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Abstract: The flavonoid naringenin (Nar), present in citrus fruits and tomatoes, has been identified as
a blocker of an emerging class of human intracellular channels, namely the two-pore channel (TPC)
family, whose role has been established in several diseases. Indeed, Nar was shown to be effective
against neoangiogenesis, a process essential for solid tumor progression, by specifically impairing
TPC activity. The goal of the present review is to illustrate the rationale that links TPC channels
to the mechanism of coronavirus infection, and how their inhibition by Nar could be an efficient
pharmacological strategy to fight the current pandemic plague COVID-19.

Keywords: TPC channels; plant vacuole; mammalian endolysosome; flavonoids; coronavirus;
SARS-CoV-2

1. Introduction

TPC channels (TPCs) are intracellular membrane channels found in both plant and
animal cells, from echinoderms to humans, with different isoforms, the phylogenetic history
of which is partially characterized [1–6] In plant cells, they are located on the membrane of
the vacuole, the so-called tonoplast [1,7]. The vacuole is a peculiar compartment of plant
cells that, in mature cells, can occupy more than 80% of the volume [8]. The physiological
role of plant TPCs has not yet been determined; different hypotheses have been proposed,
including their involvement in a calcium-induced calcium released mechanism [9], since
they are cationic channels with a significant calcium permeability [10–12], activated by an
increase of cytosolic calcium concentration. They could also be involved in the maintenance
of potassium homeostasis and in the compartmentalization of sodium ions [13]. Recently,
it has been shown that they are able to confer electrical excitability to the tonoplast [14]
similar to that elicited by human TPC1 in endolysosomal membranes [15]; however, it is
not clear how this excitability can be translated into a signal of physiological relevance.
Other experiments indicate that they are involved in signal transduction chains leading
plants to respond to abiotic and biotic stresses [16–19].

Human TPC channels (TPC1 and TPC2) are located on the membrane of the en-
dolysosomal compartments, are important in trafficking mechanisms and homeostasis
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of endolysosomes [2–4], have been related to a number of pathologies such as Parkin-
son’s disease, nonalcoholic fatty liver disease, virus infection, cancer, diabetes, and cardiac
dysfunction [20,21], and have emerged as important players in neoangiogenesis [22,23].
In the present work, we will show the steps that, starting from plant TPC channel func-
tional characterization, led us to formulate and validate (in vitro) the hypothesis that
human TPCs are involved in the mechanism of viral infection mediated by coronaviruses
and that their inhibition by Nar has the potential to be a powerful anti-SARS-CoV-2
pharmacological weapon.

2. Plants and TPC Channels

The first detailed functional characterization of ion channels belonging to the TPC
family was performed in 1987 by Rainer Hedrich during his PhD studies in the laboratory
of the Nobel Prize for Medicine Erwin Neher [24]. The experimental preparation consisted
of vacuoles isolated from sugar beet roots; a homogeneous portion of sugar beetroot was
cut with a scalpel and then washed with an ionic solution with osmolarity equal to that
measured in the root. The patch-clamp technique in the whole-vacuole configuration
was applied to the vacuoles thus obtained. By applying positive membrane potentials,
positive currents similar to those shown in Figure 1A were recorded. It can be observed that
currents have very slow activation and deactivation times; for this reason, these channels
have been given the name slow vacuolar (SV) channels. I–V characteristics of Figure 1B
indicate that these are outward rectifier channels. Selectivity experiments have shown
that these channels are cationic with a similar permeability for potassium (generally the
physiologically relevant ions in plant cells) and sodium ions [24,25]. These channels also
have significant permeability for calcium divalent ions [10,11]. A very interesting property
of the channels is that in the absence of cytosolic calcium (Ca2+ < 1 µM), they turn out
to be closed [24]; an increase in cytosolic calcium concentration leads to an increase in
channel activity [24]. Single-channel conductance is high, with values of about 100 pS in
symmetrical potassium concentrations, equal to 150 mM [26].

Several studies have shown that these channels are present in all types of plant cells
and in all plants investigated so far, even in marine [25,27] and freshwater [28] plants. They
also undergo a variety of modulations including dependence on the stimulation proto-
col [29], cytosolic magnesium [30], heavy metals [28,29,31,32], the antibiotic neomycin [33],
polyamines [34,35], ruthenium red [36], and PUFAs [37].
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Currents were elicited by a series of voltage steps ranging from −80 mV to +100, in 20 mV steps. 

Holding potential −50 mV, tail potential −50 mV. Pipette solution (in mM); 200 KCl, 2 MgCl2, 2 

CaCl2, 10 MES/Tris, pH 5.5; bath solution (in mM): 100 KCl, 2 MgCl2, 1 CaCl2, 1 mM dithiothreitol 

(DTT), and 10 mM HEPES/Tris, pH 7.5. The osmolarity in both solutions was adjusted to 600 

mOsm by the addition of D-sorbitol. (B) SV current–voltage characteristics of the traces shown in 

panel A. The I–V characteristics are constructed by plotting the average value of the currents rec-

orded during the last 50 ms at each applied voltage. Positive currents represent cations entering 

the vacuole. The continuous black line represents the background current evaluated from the lin-

ear fitting of the current between −80 and 0 mV. 

3. The SV Channels Are Modulated by Redox Agents and Flavonoids 

At physiological potentials of the plant vacuole, around −30 mV [1] and references in 

[1], the SV channel is essentially closed even at cytosolic calcium concentrations of 1 mM. 
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the voltage dependence of the channel to more negative potentials [38]. Experiments con-

ducted on vacuoles isolated from the marine plant Posidonia oceanica clearly indicated that 

the SV channel needed a reducing environment on the cytosolic side to be active [27]. The 

Figure 1. Slow Vacuolar channels in plant vacuoles. (A) AtTPC1–SV currents recorded in a vacuole
isolated from Arabidopsis mesophyll cells in excised cytosolic side-out patch configuration. Currents
were elicited by a series of voltage steps ranging from −80 mV to +100, in 20 mV steps. Holding
potential −50 mV, tail potential −50 mV. Pipette solution (in mM); 200 KCl, 2 MgCl2, 2 CaCl2,
10 MES/Tris, pH 5.5; bath solution (in mM): 100 KCl, 2 MgCl2, 1 CaCl2, 1 mM dithiothreitol (DTT),
and 10 mM HEPES/Tris, pH 7.5. The osmolarity in both solutions was adjusted to 600 mOsm by the
addition of D-sorbitol. (B) SV current–voltage characteristics of the traces shown in panel A. The
I–V characteristics are constructed by plotting the average value of the currents recorded during
the last 50 ms at each applied voltage. Positive currents represent cations entering the vacuole. The
continuous black line represents the background current evaluated from the linear fitting of the
current between −80 and 0 mV.

3. The SV Channels Are Modulated by Redox Agents and Flavonoids

At physiological potentials of the plant vacuole, around −30 mV [1], the SV channel is
essentially closed even at cytosolic calcium concentrations of 1 mM. Therefore, it has been
hypothesized the presence of a “helper factor” capable of shifting the voltage dependence of
the channel to more negative potentials [38]. Experiments conducted on vacuoles isolated
from the marine plant Posidonia oceanica clearly indicated that the SV channel needed a
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reducing environment on the cytosolic side to be active [27]. The reducing agent DTT
or endogenous antioxidants such as glutathione and ascorbate were necessary for the
functioning of the SV channel [27], while the presence in the cytosolic solution of oxidants
such as chloramine-T or the SH-group modifying agent phenylarsine oxide (PAO) led to its
irreversible inhibition [39–41].

Since flavonoids, a very large class of plant secondary metabolites, are known to
have antioxidant properties [42], we checked whether naringenin could work as a helper
factor for the SV channel. However, in vacuoles isolated from carrot roots naringenin
concentrations above 100 µM behaved similarly to a reversible channel inhibitor [43].

4. The SV Channel Protein in Arabidopsis thaliana Is Encoded by the TPC1 Gene

In 2005, it was discovered that, in the Arabidopsis thaliana model plant, the TPC1 gene,
the only gene of the TPC channel family in Arabidopsis, encodes the protein that mediates
the SV-type currents [44]. In TPC1 knockout vacuoles, the SV currents were totally absent.
However, KO plants do not exhibit any phenotype, compared to WT plants.

AtTPC1 is a 733 amino acid protein formed by two shaker-type units joined by a
cytosolic linker that has two EF-hands domains capable of binding cytosolic calcium [45].
Each shaker-type domain consists of six transmembrane segments: between the fifth and
sixth segments, there is a loop, called P, responsible for the formation of the permeation pore.
Since four P-loops form a functioning pore, the TPC1 channel assembles as a homodimer.
The S4 segments of the individual shaker units possess basic amino acids capable of
functioning as sensors of the membrane potential. Structural data obtained from TPC1
crystals [46–49] indicate that only the S4 segment belonging to the second shaker unit
forming the monomer contributes to the voltage-dependent gating, unlike the typical
voltage-dependent potassium, sodium, or calcium channels in which all S4 segments
contribute to the transduction of the membrane potential in channel opening. A comparison
of the molecular structures of AtTPC1 and hTPC2 [50] is shown in Figure 2. Interestingly,
AtTPC1 is also inhibited by the presence of the flavonoid naringenin in the cytosolic
solution [23].
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Figure 2. Molecular structures of AtTPC1 and hTPC2. (LEFT) Side view of the high-resolution tridimensional structure
of AtTPC1 (X-ray at 2.87 Å, pdbid: 5dqq) with the bound calcium ions as gray spheres. (RIGHT) Side view of the high-
resolution tridimensional structure of hTPC2 (cryo-EM at 3.7 Å, pdbid:6dq0) with the PI(3,5)P2 effector bound to the two
homodimers represented as van der Waals spheres. The two proteins differ for the presence of the EF hands in AtTPC1 on
the cytosolic side (bottom in the figure), able to bound calcium ions.
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5. Plant Vacuoles as a Heterologous System of Expression and Characterization of
Human TPCs

Plant vacuole plays a fundamental role in cellular homeostasis, among the various
physiological functions, it can be considered the warehouse in which the cell preserves
its metabolites [51]. From a technical point of view, the plant vacuole is simple to isolate,
and its dimensions can reach up to 40 µm in diameter: these characteristics make it ideal
for applying the patch-clamp technique. It can be used as an alternative to planar mem-
branes to characterize the functional activity of channel-forming peptides (CFP) [52–55].
We verified that endolysosomal animal transporters could be successfully expressed in the
vacuolar membrane [56]. In order to obtain this result, we isolated by enzymatic treatment
protoplasts from the leaf mesophyll of Arabidopsis; we used a well-defined transient proto-
plast transfection protocol [57] with a plasmid [58] containing the sequence of the CLC-7
endolysosomal rat transporter fused to its C-terminus to a GFP [56].To avoid interferences
with endogenous proteins, we used Arabidopsis KO plants for AtCLCa, the plant homolog
of CLC-7. After about 40 h from transfection, we verified by detection of the fluorescence
emitted by GFP that the transporter had reached the tonoplast; patch-clamp experiments
showed that CLC-7 was working and operating as an antiport that exchanged a proton for
2 chloride ions [56]. The same approach was followed to express the two human channels
TPC2 [59] and TPC1 [60], again in vacuoles isolated from the leaf mesophyll of Arabidopsis
mutants, this time lacking the endogenous channel AtTPC1. In Figure 3, it can be observed
that human TPC2 fused to EGFP was targeted to the membrane of the large central vacuole
and that hTPC2-mediated currents were activated by nanomolar concentrations of the
phosphoinositide PI(3,5)P2 [61] and did not have a strong voltage dependence. The plant
homolog AtTPC1 is not modulated by PI(3,5)P2 [61], which acts as a high-affinity inhibitor
(nanomolar range) of tonoplast anion (AtCLCa [62]) and cation (AtNHXs [63]) transporters.
Human TPC1 is also functional when expressed in vacuoles (Figure 4); similarly to hTPC2,
nanomolar concentrations of PI(3,5)P2 are required to activate hTPC1. As revealed by
molecular simulations, the phosphoinositide binding activates anticorrelated movements
of the two units, allowing the opening of the gate region, constituted by two rings of
hydrophobic residues on the cytosolic side [64]. It is worth noting how this region rep-
resents the bottleneck for the diffusion of ions that move partially hydrated. Moreover,
hTPC1 turns out to be an outward-rectifier, voltage-dependent channel, as shown in the
I–V characteristics of Figure 4B.
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Figure 3. Functional characterization of human TPC2in plant vacuole as heterologous system
(A) Vacuolar membrane localization of hTPC2-EGFP in mesophyll protoplasts from Arabidopsis
lacking endogenous tpc1. Confocal fluorescence images of an isolated vacuole expressing hTPC2-
EGFP on the tonoplast. Left: EGFP signal (green); middle: chlorophyll signal (red); right: merge.
Scale bar: 7 µm. (B) Whole-vacuolar current recordings in control conditions (black traces; left) and in
the presence of 100 nM PI(3,5)P2 in the bath solution (red traces; right), elicited by 1-s voltage pulses
from +80 to −80 mV in 20 mV decrements. (C) Current–voltage relationships of PI(3,5)P2-evoked
hTPC2 currents (IP) as shown in (B). For each vacuole, current amplitudes determined at different
[PI(3,5)P2] were normalized to the value at −40 mV in the presence of 330 nM PI(3,5)P2. Figure
modified from [59] with kind permission from Springer Nature Customer Service Center GmbH
(license number5046950331855).
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Figure 4. Human TPC1 is functional when transiently expressed in vacuoles from mesophyll cells of
Arabidopsis plants lacking endogenous tpc. (A). Currents recorded at different voltages, from −80 mV
to 90 mV, step +10 mV, in a symmetrical concentration of sodium (100 mM), respectively, in the
absence and in the presence of 100 nMPI(3,5)P2 show that hTPC1 is activated by this phosphoinositide.
Tail pulse at −50 mV. (B) From the I–V characteristics of the currents displayed in A, it is evident
that hTPC1 is a voltage-dependent, outward-rectifying channel. The standard pipette (luminal side)
solution contained (in mM): 100 NaCl, 2 MgCl2, 1 CaCl2, 10 MES, pH 5.5 (with NaOH). The standard
bath (cytoplasmic side) solution contained (in mM): 100 NaCl, 10 Hepes, pH 7.5 (with NaOH). The
osmolarity of the luminal and cytoplasmic solutions was adjusted to 550 mOsm and 600 mOsm,
respectively, by the addition of D-sorbitol.
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6. The Effect of the Flavonoid Naringenin on Neoangiogenesis

As mentioned in the previous section, the plant vacuole can be an efficient heterol-
ogous system for functional characterization of intracellular TPC channels, similar to
Xenopus oocytes [65–68] or cell cultures [69] for plasma membrane ion channels and trans-
porters. We wondered if the flavonoid naringenin could modulate TPC channel-mediated
currents. We found that naringenin is capable of inhibiting both hTPC2 and hTPC1 at
concentrations of hundreds of micromolar [23]. The presence of hTPC2 has been shown to
be essential for neoangiogenesis [22]; this phenomenon of generation of novel vessel-like
structures is used to support tumor growth and tumor cell survival. We demonstrated the
ability of naringenin to inhibit the formation of vessel-like structures upon VEGF stimu-
lation in vitro and in vivo [23]. Moreover, it has been demonstrated that Nar can inhibit
the formation of subintestinal vessels (SIVs) in vivo in zebrafish, indicating its potential
antiangiogenic effect [70].

The next step will be to verify whether naringenin is able to inhibit this important
process for the development of solid tumors and reduce a common effect associated with
an aggressive tumor phenotype, vasculogenic mimicry. In this phenomenon, the tumor
cells mimic endothelial cells in the formation of vessel-like structures to help the tumor
growth [71]. Founding a novel strategy to inhibit this novel potential therapeutic target in
malignant tumors remains necessary for cancer research.

7. Inhibition of TPCs by Naringenin as an Option to Fight Viral Infections

It has been demonstrated that naringenin can impair different viral infections. Dengue
is a mosquito-borne viral disease widespread in tropical and subtropical regions throughout
the world. Frabasile et al. demonstrated that naringenin can inhibit the infection and
the replication and/or maturation of four different Dengue virus (DENV) serotypes in
hepatocarcinoma cells Huh 7.5 and impair the infection of DENV-4/TVP360 subtype in
the peripheral blood mononuclear cells (PBMCs) [72]. Moreover, Nar can impair Zika
virus infection in human lung adenocarcinoma epithelial A549 cells [73]. Nar activity
is a lineage-independent activity for this kind of virus. Indeed, there are two different
lineages of the Zika virus, the African and the Asian, but Nar is effective on both of them.
Furthermore, molecular docking has been used to explain the mechanism of action of
this flavonoid. Nar may act as a noncompetitive inhibitor of the NS2B-NS3 Zika viral
protease [73]. Hepatitis C virus (HCV) infection is the main cause of chronic liver disease
around the world. It has been demonstrated that Nar inhibits HCV production, blocking
the assembly of viral particles [74]. Chikungunya virus (CHIKV) is a mosquito-transmitted
alphavirus. Two different research groups [75,76] demonstrated the effect of Nar on CHIKV
infection. In particular, it has been demonstrated that Nar inhibited postentry stages of
CHIKV, impairing the accumulation of nonstructural proteins (nsP1-nsP3) that are virus-
specific RNA replicase subunits [76]. Regarding TPCs, their role in Ebola infection has
been demonstrated; knockdown or knockout of either TPC1 or TPC2 can block Ebola
infection in vitro. Moreover, another plant-derived TPCs inhibitor, tetrandrine, was used
in this study proving the efficacy in vivo in a mouse model of Ebola infection [77]. This
background emphasizes the importance of a natural compound such as Nar against viral
infection. Almost 10 clinical trials are registered at clinicaltrial.gov regarding Nar, and
its safety has been reviewed [78]. Moreover, a recent pharmacokinetic and metabolic
study reported its safe use in clinical studies [79]. Of note, in healthy humans, a serum
concentration of 50 µM did not show relevant toxicity, considering its equivalence to an
oral dose of 600 mg of Nar [80].

8. Naringenin Is a Powerful Anti-Coronavirus Drug In Vitro

Coronaviruses (CoV) are enveloped viruses containing positive-strand RNA, the
genome is complexed with the basic nucleocapsids (N) protein to form a helical capsid
within the membrane. To the membrane are associated almost three different proteins
such as spike (S), a type I glycoprotein giving the virus its crown-like morphology, the
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membrane (M) protein, and the E protein, strongly hydrophobic. In this family, we can
distinguish the highly pathogenic SARS-CoV-1 and -2, MERS-CoV, and other four human
CoV (229E, OC43, HKU1, NL63), which cause usually respiratory illness in humans [81].
CoV infection is correlated to virions trafficking to lysosomal compartments where the
lysosomal protease processes S protein allowing the virus entry.

We were the first research group that proposed the TPC channels as molecular tar-
gets to inhibit SARS-CoV-2 infection [82]. Later, this hypothesis was also formulated by
others [4,83,84], and experiments carried out by Ou et al. [85] showed that tetrandrine, an
inhibitor of TPCs, significantly decreased the entry of SARS-CoV2 pseudovirion on HEK
293 cells, expressing the human angiotensin-converting enzyme 2 (ACE2), the main cell
entry receptor used by SARS-CoVs.

We performed experiments in the human cell line Huh7.5 pretreated with siRNA to
silence TPC2 [86]. TPC2 silenced and control cells were then infected with the coronavirus
HCoV 229E: infection in TPC2 knockdown cells was significantly inhibited, compared
to control, strongly indicating an active role of TPC2 in the mechanisms of coronavirus
infection. In line with these results, we could verify a strong antiviral activity of naringenin,
which was able to inhibit, in vitro, the infection by three different human coronaviruses,
HCoVOC43, HCoV229E, and, very interestingly, SARS-CoV-2 [86]. The high concentration
of naringenin (hundreds of micromolar) effective in contrasting coronavirus infection
matched the Nar affinity constant of TPC2 inhibition [23], suggesting that TPC2 could be
the molecular target of Nar.

Interestingly, a very recent article showed that Nar, as well as two other flavonoids,
specifically inhibited hTPC2 but not the endolysosomal cation channel TPRML1 [87].
Despite the vaccines, finding a drug to fight Coronavirus disease 19 (COVID-19) remains
an important goal of our research. Nar could be an interesting tool, given its role in
the regulation of immune responses (reviewed in [88] and referenced in Table 1) and in
decreasing ACE2 expression in rat kidneys [89]. Nar can regulate cytokine release from
macrophages and T cells such as TNF alpha and IL-6. In particular, this phenomenon
is lysosome dependent since bafilomycin and NH4Cl treatment, which raise lysosomal
pH, blunt Nar effect [90]. In addition, it has been demonstrated that Nar can influence
CD4+ T cell proliferation and can inhibit helper T cell (Th) 1 and Th17 differentiation: both
these cells are proinflammatory subsets that promote the development of autoimmunity
and tissue damage [91]. Indeed, SARS-CoV-2 could act as a triggering factor for the
development of a rapid autoimmune and/or autoinflammatory dysregulation, leading
to severe interstitial pneumonia [92]. Moreover, a common feature in the COVID-19
severe patients is related to an exacerbation of neutrophil activation [93]. Nar can reduce
neutrophils infiltration reducing airway inflammation and lung injury, in a mouse model
of acute respiratory distress syndrome (ARDS) [94].

Table 1. Notable regulatory effects of naringenin on the immune response.

Naringenin (Concentration/Dose)
and Model Immune Regulation Effects References

50 mg/kg
Hepatocytes/Hypercholesterolemia Naringenin reduces TNF- α, IL-6, and IL-1β by suppressing NF-kB. [95]

100 µM
Pre-polarized M1 macrophages Naringenin reduces TNF- α production. [96]

50–100 µM T cells
100 µM Macrophages

Naringenin reduces TNF- α, IL-6 secretion regulating cytokines degradation
through lysosome-TFEB dependent mechanisms. [90]

100 mg/Kg
Mouse model of ARDS

Naringenin reduces neutrophil infiltration reducing airway inflammation and
lung injury. [94]

100 mg/Kg
in vivo and in vitro studies

Naringenin reduces Monocyte chemoattractant protein (MCP)1 secretion
suppressing macrophages infiltration in adipose tissue. [97]

25–50 µg/mL
Macrophages and ex vivo whole blood

Naringenin reduces proinflammatory cytokines (IL-8, IL-6, IL-1β, TNF-α) in
macrophages and ex vivo whole blood samples. [98]

80 µM
CD4+T cells Naringenin inhibits Th1 and Th17 differentiation. [91]
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All these data allow us to single out Nar as a pharmacological blockade of SARS-CoV-2
infectivity, as claimed by us since the beginning of the first pandemic lockdown in Italy [82].

9. Perspectives and Conclusions

TPCs are involved in different diseases (virus infection, Parkinson’s disease, cancer,
diabetes, cardiac hypertrophy) and are becoming an important key point for the individua-
tion of a novel therapeutic target. Thus naringenin, an effective inhibitor of TPCs, could be
an up-to-date approach according to the several clinical trials performed and still ongoing
(Figure 5). A further step will require the molecular characterization of the specific binding
site to better understand the mechanism of action of this molecule. This will be useful to
develop effective drugs to inhibit TPCs activity when required.
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