′ + |u′|2u = L(u)εK (u)u ∧ u′ on S
1. Since u′′ · u′ ≡ 0,

we see that |u′| ≡ L(u) is constant, and thus u solves (2.1).
Statements i i), i i i) follow from (2.3), A2) and A3) (to check (2.8) take the

derivative of the identity EεK (p; u ◦ ξ) = EεK (p; u) with respect to ξ ∈ S
1 at

ξ = 1). Finally, iv) can be proved via elementary arguments, starting from (2.7). ��
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3. Geodesics

For any rotation R ∈ SO(3), the loop

ωR(x) = R
(
x1, x2, 0) , x = x1 + i x2 ∈ S

1 ,

is a parameterization of the boundary of Dπ
2
(Re3) and solves

ω′′
R + |ω′

R |2ωR = 0 , L(ωR) = |ω′
R | = 1 . (3.1)

In order to simplify notations, from now on we write

ω(x) = ωId(x) = (
x1, x2, 0) , x = x1 + i x2 ∈ S

1 .

The tangent space to the smooth 3-dimensional manifold

S = {
ωR | R ∈ SO(3)

} ⊂ C2
S2

at ωR ∈ S can be easily computed via formula (1.3). It turns out that

TωRS = {q ∧ ωR | q ∈ R
3} = 〈Re1 ∧ ωR , Re2 ∧ ωR , Re3 ∧ ωR 〉.

We introduce the function

J0(u) := −u′′ − |u′|2u , J0 : C2
S2

\ S
2 → C0,

so that S ⊂ {J0 = 0}. By (2.4) we have

L(u)L ′(u)ϕ =
 

S1

J0(u) · ϕdx for any u ∈ C2
S2

\ S
2, ϕ ∈ TuC

2
S2

. (3.2)

Moreover, for u ∈ C2
S2

\ S
2, q ∈ R

3 and R ∈ SO(3) it holds that
 

S1

J0(u) · q ∧ udx = 0 , J0(Ru) = RJ0(u). (3.3)

The first identity readily follows via integration by parts or can be obtained by
differentiating the identity L(Ru) = L(u) with respect to R ∈ SO(3). The second
one is immediate.

Clearly J0 is of class C2; for R ∈ SO(3) and ϕ in the tangent space

TωRC
2
S2

= {ϕ = g1ω′
R + g2ωR ∧ ω′

R | g = (g1, g2) ∈ C2(S1, R
2) }, (3.4)

we have

J ′
0(ωR)ϕ = −ϕ′′ − 2(ω′

R · ϕ′)ωR − ϕ

.

Further, the operator J ′
0(ωR) is self adjoint in L2(S1, R

3), that is, 

S1

J ′
0(ωR)ϕ · ϕ̃dx =

 

S1

J ′
0(ωR)ϕ̃ · ϕdx for any ϕ, ϕ̃ ∈ TωRC

2
S2

. (3.5)

By differentiating the identity J0(ωR) = 0 with respect to R ∈ SO(3), we see that
TωRS ⊆ kerJ ′

0(ωR). Actually, equality holds, as shown in the next crucial lemma.
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Lemma 3.1. (Nondegeneracy) Let R ∈ SO(3). Then

i) kerJ ′
0(ωR) = TωRS;

i i) If ϕ ∈ TωRC
2
S2

and J ′
0(ωR)ϕ ∈ TωRS, then ϕ ∈ TωRS;

i i i) For any u ∈ TωRS⊥ there exists a unique ϕ ∈ TωRC
2
S2

∩ TωRS⊥ such that
J ′
0(ωR)ϕ = u.

Proof. One can argue by adapting the computations in [18, Sect. 5]. We provide
here a simpler argument.

Since J ′
0(ωR)(Rϕ) = R

(
J ′
0(ω)ϕ

)
for any ϕ ∈ TωC2

S2
, it is not restrictive to

assume that R is the identity matrix. By direct computations based on (3.1), one
can check that

J ′
0(ω)(ψ ω′) = −ψ ′′ω′ , J ′

0(ω)(ψ ω ∧ ω′) = ( − ψ ′′ − ψ
)
ω ∧ ω′

for any ψ ∈ C2(S1, R). Since by (3.4) any function ϕ ∈ TωC2
S2

can be written as

ϕ = (ϕ · ω′)ω′ + (ϕ · ω ∧ ω′)ω ∧ ω′ ,

we are led to introduce the differential operator B : C2(S1, R
2) → C0(S1, R

2),

B(g) = −g′′
1 e1 + (−g′′

2 − g2)e2 , g = (g1, g2) ∈ C2(S1, R
2).

and the function transform

�ϕ = (ϕ · ω′)e1 + (ϕ · ω ∧ ω′)e2 , � : TωC
2
S2

→ C2(S1, R
2),

so that

J ′
0(ω)ϕ = �−1B(�ϕ) for any ϕ ∈ TωC

2
S2

, �(kerJ ′
0(ω)) = ker B . (3.6)

We proved that kerJ ′
0(ω) and TωS have both dimension 3, thus they must coincide

because TωS ⊆ kerJ ′
0(ω).

For future convenience we notice that � is an isometry with respect to the L2

norms, and in particular 

S1

(
�ϕ

) · (
�ϕ̃

)
dx =

 

S1

ϕ · ϕ̃dx for any ϕ, ϕ̃ ∈ TωC
2
S2

. (3.7)

Now we prove i i). If τ := J ′
0(ω)ϕ ∈ TωS, then J ′

0(ω)τ = 0, as
kerJ ′

0(ω) = TωS. But then, using (3.5) we get 

S1

|J ′
0(ω)ϕ|2dx =

 

S1

J ′
0(ω)ϕ · τ dx =

 

S1

J ′
0(ω)τ · ϕdx = 0.

Thus J ′
0(ω)ϕ = 0, that means ϕ ∈ TωS.

It remains to prove i i i). Since �(TωS) = ker B, from (3.6) and (3.7) we have
that u ∈ TωS⊥ if and only if �u ∈ ker B⊥. In particular, if u ∈ TωS⊥, then
one can compute the unique solution gu ∈ ker B⊥ to the system Bgu = �u. The
function ϕ := �−1gu belongs to TωS⊥; thanks to (3.6) it solves J ′

0(ω)ϕ = u, and
is uniquely determined by u. The lemma is completely proved. ��
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Remark 3.2. For future convenience we compute

mhj =
 

S1

(Reh ∧ ωR) · (Re j ∧ ωR)dx =
 

S1

(eh ∧ ω) · (e j ∧ ω)dx = δhj −
 

S1

ωhω j dx .

We see that the functions Re j ∧ ωR = R(e j ∧ ω) provide an orthogonal basis for
TωRS endowed with the L2 scalar product. More precisely, the matrix M associated
to this scalar product with respect to the basis {Re j ∧ ωR} is given by

M =
⎛

⎝

1
2 0 0
0 1

2 0
0 0 1

⎞

⎠ .

3.1. Finite dimensional reduction

By the remarks at the beginning of Sect. 2, we are led to study problem (2.1) for
ε = c−1 close to 0. Further, since any solution u to (2.1) satisfies |u′| ≡ L(u), we
can rewrite (2.1) in the following, equivalent way,

u′′ + |u′|2u = L(u)εK (u)u ∧ u′ , u ∈ C2
S2

\ S
2 . (3.8)

Wewill look for solutions to (3.8) by solving Jε(u) = 0,where Jε : C2
S2

\S
2 → C0,

Jε(u) = J0(u) + εL(u)K (u)u ∧ u′ = −u′′ − |u′|2u + L(u)εK (u)u ∧ u′.
(3.9)

Thanks to (2.7), we can write

L(u)E ′
εK (p; u)ϕ =

 

S1

Jε(u) · ϕdx , for u ∈ C2
S2

\ S
2, p /∈ u(S1), ϕ ∈ TuC

2
S2

.

(3.10)

The regularity assumption on K implies that Jε is of class C1 on its domain. In
addition, Jε(u ◦ ξ) = Jε(u) for any ξ ∈ S

1, and integration by parts gives
 

S1

Jε(u) · u′dx = 0 for any u ∈ C2
S2

\ S
2.

In general, the identities in (3.3) are not satisfied if ε = 0, because the perturbation
term breaks the invariances of the operator J0.

In the next lemma we provide the main step to obtain our multiplicity results.

Lemma 3.3. There exist ε > 0 and a C1 function

[ − ε, ε] × SO(3) → C2
S2

\ S
2 (ε, R) �→ uε

R

such that uε
R is an embedded loop, and moreover
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(i) u0R = ωR;
(i i) uε

R ∈ TωRS⊥;
(i i i) Jε(uε

R) ∈ TωRS;
(iv) The function [−ε, ε] × SO(3) → R,

(ε, R) �→ Eε(R) := EεK (−Re3; uε
R) = L(uε

R) + εAK (−Re3; uε
R)

is well defined, of class C1 on its domain, and dREε(R)(RT3) = 0.
(v) R ∈ SO(3) is critical for Eε : SO(3) → R if and only if Jε(uε

R) = 0.
(vi) Put Eε

0 (R) = EεK (−Re3;ωR) = 1 + εAK (−Re3, ωR). As ε → 0, we have

Eε(R) − Eε
0 (R) = o(ε) (3.11)

uniformly on SO(3), together with the derivatives with respect to R ∈ SO(3).

Proof. Consider the differentiable functions

F1 : R×SO(3)×(C2
S2

\S
2)×R

3 → C0 , F1(ε, R, u; ζ ) = Jε(u) −
3∑

j=1

ζ j (Re j ∧ ωR)

F2 : R×SO(3)×(C2
S2

\S
2)×R

3 → R
3 , F2(ε, R, u; ζ ) =

3∑

j=1

(
 

S1

u · Re j ∧ ωR dx
)
e j

where ζ = (ζ1, ζ2, ζ3) ∈ R
3, and then let

F : R × SO(3) × (C2
S2

\S
2)×R

3 → C0×R
3 , F = (F1,F2).

Fix R ∈ SO(3). Since J0(ωR) = 0 by (3.1), thenF(0, R, ωR; 0) = 0. Our first goal
is to solve the equation F(ε, R, u; ζ ) = (0; 0) in a neighborhood of (0, R, ωR; 0),
via the implicit function theorem.

Consider the differentiable function

F(0, R, · ; · ) : (u; ζ ) �→ F(0, R, u; ζ ), (C2
S2

\S
2)×R

3 → C0×R
3

and let

L = (L1,L2) : (TωRC
2
S2

)×R
3 → C0×R

3

be its differential evaluated at (u; ζ ) = (ωR; 0).Weneed to prove thatL is invertible.
Take ϕ ∈ TωRC

2
S2

and p = (p1, p2, p3) ∈ R
3. It is easy to compute

L1(ϕ; p) = J ′
0(ωR)ϕ −

3∑

j=1

p j (Re j ∧ ωR), L2(ϕ; p) =
3∑

j=1

(
 

S1

ϕ · Re j ∧ ωR dx
)
e j .

Next, recall that TωRS is spanned by the functions Re j ∧ ωR . If L1(ϕ; p) = 0 then
J ′
0(ωR)ϕ ∈ TωRS, hence ϕ ∈ TωRS by i i) in Lemma 3.1; if L2(ϕ; p) = 0 then

ϕ ∈ TωRS⊥. Therefore, the operator L is injective.
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Before proving surjectivity we notice that

J ′
0(ωR)ϕ ∈ TωRS⊥ for any ϕ ∈ TωRC

2
S2

(3.12)

because of (3.5) and since TωRS = kerJ ′
0(ωR).

Now take arbitrary ψ ∈ C0 and q = (q1, q2, q3) ∈ R
3. We have to find

functions ϕ� ∈ TωRS, ϕ⊥ ∈ TωRS⊥ and p = (p1, p2, p3) ∈ R
3 such that L(ϕ� +

ϕ⊥, p) = (ψ, q). Since TωRS = kerJ ′
0(ωR) is spanned by the functions Re j ∧ ωR ,

we only need to solve

⎧
⎪⎨

⎪⎩

J ′
0(ωR)ϕ⊥ = ψ + ∑

j p j (Re j ∧ ωR), ϕ⊥ ∈ TωRS, p ∈ R
3 

S1

ϕ� · Re j ∧ ωR dx = q j , ϕ� ∈ TωRS⊥.

The tangential component ϕ� ∈ TωRS is uniquely determined. Thanks to (3.12),
we see that the function

∑
j p j (Re j ∧ ωR) must coincide with the projection of

−ψ on TωRS. This gives the unknown p. More explicitly, we have

eh · Mp =
3∑

j=1

p j

 

S1

(Reh ∧ ωR) · (Re j ∧ ωR)dx = −
 

S1

ψ · Reh ∧ ωR dx ,

where M is the invertible matrix in Remark 3.2. Once one knows p, the existence
of ϕ⊥ follows from i i i) in Lemma 3.1, and surjectivity is proved.

We are in position to apply the implicit function theorem for any fixed R ∈
SO(3). Actually, by a compactness argument, we have that there exist ε′ > 0 and
uniquely determined differentiable functions

u : (−ε′, ε′) × SO(3) → C2
S2

\S
2 , u : (ε, R) �→ uε

R
ζ : (−ε′, ε′) × SO(3) → R

3 , ζ : (ε, R) �→ ζ ε(R) = (ζ ε
1 (R), ζ ε

2 (R), ζ ε
3 (R))

such that

F(ε, R, uε
R; ζ ε(R)) = 0 , u0R = ωR , ζ 0(R) = 0.

Clearly the function (ε, R) �→ uε
R is differentiable. Since ωR is embedded, then uε

R
is embedded as well, provided that ε′ is small enough.

Condition i) in the Lemma is fulfilled; i i) follows fromF2(ε, R, uε
R; ζ ε(R)) =

0 while F1(ε, R, uε
R; ζ ε(R)) = 0 gives i i i).

Now we prove that iv) holds for any ε ∈ (0, ε′), provided that ε′ is small
enough. Since |ω + e3| ≥ 1 and uε

R → ωR uniformly on S
1 as ε → 0, we can

assume that

|uε
R(x) + Re3| ≥ 1

2
for any x ∈ S

1, (ε, R) ∈ (−ε′, ε′) × SO(3).

In particular, Lemma 2.3 guarantees that the function Eε(R) = EεK (−Re3; uε
R) is

well defined and of class C1 on SO(3), for any ε ∈ (−ε′, ε′). By i i i) in Lemma
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2.3 we have that the derivative of p �→ EεK (p; uε
R) vanishes for p ∈ S

2 \ uε
R(S1),

and we can compute

dREε(R)(RTh) = E ′
εK (−Re3; uε

R)(dRu
ε
R(RTh)) for h ∈ {1, 2, 3}, (3.13)

where E ′
εK (−Re3; · ) is the differential of the energy with respect to curves

running in C2
S2\{−Re3}. The C1 dependence of Eε(R) on ε and thus on the pair

(ε, R) is evident.
Next, notice that Rξ

3ω = ω ◦ ξ for any rotation ξ ∈ S
1 (recall that Rξ

3 rotates

S
2 about the 〈e3〉 axis). Hence RRξ

3ω = ωR ◦ ξ and T
RRξ

3ω
S = {

τ ◦ ξ | τ ∈ TωRS
}

for any R ∈ SO(3). Taking also i i), i i i) into account, we have that

uε
R ◦ ξ ∈ (T

RRξ
3ω
S)⊥ , Jε(u

ε
R ◦ ξ) = Jε(u

ε
R) ◦ ξ ∈ T

RRξ
3ω
S .

Since in addition uε
R ◦ ξ is close to ωR ◦ ξ = RRξ

3ω in the C2-norm by i), we see
that

uε

RRξ
3

= uε
R ◦ ξ (3.14)

by the uniqueness of the function ε �→ uε
R given by the implicit function theorem.

By differentiating (3.14) with respect to ξ at ξ = 1 we obtain dRuε
R(RT3) = (uε

R)′,
that comparedwith (2.8) gives E ′

εK (−Re3; uε
R)(dRuε

R(RT3)) = E ′
εK (−Re3; uε

R)(uε
R)′ =

0. Thus dREε(R)(RT3) = 0 by (3.13), and iv) is proved.
To prove that v) holds for ε small enough, first take R ∈ SO(3), h ∈ {1, 2, 3}

and notice that the condition uε
R ∈ TωRS⊥ trivially gives

dR
(  

S1

uε
R · R(e j ∧ ω)dx

)
(RTh) = 0 .

We compute dR R(e j ∧ ω)(RTh) = Reh ∧ (R(e j ∧ ω)) = R
(
eh ∧ (e j ∧ ω)

)
. Since

in addition uε
R · R(eh ∧ (e j ∧ ω)) = −(Reh ∧ uε

R) · (Re j ∧ ωR) we obtain

mε
h j (R) :=

 

S1

dRu
ε
R(RTh) · Re j ∧ ωR dx =

 

S1

(Reh ∧ uε
R) · (Re j ∧ ωR)dx .

(3.15)

Since uε
R → ωR uniformly for R ∈ SO(3), from (3.15) we obtain

mε
h j (R) =

 

S1

(Reh ∧ ωR) · (Re j ∧ ωR)dx + o(1) = mhj + o(1),

where mhj are the entries of the invertible matrix M in Remark 3.2. It follows that
the 3 × 3 matrix Mε

R = (mε
h j (R)) j,h=1,2,3 is invertible for any R ∈ SO(3), if ε is

small enough.
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We are in position to conclude the proof of v). We know that there exists a
differentiable function (ε, R) �→ ζ ε(R) ∈ R

3 such that

Jε(u
ε
R) =

3∑

j=1

ζ ε
j (R)(Re j ∧ ωR). (3.16)

On the other hand, (3.13) and (3.10) give

L(uε
R)dREε(R)(RTh) =

 

S1

Jε(u
ε
R) · dRuε

R(RTh)dx, (3.17)

by (3.16) and recalling (3.15) we obtain

L(uε
R)dREε(R)(RTh) =

3∑

j=1

mε
h j (R)ζ ε

j (R) = eh · Mε
R(ζ ε(R)).

If ε ≈ 0 so that the matrix Mε
R is invertible, then R is a critical matrix for Eε if and

only if ζ ε(R) = 0, which is equivalent to say that Jε(uε
R) = 0.

To prove the last claim of the lemma we take R ∈ SO(3) and compute the
Taylor expansion formula of the function

fR(ε) = Eε(R) − Eε
0 (R) = L(uε

R) − 1 + ε
(
AK (−Re3; uε

R) − AK (−Re3;ωR)
)

at ε = 0. Clearly fR(0) = 0. Now we recall that L ′(ωR) = 0 because ωR is a
geodesic, and we write

f ′
R(ε) = (

L ′(uε
R) − L ′(ωR)

)
(∂εu

ε
R) + ε A′

K (−Re3; uε
R)(∂εu

ε
R)

+(
AK (−Re3; uε

R) − AK (−Re3;ωR)
)
.

To take the limit as ε → 0, we notice that ∂εuε
R is uniformly bounded in C2

S2

because the function (ε, R) �→ uε
R is of class C1. Further, L ′(uε

R) → L ′(ωR) in
the normoperator, A′

K (−Re3; uε
R)(∂εuε

R) remains bounded and AK (−Re3; uε
R) →

AK (−Re3;ωR). In conclusion,wehave that f ′
R(0) = 0, and therefore fR(ε) = o(ε)

as ε → 0, uniformly on SO(3). That is, (3.11) holds true ”at the zero order”.
To conclude the proof we have to handle the derivatives of Eε(R) − Eε

0 (R)

with respect to R, along any direction RTh ∈ TRSO(3). We use (3.16), the second
equality in (3.15) and then (3.16) again to obtain

 

S1

Jε(u
ε
R) · (dRu

ε
R(RTh))dx =

3∑

j=1

ζ ε
j (R)

 

S1

(dRu
ε
R(RTh)) · (Re j ∧ ωR)dx

=
3∑

j=1

ζ ε
j (R)

 

S1

(Reh ∧ uε
R) · (Re j ∧ ωR)dx

=
 

S1

Jε(u
ε
R) · (Reh ∧ uε

R)dx .
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By (3.9), the last integral can be written as
 

S1

J0(u
ε
R) · (Reh ∧ uε

R)dx + εL(uε
R)A′

K (−Re3; uε
R)(Reh ∧ uε

R)

=ε L(uε
R)A′

K (−Re3; uε
R)(Reh ∧ uε

R)

because of (3.3). Thus (3.17) leads to the new formula

dREε(R)(RTh) = εA′
K (−Re3; uε

R)(Reh ∧ uε
R).

On the other hand, it is easy to see that

dREε
0 (R)(RTh) = εA′

K (−Re3;ωR)(dR(ωR)(RTh)) = εA′
K (−Re3;ωR)(Reh ∧ ωR),

because AK ( · ;ωR) is locally constant, and we can conclude that

dR
(Eε(R) − Eε

0 (R)
)
(RTh)

= ε
(
A′
K (−Re3; uε

R)(Reh ∧ uε
R) − A′

K (−Re3; uε
R)(Reh ∧ ωR)

) = o(ε),

because uε
R → ωR . The lemma is completely proved. ��

4. Two solutions

In the present sectionweuseLemma3.3 togetherwith the local variational approach
in Sect. 2 to provide a more direct, self-contained and analytical treatment to
Viterbo’s and Bottkoll’s result which avoids the deep and general theories of char-
acteristics and symplectic actions.

We stress the fact that, differently from [11], [18] and [16], in the next theorem
we do not make any sign assumptions on K . For instance, K might vanish on
some geodesic circle of radius π/2 about a point z ∈ S

2 and thus ∂Dπ
2
(z) can be

parameterized by two K -magnetic geodesics that coincide up to orientation. This
is the reason why, in that case, we have to add an extra assumption to obtain two
distinct solutions.

Theorem 4.1. Let K ∈ C1(S2) be given. For every c > 0 large enough, Problem
(PK ,c) has at least a solution γ . If in addition K does not vanish on any closed
geodesic, or

ˆ

Dπ
2
(z)

K (q)dσq =
ˆ

Dπ
2
(−z)

K (q)dσq whenever K ≡ 0 on ∂Dπ
2
(z), (4.1)

then for every c > 0 large enough, Problem (PK ,c) has at least two embedded,
distinct solutions.

Recall that changing the orientation of a curve only changes the sign of its curvature.
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Proof. Let ε be given by Lemma 3.3. For any c > ε−1, let ε := c−1 < ε and
(ε, R) �→ uε

R , (ε, R) �→ Eε(R) be the functions in Lemma 3.3. To every critical
point Rε for Eε corresponds a curve uε

Rε that solves Jε(uε
Rε ) = 0. Hence uε

Rε solves
(3.8) and, as explained at the beginning of Sect. 2, yields a solution to (PK ,ε−1 ) =
(PK ,c).

Now, if Eε is constant, then uε
R solves (3.8) for every R ∈ SO(3) and the

conclusions in Theorem 4.1 hold. Otherwise, take Rε, R
ε ∈ SO(3) achieving

the minimum and the maximum value of Eε, respectively. Then uε := uε
Rε and

uε := uε

R
ε solve (3.8) and this concludes the proof of the existence part.

Next, assume that Eε is not constant, and that uε = uε ◦ g for a diffeomorphism
g of S

1. To conclude the proof we have to show that (4.1) can not hold.
We have EεK (zε, uε) < EεK (zε, uε), that is,

L(uε) + εAK (zε, uε) < L(uε) + εAK (zε, uε) (4.2)

where zε = −Rεe3, zε = −R
ε
e3. Since |(uε)′|, |(uε)′| are constant, then |g′| is

constant as well. Thus |g′| = 1 and L(uε) = L(uε). Therefore, (4.2) implies

AK (zε, uε) = AK (zε, uε) (4.3)

for any ε = 0. In particular, g can not be a positive rotation of the circle by the
property A2) of the area functional. Thus g is a counterclockwise rotation of S

1.
Recall that uε has curvature εK (uε) and uε has curvature εK (uε). Since changing
the orientation of a curve changes the sign of its curvature, we have that at any point
p ∈ � := uε(S1) = uε(S1) we have K (p) = −K (p). It follows that K ≡ 0 on
�, and hence � is the boundary of a half-sphere Dπ

2
(wε). We can assume that uε

is a positive parameterization of ∂Dπ
2
(wε). Then zε /∈ Dπ

2
(wε) because uε ≈ ωRε ,

see i) in Lemma 3.3. Next, since uε parameterizes the same geodesic with opposite
direction, then uε a positive parameterization of ∂Dπ

2
(−wε) and zε /∈ Dπ

2
(−wε).

In particular, from the properties A3) and A4) of the area functional we infer

AK (zε, uε) =AK (−wε, uε) = − 1

2π

ˆ

Dπ
2
(wε)

K (q)dσq

AK (zε, uε) =AK (wε, uε) = − 1

2π

ˆ

Dπ
2
(−wε)

K (q)dσq ,

that compared with (4.3) shows that (4.1) is violated. The theorem is completely
proved. ��

5. Many solutions

In this section we suggest a way to obtain more and more distinct K -magnetic
geodesics. It involves the C1 Mel’nikov-type function

FK (z) =
ˆ

Dπ
2
(z)

K (p)dσp , FK : S
2 → R , (5.1)
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where K ∈ C1(S2) is given. We start by recalling the definition of stable critical
point proposed in [3, Chapter 2], see also [14].

Definition 5.1. Let � ⊂ S
2 be open. We say that FK has a stable critical point

in � if there exists r > 0 such that any function G ∈ C1(�) satisfying
‖G − FK ‖C1(�) < r has a critical point in �.

If FK is not constant, then it has at least two distinct stable critical points,
namely, its minimum and its maximum. Different sufficient conditions to have the
existence of (possible multiple) stable critical points z ∈ � for FK are easily given
via elementary calculus. For instance, one can assume that one of the following
conditions holds:

(i) ∇FK (z) = 0 for any z ∈ ∂�, and deg(∇FK ,�, 0) = 0, where ”deg” is
Browder’s topological degree;

(i i) min
∂�

FK > min
�

FK or max
∂�

FK < max
�

FK ;

(i i i) FK is of class C2 on �, it has a critical point z0 ∈ �, and the Hessian matrix
of FK at z0 is invertible.

In the next result we show that any stable critical point z0 for FK gives rise, for
any c > 0 large enough, to a solution γ c to Problem (PK ,c) which is a perturbation
of the closed geodesic about z0. Taking advantage of the remarks at the beginning
of Sect. 2, we only need to show that for any stable critical point z0 for FK and for
any ε = c−1 ≈ 0+, there exists a solution uε to (3.8), such that uε is close to the
closed geodesic about z0.

Theorem 5.2. Let K ∈ C1(S2) be given. Assume that FK has a stable critical point
in an open set � ⊂ S

2, such that � � S
2.

Then for every ε ∈ R close enough to 0, there exists a point zε ∈ �, an
embedding ωε : S

1 → S
2 parameterizing the boundary of a circle of geodesic

radius π/2 about zε, and a solution uε to (PK ,ε−1 ), such that ‖uε −ωε‖C2 = O(ε).

Proof. We can assume −e3 /∈ �. Otherwise, take any rotation R ∈ SO(3) such
that −e3 /∈ R�, and look for a solution ũε to

u′′ + |u′|2u = L(u)ε(K ◦t R)(u)u ∧ u′ on S
1,

in a C2-neighborhood of a geodesic circle about some point z̃ε ∈ R�. Conclude
by noticing that uε :=t Rũε solves (3.8) and approaches the geodesic circle about
Rt z̃ε ∈ �.

Next, for z ∈ S
2 \ {−e3} consider the rotation

N (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − z21
1+z3

− z1z2
1+z3

z1

− z1z2
1+z3

1 − z22
1+z3

z2

−z1 −z2 z3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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that maps e3 to z. Clearly the function N : S
2 \ {−e3} → SO(3) is differentiable;

its differential dN (z) at any z ∈ S
2 \ {−e3} is a linear map TzS2 → TN (z)SO(3).

We have

TzS
2 = 〈N (z)e1, N (z)e2〉 (5.2)

TN (z)SO(3) = 〈dN (z)
(
N (z)e1

)
, dN (z)

(
N (z)e2

)〉 ⊕ 〈N (z)T3〉 . (5.3)

Equality (5.2) and the inclusion⊇ in (5.3) are trivial. To conclude the proof of (5.3)
we need to show that the matrices

dN (z)
(
N (z)e1

)
, dN (z)

(
N (z)e2

)
, N (z)T3

are linearly independent. By differentiating the identity N (z)e3 = z one gets

dN (z)τ · e3 = τ , τ ∈ TzS
2 .

By choosing τ = N (z)eh , h = 1, 2 we infer that the third columns of the matri-
ces dN (z)

(
N (z)e1

)
, dN (z)

(
N (z)e2

)
are linearly independent. Thus the matrices

dN (z)
(
N (z)e1

)
, dN (z)

(
N (z)e2

)
are linearly independent as well. On the other

hand, the third column on N (z)T3 is identically zero, that concludes the proof of
(5.3).

Now, take the differentiable functions (ε, R) �→ uε
R ∈ C2

S2
, (ε, R) �→ Eε(R) ∈

R given by Lemma 3.3. To simplify notations, for z ∈ S
2 \ {−e3} we write

Ẽε(z) = Eε(N (z)) = EεK (−z; uε
N (z)) , Ẽε

0 (z) = Eε
0 (N (z)) = EεK (−z; N (z)ω).

Notice that N (z)ω parameterizes ∂Dπ/2(z). Therefore, using i i) in Lemma 2.3,
property A4) and elementary computations we get

Ẽε
0 (z) =L(N (z)ω) + εAK (−z; N (z)ω)

=L(ω)− ε

2π

ˆ

Dπ/2(z)

K (q)dσq = L(ω)− ε

2π
FK (z). (5.4)

Next, for any small ε = 0 consider the function

Gε(z) = 2π

ε
(Ẽε(z) − L(ω))

and use (5.4) together with iv) in Lemma 3.3 to get

‖Gε + FK ‖C1(�) = 2π

|ε|
∥
∥EεK (−z; uε

N (z)) − EεK (−z; N (z)ω)
∥
∥
C1(�)

= o(1)

as ε → 0. We see that for ε small enough the function Gε has a critical point
zε ∈ �. Thus, for any τ ∈ TzεS2 we have

0 = dz Ẽε(zε)τ = dREε(N (zε))
(
dzN (zε)τ

)
.

Taking (5.3) and iv) in Lemma 3.3 into account, we infer that the matrix N (zε)
is critical for Eε. Thus, by arguing as for Theorem 4.1 we have that the curve
uε := uε

N (zε)
is a solution to (PK ,ε−1 ). ��



20 R. Musina, F. Zuddas

Funding Open access funding provided by Universitá degli Studi di Cagliari within the
CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

[1] Abbondandolo, A., Benedetti, G.: On the local systolic optimality of Zoll contact forms,
arXiv:1912.04187 (2020)

[2] Ambrosetti, A., Badiale, M.: Variational perturbative methods and bifurcation of bound
states from the essential spectrum. Proc. Roy. Soc. Edinburgh Sect. A 128(6), 1131–
1161 (1998)

[3] Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems
on R

n , Progress in Mathematics, 240. Birkhäuser Verlag, Basel (2006)
[4] Arnol’d, V.I.: The first steps of symplectic topology, Uspekhi Mat. Nauk 41, 6(252),

3–18, 229 (1986)
[5] Arnol’d, V.I.: Arnold’s problems, translated and revised edition of the 2000 Russian

original. Springer-Verlag, Berlin (2004)
[6] Bahri, A., Taı̌manov, I.A.: Periodic orbits in magnetic fields and Ricci curvature of

Lagrangian systems. Trans. Amer. Math. Soc. 350(7), 2697–2717 (1998)
[7] Bottkoll, M.: Bifurcation of periodic orbits on manifolds and Hamiltonian systems. J.

Different. Equ. 37, 12–22 (1980)
[8] Contreras, G., Iturriaga, R., Paternain, G.P., Paternain, M.: Lagrangian graphs, mini-

mizing measures and Mañé’s critical values. Geom. Funct. Anal. 8(5), 788–809 (1998)
[9] Contreras, G., Macarini, L., Paternain, G.P.: Periodic orbits for exact magnetic flows

on surfaces. Int. Math. Res. Not. 8, 361–387 (2004)
[10] Ginzburg, V.L.: New generalizations of Poincaré’s geometric theorem, Funktsional.

Anal. i Prilozhen. 21(2), 16–22, 96 (1987)
[11] Ginzburg, V.L.: On the existence and non-existence of closed trajectories for some

Hamiltonian flows. Math. Z. 223(3), 397–409 (1996)
[12] Ginzburg, V.L.: A charge in a magnetic field: Arnold’s problems 1981–9,1982–

24,1984–4,1994– 14, 1994–35, 1996–17, and 1996–18, in Arnold’s problems, V.I.
Arnold (Editor), (Springer-Verlag and Phasis, 2004), pp. 395–401

[13] Ginzburg, V.L., Gürel, B.Z.: Relative Hofer-Zehnder capacity and periodic orbits in
twisted cotangent bundles. Duke Math. J. 123(1), 1–47 (2004)

[14] Musina, R., Zuddas, F.: Embedded loops in the hyperbolic planewith prescribed, almost
constant curvature. Ann. Global Anal. Geom. 55(3), 509–528 (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.04187


Many closed K -magnetic geodesics on S
2 21

[15] Novikov, S.P., Taı̌manov, I.A.: Periodic extremals of multivalued or not everywhere
positive functionals. Dokl. Akad. Nauk SSSR 274(1), 26–28 (1984)

[16] Rosenberg,H., Schneider,M.: Embedded constant-curvature curves on convex surfaces.
Pacific J. Math. 253(1), 213–218 (2011)

[17] Schlenk, F.: Applications of Hofer’s geometry to Hamiltonian dynamics. Comment.
Math. Helv. 81(1), 105–121 (2006)

[18] Schneider, M.: Closed magnetic geodesics on S2. J. Differential Geom. 87, 343–388
(2011)

[19] Taı̌manov, I.A.: Math. USSR-Izv. 38(2), 359–374 (1992); translated from Izv. Akad.
Nauk SSSR Ser. Mat. 55(2), 367–383 (1991)

[20] Taı̌manov, I.A.: Closed extremals on two-dimensional manifolds, Russian Math. Sur-
veys 47(2), 163–211 (1992); translated from Uspekhi Mat. Nauk 47(2)(284), 143–185,
223 (1992)

[21] Viterbo, C.: A proof of Weinstein’s conjecture in R2n . Ann. Inst. H. Poincaré Anal.
Non Linéaire 4(4), 337–356 (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Many closed K-magnetic geodesics on mathbbS2
	Abstract.
	1 Introduction
	2 A ``local'' variational approach
	3 Geodesics
	3.1 Finite dimensional reduction

	4 Two solutions
	5 Many solutions
	References




