
Using	Simulation	for	Understanding	and	
Reproducing	Distributed	Software	
Development	Processes	in	the	Cloud 

	

M.	Ilaria	Lunesu1,	Jürgen	Münch2,	Michele	Marchesi3,	Marco	Kuhrmann4 

1Department	of	Electrical	and	Electronic	Engineering,	University	of	
Cagliari,	Italy	

2Herman	Hollerith	Center,	Böblingen	&	Reutlingen	University,	Germany		

3Department	of	Mathematics	and	Computer	Science	University	of	
Cagliari,	Italy		

4Clausthal	University	of	Technology,	Institute	for	Applied	Software	
Systems	Engineering,	Germany	

Corresponding	Contact:�	
		 E-Mail:	ilaria.lunesu@diee.unica.it			
	

	

©	Elsevier	2018.	Preprint.	This	is	the	author's	version	of	the	work.	The	definite	
version	was	accepted	in	Information	and	Software	Technology	journal,	Issue	
assignment	pending, 

The	final	version	is	available	at		
https://www.journals.elsevier.com/information-and-software-technology	

	

	



Using Simulation for Understanding and Reproducing Distributed Software
Development Processes in the Cloud

M. Ilaria Lunesua,, Jürgen Münchb, Michele Marchesic, Marco Kuhrmannd

aDepartment of Electrical and Electronic Engineering, University of Cagliari, Italy
bHerman Hollerith Center, Böblingen & Reutlingen University, Germany

cDepartment of Mathematics and Computer Science University of Cagliari, Italy
dClausthal University of Technology, Institute for Applied Software Systems Engineering, Germany

Abstract

Context: Organizations increasingly develop software in a distributed manner. The Cloud provides an
environment to create and maintain software-based products and services. Currently, it is unknown which
software processes are suited for Cloud-based development and what their e↵ects in specific contexts are.
Objective: We aim at better understanding the software process applied to distributed software development
using the Cloud as development environment. We further aim at providing an instrument, which helps
project managers comparing di↵erent solution approaches and to adapt team processes to improve future
project activities and outcomes.
Method: We provide a simulation model, which helps analyzing di↵erent project parameters and their
impact on projects performed in the Cloud. To evaluate the simulation model, we conduct di↵erent analyses
using a Scrumban process and data from a project executed in Finland and Spain. An extra adaptation of
the simulation model for Scrum and Kanban was used to evaluate the suitability of the simulation model to
cover further process models.
Results: A comparison of the real project data with the results obtained from the di↵erent simulation
runs shows the simulation producing results close to the real data, and we could successfully replicate a
distributed software project. Furthermore, we could show that the simulation model is suitable to address
further process models.
Conclusion: The simulator helps reproducing activities, developers, and events in the project, and it helps
analyzing potential tradeo↵s, e.g., regarding throughput, total time, project size, team size and work-in-
progress limits. Furthermore, the simulation model supports project managers selecting the most suitable
planning alternative thus supporting decision-making processes.

Keywords: Scrum, Kanban, Process Simulation, Comparison.

1. Introduction1

Being able to collaborate e↵ectively has become a crucial factor in software development and main-2

tenance. Organizations increasingly develop software in a distributed manner by appointing external de-3

velopers and development teams, who collaboratively work at di↵erent sites utilizing a multitude of com-4

munication tools (Bird et al., 2009; Portillo-Rodrı́guez et al., 2012). Literature shows distributed software5

⇤Department of Electrical and Electronic Engineering, University of Cagliari, Italy
Email address: ilaria.lunesu@diee.unica.it (M. Ilaria Lunesu)

Preprint submitted to Information and Software Technology July 1, 2018



development being challenged by many factors, e.g., distance in language, culture, time and location, coor-6

dination of distributed (virtual) teams, and lack of trust among developers (Sengupta et al., 2006; Herbsleb7

and Mockus, 2003). Notably agile software development constitutes a challenge, as agile software devel-8

opment relies on a set of principles and values that put the people and close collaboration and interaction in9

the spotlight. It is crucial to understand how agile methods “behave” in distributed software development10

as adapting and deploying an agile method to a project spanning several sites bears some risk (Lous et al.,11

2017).12

A simulation-based approach grounded in statistical data from previous projects can help analyzing13

risks and evaluating di↵erent process variants (Kellner et al., 1999; Wakeland et al., 2004), but also helps14

evaluating decisions and potential e↵ects on a project (Armbrust et al., 2005). Moreover, a process sim-15

ulation o↵ers insights faster than a full case study (Fagerholm et al., 2017, pp. 11–13). In particular, a16

simulation model can be modified and the results quickly provide indication whether or not modified pa-17

rameters a↵ect a project and how—so-called “what-if” analyses (Zhang et al., 2008). For example, while18

it is hard to modify the team in a “real” project, in a simulation, modifying the team size parameter helps19

analyzing the impact, e.g., on work-in-progress (WIP), lead/cycle time, and team productivity. Further-20

more, a simulation model provides flexibility to allow for configuring di↵erent process models, running21

simulations on a shared dataset, and to compare and study aspects of interest of di↵erent process models.22

For instance, project managers interested in minimizing cycle times can use a simulation to compare the be-23

havior of Scrum- and Kanban-based processes to pick the process variant promising the best performance.24

In this regard, a simulation can be utilized to modify parameters, find relations between parameters, and25

study complex processes over time. According to Kellner et al. (1999) and Armbrust et al. (2005), a sim-26

ulation used this way can help reproducing a real system, compare variants, identify bottlenecks, and so27

forth. Hence, a process simulation is a tool to help project managers analyzing di↵erent actions, evaluating28

impact, and eventually selecting those actions best fitting a particular situation (Lunesu et al., 2017).29

Problem Statement. Even though globally distributed software development (also called Global Software30

Development; GSD, or Global Software Engineering; GSE) is around for years, still, practitioners struggle31

with e↵ectively adapting agile methods (Lous et al., 2017). In this context, the Cloud provides a highly32

flexible environment o↵ering a variety of services. However, little is known which processes are used for33

distributed development using the Cloud as software development environment, how these processes are34

used and customized, and how they might di↵er from other approaches.35

Objective. Our overall objective is to better understand the software process applied in GSE settings, no-36

tably settings using the Cloud as development environment. Based on real project data1, a simulation-based37

approach was chosen to improve the understanding of such processes and to support project managers to38

select and tailor software processes for Cloud-based distributed software development. Hence, an objective39

of the presented work is also to show feasibility/reliability of using simulation models, e.g., for projects in40

the Software Factory environment. Finally, we aim at providing an instrument, which helps project man-41

agers comparing di↵erent solution approaches and to adapt current team processes to improve future project42

activities and outcomes.43

Contribution. An event-driven simulator (Anderson et al., 2012) was configured using a Scrumban process44

with the number of user stories and their e↵ort and priority in the backlog as input. The simulator helps45

1For seven weeks, six developers in Finland and six in Spain, located at three sites (two in Spain and one in Finland) worked
on a project developing a SmartGrid system. See Section 4.1 for further details.

2



reproducing activities, developers, user stories and events in the project, and it generates statistics, e.g., on46

throughput, total time, and lead and cycle time. The resulting simulation model can be customized to sim-47

ulate di↵erent processes. Specifically, in addition to the Scrumban process, we also modeled “pure” Scrum48

and Kanban processes to allow for comparing the di↵erent processes with regard to project performance49

thus supporting project managers in selecting the best-fitting development approach for a specific scenario.50

Outline. The remainder of the article is organized as follows: Section 2 provides an overview of related51

work. In Section 3, we describe the research design including research questions, simulation variables,52

and the specification and implementation of the simulation model. Section 4 presents the results from the53

di↵erent simulations. We conclude this article in Section 5.54

2. Related Work55

Software Processes and GSE. Globally distributed software development has become commodity, and it56

was showcased that distributed teams and even outsourced teams can be as productive as small collocated57

teams (Sutherland et al., 2007), which, however, requires a full implementation of Scrum along with good58

engineering practices. Paasivaara et al. (2009) state that agile methods can provide a competitive advantage59

by delivering early, simplifying communication and allowing the business to respond more quickly to the60

market by changing the software. To support this claim, authors present a multi-case study on the appli-61

cation of Scrum practices to three globally distributed projects discussing challenges and benefits. In this62

regard, Phalnikar et al. (2009) propose two team structures for implementing Scrum in a distributed setting.63

However, deploying agile methods to a GSE-setting is challenging for several reasons, such as demand-64

ing communication in a distributed setup, challenges related to coordination, and collaboration (Alzoubi65

et al., 2016; Vallon et al., 2017; Lous et al., 2017), and there is yet no agreement on generalizable solution66

approaches. For instance, while Vallon et al. (2017) discuss how agile practices can help improving or67

resolving such issues and found Scrum the most promising/successful development approach, Lous et al.68

(2017) found GSE challenging Scrum, especially when it comes to scaling the process in the context of69

(large) distributed settings. Wang et al. (2012) state that using agile methods helps mitigating challenges70

in co-located as well as in distributed teams, e.g., responding to fast-paced changes that occur in software71

projects. All the factors above influence the way in which software is defined, built, tested, and delivered.72

Ramesh et al. (2006) discuss how to integrate and balance agile and distributed development approaches to73

address such typical challenges in distributed development.74

Complementing the “pure” agile approaches, Lean approaches have gained significance in the software75

industry, and they are used in co-located and distributed settings alike. Such approaches focus on eliminating76

waste, e.g., (Mujtaba et al., 2010), yet, these approaches are still under study, notably with regards to the77

question if and how these approaches help mitigating the various challenges in GSE. For instance, Tanner78

and Dauane (2017) study Kanban and highlight those elements that can help alleviating communication and79

collaboration issues in GSE. Kanban is a development approach, which applies Lean principles (Ahmad80

et al., 2013; Ikonen et al., 2011; Ahmad et al., 2016) and is becoming increasingly popular as an e↵ective81

extension of Scrum and other agile methods. However, even though Kanban’s popularity is increasing,82

many questions regarding its adoption in software development remain open. Practitioners face serious83

challenges while implementing Kanban, since clear definitions of its practices, principles, techniques, and84

tools are missing. In response, distributed teams use a plethora of specific tools to facilitate collaborative85

work Portillo-Rodrı́guez et al. (2012). However, di↵erent studies suggest the projects’ processes being86

selected in a pragmatic rather than in a systematic manner (Vijayasarathy and Butler, 2016; Theocharis87

et al., 2015; Kuhrmann et al., 2017), and studies also suggest agile methods stepping into the background88

3



when it comes to define proper tool support (Femmer et al., 2014). On the other hand, GSE is a discipline89

that is maturing, as for instance Šmite et al. (2010) show in their discussion of available empirical evidence90

in the field or Ebert et al. (2016) who discuss the impact of GSE-related research to industry. That is, there91

is a variety of software processes and support tools used in practice. Such combinations are usually made92

in response to the respective project context (Kuhrmann et al., 2017), which gives project managers a hard93

time picking the most e�cient process-tool combination for a project.94

Software Process Simulation. Software Process Modeling Simulation (SPMS) is presented as a promising95

approach suitable to address various kinds of issues in software engineering (Kellner et al., 1999). Martin96

and Ra↵o (2001) present the simulation of a practically used software processes with the purpose of evalu-97

ating a potential process change to mitigate risks coming along with process change. Their model simulates98

discrete activities within the context of an environment described by a system dynamics model. A system-99

atic review by Zhang et al. (2008) showed that especially risk management is one of the key objectives of100

SPMS. Liu et al. (2009) conducted a systematic review on risk management and SPMS concluding that the101

number of studies has been increasing gradually and that discrete-event simulation and system dynamics are102

the most popular simulation paradigms. For instance, examples for discrete-event simulations of agile prac-103

tices are presented by (Melis et al., 2006; Turnu et al., 2006). Cao et al. (2010) present an approach based on104

system dynamics to study the complex interdependencies among the practices used in agile development.105

However, discrete-event models have to be considered critical as they use simple building blocks and tend to106

be fairly basic, and such models face problems concerning the discretization of time and insu�cient detail107

of parameters and variables. An analysis of the dynamic behavior of a Scrum and Kanban variant has been108

conducted by Cocco et al. (2011). Turner et al. (2012) simulate the process performance of shared systems109

engineering services. They developed a specific Kanban-based process to support software development in110

rapid response environments, simulated this process using three modeling approaches (system dynamics,111

discrete events, and agents), and compared it to a simulated traditional process to determine if there were112

gains in e↵ectiveness and value over time. Their overall goal was to study whether organizing projects as a113

Kanban-based scheduling system (KSS) leads to a better project performance. Tregubov and Lane (2015)114

presented a simulation model designed to explore e↵ects of using KSS in multilevel systems. Their model115

implements a discrete-event simulation of the software-intensive system engineering processes for the pur-116

pose of estimating how KSS-scheduling can achieve predicted benefits, i.e., delivered value over time and117

schedule. Other than in the predictive simulation approach, Ali et al. (2015) use simulation as a tool to118

support reflections and discussions. They found simulations substantially contributing in identifying oppor-119

tunities, e.g., reduction of idle times and improvement of the workflow in a process. Simulation was found120

beneficial in reasoning about and selection of alternative practices to steer process improvements. Finally,121

the suitability of software process simulation and an agenda for advancing reciprocity among research and122

industrial practice is presented by Houston (2012), who also shows the hurdles coming along with process123

simulation.124

Software Process Simulation and GSE. Globally distributed projects that are conducted in an agile way125

can be characterized as human-intensive endeavors, yet, simulating humans and their behavior is di�cult.126

However, empirically proven models for simulating complex behaviors exist, e.g., in the field of psychology.127

While modeling of human behavior is not in the scope of the presented work (and this should be considered128

when using the models), Armbrust et al. (2005) provide a discussion on human resource modeling in soft-129

ware development. Nevertheless, using process simulation for distributed projects is considered a promising130

route towards prediction and fast evaluation of process change, as several aspects can be analyzed quickly131

and without utilizing long-lasting thus expensive case studies or limited student lab experiments (Fager-132

4



holm et al., 2017). Although contributing to the body of knowledge, case studies describe context-specific133

approaches and, therefore, transferring the outcomes to another context usually requires setting up a new134

case study. A process simulation as presented in this article helps improving decision-making processes by135

constructing a parameterized simulation model, which allows for modeling the intended process (or a set of136

alternatives), feeding the simulation with (empirical) data from past projects, calibrate the simulation, and137

eventually conclude a feasible solution; a procedure that was, so far, successfully applied to other fields,138

e.g., risk management in distributed projects as presented by Lamersdorf et al. (2012).139

The work presented in this article emerges from the various di�culties regarding the use of simulation140

models to reproduce real case studies from China and India (Concas et al., 2013; Anderson et al., 2012,141

2011; Lunesu, 2013). This article thus contributes to the body of knowledge by presenting a simulation-142

based approach that can help reflecting on past projects and selecting and evaluating process alternatives to143

improve the GSE development approach.144

Cloud-based Development and GSE. So far, in literature, few reports on using process simulation of agile145

methods in GSE using the Cloud as major development environment are available. Due to its economies146

of scale, Cloud computing has become the norm for consuming computing resources. While the potential147

for using the Cloud for GSE has been investigated in the literature, Alajrami et al. (2016) go one step fur-148

ther and propose a Cloud-based software process enactment architecture which utilizes the Cloud elasticity,149

accessibility and availability to facilitate distributed development, and to overcome some of the associated150

technical and communication challenges. Yara et al. (2009) present a Cloud-based platform that addresses151

core problems, e.g., computing capacity, bandwidth, storage, security, and outline a generic Cloud archi-152

tecture and an initial implementation in the context of GSE. Nevertheless, even though companies have153

implemented GSE, they still face challenges in the development lifecycle. Hashmi et al. (2011) provide a154

synopsis of Cloud computing, GSE challenges, and discuss the problem that “Cloud” denotes a process and155

a product alike. Therefore, Hashmi et al. (2011) especially support our motivation to use Cloud technologies156

in GSE.157

This article thus contributes to the body of knowledge by providing a study on the Cloud as development158

environment for GSE. Our study addresses the issues above by using a simulation-based research approach.159

Grounded in historical data, we provide a means to model distributed projects and simulating them in160

order to investigate the various challenges and e↵ects coming along with using agile and Lean software161

development approaches in GSE.162

Previously Published Material. The article at hand is an extended version of Lunesu et al. (2017) in which163

we compared three process simulations with the original process, Kanban, and Scrum to study the methods’164

impact on performance, total time, and throughput. In this extended article, we added a fourth research165

question (Table 1) to our previously published conference paper with which we extend our analysis by a166

comparison of the di↵erent processes. Accordingly, related work as well as the result presentation and167

discussion have been extended.168

3. Research Design169

This section presents the research design for the study. The development of the simulation model and170

the execution of the simulations followed the approach described in Rus et al. (2003) and Armbrust et al.171

(2005). The overall research objective and research questions studied are presented in Section 3.1. Sec-172

tion 3.2 describes the goals and requirements. The simulation model as key element of the study is specified173

in Section 3.3, and its implementation is presented in Section 3.4.174

175

5



3.1. Research Questions176

To study distributed software development in the Cloud and make a comparison among Lean Agile177

processes using an adapted simulation model, we formulate the research questions in Table 1.

Table 1: Summary of the research questions addressed in the study at hand.

Research Question and Rationale

RQ1 How does the simulation model need to be calibrated, such that it reflects the particularities of the dis-
tributed project?
The first research question aims at extending a previously defined simulation model (Anderson et al., 2012),
such that it covers the particularities of distributed software development. For this, di↵erent elements of the
model need to be adjusted, and several simulation runs need to be performed to tune the model. For each
simulation run, only a single parameter varies (e.g., average e↵ort of each user story, project size, and team
size). Finally, the total time required and throughput values are examined to understand whether the varia-
tions are continuous or non-linear. For this, the following metrics are used: throughput and total time,
for a chosen value of one parameter and for fixed values of the other inputs, the simulator is run once until
it stops (the end of the simulation) and the variation of the throughput (and total time) is examined.

RQ2 To what extent can the simulation model reproduce the data obtained in the real project?
Having the calibrated simulation model available, the second research question aims to study whether
the simulation model can be used to reproduce the real project. In particular, results (i.e., throughput
and total time) are collected feeding the simulation model with artificial and real project data. Results
are used to improve the simulation model and, eventually, a comparison is carried out using the metric
distance (between curves) of released user stories.

RQ3 How reliable is the simulation model?
The third research question studies the reliability of the simulation model. In particular, if many simulation
runs are performed using the same inputs: Does the model behave as expected? For this, several runs of the
simulation model are performed using a list of artificial user stories. As metric, the variation (of average
e↵ort) is used to compare the variation in the calculated e↵ort with the real e↵ort from the project data.

RQ4 Can a comparison of Scrumban, Kanban, and Scrum processes performance support decision-making?
The fourth research question studies the adaptability of the simulation model for reproducing Scrum and
Kanban processes in order to compare them. For this, several runs of the simulation model are performed
using input data collected from the Software Factory project. As metrics, the average, median, min, max,
and the standard deviation of cycle time are used to compare the performance of the three development
processes.

178

179

3.2. Simulation Goals and Requirements180

The overall goal of this study is to better understand distributed software development in a Cloud con-181

text. For this, an existing simulation model (Anderson et al., 2012) is modified to better support decision-182

making processes concerning planning a distributed development process. The aim of this simulation model183

is thus to analyze the tradeo↵s regarding throughput and total time on varying project size, team size, WIP184

limits and average e↵ort. Furthermore, the modified simulation model aims to help project managers select-185

ing the most suitable planning alternative. The overall simulation goals setting the scene for the simulation186

are therefore in Table 2 described using the GQM goal template according to Solingen and Berghout (1999):187

188

The simulation model is purposed to answer the detailed questions collected in Table 3. For this, we189

define the input and output parameters/variables as summarized in Table 4. The simulation is performed190

instrumenting five scenarios, which are defined in Table 5.191

6



Table 2: Summary of the simulation goals and context using the GQM goal template.

Object Simulation model of a distributed development process
Purpose Support decisions for planning
Quality Focus Throughput, total time, cycle time, size of the project, and size of the team
View Point Project Manager
Context Software Factory Network

Table 3: Simulation-specific questions.

Question

Q1 If the throughput is fixed, how can the other parameters be adjusted?
Q2 If the project size varies, but other parameters remain fixed, what is the e↵ect on the throughput and on the

total time required?
Q3 If the team size varies, but other parameters remain fixed, what is the e↵ect on the throughput and on the

total time required?
Q4 If the work-in-progress limit (i.e., the maximum number of user stories that can be handled at any given

time) varies for di↵erent activities, how does the throughput change?
Q5 What is the relationship between the average e↵ort for the user stories in the project and the total time

required?
Q6 Which parameters can be used to best compare process performance?

Table 4: Simulation input and output parameters and variables.

Input Output

I1 Project size (total number of user stories) at time t, it is denoted by NF(t) O1 Throughput
I2 Team size (number of developers), it is denoted by ND O2 Total time
I3 Average e↵ort O3 Duration of simulation T
I4 Number of activities, it is denoted by NA O4 Cycle time for a user

storya

I5 WIP Limits in each activity (the maximum number of user stories that can
be handled at any given time), it is denoted by Mk for the kth activity

a Time required to complete a user story is collected and computed using actual time, mean, median, and standard deviation.

3.3. Specification of the Simulation Model192

In this section, we briefly introduce the Software Factory process, which serves as a blueprint for dis-193

tributed development projects, and we analyze and explain the modifications required to use this process as194

input for the simulation model.195

3.3.1. The Software Factory Process Model196

In the Software Factory (Fagerholm et al., 2013), Scrumban (Kniberg and Skarin, 2010) is used to run197

the distributed software development projects. In general, a coach combined an agile process (Scrum) with198

a Kanban board, which visualizes the user story assignment in each process step.199

The Scrumban model as shown in Figure 1 comprises the four steps Pregame, Sprint Planning, Sprint,200

and Review Meeting. In the reported setting, a single sprint takes two weeks. Apart from this, most of the201

well-known Scrum practices are applied, e.g., the product owner selects user stories, developers estimate202

the given stories, and daily stand-up meetings are performed. To set up the simulation, we provide a for-203

7



Table 5: Simulation scenarios.
Scenario Description

S1 For a chosen value of the throughput or total time and for fixed values of the other inputs (project and team
size), the simulator is run once until it stops and the total time required is examined.

S2 For a chosen value of the size of the project and for fixed values of the other inputs, the simulator is run once
until it stops (the size of the project is reached) and throughput and total time are examined.

S3 The simulator is run for a chosen value of size of the team, and for the fixed values of the other inputs, the
values of the throughput and total time are examined.

S4 For a chosen value of the WIP limits in each activity and for the fixed values of the other inputs, the values
of the throughput and total time are examined.

S5 For a chosen number of simulation runs, and all parameters remain fixed, and the relation among average
e↵ort and total time is examined.

S6 For a chosen number of simulation runs, and all parameters remain fixed, the comparison of cycle time
statistics of three di↵erent processes are examined.

Pregame Sprint,Planning Sprint Review,Meeting

Epics User,
Stories

User,
Stories,

(prioritized)
Code

Acceptance,
Criteria

Code,
(released)

Figure 1: Overview of the Scrumban process as used in the Software Factory. This overview illustrates the main steps in the process
and the incoming/outgoing artifacts per process step. The thick opaque arrows show the control flow, and the dotted arrows show
the product flow.

malization of the process model from Figure 1. Therefore, we need a detailed understanding of the process204

model and how specific practices are implemented. Table 6 provides a detailed description of the process205

steps and assigns inputs and outputs.206

According to the general Scrum guideline (Schwaber and Beedle, 2002; Kniberg and Skarin, 2010), the207

three roles Scrum master, product owner, and team are present in a software project. In the Software Factory,208

these roles are generally present and implemented. However, due to the distributed project setup, the team209

is spread across three project sites (one team per site). That is, the project is operated as a distributed project210

and, thus, the team faces several challenges of distributed projects (Lous et al., 2017), such as time loss211

due to long meetings caused by an ine�cient Internet connection, due to the problems with communication212

tools, due to the dependencies among di↵erent user stories, and allocation of work among di↵erent sites at213

which the team members are located.214

The Software Factory was used for on-site observations to collect information for modeling the project215

context of our simulation model appropriately. After each iteration, interviews have been conducted with216

the development team members. Furthermore, we were involved in the daily meetings and the sprint review217

meetings to collect extra data for improving the simulation model. For instance, the di↵erent teams were218

composed of practitioners and graduate students each with di↵erent skills and work experience. Information219

about the team members has been used to calibrate the simulation model.220

8



Table 6: Detailed description of the di↵erent process elements considered in the process simulation. Implementation of actual
practices in the Software Factory are explained.

Process Activity Input Output

In the Pregame, Epics as input are divided into User Stories. The
outcome of this meeting is the (initial) Backlog containing all User
Stories to be prioritized in the Sprint Planning activity.
In the Software Factory, the Pregame usually takes two days.

Epics User Stories

Based on the Backlog, in the Sprint Planning, each User Story or task
(in which some user stories are divided) is prioritized.

User Stories User Stories (prioritized)

In the Sprint, the actual development activities (including analysis
and coding tasks performed by the developers) are carried out. During
the Sprint, daily meetings (10-15 minutes) are held in which the four
basic Daily Scrum questions are asked and answered. Eventually, this
activity produces the actual systems, i.e., the Code of the system, and
a set of Acceptance Criteria (according to a “Definition of Done”;
DoD), which are used in later analyses of the goal achievement.

User Stories (prioritized) Code, Acceptance Criteria

In the Review Meeting, the team and the Product Owner verify the
fulfillment of the Acceptance Criteria defined in the analysis steps of
the Sprint. The product-centered Review Meeting is complemented
by a more process-oriented retrospective. Depending on the review
outcomes, some tasks might be subject to rework, i.e., certain tasks
might be repeated, and those tasks are scheduled for the next Sprint.
Tasks that are considered done eventually result in released Code.
In the Software Factory, a Review Meeting takes about one hour.

Acceptance Criteria Code (released)

3.3.2. General Adaptation of the Simulation Model221

The presented simulation model is grounded in a previously developed model by Anderson et al. (2012)222

for which the Software Factory process served as calibration model. The underlying simulation model was223

used to reproduce the originally used PSP/TSP (Humphrey, 2000a,b), Scrum, and Lean-Kanban processes224

by describing process elements such as features, activities, and developers. We analyzed the practical appli-225

cation of the Software Factory process and compared it to the original simulation model to determine those226

parameters to be used for calibration. In particular, multi-site development and the resulting challenges for227

collaboration and communication had to be implemented in the simulation model. Specifically, the follow-228

ing changes have been made to the original simulation model to adequately reflect the Software Factory229

process:230

• The Pregame activity was added to the simulation model.231

• Rework was added to the simulation model.232

• The simulation model was modified to better reflect productivity in distributed settings.233

The implementation of rework in the simulation model allows for repeating those tasks that are not yet234

finished or that do not fulfill the acceptance criteria. Such tasks are scheduled for the next Sprint and235

continue previous activities (from review meeting to Sprint). The productivity-related modification was236

performed to better reflect the productivity in terms of the number of hours worked (per developer) and237

changes of the team size in di↵erent phases of the project. For instance, the modification covers changing238

team setups, such as on-boarding a team, e.g., the core team consists of six developers (begin, end) and in239

selected phases, another six developers joint the team.240

9



3.4. Implementation of the Simulation Model241

Figure 2 shows the final implementation of the simulation model as a UML class diagram, which shows242

the entities of the system and the relationships between the di↵erent actors. The classes KanbanSimulator243

and KanbanSystem represent the simulator’s core system comprising all methods to create the simula-244

tion environment. The remaining classes, e.g., user story, Activity, and Developer, reflect the245

process model entities to be simulated. The entity classes are complemented with some utility classes,246

e.g., ActivityRecorder, that help recording data for the simulation analysis. This way of implementing247

the simulation models follows a hybrid approach in which discrete-event and agent-based simulation ap-248

proaches are combined. The discrete-even simulation part is used to simulate the high-level tasks and the249

accumulation of value, whereas the agent-based simulation part is used to model the workflow at a lower250

level, i.e., working teams, Kanban boards, work items, and activities. A more detailed explanation of the251

(original and unadjusted version of the) simulation model can be found in Anderson et al. (2011).

Figure 2: UML class diagram of the simulation model.
252

In the simulation presented in the paper at hand, the main actors are the developers of a distributed team253

working according to the process as shown in Figure 1, whereas each activity requires a certain set of skills.254

The most important events in the simulation model are: FeatureCreation, FeatureToPull, StartDay,255

and FeatureWorkEnded. These are used to set the scene for a simulation and to analyze the (potential)256

need for rework.257

To run a simulation using the presented model, the following input is required: The main input is a258

list of user stories of which each is characterized by an identifier, a report date, an e↵ort characterizing the259

10



amount of work required to complete a user story (in days), and a priority (as a numerical value; the higher260

the value the higher the user story’s priority). Furthermore, a set of parameters related to the real process261

data, such as number of developers, developer skills, probability of rework, and work-in-progress (WIP)262

limits is required. Finally, a script initializes the process (the process variables), e.g., duration of meetings263

or sprint length. The script also runs the simulation, collects, and stores data to CSV files. The actual264

technical implementation of the project environment and, accordingly, the infrastructure used to realize the265

simulation model, which is implemented in Smalltalk, follows the infrastructure setup described in detail266

by Fagerholm et al. (2013).267

3.4.1. Modification of the Simulation Model for Scrum and Kanban268

In addition to the Software Factory process above, we included two more processes in our study: Kanban269

and Scrum. Both adaptations of the simulation are explained in the following:270

Modification for Simulating Scrum. Scrum is characterized by iterations (so-called sprints) of a maximum271

30 work days. Each sprint starts with an iteration planning meeting and ends with a retrospective. The272

length of the two meetings should not exceed one day. In a sprint, a daily sprint meeting is held every273

day. If one or more user stories from the sprint backlog are not finished in a sprint, they are moved to the274

next sprint. The completed user stories are released at the end of the sprint (so-called potentially shippable275

product). In the context of our simulation, we considered the similarities of Scrum and Scrumban. Yet,276

we ignored the pregame phase and we assumed an already completed sprint backlog containing estimated277

user stories. Likewise, we considered the implementation of rework in the simulation model that allows278

for repeating those tasks that are not yet finished or that do not fulfill the acceptance criteria. Such tasks279

are scheduled for the next sprint and continue previous activities (from review meeting to sprint). The280

productivity-related modification was performed to better reflect the productivity in terms of the number of281

hours worked (per developer) and changes of the team size in di↵erent phases of the project. For instance,282

the modification covers changing team setups, such as on-boarding a team, e.g., the core team consists of283

six developers (begin, end) and in selected phases, another six developers joint the team. Also the duration284

of the sprint has been adapted, since Scrum does not define a pregame phase and WIP-limits as used for a285

Kanban board.286

Modification for Simulating Kanban. For simulating Kanban, we also assumed a completed backlog. The287

Kanban workflow has been modeled for the simulation as follows: in the first activity (analysis), estimated288

and prioritized activities are analyzed and pulled from the second activity (implementation), which happens289

respecting the WIP-limits set and the skills of available developers. Once the implementation is done, user290

stories are pulled from the third activity (test) to evaluate the quality according to the acceptance criteria set.291

Finally, completed user stories are either pulled from the deployment activity or sent back to the analysis292

phase in case rework is necessary. Same as in the Scrum model, we also implemented rework for Kanban293

thus allowing for repeating those tasks that have not been finished or failed the testing phase, and we provide294

WIP limits concerning the size of the team and activities such as: analysis, implementation and testing and295

deployment. The productivity-related modification was performed to better reflect the productivity in terms296

of the number of hours worked (per developer) and changes of the team size in di↵erent phases of the project297

(see adaptation of the simulation model for Scrum above).298

4. Simulation Results299

In this section, we present the simulation results. In Section 4.1, we describe the actual simulation setup.300

In Section 4.2, we present the outcomes of the simulation runs and a discussion. Finally, in Section 4.3, we301

11



critically discuss our findings regarding the threats to validity.302

4.1. Simulation Setup303

We observed a project2 from April 23, 2012 till July 6, 2012 in which a team of six developers (divided304

into two groups) started working for 3 h/d in Spain. From May 14, 2012 until June 29, 2012, another team305

of six developers located in Helsinki joined the project and worked for 6 h/d. In these periods, we monitored306

the processes implemented and collected the raw project data, which has been analyzed and used to create307

the input for the simulation model. To better reproduce rework on interconnected tasks, we have reduced308

the 64 user stories (considering user stories and tasks, in which some user stories have been divided,) to 25309

user stories. The throughput in the real project was almost three user stories per week with an average e↵ort310

of 1.3 to 1.5 person days. Eventually, for the initial setup, we considered 25 user stories and tasks stored311

in the backlog, whereas we expect new user stories coming in after the last review meeting of an iteration,312

or at the beginning of a new iteration. Furthermore, we assume developers always available to work on and313

release upcoming user stories.

67%

83%

25%

58%

100%

33%

17%

75%

42%

0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sprint1 Sprint2 Sprint3 Sprint4 Sprint5

%
 u

se
r s

to
rie

s

Time

%Closed
%Open

Figure 3: Percentage of open and closed user stories as used for the di↵erent simulated sprints.
314

In this simulation we analyzed five sprints, and we performed simulation runs using real and artificial315

data. Real data has been collected directly from the aforementioned project, and artificial data has been316

collected by using an algorithm of the simulation model that takes the real data as input. After the data317

analysis, we calculated the average e↵ort and standard deviation to identify the data distribution3 and to318

obtain statistical values for incoming user stories. Having the data required, we built the list of user stories319

that serve as input for the simulator (Figure 3 shows the resulting user story setup used for the simulation).320

2In this project in the context of a smart grid environment, the system to be implemented had to process and analyze a substantial
quantity of data concerned with measurement of data consumption. Data was collected hourly, daily, and monthly. The teams were
appointed to implement the di↵erent modules that compose the system for the processing data.

3For the data distribution, we assume a log-Normal distribution. For incoming user stories, however, the distribution is un-
known. Therefore and in order to allow for replicating input data in di↵erent simulation runs, we use a linear interpolation method.

12



4.2. Simulation Runs321

In this section, we provide insights into the simulations and present and discuss the results. The di↵erent322

simulations address the questions (Table 3) and scenarios (Table 5) as introduced in Section 3.2. The323

full mapping of simulations, questions, and scenarios is shown in Table 7. For example, question Q1 is324

studied using the first simulation for scenario S1, i.e., for a given throughput, what parameters can be varied.325

Similarly, simulation two for scenario S2 helps answering Q2 and Q5, i.e., how total time and throughput326

vary in relation to varying project size. In the following, we first describe the individual simulations before327

integrating the di↵erent outcomes for answering the research questions in Section 4.2.8.

Table 7: Mapping of simulations to questions (Q) and scenarios (S).

Q1 Q2 Q3 Q4 Q5 Q6 Simulation S1 S2 S3 S4 S5 S6

7 1 7
7 7 2 7

7 3 7
7 4 7

7 5 7
6 7

7 7 7

328

4.2.1. Simulation 1329

The first simulation addresses Q1 and studies variables that can be modified—and how they can be330

modified—if the variables team size or project size are fixed. In particular, the variables throughput331

and total time are of interest, and how they can be modified. For S1, the throughput is set and time332

required to complete the simulation is examined.333

In the chosen team setup (12 developers, Group 1 has six developers working 6 h/d and Group 2 has334

six developers working 3 h/d), a project of 25 user stories, each with an e↵ort of 1.3–1.5 person days, was335

chosen. The overall performance was five to six user stories per day and, eventually, the team could work336

on about 500 user stories without inflationary growth of the backlog. However, communication issues and337

dependencies among user stories and/or tasks limited the performance, such that S1 yielded in an average338

throughput of only three user stories per day.339

4.2.2. Simulation 2340

The second simulation studies Q2, i.e., studying what e↵ect a varying project size has (i.e., keeping the341

other parameters fixed) on the throughput and the total time required for a project. For a chosen value of342

project size and fixed values of other inputs, the simulator is run once until it stops (the size of the project343

is reached) and the values of the variables throughput and total time are evaluated. We assumed that344

a linear relation among project size, and throughput and total time required exists. Therefore, we345

re-ran the simulation with a stepwise increasing project size, but kept the other parameters fixed. The346

number of user stories (with an average e↵ort of 1.3 person days) increases and we checked the di↵erences347

in throughput and total time as shown in Figure 4.348

For a doubled project size the throughput increases in linearly, yet shows a little steep when the size349

of the project increases from 200 to 400 user stories; and then continues with a linear trend until 500 user350

stories4. Regarding the total time required, the trend is almost linear with slow rise and a steep when the351

4Which is almost the maximum number of user stories the team can work on without an exceeding growth of the backlog.

13



76,46

84,21 94,87
127,74

224,47 229,83

48

82
172

336

766
812

25 50 100 200 400 500

Total Time Throughput

Figure 4: Relation of total time (in days) and throughput (user stories released) of the simulated projects with di↵erent amounts of
user stories (see Table 8).

projects size increases from 200 to 400 user stories—and then continues with a linear trend until 500 user352

stories. In Table 8 we tabulated the obtained throughput as the total user stories released during the project.353

We consider the throughput as the number of user stories released at the end of the project. Table 8 shows354

that for a project size of 25 user stories, the throughput is approx. three to four user stories per week (48 user355

stories, including assumed 20% of rework) and a total time of 76.46. For a project size of 50 user stories,356

the throughput is seven to eight user stories per week, i.e., the throughput equals 82 closed user stories357

and a total time of 84.21, and so forth. Hence, doubling the project size also doubles the throughput.

Table 8: Variation in the size of the project and impact on throughput and total time required.

Size Total Time Throughput

25 76.46 48
50 84.21 82
100 94.87 172
200 127.74 336
400 224.47 766
500 229.83 812

358

4.2.3. Simulation 3359

In S3, we study the relationship between team size, throughput and total time to answer Q3, i.e.,360

what the e↵ect on the throughput and the total time required is if the team size varies, but other parameters361

are fixed. We assume that no linear relation exists among team size, throughput, and total time.362

That is, if the number of developers skilled in testing goes to zero, throughput is blocked. If the number of363

blocked user stories grows, adding new tester does not increase the throughput, due to the bottleneck from364

14



the previous phase. The summary of the simulation results is shown in Table 9 in which the throughput is365

again represented by the number of user stories released by the end of the project.

Table 9: Team size and throughput (project performances in relation to di↵erent team size and skill profiles; skills for activities:
1=analysis, 2=development, 3=testing, and 4=deployment).

Team Size Skills Total Time Backlog Pregame Sprint Sprint Review # of Released
1 2 3 4 in days Planning Meeting User Stories

All – 83.923 25 25 25 33 30 42
6 7 7 7 85.0125 25 25 25 32 28 34
6 7 7 7 98.0263 25 25 25 30 29 37
6 7 7 7 98.0263 25 25 25 30 29 37
6 7 7 7 84.3339 25 25 25 39 34 52
6 7 7 7 76.7853 25 25 25 26 20 0
6 7 7 77.4417 25 25 25 30 19 0
6 7 7 76.7853 25 25 25 26 20 0
6 7 7 96.651 25 25 25 41 31 45
6 7 7 7 7 96.0761 25 25 25 33 28 38
6 7 7 7 96.0761 25 25 25 33 28 38
6 7 7 7 99.2204 25 25 25 33 27 31
6 7 7 7 7 86.5942 25 25 25 37 32 46
6 7 7 7 89.6905 25 25 25 36 32 46
3 7 7 7 7 98.5971 25 25 25 39 34 52
3 7 7 7 98.5971 25 25 25 39 34 52
3 7 7 7 98.5971 25 25 25 39 34 52
3 7 7 125.745 25 25 25 38 32 46
3 7 7 7 79.3474 25 25 25 26 22 0
3 7 7 7 105.672 25 25 25 39 31 43
3 7 7 7 104.795 25 25 25 35 30 40
3 7 7 77.4448 25 25 25 33 22 0
3 7 7 7 78.2208 25 25 25 32 22 0
3 7 7 7 84.6146 25 25 25 37 29 39
3 7 7 7 95.5282 25 25 25 34 29 39
3 7 7 105.672 25 25 25 39 31 43
3 7 7 7 7 84.7019 25 25 25 32 28 34
3 7 7 7 7 84.7019 25 25 25 32 28 34
3 7 7 7 103.79 25 25 25 36 32 16

366

The team size was chosen, in order to study the impact on the throughput when other project parameters367

remained fixed. For this, we use the number of hours that each developer works. We assume that variations368

on throughput and total time depend on the developers’ skills, on the number of hours they work,369

and on the strategy used to assign them to the activities rather than the size of the team. We selected the370

cases of the whole team, and teams with six and three developers respectively. The results demonstrated371

that variations in throughput and total time mostly depend on the skills of the developers and their372

assignment to the di↵erent activities. Table 9 shows that if three developers or six developers, that are373

skilled in all activities, work on the same number of user stories, they may obtain the same throughput374

and the same total time. Instead, when the number of developers is not high enough to satisfy the e↵ort375

required for an activity, throughput decreases and the total time increases.376

4.2.4. Simulation 4377

In S4, we study the relation between the use of WIP limits, throughput and total time to answer378

Q4, i.e., what the impact on the throughput is if the WIP limit for activities varies. For a given WIP limit,379

15



it is possible to examine the resulting throughput and total time, if other parameters remain fixed. It is380

required to perform many simulation runs to obtain WIP-limit values, which can yield optimal throughput381

in the minimum time required. For a team setup of 12 developers, we performed several simulation runs382

with di↵erent values for the WIP limit, and without limits. For example, at first one may consider a WIP383

limit of 10–12, i.e., 10 in the first and last activity, and 12 in the second and third activity. WIP limits384

tested were also 6–8 and 3–4. We observed that for lower WIP-limit values, throughput decreases and385

the total time increases—a bottleneck may exist. However, if we consider WIP limits of six to eight or386

higher, results are the same as if there were no limits at all. This could be a result from the small number of387

user stories or the big team size and, thus, WIP limits are not useful (this also hampers generalizability). In388

a nutshell, for low WIP limits, we obtained a low throughput and a longer total time, yet, higher WIP389

limits have not shown any e↵ect on the throughput.390

4.2.5. Simulation 5391

In simulation S5, we study the relation between average effort, throughput, and total time to392

answer Q5, i.e., whether there is a relation between e↵ort for user stories and the total time required for393

the project. For a given number of simulation runs, all simulation parameters remain fixed. At the end of394

each simulation, values for average effort, throughput, and total time are examined to understand395

if variations, as expected, are continuous. Accordingly, two experiments have been conducted: one with396

real data, and another using artificial data. The results obtained show that variations in the e↵ort cause397

variations in throughput and total time. Furthermore, the relation is almost continuous without major398

gaps. Performing many simulation runs, we found a low correlation between variations in average effort399

and total time.400

Table 10: Correlation of e↵ort and total time.
Variable Average Standard Deviation

Total Time 77.26 2.62
E↵ort 1.297 0.203

Corr (e↵ort/time) 0.0888

Table 11: Correlation of e↵ort and throughput.

Variable Average Standard Deviation

Throughput 44.19 6.02
E↵ort 1.297 0.203

Corr (e↵ort/throughput) -0.119

Simulations performed using the real project data, did not show any variation for neither variable. Yet,401

simulations using the artificial data showed variations. In total, we performed 100 simulation runs and402

found a low correlation 0.0888 between the variation in average effort and total time (Table 10).403

Furthermore, we found a correlation of -0.119 between average effort and throughput (Table 11).404

Hence, there is no direct relation between average effort and throughput.405

4.2.6. Simulation 6406

In S6, we study the relations between average effort, throughput, and total time with a partic-407

ular focus on the question to what extent the simulation model can reproduce data from the real project.408

16



0

5

10

15

20

25

30

35

0,0
00

13
,00

0

18
,40

5

39
,00

0

42
,00

0

43
,00

0

44
,31

4

48
,25

8

55
,56

4

64
,02

6

74
,00

0

79
,71

2

Released (Simulation) Released (Real Case)

Figure 5: Comparison between simulated and real case with the number of user stories released (y-axis) and the time required to
release the user stories (x-axis).

The implemented software development model presented in Section 3.3.1 is used to allow for comparing409

the results (i.e., throughput and total time required to finish the project) obtained from the simula-410

tions performed on real and artificial data. In particular, simulations were run using the list of user stories,411

parametrized with values for the e↵ort taken from the real project. The analysis was carried out on the num-412

ber of released user stories, in particular by comparing the two performance curves shown in Figure 5. The413

curves represent the cumulative number of user stories released in the project and, in an optimal case, both414

curves should overlap. As Figure 5 shows, our experimental results suggest that the presented simulation415

model produces data that well match, which demonstrates the feasibility of the approach presented.416

4.2.7. Simulation 7417

In last simulation S7, we compare the cycle time of the three di↵erent processes Scrumban (the origi-418

nal Software Factory process), Scrum, and Kanban to improve our ability to choose the right process for the419

respective context and to adapt other processes in similar cases. Again, we study in how far our simulation420

model can also reproduce data from the real project.421

The Software Factory’s Scrumban model (see Section 3.3.1) and the adaptations of our simulation model422

for Scrum and Kanban (see Section 3.4.1) are to compare the performance of the di↵erent processes, specif-423

ically the cycle time. Furthermore, data is used to compare the simulation outcomes with results obtained424

in the real projects. In this simulation, the di↵erent runs used the list of estimated and parametrized user425

stories from the real case project. Analyses have been performed on the real case data as well as on the426

17



Table 12: Summary of cycle time statistics of the Scrumban, Kanban, and Scrum processes in the real cases compared with the
simulation results.

Process Real Case Simulated Case

Average Median Min Max St.Dev. Average Median Min Max St.Dev.

Scrumban 7.58 6.82 1.06 17.46 5.46 7.34 4.93 1.80 19.45 4.79
Kanban 6.65 5.70 1.58 18.48 4.80 6.28 4.33 1.17 20.56 4.93
Scrum 8.42 6.21 1.23 25.70 6.99 7.36 5.15 2.44 26.21 5.45

simulation results collected from 100 runs for each case. Table 12 shows the results, which suggest that427

our simulation model produces data that well match the real cases. Hence, we conclude that our simulation428

model satisfactorily reproduces the real case.429

Comparing the three di↵erent processes, we see that the results related to each process are very close,430

in particular Scrum and Scrumban. Yet, our data suggests that—in the current distributed context—Kanban431

seems to be more e�cient. A reason can be the more “sequential” nature of Kanban and its strong focus432

to limit work-in-progress, i.e., an attempt to improve the e↵ective work assignment. This e↵ect can be433

observed in the real case and the simulated case alike.434

4.2.8. Summary of the Simulation Results435

In this section, we briefly summarize our simulation results and answer the research questions (see436

Section 3.1). To support answering the research questions, in Table 7, we relate the di↵erent simulation437

scenarios shown in Table 5 with the detailed simulation questions shown in Table 3.438

Research Question 1. To answer the first research question, we use the simulations S1�5. The di↵erent out-439

comes presented in the previous paragraphs show the relationships between the three variables throughput,440

total time, average effort. The findings further show how the original simulation model by Anderson441

et al. (2012) can be calibrated in order to reproduce distributed software development (processes). In partic-442

ular, the simulation for scenario S1 showed that for a given throughput, total time is the only parameter443

that can change (gives all other variables are immutable). The simulation for scenario S2 showed a linear444

relationship between throughput and total time for a varying project size, whereas the simulation445

for scenario S3 found no linear relationship if team size is the subject of study. The simulation for sce-446

nario S4 studied WIP limits and the impact on throughput, finding no e↵ect on the throughput for higher447

WIP limits.448

Research Question 2. The second research question aims at comparing simulation results with real project449

data (and experience). For this, the simulation for scenario S6 is used. The results are shown in Figure 5,450

which shows the distance of the two curves as a measure of accuracy. In summary, the adapted simulation451

model was found feasible to reproduce a real project.452

Research Question 3. The third research question aims to study the reliability of the simulation model.453

For this, the simulation for scenario S5 was used, and the simulation was run several 100 times. The out-454

comes show the simulation model reliably reproducing results with acceptable variations for throughput,455

total time, and average effort regardless of the input data, i.e., real or artificial data.456

Research Question 4. The fourth research question aims at comparing simulation results from three dif-457

ferent processes to support project managers in selecting the project-specific development approach. For458

this, the simulation seven was used, and the simulation was run several 100 times. The outcomes show the459

18



simulation model reliably reproducing results (in our case for the cycle time) from a real case and, thus,460

providing a means to ground decisions in the simulation results.461

4.3. Threats to Validity462

In the following, we discuss the threats to validity to be considered when applying the method presented463

in the paper at hand.464

Internal Validity. According to Shadish et al. (2001), an experiment may have unknown and hidden fac-465

tors that could a↵ect the results. In the presented case, information regarding teams and organization of466

work originated from the projects. Data used in the simulation model was extracted from systems used by467

the teams and personal observations, which might influence result quality. Although the model properly468

simulates skilled developers performing task sequences, still, the simulation model does not fully cover469

interactions among the developers thus introducing a threat regarding the inclusion of human factors in the470

simulation.471

Construct Validity. Construct validity concerns the degree to which inferences are warranted from the ob-472

served phenomena to the constructs that these instances might represent (Wohlin et al., 2012). A first threat473

to construct validity is that, although in this study we have carefully analyzed and preprocessed the Software474

Factory data, our results could be a↵ected by the data quality (such as possible noisy data). Another threat475

related to construct validity is the fact that our work is centered on the study of how the process determines476

the e�ciency of the development activity. However, there are many other human-related factors that could477

a↵ect the e�ciency and productivity of the team, e.g., considering (co-)workers, keeping the team motivated478

and satisfied, and so on. Just limiting the work-in-progress will not be e↵ective if a team is troubled and479

dissatisfied. A simulation model can simulate a process, but it is very di�cult to explicitly include human480

factors. To mitigate this threat, data about the Software Factory process (e.g., user stories, e↵ort, and WIP481

limits) was collected daily by external researchers. Furthermore, at the end of the Software Factory projects,482

one researcher extracted data from the di↵erent tools used in projects, e.g., documentation and code, and483

interviews with the team members have been performed.484

External Validity. If a study possesses external validity, its results will generalize to a larger population485

not considered in the experiment (Shadish et al., 2001; Wohlin et al., 2012). In this study, we only ran the486

simulation model on one development project. This project is small, and the number of subjects used in this487

study is small. This is a clear threat to external validity of our results. However, the simulation methods488

we proposed are evaluated on large software systems that experienced a long evolution. Furthermore,489

we extended our simulation in terms of modifying the simulation model to represent further development490

processes for a comparative study. Since these extra simulations confirmed the study of the Software Factory491

process, we assume a generalizability of the general simulation model. However, further studies need to be492

conducted to also confirm the project-related findings and whether these findings can be generalized.493

Reliability. The main threat to the reliability of the simulation model and the input data is that only one494

researcher performed the observation, data collection and initial data analysis. To mitigate this threat,495

researcher triangulation was implemented for quality assurance of the di↵erent procedures applied and496

the data collected. To improve the data basis for developing the simulation model, in a first step, the497

data collected from the Software Factory projects was pre-processed by one researcher. During the data498

collection and the pre-processing phase, researchers and project team members established a continuous499

communication and result analysis to reduce the risk of misinterpreting (tentative) results. In a second step,500

using a linear regression algorithm, an artificial list of user stories was created from the actual project data,501

which allows for testing the reliability of the dataset in the simulation model.502

19



5. Conclusion503

In this paper, we presented a simulation process model able to reproduce the process followed in the504

Software Factory project. We demonstrated the calibration of the simulation model and its implementation.505

An existing simulation model was modified to reflect the Scrumban process as used in the Software Factory.506

We described the customization of the relevant parameters and aspects to implement the Software Factory507

process. Eventually, we performed a case study with (real-life) data gathered from Software Factory project.508

Summary of Findings. The simulation results in the following major findings: Project teams face problems509

regarding communication and organization of distributed projects a↵ecting the teams’ productivity and/or510

increasing the time required to achieve the project goals. The results obtained from our simulation show511

the influence of decisions in the project planning activities, e.g., in assigning work, when a distributed512

development is considered for a project. Therefore, our simulation model can be used to model project513

setups of interest, to elaborate potential pitfalls, and to work out solutions to address those problems. This514

opportunity was especially shown by a comparative analysis of a simulated case and a real case. We could515

successfully model and reproduce the Scrumban process as used in the Software Factory, and our simulation516

generated results comparable to the real project data. Hence, the simulation model allows for modeling a517

distributed project, analyzing and predicting trends, and eventually selecting the most promising (according518

to the respective project goals) project configuration.519

The key advantage of using a simulation is that various project parameters can be evaluated quickly520

and relatively easy to support the project management in selecting the most promising process alternative521

to positively influence the project performance. In our previous work, we could also show that project522

managers could improve their knowledge about the issues critical to the project and, thus, adapt the process523

for next iteration or for future projects. Hence, project managers get a tool to early analyze project con-524

figurations, to better understand the development process and variations thereof and, in future, to apply the525

most suitable planning alternatives for the respective context. Beyond the analysis of the Software Factory526

process, we also analyzed the general adaptability of our simulation and therefore evaluated the suitability527

of the simulation model for further process models. For this, we tailored the simulation model to support528

“pure” Scrum and Kanban and conducted a comparative analysis of the processes’ cycle time. Again, we529

could see that the simulation model adequately reproduces the real case data.530

Companies doing this kind of simulation projects can use the presented simulation model for identifying531

and better understanding factors (e.g., communication, work assignments) that could have an impact on the532

planning and operation of projects. These factors might need a specific consideration. The simulation533

models might also help to better understand the mechanics and dynamic relationships inside such projects534

or lead to important questions to be posed before starting a project. However, the models are not aimed535

at generating precise point estimates or supporting decision making at a micro level. This would require a536

very careful customization of the models to a company’s context and a respective calibration.537

Limitations. The model presented only partially addresses the (quantitative) relationship of di↵erent ac-538

tions, which introduces some conceptual issues (e.g., human factors) in the model. Hence, the simulation539

capabilities of the model are limited to only those project aspects that can be su�ciently measured. There-540

fore, the results obtained in the presented simulation are limited for specific cases and can only serve as541

indication, but do not yet allow for generalization. However, such a generalization would be very helpful542

to have “standard” process customizations at disposal, which could be used to calibrate an organization- or543

project-specific simulation model.544

20



Future Work. Future work thus comprises gathering data from further Software Factory projects and from545

other industrial projects from di↵erent contexts. These steps will enhance the data bases and they will546

support the model’s validation to improve its reliability. Furthermore, the present model is expected to be547

extended to allow for simulating and reproducing further processes, i.e., to be generalized and then cus-548

tomized for application to further domains. We demonstrated this by providing an initial simulation and549

comparison of the Software Factory’s Scrumban process and the “pure” Scrum and Kanban processes. Yet,550

a transfer to other processes and process combinations in di↵erent application domains remains subject551

to future work. Another aspect that is worth consideration is the improvement of the presented simula-552

tion model towards a prediction tool. So far, we could increase understanding of the relationships, e.g.,553

project size and work-in-progress, and we could reproduce real project data, i.e., the model is primarily554

used as analysis tool. Therefore, given a su�cient dataset as a basis and a su�ciently validated model, the555

approach presented in this paper could also serve as prediction tool to proactively improve the decision-556

making process of project managers. In this regard, an updated work-in-progress version of the simulator557

could directly access issue tracking systems such as Jira or Redmine. This extended simulation tool would558

collect data about the project such as, e.g., number and list of issues, estimated time and time spent for559

resolving issues, priority of issues, team size, and the process followed as a workflow (number of steps and560

connection among the steps). Furthermore, this extended simulator could be quickly adapted for a particu-561

lar project to reproduce and/or simulate the project providing the total time needed to finish the project and562

some statistics, e.g., concerning the number of issues per day, developer productivity, and so forth. Using563

Montecarlo simulations and variations of project parameters such as developer availability or error in e↵ort564

estimation, such and updated simulator would also allow for risk analyses.565

References566

Ahmad, M.O., Kuvaja, P., Oivo, M., Markkula, J., 2016. Transition of software maintenance teams from scrum to kanban, in:567

Hawaii International Conference on System Sciences, IEEE. pp. 5427–5436.568

Ahmad, M.O., Markkula, J., Oivo, M., 2013. Kanban in software development: A systematic literature review, in: Euromicro569

Conference on Software Engineering and Advanced Applications, IEEE. pp. 9–16.570

Alajrami, S., Gallina, B., Romanovsky, A., 2016. Enabling global software development via cloud-based software process enact-571

ment. Technical Report TR-1494. Newcastle University.572

Ali, N.B., Petersen, K., de França, B.B.N., 2015. Evaluation of simulation-assisted value stream mapping for software product573

development: Two industrial cases. Information and software technology 68, 45–61.574

Alzoubi, Y.I., Gill, A.Q., Al-Ani, A., 2016. Empirical studies of geographically distributed agile development communication575

challenges: A systematic review. Information & Management 53, 22–37.576

Anderson, D., Concas, G., Lunesu, M.I., Marchesi, M., 2011. Agile Processes in Software Engineering and Extreme Programming:577

12th International Conference, XP 2011, Madrid, Spain, May 10-13, 2011. Proceedings. Springer Berlin Heidelberg, Berlin,578

Heidelberg. volume 77 of Lecture Notes in Business Information Processing. chapter Studying Lean-Kanban Approach Using579

Software Process Simulation. pp. 12–26.580

Anderson, D.J., Concas, G., Lunesu, M.I., Marchesi, M., Zhang, H., 2012. Agile Processes in Software Engineering and Extreme581

Programming: 13th International Conference, XP 2012, Malmö, Sweden, May 21-25, 2012. Proceedings. Springer Berlin582

Heidelberg, Berlin, Heidelberg. volume 111 of Lecture Notes in Business Information Processing. chapter A Comparative583

Study of Scrum and Kanban Approaches on a Real Case Study Using Simulation. pp. 123–137.584

Armbrust, O., Berlage, T., Hanne, T., Lang, P., Münch, J., Neu, H., Nickel, S., Rus, I., Sarishvili, A., Stockum, S.V., Wirsen, A.,585

2005. Handbook of Software Engineering and Knowledge Engineering. World Scientific. volume 3. chapter Simulation-based586

Software Process Modeling and Evaluation. pp. 333–364.587

Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B., 2009. Does distributed development a↵ect software quality? an empir-588

ical case study of windows vista, in: International Conference on Software Engineering, IEEE Computer Society, Washington,589

DC, USA. pp. 518–528.590

Cao, L., Ramesh, B., Abdel-Hamid, T., 2010. Modeling dynamics in agile software development. ACM Transactions on Manage-591

ment Information Systems (TMIS) 1, 5.592

21



Cocco, L., Mannaro, K., Concas, G., Marchesi, M., 2011. Simulating kanban and scrum vs. waterfall with system dynamics, in:593

International Conference on Agile Software Development, Springer. pp. 117–131.594

Concas, G., Lunesu, M.I., Marchesi, M., Zhang, H., 2013. Simulation of software maintenance process, with and without a595

work-in-process limit. Journal of Software: Evolution and Process 25, 1225–1248.596

Ebert, C., Kuhrmann, M., Prikladnicki, R., 2016. Global software engineering: An industry perspective. Software, IEEE 33,597

105–108.598

Fagerholm, F., Kuhrmann, M., Münch, J., 2017. Guidelines for using empirical studies in software engineering education. PeerJ599

Computer Science 3.600

Fagerholm, F., Oza, N., Münch, J., 2013. A platform for teaching applied distributed software development: The ongoing journey of601

the helsinki software factory, in: 2013 3rd International Workshop on Collaborative Teaching of Globally Distributed Software602

Development (CTGDSD), pp. 1–5.603

Femmer, H., Kuhrmann, M., Stimmer, J., Junge, J., 2014. Experiences from the design of an artifact model for distributed agile604

project management, in: International Conference on Global Software Engineering, IEEE Computer Society, Washington, DC,605

USA. pp. 1–5.606

Hashmi, S.I., Clerc, V., Razavian, M., Manteli, C., Tamburri, D.A., Lago, P., Nitto, E.D., Richardson, I., 2011. Using the cloud607

to facilitate global software development challenges, in: International Conference on Global Software Engineering Workshops,608

IEEE Computer Society, Washington, DC, USA. pp. 70–77.609

Herbsleb, J., Mockus, A., 2003. An empirical study of speed and communication in globally distributed software development.610

Software Engineering, IEEE Transactions on 29, 481–494.611

Houston, D., 2012. Research and practice reciprocity in software process simulation, in: Proceedings of the International Confer-612

ence on Software and System Process, IEEE Press, Piscataway, NJ, USA. pp. 219–220.613

Humphrey, W., 2000a. The Personal Software Process (PSP). Technical Report CMU/SEI-2000-TR-022. Software Engineering614

Institute, Carnegie Mellon University. Pittsburgh, PA.615

Humphrey, W., 2000b. The Team Software Process (TSP). Technical Report CMU/SEI-2000-TR-023. Software Engineering616

Institute, Carnegie Mellon University. Pittsburgh, PA.617

Ikonen, M., Pirinen, E., Fagerholm, F., Kettunen, P., Abrahamsson, P., 2011. On the impact of kanban on software project work:618

An empirical case study investigation, in: IEEE International Conference on Engineering of Complex Computer Systems, IEEE.619

pp. 305–314.620

Kellner, M.I., Madachy, R.J., Ra↵o, D.M., 1999. Software process simulation modeling: why? what? how? Journal of Systems621

and Software 46, 91–105.622

Kniberg, H., Skarin, M., 2010. Kanban and Scrum-making the most of both. Enterprise Software Development, lulu.com.623

Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere, K., McCa↵ery, F., Prause, C.R., Hanser, E.,624

Linssen, O., 2017. Hybrid software and system development in practice: Waterfall, scrum, and beyond, in: Proceedings of the625

International Confernce on Software System Process, ACM, New York, NY, USA. pp. 30–39.626

Lamersdorf, A., Münch, J., del Viso Torre, A.F., Sánchez, C.R., Heinz, M., Rombach, D., 2012. A rule-based model for cus-627

tomized risk identification and evaluation of task assignment alternatives in distributed software development projects. Journal628

of Software: Evolution and Process 24, 661–675.629

Liu, D., Wang, Q., Xiao, J., 2009. The role of software process simulation modeling in software risk management: A systematic630

review, in: Empirical Software Engineering and Measurement, 2009. ESEM 2009. 3rd International Symposium on, IEEE. pp.631

302–311.632

Lous, P., Kuhrmann, M., Tell, P., 2017. Is scrum fit for global software engineering?, in: International Conference on Global633

Software Engineering, IEEE Press, Piscataway, NJ, USA. pp. 1–10.634

Lunesu, I., Münch, J., Marchesi, M., Kuhrmann, M., 2017. Using measurement and simulation for understanding distributed635

development processes in the cloud, in: International Workshop on Software Measurement and 12th International Conference636

on Software Process and Product Measurement, ACM, New York, NY, USA. pp. 1–11.637

Lunesu, M.I., 2013. Process Software Simulation Model of Lean-Kanban Approach. Ph.D. thesis. University of Cagliari.638

Martin, R., Ra↵o, D., 2001. Application of a hybrid process simulation model to a software development project. Journal of639

Systems and Software 59, 237 – 246. Software Process Simulation Modeling.640

Melis, M., Turnu, I., Cau, A., Concas, G., 2006. Evaluating the impact of test-first programming and pair programming through641

software process simulation. Software Process: Improvement and Practice 11, 345–360.642

Mujtaba, S., Feldt, R., Petersen, K., 2010. Waste and lead time reduction in a software product customization process with value643

stream maps, in: Australian Software Engineering Conference, IEEE. pp. 139–148.644

Paasivaara, M., Durasiewicz, S., Lassenius, C., 2009. Using scrum in distributed agile development: A multiple case study, in:645

Global Software Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference on, IEEE. pp. 195–204.646

Phalnikar, R., Deshpande, V., Joshi, S., 2009. Applying agile principles for distributed software development, in: Advanced647

Computer Control, 2009. ICACC’09. International Conference on, IEEE. pp. 535–539.648

22



Portillo-Rodrı́guez, J., Vizcaı́no, A., Piattini, M., Beecham, S., 2012. Tools used in global software engineering: A systematic649

mapping review. Inf. Softw. Technol. 54, 663–685.650

Ramesh, B., Cao, L., Mohan, K., Xu, P., 2006. Can distributed software development be agile? Communications of the ACM 49,651

41–46.652

Rus, I., Neu, H., Münch, J., 2003. A systematic methodology for developing discrete event simulation models of software de-653

velopment processes, in: In Proceedings of the 4th International Workshop on Software Process Simulation and Modeling,654

IEEE.655

Schwaber, K., Beedle, M., 2002. Agile software development with Scrum. Prentice Hall.656

Sengupta, B., Chandra, S., Sinha, V., 2006. A research agenda for distributed software development, in: International Conference657

on Software Engineering, ACM, New York, NY, USA. pp. 731–740.658

Shadish, W.R., Cook, T.D., Campbell, D.T., 2001. Experimental and Quasi-Experimental Designs for Generalized Causal Infer-659

ence. Cengage Learning, Boston, New York. 2 edition.660

Solingen, R.V., Berghout, E., 1999. Goal/Question/Metric Method: A Practical Guide for Quality Improvement of Software661

Development. McGraw-Hill Inc.. 1 edition.662

Sutherland, J., Viktorov, A., Blount, J., Puntikov, N., 2007. Distributed scrum: Agile project management with outsourced develop-663

ment teams, in: System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on, IEEE. pp. 274a–274a.664

Tanner, M., Dauane, M.E., 2017. The use of kanban to alleviate collaboration and communication challenges of global software665

development. Issues in Informing Science and Information Technology 14, 177–197.666

Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P., 2015. Is Water-Scrum-Fall reality? on the use of agile and traditional667

development practices, in: International Conference on Product Focused Software Development and Process Improvement,668

Springer, Cham. pp. 149–166.669

Tregubov, A., Lane, J.A., 2015. Simulation of kanban-based scheduling for systems of systems: initial results. Procedia Computer670

Science 44, 224–233.671

Turner, R., Madachy, R., Ingold, D., Lane, J.A., 2012. Modeling kanban processes in systems engineering, in: Proceedings of the672

International Conference on Software and System Process, IEEE Press, Piscataway, NJ, USA. pp. 23–27.673

Turnu, I., Melis, M., Cau, A., Setzu, A., Concas, G., Mannaro, K., 2006. Modeling and simulation of open source development674

using an agile practice. Journal of Systems Architecture 52, 610–618.675

Vallon, R., da Silva Estácio, B.J., Prikladnicki, R., Grechenig, T., 2017. Systematic literature review on agile practices in global676

software development. Information and Software Technology .677

Vijayasarathy, L.R., Butler, C.W., 2016. Choice of software development methodologies: Do organizational, project, and team678

characteristics matter? IEEE Software 33, 86–94.679

Šmite, D., Wohlin, C., Gorschek, T., Feldt, R., 2010. Empirical evidence in global software engineering: A systematic review.680

Empirical Softw. Engg. 15, 91–118.681

Wakeland, W.W., Martin, R.H., Ra↵o, D., 2004. Using design of experiments, sensitivity analysis, and hybrid simulation to682

evaluate changes to a software development process: a case study. Software Process: Improvement and Practice 9, 107–119.683

Wang, X., Conboy, K., Cawley, O., 2012. “leagile” software development: An experience report analysis of the application of lean684

approaches in agile software development. Journal of Systems and Software 85, 1287–1299. Special Issue: Agile Development.685

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012. Experimentation in Software Engineering.686

Springer-Verlag, Berlin Heidelberg.687

Yara, P., Ramachandran, R., Balasubramanian, G., Muthuswamy, K., Chandrasekar, D., 2009. Global Software Development688

with Cloud Platforms. Springer Berlin Heidelberg, Berlin, Heidelberg. volume 35 of Lecture Notes in Business Information689

Processing. pp. 81–95.690

Zhang, H., Kitchenham, B., Pfahl, D., 2008. Reflections on 10 years of software process simulation modeling: a systematic review,691

in: International Conference on Software Process, Springer. pp. 345–356.692

23


	Introduction
	Related Work
	Research Design
	Research Questions
	Simulation Goals and Requirements
	Specification of the Simulation Model
	The Software Factory Process Model
	General Adaptation of the Simulation Model

	Implementation of the Simulation Model
	Modification of the Simulation Model for Scrum and Kanban


	Simulation Results
	Simulation Setup
	Simulation Runs
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4
	Simulation 5
	Simulation 6
	Simulation 7
	Summary of the Simulation Results

	Threats to Validity

	Conclusion

