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Within the nonlinear micropolar elasticity we discuss effective dynamic (kinetic) properties of elastic networks with

rigid joints. The model of a hyperelastic micropolar continuum is based on two constitutive relations, i.e. static and

kinetic ones. They introduce a strain energy density and a kinetic energy density, respectively. Here we consider

three-dimensional elastic network made of three families of elastic fibers connected through massive rigid joints. So

effective elastic properties are inherited from the geometry and material properties of fibers, whereas the kinetic (inertia)

properties are determined by the both fibers and joints. Formulae for microinertia tensors are given.
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1. INTRODUCTION2

The model of micropolar solids was presented in detail in centurial book by Cosserat brothers (Cosserat and Cosserat,3

1909). Initially proposed in their theory of elasticityin 1986(Cosserat and Cosserat, 1896), the model relies on a4
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2 V.A. Eremeyev, & E. Reccia

continuum that could be treated as a set of material particles which possess independent translational and rotational1

degrees of freedom, as in rigid body dynamics. As a result, wehave stresses and couple stresses as static counterparts2

of translations and rotations. The Cosserat model was discussed by several authors, among others Eringen (1999),3

Nowacki (1986)andMaugin and Metrikine (2010); in Eremeyev et al. (2013) a complete overview of foundations of4

the theory and many solutions were presented.5

Since several materials used in Civil and Mechanical engineering applications exhibit an internalmicro-structure,6

nowadays, the growing interest in micropolar model relatesto thepossibility ofaproper description of their complex7

inner micro-structure, when rotational interactions of material particles play an important role. Among such materials,8

it is worth to mention: granular media - including masonries(Baraldi et al., 2015; de Bellis and Addessi, 2011; Pau9

and Trovalusci, 2012; Reccia et al., 2018b; Shi et al., 2021); some classes of composites (Addessi et al., 2013,10

2016; Leonetti et al., 2018; Pingaro et al., 2019) like random (Reccia et al., 2018a; Trovalusci et al., 2017, 2014,11

2015) and regular particles composite; (Colatosti et al., 2021; Fantuzzi et al., 2019, 2020); nanotubes (Izadi et al.,12

2021a,b); beam-lattice materials (Berkache et al., 2022; Fleck et al., 2010) including foams and porous media(Lakes,13

1987, 1986). For example, considering a beam-lattice material as an effective medium it seems quite natural that this14

medium has to inherit some beam properties, such as sensitivity to applied surface and volumetric couples.15

In this work, attention is focused on 3D elastic networks with rigid connections.This typology of material be-16

longs to beam-lattice structures, that find several applications in many engineering areas (Pan et al., 2020;?). Periodic17

networks of interconnected beams or rods, both in two- or three-dimensions, may have interesting mechanical proper-18

ties related to their micro-structure, such as a higher performance in term of weight/stiffness, in acoustic and thermal19

responses, as well as in capacity of energy absorption, and greater deformation capacity before fracture/collapse.20

Moreover, these typology of micro-structured material maybe found at all scales, from nano- and micro-scales, up to21

macro-scale. These aspects make their study a very topical issue, being their application suitable in several engineer-22

ing areas (Dell’Isola et al., 2015;?). In particular, here a three-dimensional network of orthogonal deformable flexible23

fibres connected together by rigid massive joints, such thatthey remain orthogonal during deformations, is studied.24

This kind of material can be found in common applications such as fishnets or metal fences, and it can be considered25

as a typical example of meta-material exhibiting peculiar mechanical properties related to its internal structure. For26

such material, the adoption of micropolar model is crucial,thanks to the possibility of properly describe finite de-27

formations of the fibers by means two independent kinematic variables, translations and rotations Eremeyev (2019).28

A discrete model is adopted where fibers are therefore modelled by the adoption of Cosserat curve Altenbach et al.29

(2013). At macroscale, the material is modelled as an equivalent micro-polar media (Eremeyev, 2018).30
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Dynamics of Elastic Networks with Rigid Junctions 3

The paper is organized as follows. First, in Section 2 we briefly recall the governing equations of three- and1

one-dimensional media. Within the micropolar approach we have two kinematical descriptors, that are the fields2

of translations and rotations. A particular attention is paid to the kinetic constitutive relations, i.e. to the form of3

a kinetic energy function. We define a kinetic energy densityas a positive quadratic form dependent on linear and4

angular velocities. For comparison, we also consider rigidbody motions and the form of kinetic energy for a rigid5

body. In Section 3 we introduce a beam-lattice network with rigid massive joints. Here we formulate a semi-discrete6

model of the network considering coupled motion of beams andrigid joints. Using a linear approximation as in7

Eremeyev (2019), we derive a discrete model of the network. Within this model, we restrict ourselves to translations8

and rotations given in a finite set of points related to the centres of mass of joints. Comparing discrete model with9

a similar discrete approximation of three-dimensional (3D) micro-polar continuum, in Section 4 we introduce the10

notion of equivalent model. We call two models, i.e. of a network and of 3D medium,equivalent if their discrete11

counterparts have the same form. As a result, we can identifythe 3D kinetic constitutive relations through inertia12

properties of beams of joints.13

2. GOVERNING EQUATIONS OF MICROPOLAR MEDIA14

Let us briefly introduce the basic equations of the micro-polar mechanics considering both three-dimensional (3D)15

and one-dimensional (1D) solids as well as rigid body dynamics.16

2.1 Cosserat (micropolar) continuum17

Let B be an elastic micropolar solid body. A deformation ofB can be considered as an invertible mapping from a18

reference placementκ into a current placementχ(t), wheret is time. For any pointx of B we introduce its position19

vectorsX andx and triples of unit orthogonal vectors called directors{Dk} and{dk}, k = 1, 2, 3, defined inκ20

andχ, respectively. In other words, the position vector and directors play a role of kinematical descriptors in the21

micropolar elasticity, see Eringen (1999);?. As a result, a deformation ofB is given by22

x = x(X, t), Q = Q(X, t), (1)

whereQ = Dk ⊗ dk is a orthogonal tensor of micro-rotation and⊗ is the dyadic product.23

Considering hyperelastic materials we introduce a strain energy densityW as a function ofx andQ and their24
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4 V.A. Eremeyev, & E. Reccia

first gradients1

W = W (x,Q,∇x,∇Q), (2)

where∇ is the three-dimensional nabla-operator as defined in Eremeyev et al. (2018); Simmonds (1994). Applying2

to (2) the principle of material frame indifference by Truesdell and Noll (2004), we getW as a function of two strain3

Lagrangian strain measuresE andK4

W = W (E,K), (3)

where

E =F ·QT , F = ∇x, K× I = −(∇Q) ·QT ,

see Pietraszkiewicz and Eremeyev (2009) for more details. Hereinafter “·” and “×” denote the dot and cross products,5

respectively,F is the deformation gradient,I is the 3D unit tensor, and superscriptT stands for the transpose of a6

second-order tensor.7

In order to complete the constitutive description of the micro-polar medium we introduce a kinetic energy density

as a positive quadratic form of linearv and angularω velocities

K =
1
2
ρv · v +

1
2
ω · j ·ω+ω · j1 · v, (4)

v =ẋ, ω = −
1
2
(Q̇ ·QT )×, (5)

whereρ is a referential mass density, the overdot denotes the derivative with respect tot, v andω are the linear and8

angular velocities, respectively,j andj1 are tensors of micro-inertia. In addition we introduce the Gibbsian cross or9

the vectorial invariant of a second-order tensor as an operation which maps a tensor into a vector. For a dyad of two10

vectors it is defined as follows11

(a⊗ b)× = a× b,

and can be extended to any second-order tensor.12

Let us note that the form of kinetic energy, i.e. the form of so-called kinetic constitutive relations, plays an13

essential role in micropolar dynamics Eringen (1999); Eringen and Kafadar (1976). It is worth to mention here similar14

situation in the case of thin-walled structures, where rotatory inertia may significantly change oscillations and wave15

propagation, see, e.g., Mindlin (1951); Pietraszkiewicz (2011).16
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Dynamics of Elastic Networks with Rigid Junctions 5

The Lagrangian equation of motion take the form

∇ ·T+ ρf = ρv̇ + (ω · j1)
·, T =

∂W

∂E
·QT , (6)

∇ ·M+ (FT ·T)× + ρc = v × j1 ·ω+ (j1 · v)
· + (j ·ω)·, M =

∂W

∂K
·QT , (7)

whereT andM are the first Piola–Kirchhoff stress and couple stress tensors, respectively,f andc are the mass force1

and couple vectors.2

2.2 Cosserat curve3

Cosserat curve model constitutes a particular case of micro-polar media, see Antman (2005); Eremeyev et al. (2013);4

Rubin (2000). Indeed, this model could be treated as 1D micro-polar continuum embedded into the 3D Euclidean5

space. We again consider deformations of a Cosserat curveC as a mapping from a reference placementκC into6

a current placementχC(t). The position and orientation of a material particlez of C are determined through its7

position vector and directors defined in both placements. Inparticular, inκC we define a position vectorXC(s) and8

directorsDk(s) given as vector-valued functions of the referential arc-length parameters. ForχC , z has a position9

vectorxC(s, t) and directorsdk(s, t) given as a functions ofs andt. So the kinematics ofC is defined through the10

position vectorxC(s, t) and the micro-rotation tensorQC(s, t).11

We introduce a strain energy densityWC defined per unit length in the reference placement as a function ofxC12

andQC and their derivatives with respect tos13

WC = WC(xC ,QC ,x
′

C ,Q
′

C) (8)

where the prime sands for the derivative with respect tos. Using the material frame-indifference principle we trans-14

form (8) into the form Altenbach et al. (2013); Bı̂rsan et al.(2012)15

WC = WC(e,k), e = x′

C ·QT
C , k = −

1
2
(Q′

C ·QT
C)× (9)

with two vector-valued Lagrangian strain measures.16

Within the Cosserat curve approach we introduce a linearvC and angularωC velocities given by17

vC = ẋC , ωC = −
1
2
(Q̇C ·QT

C)×, (10)
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6 V.A. Eremeyev, & E. Reccia

so the kinetic energy density defined per unit length inκC is given by1

KC =
1
2
ρCvC · vC +

1
2
ωC · jC ·ωC +ωC · jC1 · vC , (11)

whereρC is a referential linear mass density,jC andjC1 are tensors of inertia.2

Lagrangian equations of motion have the form

T′

C + ρCfC = ρC v̇C + (ωC · jC1)
·, TC =

∂WC

∂e
·QT

C , (12)

M′

C + x′

C ×TC + ρCcC = vC × jC1 ·ωC + (vC · jC1)
· + (jC ·ωC)

·, MC =
∂WC

∂k
·QT

C , (13)

whereTC andMC are the first Piola–Kirchhoff stress and couple stress vectors, respectively,fC andcC are the mass3

force and couple vectors introduced per unit mass in the reference placement. One can easily find similarities between4

these equations and (6) and (7). In what follows we assume that the center of mass of a cross-section is chosen as a5

position of the Cosserat curve, so we havejC1 = 0.6

2.3 Rigid body dynamics7

Finally, in order to describe a rigid joint motion let us briefly consider elements of rigid body dynamics. LetB be a8

rigid body loaded by a net forceN and total torqueL. Following Eremeyev et al. (2013); Lurie (2001) the kinematics9

of B could be described as a translation of an arbitrary pointO of B called the pole and a rotation aboutO. Using10

this description we introduce position vectors of another point P of B in referenceκB and currentχB placements as11

follows12

X = X0 + ξ, x(t) = x0(t) + η(t), (14)

whereX0 andx0 are position vectors ofO, whereasξ andη are vectors
−−→
OP directed fromO to P in κB andχB ,13

respectively. The latter vectors are related to each other through a rotation tensorQ, so14

η(t) = Q(t) · ξ. (15)

As a result, the displacement vector ofP is given by15

u(t) ≡ x(t)−X = x0(t)−X0 +Q(t) · ξ− ξ. (16)
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Dynamics of Elastic Networks with Rigid Junctions 7

From (16) we get the formulae for linearv and angularω velocities1

v ≡ u̇ = v0 +ω× η, v0 = ẋ0, ω = −
1
2
(Q̇ ·QT )×, (17)

wherev0 is a velocity of the pole.2

The kinetic energy ofB is given by3

KB =
1
2

∫∫∫

vB

ρBv · v dv, (18)

whereρB is a mass density ofB andvB is a volume whichB occupies inχB. With (17) we have

KB =
1
2

∫∫∫

vB

ρB(v0 +ω× η) · (v0 +ω× η) dv

=
1
2

∫∫∫

vB

ρB dvv0 · v0 −
1
2
ω ·

∫∫∫

vB

ρBη× I× η dv ·ω+ω ·

∫∫∫

vB

ρBI× η dv · v0. (19)

Introducing the mass ofB and the tensors of inertia by the formulae4

MB =

∫∫∫

vB

ρB dv, J = −

∫∫∫

vB

ρBη× I× η dv, J1 =

∫∫∫

vB

ρBI× η dv, (20)

we transform (19) into5

KB =
1
2
MBv0 · v0 +

1
2
ω · J ·ω+ω · J1 · v0. (21)

In what follows we use the center of mass ofB as a pole, soJ1 = 0. Using (15) we have6

J = q · J0 ·Q
T , J0 =

∫∫∫

VB

ρBξ× I× ξdV, (22)

whereJ0 is the referential tensor of inertia andVB is a domain ofB in κB.7

Finally, the equations of motion ofB have the form8

MBv̇0 = N, (J ·ω)· = L. (23)

If we assume that considered previously 3D and 1D solids are rigid, we immediately come from (6) and (7) or (12) and9
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(13) to (23). In fact, for presented above model we face forces and couples as primary dynamic measures. Moreover,1

one can see, that similar to rigid body dynamics, tensors of inertia are presented in all micro-polar media, in general.2

3. ELASTIC NETWORKS3

Let us consider a regular elastic network made of three families of flexible fibres connected to each other through rigid4

joints as shown in Fig. 1. For simplicity we assume that all fibres (links) have the same mechanical and geometrical5

properties. This includes forms of strain and kinetic energiesWC , KC , links lengthℓ, ρC , jC , J0, MB, etc. We mark6

each joint through indicesi, j, andk, i = 1, . . . ,m, j = 1, . . . , n, andk = 1, . . . , l. For example, a center of mass of7

thei, j, k-th joint we denote asOi,jk, see Fig. 2.8

FIG. 1: Elastic network with rigid joints and one “elementary cell”of it.

Lagrangian equations of motion of the considered network consist of partial differential equations (PFEs) for

elastic links and ordinary differential equations (ODEs) for joints. Following Eremeyev (2019) the latter system of
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equations takes the form

T′

C1,1 + ρCfC1 = ρCv̇C1, s1 ∈ (si1, s
i+1
1 ), i = 1, . . . ,m− 1, (24)

M′

C1,1 + x′

C1,1 ×TC1 + ρCcC1 = (jC1 ·ωC1)
·, (25)

T′

C2,2 + ρCfC2 = ρCv̇C2, s2 ∈ (sj2, s
j+1
2 ), j = 1, . . . , n− 1, (26)

M′

C2,2 + x′

C2,2 ×TC2 + ρCcC2 = (jC2 ·ωC2)
·, (27)

T′

C3,3 + ρCfC3 = ρCv̇C3, s3 ∈ (sk3 , s
k+1
3 ), k = 1, . . . , l − 1, (28)

M′

C3,3 + x′

C3,3 ×TC3 + ρCcC3 = (jC3 ·ωC3)
·, (29)

MBv̇i,j,k = Ni,j,k, (Ji,j,k ·ωi,j,k)
· = Li,j,k. (30)

Hereinafter we introduce Cartesian coordinate system(x = s1, y = s2, z = s3) and corresponding unit base vectors1

i1, i2, i3 in such a way thats1 is the arc-length parameter of fibres aligned inith direction andi1 is the tangent vector2

to this fibre in the reference placement, respectively. Coordinatess2 ands3 are chosen similarly for fibres which3

constitutes second and third families of the network, respectively. In addition we use notations4

(. . .)′,1 =
∂

∂s1
, (. . .)′,2 =

∂

∂s2
, (. . .)′,3 =

∂

∂s3
.

In Eqs. (24)–(30)fC1, cC1, fC2, cC2, fC3, cC3, Ni,j,k, andLi,j,k are corresponding forces and couples.5

The corner stone of the further description of network motions is kinematic compatibility conditions, which6

describes mutual deformations of fibres connected via joints. Let us consider a contact pointP of a fibre perfectly7

connected to a joint. One can find that the linear velocity ofP is given by the formula8

vC = vO + ξ×ωO, (31)

whereas the angular velocity ofP andO are equal9

ωC =ωO. (32)

In (31) ξ is a vector
−−→
OP from the center of massO to P . As i, j, kth joint is connected to six fibres, we have six10
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10 V.A. Eremeyev, & E. Reccia

ξ=vectors which are denoted as1

ξi
−
,j,k, ξi+,j,k, ξi,j

−
,k, ξi,j+,k, ξi,j,k

−

, ξi,j,k+
,

see Fig. 2.2

O
ijk

xx

x

x

x

x

ijk

ijk

+

-

i jk

ij k+

-i jk

+

ij k-

FIG. 2: Geometry in the vicinity of ai, j, k-joint.

Dynamic compatibility conditions could be derived using the least action principle3

δH = 0, (33)

whereH is the action functional. It could be written in a standard way4

H =

∫ t2

t1

(KN −WN ) dt, (34)
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whereKN andWN are kinetic and potential energies of the network given by the relations

KN =
l

∑

k=1

n
∑

j=1

m−1
∑

i=1

∫ s
i+1
1

si1

KC(s1) ds1 +
l

∑

k=1

n−1
∑

j=1

m
∑

i=1

∫ s
j+1
2

s
j
2

KC(s2) ds2

+
l−1
∑

k=1

n
∑

j=1

m
∑

i=1

∫ s
k+1
3

sk3

KC(s3) ds3 +
l

∑

k=1

n
∑

j=1

m
∑

i=1

KB, (35)

WN =
l

∑

k=1

n
∑

j=1

m−1
∑

i=1

∫ s
i+1
1

si1

WC(s1) ds1 +
l

∑

k=1

n−1
∑

j=1

m
∑

i=1

∫ s
j+1
2

s
j
2

WC(s2) ds2

+
l−1
∑

k=1

n
∑

j=1

m
∑

i=1

∫ s
k+1
3

sk3

WC(s3) ds3. (36)

Obviously, joints do not contribute in the potential energyof the network whereas their contribution to the kinetic1

energy could be significant.2

In (33) variations of kinematic descriptors are also satisfy to (31) and (32):3

δuC = δuO + ξ× δψO, δψC = δψO, (37)

whereδuC , δuO, andδψC , δψO are the virtual translations and vectors of virtual rotations, see Eremeyev et al.4

(2013).5

Equations (24)–(30) constitute a semidiscrete model of a network. In order to introduce an effective homogenized6

medium we extend the approach by Eremeyev (2019) to the case of dynamics.7

4. EQUIVALENT CONTINUUM MODEL OF A NETWORK AND ITS EFFECTIVE PROPERTIES8

Considering statics of an elastic network with rigid jointsEremeyev (2019) introduced an equivalent micro-polar9

medium which strain energy density inherited elastic properties of network fibres. By equivalent model we mean a10

continuum medium which discretization coincides with discretization of the semi-discrete model. As a result, a strain11

energy density of the equivalent micro-polar model has the form12

WE = W̃C(i1 · E · i1, i1 ·K · i1) + W̃C(i2 · E · i2, i2 ·K · i2) + W̃C(i3 ·E · i3, i3 ·K · i3), (38)

whereW̃C is a normalized strain energy of Cosserat curve, see Eremeyev (2019) for more details.13

Here we extend the same approach for derivation of an equivalent kinetic energyKE . First, let us introduce the14
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12 V.A. Eremeyev, & E. Reccia

effective mass densityρE by the formula1

ρEV = 3ρCℓ+MB , (39)

whereV is the volume of the minimal rectangular cuboid which includes the elementary cell. It could be calculated2

as followsV = 3SCℓ+ VB, whereSC andVB are an area of a fiber cross-section and volume of joint, respectively.3

Then, we replace integrals in (35) using the trapezoidal rule as follows4

∫ s
i+1
1

si1

KC(s1) ds1 =
ℓ

2

[

KC(s
i
1) +KC(s

i+1
1 )

]

,

∫ s
j+1
2

s
j
2

KC(s2) ds2 =
ℓ

2

[

KC(s
j
2) +KC(s

j+1
2 )

]

,

∫ s
k+1
3

sk3

KC(s3) ds3 =
ℓ

2

[

KC(s
k
3) +KC(s

k+1
3 )

]

.

As a result,KN became a function given at ends of fibres.5

Let us now consider the kinetic energy densityKC at an end of a fibre. Using (31) and (32) we came to the

equation

KC =
1
2
ρC [vO · vO + 2vO · (ξ× I) ·ωO −ωO · (ξ× I× ξ) ·ωO] +

1
2
ωO · jC ·ωO. (40)

As a result, the kinetic energy of the elementary cell has theform

V KE =3ℓρC
[

vO · vO + 2
∑′

vO · (ξ′ × I) ·ωO −
∑′

ωO · (ξ′ × I× ξ′) ·ωO

]

+ωO · 3ℓjC ·ωO

+
1
2
MBvO · vO +

1
2
ωO · jC ·ωO. (41)

Here we use summation
∑

′ with respect to all connection points ofi, j, k-th joint6

∑′

(. . .) = (. . .)
∣

∣

i
−
,j,k

+ (. . .)
∣

∣

i+,j,k
+ (. . .)

∣

∣

i,j
−
,k
+ (. . .)

∣

∣

i,j+,k
+ (. . .)

∣

∣

i,j,k
−

+ (. . .)
∣

∣

i,j,k+
.

Finally, the effective kinetic energy could be written in a more compact way

KE =
1
2
ρEvO · vO + vO · j1E ·ωO +

1
2
ωO · jE ·ωO, (42)
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where we have introduced two micro-inertia tensors

V jE =J+ 3ℓjC −
∑′ ρCℓ

2
(ξ′ × I× ξ′), V j1E =

1
2

∑′

(ξ′ × I). (43)

If we neglect inertia properties of fibres, i.e. consider massive joints and light fibres, these formulae could be simplified

V jE =J−
∑′ ρCℓ

2
(ξ′ × I× ξ′), V j1E =

1
2

∑′

(ξ′ × I), (44)

or even as follows if we neglect also the mass of fibers

V jE =J, V j1E = 0. (45)

One can see that mass and inertia properties of joints essentially affect effective kinetic energy density.1

Formulae (43) or their simplified counterparts (44) and (45)could be extended for fibres of different properties2

and even for less regular networks when rigid joints connectto various number of fibres.3

CONCLUSIONS4

We have discussed kinetic constitutive equations for an elastic network from the point of view of the micro-polar5

elasticity. Here we restrict ourselves to elastic networkswith rigid massive joints. Considering the network as a ho-6

mogenized micro-polar continuum we have shown that elasticproperties are determined through the properties of7

network links, whereas dynamic properties, i.e. micro-inertia tensors, depend on both mass distribution along elastic8

links and joints. In particular, for massive joints micro-inertia tensors are almost entirely determined through inertia9

properties of joints. Let us note that joints could be non-symmetric with respect to elastic links connections, which10

results in appearance of two micro-inertia tensors in a kinetic energy density of the homogenized micropolar medium.11

This will result in dynamic coupling between translationaland rotational degrees of freedom, in general. Moreover,12

this brings in the micro-polar theory two micro-inertia tensors whereas usually they assumej1 = 0 andj = jI with13

scalar measure of rotational inertiaj, see, e.g., Eringen (1999). This case corresponds to symmetric material parti-14

cles such as spheres. Dynamic properties introduced through two micro-inertia tensors could be taken into account15

considering material symmetry as in Eremeyev and Konopińska-Zmysłowska (2020); see also Vilchevskaya et al.16

(2022), where other references on micro-inertia tensors could be found. Derived here formulae for the micro-inertia17

tensors complete the description by Eremeyev (2019) of a network undergoing large deformations within micro-polar18
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elasticity.Further development of this research will be devoted to improve the assessment of the dynamic behaviour1

of elastic networks with rigid junctions. Whit this purpose, the characteristics of wave propagation in media may be2

exploited. In particular, an effective correlation between the micro-structure and the way in which waves propagate3

in the medium, may be found. This relation may be very useful both to better understand the mechanical behaviour4

of such materials, both to improve their design and modelling in order to achieve specific required properties.5
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