

Università degli Studi di Cagliari

DOTTORATO DI RICERCA
Matematica e Informatica

Ciclo XXXIV

SOFTWARE ENGINEERING PRACTICES APPLIED TO

BLOCKCHAIN TECHNOLOGY AND

DECENTRALIZED APPLICATIONS

Settore scientifico-disciplinare di afferenza

INF/01 - INFORMATICA

Presentata da: Lodovica Marchesi

Tutor : Professore Roberto Tonelli

Co-Tutor: Dottor Giuseppe Destefanis

Esame finale anno accademico 2020/2021

Tesi discussa nella sessione d’esame aprile 2022

Università degli Studi di Cagliari

Ph.D. DEGREE
Mathematics and Computer Science

Cycle XXXIV

SOFTWARE ENGINEERING PRACTICES APPLIED TO

BLOCKCHAIN TECHNOLOGY AND

DECENTRALIZED APPLICATIONS

Scientific Disciplinary Sector

INF/01 – COMPUTER SCIENCE

Ph.D Student: Lodovica Marchesi

Supervisor: Professore Roberto Tonelli

Co-supervisor: Dottor Giuseppe Destefanis

 Final exam. Academic Year 2020/2021

Thesis defence: April 2022 Session

Author’s email.: lodovica.marchesi@unica.it

Author’s address:

Dipartimento di Matematica e Informatica
Università degli Studi di Cagliari
Via Porcel, 4
09123 Cagliari
Italia

mailto:lodovica.marchesi@unica.it

Acknowledgments - Ringraziamenti

Mio padre una volta mi ha detto che essere un ricercatore è come essere un esploratore.

Sempre in cerca di nuovi territori da scoprire, analizzare e sperimentare. Alla fine di questo

percorso, sono soddisfatta ed entusiasta ma anche determinata a continuare a fare ricerca, ad

essere un’esploratrice.

Quindi inizio col ringraziare te papà, senza il quale non sarei quella che sono oggi sotto tanti

punti di vista, la tua passione per la conoscenza mi stimola ogni giorno. Sei la mia fonte

inesauribile di insegnamenti, consigli e supporto.

Grazie a te Roberto, per avermi sostenuta sin da prima del Dottorato, e per tutti i preziosi

consigli. Seguirti nelle varie sfide scientifiche e progetti di questi anni è stato sfidante ed

arricchente.

Grazie a Giuseppe, per la tua ospitalità, gentilezza e lungimiranza umana ed accademica. Mi

hai dato e continui a dare fiducia, e questo mi sprona a crescere e migliorare.

Un grazie speciale a Nicola, con cui ho condiviso questo percorso e a voi colleghi, Ilaria, Marco,

Andrea, Gavina, Katiuscia, nonostante la pandemia ci abbia tenuti lontani dall’ufficio per la

maggior parte del tempo, siete sempre pronti a condividere e confrontarsi. Se questi anni sono

stati un’esperienza positiva lo devo a tutti voi.

Grazie alla mia Famiglia, per la vostra continua presenza nonostante la lontananza fisica, per

ciò che mi avete insegnato e continuate ad insegnarmi, per l’amore che mi date e lo stimolo a

rendervi orgogliosi di me.

Grazie a Simone, che ogni giorno mi sopporti, per aver condiviso in prima linea ogni successo e

delusione di questo percorso. La tua determinazione e attitudine al duro lavoro sono per me

fonte d’ispirazione.

Grazie alle mie amiche, che pur non essendo molto avvezze di tecnologie mi avete sempre

seguita ed ascoltata, e per tutti i momenti insieme, siete preziose.

I would also like to thank the Brunel Software Engineering Lab (BSEL) Group for hosting me at

their department and helping me with my research during my period as visiting academic

guest at the Brunel University of London, UK.

Finally, I would like to express my gratitude to everyone that helped me during the writing of

this thesis and the years of my PhD. In particular, I thank Prof. Steve Counsell of the Computer

Science Department of the Brunel University of London (UK) and Prof. Mohamad Kassab of the

Engineering Division of the Pennsylvania State University (USA) for their helpful reviews of this

thesis.

Sommario

Acknowledgments - Ringraziamenti ... 4

List of Figures .. 10

List of Tables ... 11

List of pubblications .. 12

In International Journal ... 12

In International Conferences .. 12

Chapter in Book ... 12

Submitted papers: ... 13

Arxiv: ... 13

Conferences .. 13

School and Seminaries: ... 14

0 Thesis Introduction.. 1

0.1 Main contributions .. 3

0.2 Outline ... 4

Part I - Blockchain technologies: definitions and characteristics .. 5

1 Introduction .. 6

1.1 Cryptocurrencies phenomenon .. 6

1.2 The enabling technologies .. 7

1.2.1 Cryptography ... 8

1.2.2 Hash Footprints ... 9

1.2.3 The digital signature .. 10

1.3 The IT bases of cryptocurrencies ... 10

1.4 Characteristics of the Blockchain technology ... 11

1.5 The fundamentals ... 12

1.5.1 Addresses .. 12

1.5.2 Blocks ... 14

1.5.3 Transactions .. 15

1.5.4 Consensus .. 17

1.6 Ethereum and Smart Contracts ... 18

1.7 Smart Contract Characteristics .. 20

1.8 Ethereum Virtual Machine and Gas Mechanism .. 20

1.9 Memory Usage in Ethereum ... 22

1.10 Decentralized Applications .. 22

Part II - Agile BlockChain Dapp Engineering .. 25

2 Introduction .. 26

2.1 Agility and dApp development .. 27

2.2 Security assessment .. 29

2.3 Related work ... 29

2.3.1 Software Engineering for Dapp development ... 29

2.3.2 Security for dApps ... 30

2.3.3 Domain-specific UML additions .. 31

2.4 Proposed Method for dApp Development .. 31

2.4.1 Rationale and motivation .. 31

2.4.2 The process.. 32

2.4.3 UML diagrams for modeling SCs ... 37

2.4.4 Security assessment for Smart Contracts .. 40

2.4.5 Gas optimization ... 52

2.5 Experimental Validation .. 56

2.5.1 Building an example dApp ... 57

2.5.2 The first steps of ABCDE .. 58

2.5.3 Security assessment .. 64

2.5.4 Gas optimization ... 64

2.5.5 Writing automated tests ... 65

2.5.6 Design and coding of App System ... 66

2.6 Threats to Validity ... 67

2.7 Conclusions and Future Work ... 67

3 Assessing the Risk of Software Development in Agile Methodologies Using Simulation

 ……………………………………………………………………………………….……………………………………… 69

3.1 Introduction... 69

3.1.1 Problem statement ... 70

3.1.2 Contribution .. 71

3.1.3 Outline ... 72

3.2 Related work ... 72

3.2.1 Risk Management in Software Projects .. 72

3.2.2 Risk Management in ASD .. 73

3.2.3 Simulation of Software Process ... 73

3.2.4 Automated Approaches for Software Risk Management 74

3.2.5 SPSM for Risk Management .. 75

3.3 Risk Assessment through Simulation .. 75

3.3.1 The Risk-assessment methodology ... 75

3.4 The Simulation Model ... 77

3.4.1 Basic Components ... 78

3.4.2 The simulation process .. 78

3.4.3 Simulator Design ... 80

3.4.4 JIRA Interface ... 84

3.5 Research Design .. 85

3.6 Experimental Data ... 87

3.6.1 Project: Test Engineering .. 87

3.6.2 Project: Platform ... 88

3.6.3 Project: CORD .. 88

3.6.4 Simulator Assessment ... 88

3.7 Risk Assessment Through Simulation .. 90

3.7.1 Real Cases Risk Analysis... 91

3.7.2 Risk Analysis with Random Developer Allocation 94

3.7.3 Discussion .. 96

3.8 Threats to Validity ... 99

3.9 Conclusion and Future Work ... 100

Part III – Blockchain Applications ... 102

4 Introduction .. 103

4.1 A Blockchain Architecture for Industrial Applications 104

4.2 Related Work ... 105

4.3 Uses of dApps and kinds of blockchains ... 107

4.3.1 Kinds of blockchains .. 108

4.3.2 An Evaluation Framework ... 110

4.4 Choosing the blockchain platform .. 113

4.5 The proposed dApp architecture .. 116

4.5.1 Ethereum PoA blockchain ... 118

4.5.2 App System .. 118

4.5.3 Terminals and apps ... 119

4.5.4 Identity management and access control ... 120

4.5.5 Explorer and anchoring on a public blockchain .. 120

4.5.6 IoT devices ... 121

4.6 Conclusions and future work .. 122

5 Automatic generation of Ethereum-based Smart Contracts for Agri-Food Traceability

System …………………….. .. 124

5.1 Introduction... 124

5.2 Background and Related Work.. 126

5.2.1 Modeling Proposals for Smart Contracts Development: Related Research

 ……….. 127

5.2.2 Blockchain Technology in Agri-Food Supply Chain.................................... 128

5.3 Methodology and Problem Representation ... 131

5.3.1 The Problem Domain in Agri-food Supply-Chain 131

5.4 Building a configurable dApp system for agri-food traceability........................ 137

5.4.1 Data Types Representation ... 139

5.4.2 Off-Chain Components .. 140

5.5 Case study: a blockchain traceability system for the honey supply chain 142

5.5.1 Defining the actors .. 143

5.5.2 Defining the entities .. 145

5.5.3 The system's events .. 146

5.5.4 Automatic generation of the system's Smart Contracts 149

5.6 Conclusions and Future Work ... 151

6 Can the Blockchain facilitate the development of an interport community? 154

6.1 Introduction... 154

6.2 Case study ... 156

6.3 Research Questions ... 156

6.4 SWOT analysis ... 158

6.4.1 Strengths ... 158

6.4.2 Weaknesses ... 159

6.4.3 Opportunities .. 159

6.4.4 Threats ... 160

6.5 Answer to Research Questions and Conclusions .. 161

Part IV - Cryptocurrencies price forecasting ... 162

7 Forecasting Bitcoin closing price series using linear regression and neural networks

models …….. 163

7.1 Introduction... 163

7.2 Literature Review .. 165

7.3 Methods .. 166

7.3.1 Time Series Analysis .. 167

7.3.2 Collected data.. 168

7.3.3 Data pre-processing .. 169

7.3.4 Univariate versus Multivariate Forecasting .. 169

7.3.5 Statistical Analysis ... 169

7.3.6 Forecasting .. 170

7.3.7 Time Regimes .. 173

7.3.8 Performance Measures ... 174

7.4 Results ... 175

7.4.1 Time Series Analysis .. 175

7.4.2 Time Series Forecasting ... 180

7.5 Conclusions.. 185

8 References ... 186

List of Figures
Figure 1. Typical use of asymmetric cryptography ... 9
Figure 2 Generation of a bitcoin address .. 14
Figure 3 Simplified schematic of the Bitcoin Blockchain. .. 15
Figure 4 A sequence of linked Bitcoin transactions. ... 16
Figure 5 The preparation and execution of a Smart Contract on a Blockchain. ... 20
Figure 6 A typical architecture of an Ethereum dApp application. The blockchain with its SCs is shown on

the left, the App System on the right. ... 24
Figure 7 The proposed ABCDE process; the circles represent the Scrum meetings. 33
Figure 8 The User Stories of the DEX system specification. .. 62
Figure 9 The standard UML class diagram derived from the USs. .. 62
Figure 10 The modified UML class diagram, showing the structure of the required smart contracts of the

DEX system. .. 63
Figure 11 The UML sequence diagram showing a Taker accepting an offer and sending it to the DEX for

execution. ... 63
Figure 12 Interaction between JIRA Issue tracking System and the simulator. .. 77
Figure 13 UML simulator class diagram. .. 80
Figure 14 The possible states of an Issue. ... 82
Figure 15 The UML activity diagram showing how the event-driven simulator works. 83
Figure 16 The Inputs and Outputs to JIRA simulation model. ... 86
Figure 17 TE Project: N. of completed issues vs. time. Averages and percentiles over 100 simulations. ... 92
Figure 18 Platform Project: N. of completed issues vs. time. Averages and percentiles over 100

simulations. .. 92
Figure 19 CORD Project: N. of completed issues vs. time. Averages and percentiles over 100 simulations.

 .. 93
Figure 20 TE Project: N. of completed issues vs. time. Averages and percentiles over 100 simulations, with

random allocation of developers. ... 94
Figure 21 Platform Project: N. of completed issues vs. time. Averages and percentiles over 100

simulations, with random allocation of developers.. 95
Figure 22 CORD Project: N. of completed issues vs. time. Averages and percentiles over 100 simulations,

with random allocation of developers. ... 96
Figure 23 Classification of blockchain types, in relation to validation and access. 110
Figure 24 The features needed by a dApp system, and how public and permissioned blockchains support

them. .. 112
Figure 25 A comparison of the features needed by a dApp system according to different evaluation

frameworks... 113
Figure 26 The features needed by a dApp system, and how public and permissioned blockchain support

them. .. 114
Figure 27 The proposed architecture of a dApp application. ... 116
Figure 28 UML class diagram, with ABCDE method extensions, representing the Smart Contracts used in

the system. ... 138
Figure 29 Recording an event and navigating a product's event history. .. 141
Figure 30 Simplified view of the honey supply chain process. .. 142
Figure 31 System interactions among actors. .. 144
Figure 32 Honey production flow. .. 148
Figure 33 The content of the .csv files describing Actors, Producers and Resources. 149
Figure 34 The content of the .csv files describing Events, and Parameters, that is data values............... 150
Figure 35 Flow diagram of processes in a ro-ro interport logistics chain. .. 157
Figure 36 Bull (a) and Bear (b) price dynamics for Bitcoin market. .. 167

Figure 37 Bitcoin hyperparameters tuning results. .. 173
Figure 38 Decomposition of Bitcoin (a-d) and Microsoft (e-h) time series. .. 175
Figure 39 Seasonality of Bitcoin (a) and Microsoft (b) time series. .. 176
Figure 40 Microsoft time series autocorrelation plots. .. 178
Figure 41 Bitcoin time series autocorrelation plots. ... 178
Figure 42 Regimes Statistical Measures. .. 179
Figure 43 LR and MLR results with time regimes.. 183
Figure 44 Univariate and Multivariate LSTM results with time regimes. ... 184

List of Tables
Table 1 Gas costs in Ethereum. ... 21
Table 2 Additions to UML class diagram (stereotypes). ... 37
Table 3 The stereotypes added to UML Sequence diagrams. ... 40
Table 4 Abstract security patterns. ... 44
Table 5 Security assurance checklist for the design phase. .. 47
Table 6 Security assurance checklist for the coding phase. .. 48
Table 7 Security assurance checklist for the testing and deployment phases. ... 51
Table 8 Other design patterns. ... 51
Table 9 External transactions gas-saving patterns. .. 53
Table 10 Storage gas-saving patterns. ... 54
Table 11 Memory and Storage gas-saving patterns... 54
Table 12 Operations gas-saving patterns. .. 55
Table 13 Miscellaneous gas-saving patterns. ... 56
Table 14 Survey on ABCDE Usage. .. 57
Table 15 Simulation Event Description ... 83
Table 16 The simulator inputs, highlighting the inputs imported from JIRA. "PART." means "partially". .. 86
Table 17 Projects' Statistics. Effort statistics in man days. ... 88
Table 18 Total project duration. Mean (st. dev.) over 100 simulations. ... 89
Table 19 Results of simulations with 60 days intervals. ... 90
Table 20 Issue Management in 60-day intervals. ... 90
Table 21 Resources and products managed by a honey traceability system. .. 145
Table 22 Events and functions of a honey traceability system: Transformation Events (TE),

Documentation Events (DE). ... 146
Table 23 SWOT analysis of Blockchain technology. .. 157
Table 24 Time Series Statistical Measures. ... 177
Table 25 Augmented Dickey-Fuller test results. ... 178
Table 26 Linear and Multiple Linear Regression results. .. 180
Table 27 Univariate and Multivariate LSTM results. .. 181
Table 28 Best Benchmarks Results compared to ours. ... 182

List of pubblications

In International Journal
PEERJ CS – “Forecasting Bitcoin closing price series using linear regression and neural networks
models”, N. Uras, L. Marchesi, M. Marchesi, R. Tonelli. In PeerJ Computer Science, Volume 6,
pp. e279, PeerJ Inc., 2020.

BRCA – “Abcde–agile block chain dapp engineering”, L. Marchesi, M. Marchesi, R. Tonelli. In
Blockchain: Research and Applications, Volume 1, pp. 100002, Elsevier, 2020.

IEEE Access – “Assessing the Risk of Software Development in Agile Methodologies Using
Simulation”, Maria Ilaria Lunesu, Roberto Tonelli, Lodovica Marchesi, Michele Marchesi. In IEEE
Access, Volume 9, pp. 134240-134258, IEEE, 2021.

In International Conferences
“The ICO phenomenon and its relationships with ethereum smart contract environment”, G.
Fenu, L. Marchesi, M. Marchesi, R. Tonelli. In Proceeding of the 2018 International Workshop
on Blockchain Oriented Software Engineering, pp. 26-32, IEEE, 2018.

“An agile software engineering method to design blockchain applications”, M. Marchesi, L.
Marchesi and R. Tonelli. In Proceedings of the 14th Central and Eastern European Software
Engineering Conference Russia, pp. 1-8, 2018.

“Design patterns for gas optimization in Ethereum”, L. Marchesi, M. Marchesi, G. Destefanis,
G. Barabino, D. Tigano. In Proceeding of the 2020 International Workshop on Blockchain
Oriented Software Engineering, pp. 9-15, IEEE, 2020.

“Can the Blockchain Facilitate the Development of an Interport Community?”, P. Serra, G.
Fancello, R. Tonelli, L. Marchesi. In proceeding of the International Conference on
Computational Science and Its Applications, pp. 240-251, Springer Cham, 2021.

“Automatic Generation of Blockchain Agri-food Traceability Systems”, L. Marchesi, K.
Mannaro, R. Porcu. In Proceeding of the 2021 IEEE/ACM 4th International Workshop on
Emerging Trends in Software Engineering for Blockchain, WETSEB 2021, pp. 41–48, 9474795,
2021.

“Design Patterns for Smart Contract in Ethereum”, G. Destefanis, L. Marchesi. Published in
2021 IEEE Second Workshop on Blockchain-based Architectures (BlockArch), keynote speech,
2021.

“Software Engineering Practices applied to Blockchain Technology and Decentralized
Applications”, L. Marchesi. In proceeding of the Third Workshop on Blockchain-based
Architectures (BlockArch), keynote speech, 2022.

Chapter in Book
Chapter 12 - Blockchain technologies and IoT in What Every Engineer Should Know About the
Internet of Things, Taylor & Francis, 2021.

Submitted papers:
“A Blockchain Architecture for Industrial Applications”, Lodovica Marchesi, Michele Marchesi,
Roberto Tonelli, Maria Ilaria Lunesu. Submitted to Blockchain: Research and Applications,
Elsevier, 2021.

“Automatic generation of Ethereum-based Smart Contracts for Agri-Food Traceability System”,
L. Marchesi, K. Mannaro, M. Marchesi and R. Tonelli. Submitted to IEEE Access, 2022.

“Application prospects of Blockchain technology to support the development of interport
communities”, P. Serra, G. Fancello, R. Tonelli and L. Marchesi. Submitted to Computers, MDPI,
2022.

Arxiv:
“Security checklists for Ethereum smart contract development: patterns and best practices”, L.
Marchesi, M. Marchesi, L. Pompianu, R. Tonelli. arXiv preprint arXiv:2008.04761

Conferences
Attended the 27th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER2020), February 19-21 2020, London, Ontario, Canada.

Presented "Design Patterns for Gas Optimization in Ethereum" at 2020 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), February 18 2020, London,
Ontario, Canada.

Presented "ABCDE - Agile BlockChain dApp Engineering" in "Blockchain Permissioned, DEFI e
loro applicazioni" Seminar of DMI, February 24 2021, University of Cagliari, Cagliari, Italy.

Presented "Automatic Generation of Blockchain Agri-food Traceability Systems" in 2021
IEEE/ACM 4th International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), May 2021, online.

Attended the 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
May 17 2021 to June 4 2021, online.

Attended and student volunteer at 22nd International Conference on Agile Software
Development (XP2021), June 14-18 2021, online.

Presented “Can the Blockchain Facilitate the Development of an Interport Community?” at the
21st International Conference on Computational Science and Its Applications (ICCSA),
September 16 2021, online.

Invited as Keynote Speecher to present “Software Engineering Practices applied to Blockchain
Technology and Decentralized Applications” at the Third Workshop on Blockchain-based
Architectures (BlockArch), March 12 2022, online.

School and Seminaries:
LASER 2019 Summer School in “Artificial Intelligence, Machine Learning and Software
Engineering”, June 1-9 2019, Isola d’Elba, Italy.

BSEL 2019 Summer School in "Empirical Software Engineering", June 25-28 2019, Brunel
University, London, UK.

SILICIO: la storia e il futuro della tecnologia fra Robot e Esseri Viventi, Federico Faggin, October
2 2019, University of Cagliari, Cagliari, Italy.

CRIPTOVALUTE E BLOCKCHAIN: VERSO LE APPLICAZIONI REALI, October 2 2019, University of
Cagliari, Cagliari, Italy.

COMPLEXITY AND TOKEN ECONOMY, February 12 2020, University College London, London,
UK.

Python for Machine Learning Research course, M. Marras, December 2020, online.

Professional Agile Leadership - Essentials Training (PAL-E), Scrum.org, December 16-17 2021,
Paris, France.

1

0 Thesis Introduction
A few years after the introduction of Bitcoin in 2009, developers and businessmen

realized that a blockchain can be also used to run a decentralized computer. Ever since

blockchain software development is becoming more and more important for any modern

software developer and IT startup.

Due to the advantages that the implementation of such a system could provide, there has

been a huge development in the field of blockchain technology applied to various sectors.

Many companies and startups are already adopting, and working on blockchain technology,

trying to exploit the many advantages it promises, so we are experiencing a strong growth of

ideas and applications. Nonetheless, blockchain software production still lacks a disciplined,

organized, and mature development process, as demonstrated by the many and (in)famous

failures and frauds that occurred in recent years. The goal of my research is to study innovative

software engineering techniques applicable to the development of blockchain applications.

I decided to focus on the use of agile practices because these are suitable for developing

systems whose requirements are not fully understood from the beginning, or tend to change,

as is the case with most blockchain-based applications.

In particular, I contributed to the proposal of a method to guide software development,

called ABCDE, meaning Agile BlockChain Dapp Engineering. The method takes into account the

substantial difference between developing traditional software and developing smart

contracts and separates the two activities. It considers the software integration among the

blockchain components - smart contracts, libraries, data structures - and the off-chain

components, such as web or mobile applications, which altogether constitute a complete dApp

system. The proposed method also addresses specific activities for both security assessment

and gas optimization, two of the main issues of dApp development, through the systematic

use of patterns and checklists.

Agile methodologies aim to reduce software development risk using short iterations,

feature-driven development, continuous integration, testing automation, and other practices.

However, the risk of project failure or time and budget overruns is still a relevant problem.

Always with a view to developing innovative software engineering techniques, I studied and

developed a new approach to model some key risk factors in agile development, using

software process simulation modeling (SPSM). The approach includes modeling the agile

process, gathering data from the tool used for project management, and performing Monte

Carlo simulations of the process, to get insights into the expected time and effort to complete

the project, and their distributions. While the simulator hasn't been specifically applied to

blockchain projects yet, it has all the features to be able to do so; this will in fact be one of the

next objectives of my research.

In the context of the study of blockchain applications, I also proposed an evaluation

framework to compare public and permissioned blockchains, specifically suited for industrial

applications. Then, I presented a complete solution based on Ethereum to implement a

decentralized application, putting together in an original way components and patterns

already used and proved. This solution is characterized by a set of validator nodes running the

2

blockchain using Proof-of-Authority or similar efficient consensus algorithms, by the use of an

Explorer enabling users to check the blockchain state, and the source code of the Smart

Contracts running on it. From time to time, the hash digest of the last mined block is written

into a public blockchain to guarantee immutability. The right to send transactions is granted by

validator nodes to users by endowing them with the Ethers mined locally. Overall, the

proposed approach has the same transparency and immutability of a public blockchain, largely

reducing its drawbacks.

The key reason to use a blockchain is trust. There is a growing demand for transparency

across the agri-food supply chain from customers and governments. The adoption of

blockchain technology to enable secure traceability for the agri-food supply chain

management, provide information such as the provenance of a food product, and prevent

food fraud, is rapidly emerging, due to the inherent trust and inalterability provided by this

technology. However, developing correct smart contracts for these use cases is still more of a

challenge than it is for those executed in other fields. Numerous agri-food supply chain

management systems based on blockchain technology and smart contracts have been

proposed, all however ad-hoc for a specific product or production process and difficult to

generalize. For this reason, my research also focused on defining a novel approach for easily

customizing and composing general Ethereum-based smart contracts designed for the agri-

food industrial domain, to be able to reuse the code and modules and automate the process to

shorten the time of development, keeping it secure and trusted. Starting from the definition of

the real production process, I aimed to automatically generate both the smart contracts to

manage the system and the user interfaces to interact with them, thus producing a working

system in a semi-automated way.

Another kind of supply chain in which blockchain technology can be applied with

potential advantages is shipping logistics. Here, blockchain can be the solution to the problem

of distrust among players, as it does not rely on commercial third parties. It is also believed to

have the potential to positively affect maritime processes and accelerate the physical flow of

goods. Hence, with the support of SWOT (Strengths, Weaknesses, Opportunities, Threats)

analysis, I explored the application prospects and the practical impacts, benefits, pros and

cons, and economic and technical barriers related to the implementation of Blockchain

technology to support the creation of an interport community.

Finally, I decided to include in this thesis, albeit marginally, a research not focused on

software engineering, but which still concerns the blockchain phenomenon, in particular

cryptocurrencies. This is an important topic also considering the context of blockchain

application funding. The work deals with the study of techniques for the forecasting of time

series, in particular, to forecast daily closing price series of Bitcoin, Litecoin, and Ethereum

cryptocurrencies, using data on prices and volumes of prior days. Cryptocurrencies' price

behavior presents new opportunities for researchers and economists to highlight similarities

and differences with standard financial prices. I followed different approaches in parallel,

implementing both statistical techniques and machine learning algorithms, comparing my

results with different benchmarks. The models perform well also in terms of time complexity

and provide overall results better than those obtained in the benchmark studies, improving

the state-of-the-art.

3

0.1 Main contributions
The main contributions of this thesis can be summarized by the following list:

1. The development of the ABCDE method which, to my knowledge, is the first attempt

to develop a systematic process for dApp development, from requirement gathering to

design, coding, security assurance, and deployment. The proposed method is presently

focused on the Ethereum blockchain and its Solidity language, which are at the current

time the most used to develop dApps. However, it can be adapted to other

environments.

2. The provision of security assessment checklists for the design, coding, and testing

phases that can be easily used for the development of SCs, in the realm of Ethereum

and Solidity.

3. The provision of patterns and advice to solve or mitigate the problems arising from the

gas mechanism. To ease their usage, the patterns have been organized into categories

based on their characteristics.

4. The development of a flexible and extensible ASD simulator, able to simulate virtually

every Agile development process, based on incremental development. This simulator

models most aspects of ASD - team members, USs, activities, events - and can be easily

extended and customized, due to the full object-oriented approach used for its

development.

5. The development of a risk management model, considering team factors, requirement

correctness, and effort estimation. The input data, parameters, and events, as well as

the relevant output distributions, are analyzed and discussed.

6. The proposal of a new framework for choosing the blockchain architecture most suited

to a specific application, and its use to justify and propose an architecture for

managing consortium blockchains, which retains all the positive characteristics of

public blockchains, but largely reduces their drawbacks regarding scalability, privacy,

cost, and efficiency.

7. A formalization of the typical permissioned architecture, explaining the characteristics

it must have to have a transparency and strength almost equal to that of a public

blockchain. Precisely, the permissioned blockchain must be periodically anchored to a

public blockchain (which is a tool already used, especially in distributed data storage

solutions), and at the same time, an explorer able to explore the blockchain

independently from the provided apps must be provided.

8. For blockchains based on the gas mechanism, a further contribution is to use gas

(Ether or another cryptocurrency of that specific blockchain) to enable writing only for

authorized actors. The idea is: instead of giving permissions depending on your login

authorization, you are enabled because you have gas available. This is useful because

since gas is limited, it also allows to dynamically manage the write permissions.

9. The development of a system to automatically develop custom dApps for the agri-food

supply chain, by building configurable SCs to be assembled together. This helps the

developers in creating higher-quality SCs because the SCs which are configured for a

specific system are already proven and debugged. Secondly, it can help reducing

development time, because systems are generated by compiling a description of the

system given as tables of data. Thirdly, this approach makes food safety compliance

4

easy and significantly cuts down on paperwork for the actors in the agri-food supply

chain.

10. The exploration of the practical implications and impacts of the application of

Blockchain technology for the establishment of an interport community.

11. The study and development of algorithms to forecast the daily closing price series of

Bitcoin, Litecoin, and Ethereum cryptocurrencies, using data on prices and volumes of

prior days. The models perform well also in terms of time complexity and provide

overall results better than those obtained in the benchmark studies, improving the

state-of-the-art.

0.2 Outline
To ease the reading of this thesis I divided it into four parts, in particular, the thesis is

organized as follows.

Part I (pg. 5) describes blockchain technology, clarifying its key concept and its evolution

over time into the ideal environment to run Smart Contracts. It also provides the essential

notions to understand the functioning of a dApp, meaning a software system that uses DLT, in

this case a blockchain, as a central hub to store and exchange information. These concepts are

essential to understand the work carried out in this thesis.

Part II (pg. 25) focuses on the study and development of innovative software engineering

techniques for blockchain applications. In particular, it first presents the ABCDE method I

developed together with my research group. Particular emphasis was given to the sections

concerning security assessment and gas saving. Then, it presents and discusses a way for

assessing the risk of software development in agile methodologies using simulation.

Part III (pg. 102) focuses on blockchain applications. Firstly, it formalizes an analysis of the

characteristics of a permissioned blockchain, in order to have the same benefits of a public

blockchain reducing its disadvantages, providing an evaluation framework. Then, it presents

two possible applications of blockchain technology, in the agri-food supply chain domain and

in an interport community network. The former includes a novel approach for easily

customizing and composing general Ethereum-based smart contracts designed for the agri-

food industrial domain, to be able to reuse the code and modules and automate the process to

shorten the time of development, keeping it secure and trusted. The latter focuses on the

study of the application prospects and practical implications of the application of Blockchain

technology for the establishment of an interport community, through a SWOT analysis.

Part IV (pg. 162) presents a work to forecast the daily closing price series of Bitcoin, Litecoin

and Ethereum cryptocurrencies, using data on prices and volumes of prior days. In particular, it

follows different approaches in parallel, implementing both statistical techniques: the Simple

Linear Regression (SLR) model for uni-variate series forecast using only closing prices, and the

Multiple Linear Regression (MLR) model for multivariate series using both price and volume

data; and machine learning algorithms: Multilayer Perceptron (MLP) and Long short-term

memory (LSTM).

5

Part I

Blockchain technologies:

definitions and characteristics

6

1 Introduction
The purpose of Part I is the definition and characterization of blockchain technology in its

general aspects. To this end, the section begins with a detailed exposition of the principles and

operating technology of the first blockchain, that of Bitcoin. Even if this blockchain does not have

many "industrial" applications, it is in it that most of the operating principles of this technology

have been introduced. For this reason, I believe that knowing the first and paradigmatic

blockchain is important for understanding the subsequent evolutions of this technology, which

affects industrial applications in practice.

I will also present the concepts of Smart Contracts and Decentralized Applications, which

are essential to understanding the work carried out in this thesis. To do that, I focus on the

Ethereum blockchain, which is the first and presently still the most used blockchain to develop

smart contracts on public blockchains.

1.1 Cryptocurrencies phenomenon
The first cryptocurrency, Bitcoin (BTC), was introduced in 2009 and, after a couple of years

of quiet operation, made a successful outcome. Initially, the phenomenon was surrounded by

an aura of secrecy and illegality due to the high level of anonymity guaranteed. Subsequently,

Bitcoin was characterized as a means of making payments quickly and cheaply, and as a possible

safe haven currency: it is called digital gold because it is issued in limited quantities and

therefore cannot be inflated.

Unlike any other form of digital money, such as online transfers or debit cards, the Bitcoin

system is not based on a central intermediary, but is totally decentralized on the Internet, and

therefore on a global network. Bitcoin transactions are activated anonymously, because Bitcoin

holders are identified by totally anonymous addresses. However, the flow of Bitcoin between

one address and another is totally open and traceable, because the database of all transactions,

the Blockchain, is public. We are therefore in the presence of a totally new approach compared

to the traditional ones, both from the point of view of finance and technology.

The price of a Bitcoin, initially zero, reached a speculative peak at around 1200 US $ at the

end of 2013, and then declined, stabilizing in a range between 200 and 300 US $ for most of

2015. Starting from November 2015, the price recorded a slow but gradual increase until 2017.

On 17 December 2017, a new record was recorded, reaching the value of US $ 20,000 per

Bitcoin. The value then plummeted rapidly, dropping below $ 8,000 in February 2018 and

stabilizing at around $ 6,000 for the rest of 2018. Since 2019, the value has fluctuated from a

low of around $ 3,500 in January to over $ 40,000 in December 2020. On February 8, 2021, after

Tesla's purchase of $ 1.5b in Bitcoin, it exceeded the token value of $ 50,000. As of today, April

2022, it is hovering around US $ 46,000. With these prices, the total capitalization of Bitcoins

exceeds US $ 1 trillion, and is therefore sufficient to support strong exchange flows and to

guarantee the sustainability of the system even in the long term.

In 2015, Ethereum also established itself as a second-generation cryptocurrency, oriented

not so much to provide a store of value, but a tool for carrying out Smart Contracts: contracts

executed through software programs and guaranteed not by central authorities, but by

7

cryptography and by Blockchain technology. The cryptocurrency of Ethereum, called Ether (ETH)

had a stable value of around 10 US $ until 2017, the year in which it had a very strong increase

in value, hitting a peak of US $ 1,261 in January 2018. Then, it fell again, with lows on April 2018

(around US $ 700), June 2019 (around US $ 300), February 2020 (around US $ 200) and

December 2020 (around US $ 600). Rising in 2021, Ethereum soared to new heights in November

2021, reaching over 4,800 U.S. dollars. As of today, April 2022, its capitalization has reached

around US $ 400 billion.

The last few years have seen a huge interest in the cryptocurrency phenomenon by

companies, financial institutions and public bodies. The business opportunities linked to the

financial phenomenon of cryptocurrencies are of interest, but above all are of interest the

opportunities linked to the technology of the Blockchain, seen as an innovative way of managing

certifications and contracts automatically, quickly and without intermediaries. In the world,

many conferences have been held on the applications of cryptocurrencies and Blockchain

technology to the financial sector, public administration, the Internet of Things, healthcare and

many other sectors.

The number of daily Bitcoin transactions fluctuates between 300,000 and 400,000, which

corresponds to almost the current limit of the network, which can validate at most about 4-5

transactions per second. Initiatives are underway to overcome this limit, in particular by

executing minor transactions, which are the vast majority, outside the Blockchain. Today there

are more and more companies worldwide that accept payments in Bitcoin, through services such

as Coinbase and BitPay.

Finally, there are numerous investments by "Venture capital" in startups operating on

Bitcoin and Blockchain, in 2013 investments were made for 93.8 million US $, in 2014 they

reached 315 million US $, and in 2015 490 million US $. During 2017, a new peak was recorded,

mainly triggered by the phenomenon of Initial Coin Offers (ICO), a fundraising mechanism using

blockchain technology, which allows to accept cryptocurrencies in exchange for a token that can

be sold in future on the secondary market or used to purchase services or products. The

enthusiasm for this new idea, the constantly rising prices and profits and the FOMO (Fear Of

Missing Out) have meant that many billions of dollars were poured into tokens, even exceeding

venture capital investments in high-tech initiatives in the same period. In early 2018, the bubble

deflated, with the global capitalization of digital currencies going from more than $ 800 billion

on January 7, 2018 to about $ 115 billion in February 2019. Over the next few years, however,

the renewed interest in digital currencies has pushed their global market capitalization to ever-

increasing levels, as noted above, to well over $ 2 trillion during 2021.

1.2 The enabling technologies
Cryptocurrencies are primarily based on asymmetric cryptography and hash fingerprints.

The former guarantees that the possession of the private key of a key pair is unique and cannot

be falsified. In this way, possession of the currency, or the authenticity of a contractual

counterparty, is guaranteed. The latter guarantees the inalterability of the information, in this

case of the register of all transactions. In both cases, these are “strong” technologies, which

guarantee the reliability of the information on a mathematical basis. The probability of being

8

able to violate these technologies is not zero but it is an extremely low number, of the order of

one divided by a number of about 80 decimal digits, and therefore practically zero.

Another technology on which cryptocurrencies are based is the Internet and peer-to-peer

(P2P) computing between nodes. In practice, they are based on a network of tens of thousands

of interconnected nodes which allow the system to function. Anyone can download the open-

source software, connect to the network and contribute to its functioning. This system works

without the presence of one or more nodes that control the others. In this way, there are no

central authorities and single points of failure of the system. Everything works fine as long as

the number of connected nodes exceeds a certain threshold (roughly equal to a few hundred).

The incentive to keep the nodes connected and to carry out the necessary calculations for the

functioning of the system is given by the activity of mining, which allows you to earn new

Bitcoins, or in general new cryptocurrency, in exchange.

1.2.1 Cryptography
The term Cryptography refers to the techniques used to encode and decode a document,

so as to be able to transmit the encoding on an "insecure" channel, that is subject to

interception, without the person intercepting the document being able to decode its content.

Suppose you want to encode a file D, made up of a sequence of bits, then a number. This

is modified using a key K, or another sequence of bits, typically 256, and a known algorithm C (f,

k). The result of the processing is another file E = C (D, K), which contains the information of file

D, but encoded in such a way as to be unreadable.

Starting from E it is possible to regenerate file D, using a decoding key H, consisting of

another sequence of bits derived from K, and a decoding algorithm C-1 (f, k). In this way we will

have D = C-1 (E, H).

1.2.1.1 Asymmetric Encryption

The main cryptographic tool used in the Blockchain is asymmetric cryptography, which aims

to uniquely and robustly identify the holder of the authorization to operate on a public address

associated with a currency or a contract. Only the user who owns the secret private key can in

fact operate on that address.

Asymmetric cryptography was created with the aim of encoding a document with the

public key K, sending the encryption even through an insecure channel, and regenerating the

original document with the private key H. Since H cannot be traced back from K, the decryption

cannot be done even knowing the original document, K, and the encoded document. However,

with asymmetric cryptography it is also possible to reverse the use of keys, encrypting a

document with the private key H, and decrypting it with the public key K. Since only the person

who generated H can know this key, decryption with the public key of a well-known document

encoded with H, guarantees that the “signer” of the document is the one who knows H. This is

also the mechanism of the digital signature.

In elliptical asymmetric cryptography, the two keys K and H have the following properties:

9

• Known H (private key), one can easily generate K (public key) from it, but not vice versa:

known K, one can find H only by trial and error, trying all possible combinations of H.

• When E is known, D cannot be decoded unless we know H.

• To find H, you have to try again by trial and error, trying all possible combinations.

In particular, Bitcoin and other cryptocurrencies use the ECDSA (Elliptic Curve Digital

Signature Algorithm) with the secp256k1 curve, which uses private keys of 256 bits (32 Bytes) of

random data.

Figure 1 schematises the process of transmitting encrypted files between two or more

users, through the method of asymmetric encryption.

Figure 1. Typical use of asymmetric cryptography

1.2.2 Hash Footprints
Another fundamental technology used in the context of cryptocurrencies is the hash

imprint. In mathematical and computer language, a hash function H (n) is a non-injective, and

therefore non-invertible, function that maps a string of arbitrary length, n, into a string of

predefined length.

The algorithm processes any amount of bits and meets the following requirements:

• H (x) is very different from H (y), even if x and y differ very little (even one bit). In

practice, having a document hash guarantees that it has not been modified (otherwise

it would produce another hash)

• If x is a document, it is virtually impossible to alter it so that the altered document has

the same hash value as the original

• Once x is known, it is quick and easy to calculate H (x), but once H (x) is known, x can

only be found by trial and error (trying all possible combinations)

Example: Suppose we want to encode the two strings "ELLIPTICAL" and "ELLIPTICAM",

using the 256-bit hash algorithm SHA-2 (Secure Hash Algorithm 2), standard NIST (National

10

Institute of Standards and Technology). It is observed that although the two strings differ from

each other by only one bit, their respective hashes are totally different.

• echo ELLIPTICAL | sha256sum

1b3fa0958b29fc66f2a0047b0b6d686baf15367388e2529fa5107d8da5274dfd

• echo ELLIPTICAM | sha256sum

48406940107944f8c45b252dc3016fa66b1a878fbfa8b522b739079cd5097326

1.2.3 The digital signature
Modern asymmetric cryptography was born to securely transmit information over

computer networks, while hash functions were born for file management. The set of the two

techniques is used to implement the digital signature (FD).

Three needs that the digital signature aims to satisfy are:

• guarantees that the signer of a digital document (a file) is the owner of the FD

(authentication)

• guarantees that the document has not been altered after signing (integrity)

• prevents repudiation of the signature by the signatory (non-repudiation)

The use of the digital signature requires that there is a guarantor and custodian of the

signature. The two fundamental elements of a signature scheme created with the dual-key

cryptography system are the signature algorithm and the verification algorithm. The signature

algorithm creates an electronic signature that depends on the user's key and the content of the

document to which it must be attached. A pair (document, signature) represents a signed

document, that is, a document to which a signature has been attached. Blockchain technology

allows both to prove date and not modification of a document (by writing the hash imprint on

the blockchain), and to prove the identity of whoever sent a transaction to the blockchain

(through possession of the private key associated with the address of sending, which in turn can

be associated with an identity).

1.3 The IT bases of cryptocurrencies
Cryptocurrencies can only exist thanks to the Internet. In fact, they require the real-time

transmission of transactions on the network, and also require the connection of many hundreds

/ thousands of nodes that contain the transaction validation register, the Blockchain. These

nodes are connected to each other in peer-to-peer mode, without any centralized control: it can

be said that the network is the cryptocurrency itself.

The nodes run open-source software developed by a community (or company), which is

typically very sophisticated. It includes:

• specific data structures for the efficient storage and retrieval of information;

11

• data exchange protocols on the peer-to-peer network;

• the ability to carry out transactions, verifying their consistency with the aforementioned

cryptographic techniques;

• the ability to validate blocks of transactions, in competition with the other nodes of the

network (mining);

• the ability to execute a language associated with transactions, the basis for smart

contracts.

1.4 Characteristics of the Blockchain technology
The fundamental enabling technology of Bitcoin and cryptocurrencies is the "Blockchain".

The Blockchain is a distributed, shared database whose past history is unalterable. A public

BC is based on the P2P system outlined above and is open to anyone who wants to contribute

to its operation by installing a copy of it on their PC. It is equipped with mechanisms to reach

consensus among all nodes on the information to be stored, so that no one can take control of

it, not even generating a mass of fictitious nodes. This is achieved at the expense of a high

computational cost, which is paid for by mining. The security of the BC technology is such that,

even if only one copy of the BC remained, it could start again from that copy; furthermore, if

one wanted to alter the past history of this single copy, this would still require a prohibitive

number of calculations.

The main features of this technology are:

1. Distribution: information is stored on multiple nodes, giving resilience and security.

2. Disintermediation: transactions are managed without intermediaries and without a

central management authority.

3. Transparency: all transactions are stored unalterably and in clear text. For each

transaction you know the amount in Bitcoins and the addresses from which they are withdrawn

and to which the transfer goes. In this way, a complete tracking of Bitcoin transfer flows from

one address to another is possible.

4. Anonymity: in the Bitcoin system, the holders of the funds are identified only by an

anonymous address, to which the private key is associated. Thus, while the flow of Bitcoin from

one address to another is completely transparent, the holders of the funds remain anonymous.

5. Double spending protection: if you try to spend the same funds more than once, only

the first verified transaction is accepted, and the others are rejected.

6. Immutability / Non-repudiation: once a transaction has been sent and accepted, it

cannot be canceled for any reason.

7. Security: the transaction can only be activated by knowing the private key relating to the

withdrawal address of the funds. If this key is lost, the related funds are lost forever.

12

8. Programmability: complex actions can be programmed, called Smart Contracts (SC),

which are also fully verifiable and can be activated by multiple parties involved (with their

respective private keys). Ethereum is the currency that offers the most functionality, but SCs are

also possible with Bitcoin.

9. “Notarial” storage: it is possible to use special transactions to store information on the

Blockchain. This information (usually limited to a few tens of Bytes per transaction) is used to

certify the existence and integrity of a document, or set of documents, at a certain date. There

are initiatives such as Hyperledger (in which Accenture, Fujitsu, Hitachi, IBM, Intel, JP Morgan

participate among others), Microsoft's Blockchain-as-a-Service, Factom inc., Which aim to

create even complex document certification systems, based on the Blockchain.

1.5 The fundamentals
In this section I will present the fundamental concepts of blockchain technology: addresses,

blocks, transaction and consensus. In particular, I will refer to the Bitcoin blockchain since it is

the first and best known, but these concepts are also similar for all other blockchains.

1.5.1 Addresses
A Bitcoin address is a number associated with a private-public key pair. It is the public part

of all Bitcoin transfers. The Bitcoin Blockchain stores all Bitcoin transfers to and from various

addresses in clear text.

An address is generated from the public key so that:

• it corresponds to a single public key;

• given the address, it is not possible to know the public key; this is because the explicit

knowledge of this key could in the future make the system more vulnerable, perhaps in

the presence of quantum computers capable of attacking the currently used

cryptography;

• it contains checks in order to recognize any typing errors (as with the tax code).

When transferring the Bitcoins associated with one address to another address, the public

key of the first must be revealed. The procedure for generating a new Bitcoin address is as

follows:

1. a random number d (private key) of 256 bits is generated;

2. the public key B is generated starting from d and from the standard elliptic curve

secp256k1;

3. starting from B, the Bitcoin address A is generated with a complex procedure, described

later;

4. a Bitcoin address has about 195 bits, and is represented with 30-34 alphanumeric

characters (BASE58 representation) always starting with a “1”.

13

Given an address A, only the owner of the key d can generate B from it, and from B generate

A.

The detailed steps to generate a Bitcoin address A from the public key B are:

1. Calculation of the RIPEMD160 hash of the SHA256 hash of B:

Hash := RIPEMD160 (SHA256 (B))

2. Add a byte (address version) at the head of the hash:

Ha := b.hash with b equal to:

0x05 (00000101) for the main net (Bitcoin)

0xc4 (11000100) for the net test

3. Calculation of the SHA256 hash of the SHA256 hash of ha:

Hh := SHA256 (SHA256 (ha))

4. Extract the first 4 bytes of hh, to be used as checksum (cs):

Cs := First4Bytes (hh)

5. We concatenate b, hash and cs (8 + 160 + 32 = 200 bits):

A := BASE58 (b.hash.cs)

A BASE58 string is generated by encoding a number (a sequence of bits) in base 58, using

the following 58 alphanumeric characters as digits from 0 to 57:

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

Note that the "ambiguous" characters are missing: 0, O, I, l

Examples of Bitcoin addresses:

 1NdNaNG1K9eDW5jfMDmT1biyih5micPsGE

 1yQ3KkhfhQCMABZkZxTdjAC2nGFUxoDcR

Figure 2 graphically shows the generation of a Bitcoin address. The "paranoid" procedure

of calculating A starting from B with 4 successive hashings is used to:

• prevent key B from being made public because it could be attacked with quantum

computers in the future;

• insert a "checksum" that verifies whether the address has been entered incorrectly: in

this case, the software does not make payments to this address;

When the Bitcoins associated with an address are spent, the public key B is made known in

the BC, and thus it becomes more vulnerable. For this reason, some recommend changing the

14

address at each transaction, if it has to pay a "change" to an address of the person who activated

it.

Figure 2 Generation of a bitcoin address

1.5.2 Blocks
The Blockchain is made up of an ordered sequence of blocks. These blocks contain the

validated transactions, which in turn contain the Bitcoin transfers from one address to another,

as well as the payment of the block validation reward to the address of the miner who validated

it.

A block is made up of a header and all its transactions. A block header contains the

following data:

• Date and time

• Number of transactions contained in the block

• Nonce (a 32-bit integer)

• Block hash

• Hash of the previous block

• Merkle tree hash containing the transactions

A Merkle tree is an efficient data structure to verify by hash that the transactions were not

altered.

The Blockchain is a sequence of blocks, each with a hash to ensure its inalterability. Each

block also incorporates the hash of the previous block, thus "hooking" the blocks together and

creating a "chain". If a block of the Blockchain were altered, the hash would also be altered, and

therefore to preserve the integrity of the Blockchain it would also be necessary to modify all

subsequent blocks. Since the computation of the hash of a block is very expensive

computationally, such a "forgery" is practically impossible, and this is one of the main

advantages of the Blockchain. Figure 3 shows a simplified representation of the Bitcoin

Blockchain.

15

Figure 3 Simplified schematic of the Bitcoin Blockchain.

1.5.3 Transactions
The purpose of a transaction is to register the transfer of Bitcoins from one or more

addresses to one or more other addresses in the Blockchain. Each transaction has a hash that

uniquely identifies it, also called its "id". A transaction has one or more inputs, and one or more

outputs, although there are exceptions to this rule. The inputs are the outputs of previous

transactions not yet spent (UTXO, Unspent Transaction Output). Each input contains an address,

the hash (id) of the transaction that transferred the Bitcoins to the address, and the amount

transferred in that transaction (in Satoshi, that is 100 millionth of a Bitcoin). All this information

is verifiable because it is already contained in the Blockchain. In output there are one or more

addresses, with the amount (in Satoshi) to be transferred for each address. Typically, the sum of

all Satoshis in input to the transaction is greater than the sum of those in output. The difference

between input and output goes to the miner who validates the block as a "fee”, and which is

therefore added to the fixed fee in Bitcoin given to miners for validation. If the commission for

the miners is zero, or too low, the transaction, while valid, may not be accepted, or its validation

may be delayed a long time.

Transactions, once entered in the BC, are irrevocable. The Bitcoin protocol does not provide

for any way to cancel a verified and recorded transaction. For a transaction to be valid, it is

necessary that:

• All its inputs must be "signed" by the private keys associated with their addresses.

• None of the inputs must have already appeared as inputs in another transaction

(“double spending” is not possible).

• The addresses of the outputs must be valid.

• The sum of the input amounts must be greater than or equal to that of the output

amounts.

The inputs of a transaction are unspent outputs (UTXO) of a previous transaction. These

inputs must all be spent 100% within the transaction.

16

If you want to transfer only part of the input to the output, you need to add a further output

that transfers the "change" to an address controlled by whoever carries out the transaction

itself. This address can be the one (or one of those) of input, but usually a new address is

generated, for security and privacy reasons. Figure 4 schematically shows the relationships

between inputs and outputs of a group of related transactions.

Figure 4 A sequence of linked Bitcoin transactions.

In each block, the first transaction called Generation Transaction, but often called itself

"Coinbase") has a "dummy" input, called "Coinbase". Its output is the address of the miner who

validated the block and is therefore a transaction entered by the miner itself.

Coinbase transfers a fixed amount of Bitcoin to the output as a "reward" for validation, plus

the commissions (fees) coming from the transactions of the block. This fixed amount, initially 50

Bitcoins, halves every four years. As of December 2021, it is 6.25 Bitcoins.

The Bitcoin protocol also provides for more complex transactions than simply transferring

currency. These transactions allow the execution of scripts whose success is linked to the

validation of the entire transaction; we will see them in more detail in the section on Smart

Contracts. Among these, the simplest transaction is the “OP_RETURN” type transaction. It has

no output, and sends all Bitcoin inputs to the miner. It is used to record information (equal to

80 bytes) within the transaction itself.

17

The most obvious form of attack on the Bitcoin system is "Double Spending". It is an

attempt to spend two or more times the output of a transaction, thus "multiplying" one's

Bitcoins.

The protocol protects itself from this attack by considering valid only the first transaction

that spends the output and that is recorded in the Blockchain. In doing so, the problem is solved

in a decentralized way, without the need for a central authority to decide which transaction is

the valid one.

1.5.4 Consensus
One of the fundamental points for the proper functioning of the Blockchain and to obtain

the necessary trust from users is that of the consent mechanism used to decide whether or not

to insert information in the Blockchain.

Since the Blockchain is based on a distributed approach, without any central authority

responsible for making decisions, a voting mechanism is needed by the nodes to make the

decisions, and therefore to arrive at consensus. The Bitcoin Blockchain uses this mechanism to

decide which blocks to insert into it. Other Blockchains can make decisions at different levels of

granularity, for example to decide which transactions to enter.

In general, the consent mechanism must be:

• Agreement Seeking: all honest participants must agree on the solution.

• Collaborative: all participants work together on the result, placing the interest of the

group before the individual one.

• Egalitarian: all votes have the same weight.

• Inclusive: as many participants as possible should be involved in the process.

• Participatory: anyone who intends to do so must be able to participate in the process

of reaching consensus.

There are various possible ways to arrive at a consensus among the nodes of which block

or information to insert into the Blockchain. All are designed to prevent a malicious party from

taking control of the validation, thus destroying the trust and ultimately the usefulness of the

Blockchain. The main ones are listed and briefly described below.

Proof of Work is the mechanism of Bitcoin and most cryptocurrencies. In it, nodes compete

to solve a computationally complex problem, such as computing a hash that starts with a given

number of zeros, varying the nonce, and other irrelevant information in the block. The first node

that manages to solve the problem communicates it to the others, and consensus is reached.

This method has proved very robust, and prevents Sybil Attack, which would be too expensive.

A Sybil Attack consists of adding a large number of nodes controlled by the attacker to the

network, thus taking control of it. Its main disadvantage is the very high consumption of

hardware resources and electricity.

18

Proof of Stake In this approach, block validation is assigned to nodes in proportion to the

amount of cryptocurrency owned by them, in a probabilistic way. Thus, the computational cost

is negligible. The idea is that those who have an interest (stake) to protect due to their

involvement in the network will not carry out destructive actions against it. The main

disadvantage is that any reward for validating the block tends to go to those who already have

a lot of wealth, triggering “rich-get-richer” phenomena.

Proof of Importance similar to Proof of Stake, but in addition to the amount of

cryptocurrency, the number of transactions made and received by the validator is also taken

into consideration, and therefore the importance and contribution given to the network by it.

Proof of Burn with this method, block validation rights are obtained by "burning" the

cryptocurrency owned. This is typically achieved by transferring it to an address generated so as

not to know its private key. This cost clearly makes Sybil Attack unlikely. The method is not

widely used. The Counterparty network used it as a “boostrap” mechanism to assign participants

the initial amount of cryptocurrency generated.

Deposit based consensus in this approach, currency must be deposited to participate in the

validation. If a transaction validated by a node is rejected by the others, the node loses its

"deposit".

Byzantine fault tolerant this approach applies to private Blockchains, in which participants

are invited, and it is reasonable to think that only a minority of them can become hostile.

Consensus is achieved by a transaction voting mechanism. When a given number of votes among

participants is exceeded, the relative decision to accept or reject the transaction is made.

Federated Byzantine Agreement also in this approach the participants are invited. Each

node keeps a list of other nodes it trusts. A node votes if it is certain of the decision, or if the

majority of trusted nodes make a decision. The Stellar system uses this form of consent.

1.6 Ethereum and Smart Contracts
One of the fundamental properties of the Blockchain is that it can be the basis for Smart

Contracts. They were introduced by Ethereum in 2015, introducing a Blockchain and a low-level

language, along with various high-level and effectively usable languages, among them I mention

Solidity, Vyper and Yul, to code and execute Smart Contracts.

Smart Contracts are automated contracts, in which participants prove their identity and

approval of the contract with their private key. Many of the major cryptocurrencies are able to

carry out Smart Contracts, with different levels of sophistication. The concept of Smart Contract

is older than the blockchain, because its definition was proposed by Nick Szabo in 1994. By the

way, Szabo is one of the main suspects of being Satoshi Nakamoto, the anonymous inventor of

Bitcoin. According to Szabo’s definition:

“A Smart Contract is a computerized protocol for executing transactions, which executes

the terms of a contract. The general objectives of a Smart Contract are such as the usual

contractual conditions (such as payment terms, rights, confidentiality, and even enforcement),

to minimize both intentional and accidental exceptions, and to minimize the need for trusted

19

intermediaries is minimal. Other economic objectives include the reduction of costs due to fraud,

arbitration and enforcement costs, and other transaction costs”.

A Smart Contract is basically a program, which runs on a secure medium (trusted) and is in

turn secure. It takes digital signatures of participants, and other information, from secure

sources as input. In output, it transfers cryptocurrency imports, can actively activate other SCs,

record information or signal changes to external systems. SCs also often have a user interface

that emulates the jargon and logic of contract clauses. Since the execution of a software program

is deterministic and immutable, with the same input and state of the program, the code can be

considered a contract. Once the contractual clauses are inserted into the code of a SC, and this

is accepted by the contractors, the effects are no longer linked to their will or to the action of

intermediaries. Obviously, precise guarantees are needed:

• the code must have no errors, must be executed correctly and must not be modified;

• the inputs to the code must have secure and identifying sources;

• the code outputs must achieve the desired effects.

In other words, there must be a mechanism that guarantees the trust that the contractors

place in the smart contract. At this point the Blockchain comes into play: it provides all the

aforementioned guarantees, without the need for a central authority. Since the first versions of

the implementation of the Bitcoin Blockchain, it was equipped with a real programming

language, albeit at the assembler level.

The Bitcoin transaction, which involves the transfer of cryptocurrency from one or more

inputs to one or more outputs, is in fact carried out by executing code written in this language,

which takes care to verify the authenticity of the private keys in possession of who carries out

the transaction. However, the language of Bitcoin is limited, does not involve decision points or

cycles, and is therefore not Turing-complete.

Figure 5 schematically shows in the lower part the conditions and the preparation of a

Smart Contract, and in the upper part its execution on a Blockchain.

A Smart Contract is a program that is created with a specific transaction; it knows the

address from which the creation starts, has its own address that serves to identify it and has

public functions, which can be called from the outside that implement the functions.

The creation and modification of the data of a SC cost "GAS", and therefore Ethers. If public

functions of the SC are "read only", they cost nothing and the call is not registered; if they can

modify the BC, the call is made with a transaction, which costs GAS, which is given to the miners.

The use of the gas mechanism in Ethereum, which I will detail in the next subsection,

ensures that a contract always terminates, even if the corresponding program enters an infinite

loop due to an error. In this way, you are also protected from Denial of Service (DOS) attacks,

which would cost the attacker too much.

20

Figure 5 The preparation and execution of a Smart Contract on a Blockchain.

1.7 Smart Contract Characteristics
A Smart Contract should be:

• deterministic: given the same input it must always provide the same output. To

this purpose, it must not call non-deterministic functions, and it must not use

non-deterministic data resources;

• terminable: by definition the SC must be able to finish within a certain time

limit. To ensure this, there are several methods: use a timer, so if the execution

lasts more than a given time limit it is externally interrupted; use incomplete

Turing blockchains, which are not allowed to enter infinite cycles, like Bitcoin

blockchain [1] [2] [3]; use the step meter method, in which a program is

interrupted once a certain number of steps have been completed; or charge a

cost to each operation and interrupt the execution if the prepaid commission

has been reached. The last one is the case of Ethereum;

• isolated: each contract must be kept isolated to avoid corrupting the entire

system in the event of a virus or bug;

• immutable: once deployed on the blockchain, a SC cannot be changed.

However, it can be disabled forever. This property, together with the ability to

publish the source code of the SC, guarantees the highest level of transparency

and trust.

1.8 Ethereum Virtual Machine and Gas Mechanism
The Ethereum Virtual Machine (EVM) is the virtual machine on which all SCs work in

Ethereum. It is based on 256 bits words, and is Turing Complete. It is simple but powerful. All

SCs are sets of bytecode instructions, which are executed in sequence. However, the bytecode

allows jumps, thus enabling a Turing complete behaviour.

21

In Solidity, when a SC is compiled, it is converted into a sequence of “operation codes”, also

known as opcodes. These are identified by abbreviations, for example ADD for addition, MUL

for multiplication, etc. All the opcodes and their description are available in the so-called

Ethereum yellow paper [4], the document which first described this system. Each opcode has a

predetermined amount of gas assigned to it, which is a measure of the computational effort

required to perform that particular operation. Bytecodes are similar to opcodes but are

represented by hexadecimal numbers. The EVM executes bytecodes.

Table 1 Gas costs in Ethereum.

Operation Gas Description

ADD/SUB 3 Arithmetic operation

JUMP 8 Unconditional Jump

SSTORE 5000/20000 Storage operation

BALANCE 400 Get balance of an account

CALL 25000 Create a new account

CREATE 32000 Create a new account

Table 1 [4] [5] shows the amount of fee (gas) due for the various operations in Ethereum;

in the yellow paper, specifically in the appendix g, a complete table is available. For example,

applying the blockhash operation requires 20 gas units, while the ADD operation requires 3 gas

units. Is worth noting that a SC consists of numerous operations, and some of them consume

much more than a simple arithmetic operation.

The gas is therefore a fee for the execution of a computation, paid by who sends the

transaction that triggers the computation.

By default, the minimum amount of gas for an operation that affects the state of the EVM,

is 21000 gas. For example, this is the amount required to send Ethers from one account to

another. To execute a function of a SC this amount will be 21000 gas plus the gas needed to

perform each of the required opcodes. An exception to this behavior is when the called function

is read-only and simple. Such a function is called a view function, and its execution is free and

immediate, because it does not change the state of the EVM. So, calling a _view_ function within

a Call in a local node does not cost gas, while calling the same function from a deployed SC within

a Transaction costs gas.

Before performing an operation, the user sets a gas limit, which corresponds to the

maximum amount of gas that he/she wants to pay. If the gas actually required by the operations

overcomes the gas limit, that operation will be aborted, each change will be rolled-back, but all

the gas will be spent and therefore lost. If the user sets a gas limit higher than the one required,

the operation will be carried out, and only the used gas will be spent. It is almost impossible for

a user to know in advance how much gas a transaction will exactly require. However, it is not

wise to set a gas limit too large, because in the case of a bug or error in the SC, there is a risk of

exceeding this limit and losing all the gas.

The total fee actually paid, is equal to the total gas used multiplied by the "gas price". The

gas price is not fixed but set by the user. Miners prefer transactions with higher fees;

transactions whose fees are too low may never be included in the blockchain. On the contrary,

22

setting a very high gas fee guarantees that the transaction will be executed quickly. At

ethstats.net website [6] you can find the suggested gas price in real-time. At the time of writing

this article the suggested gas price is 8 gwei, which corresponds to 0.000000008 Ether. Note that

this number is constantly changing.

There is a gas limit also for every block. It corresponds to the maximum amount of gas that

all the transactions included in the block can consume. This number also determines the

maximum number of transactions to include in the block. Even the "block gas limit" is not fixed

but is determined by the miners. The higher this limit is, the more the miners will earn in terms

of transaction fees; however, the computational load to compute the block transactions will also

increase.

Gas mechanism serves as an incentive system both for miners, to spend hardware and

electricity costs to validate transactions, and against attackers, who would spend money to

perform an attack. The gas mechanism has the advantage of providing a good incentive for the

miners and a disincentive for the attackers. However, it has the disadvantage that operations

can become very expensive.

1.9 Memory Usage in Ethereum
When developing a SC, different types of storage are available [4]:

• Stack (volatile stack access): it contains small local variables. It is almost free to use but

can hold a limited amount of data. All operations are performed on the stack. It can be

accessed with different instructions, such as PUSH, POP, COPY, SWAP, …

• Memory (volatile memory access): it contains temporary values, generated during the

execution. It is erased at the beginning of every function call. It can be accessed with

three instructions: MLOAD, MSTORE, MSTORE8.

• Storage (persistent memory): it contains all the SC state variables. Every contract has its

own persistent storage. A contract can strictly read or write only its own storage. The

opcodes to operate with it are: SLOAD and STORE.

• Calldata: special data location that contains the function arguments, only available for

external function call parameters.

• Event Log: a special memory in the blockchain were data related to the Events raised by

SCs are stored. These data cannot be accessed by SCs, but only by external applications.

All operations used to manipulate memory cost gas. The most expensive ones are those

affecting the Storage. This because the data are permanently stored in a database replicated

across tens of thousands of nodes.

1.10 Decentralized Applications
A dApp is defined as a software system that uses distributed ledger technology (DLT),

typically a blockchain, as a central hub to store and exchange information, through smart

contracts. Note that it is not a blockchain software able to manage a new cryptocurrency or

23

other applications - that is, software enabling blockchain nodes, which needs different kinds of

development practices, not the subject of this work.

A blockchain is an append-only, distributed data structure, managed by a set of connected

nodes, each holding a copy of the blockchain, and able to execute SCs, programs residing in the

blockchain itself.

The blockchain state is changed through sending transactions to the network - in public

blockchains, everyone can send a transaction, but only valid ones are processed. The valid

transactions are recorded in sequentially ordered blocks - hence the name "blockchain" - whose

creation is managed by a consensus algorithm among the nodes. All transactions are sent from

a single address, which is in turn associated to a private key. Only the owner of the private key

can sign the transactions coming from an address, using asymmetric cryptography. A transaction

can transfer digital currency between addresses, can create a SC, or execute one of its public

functions; in this case, the function is executed by all nodes, when the transaction is evaluated.

Most present real applications of dApps and smart contracts are intended for the management

of digital currencies or tokens, which have a true monetary value.

The use of dApps has been introduced also for other purposes, like notarization of

information, identity management, voting, games and betting, goods provenance certification,

and many others [7].

In this thesis, I will use as a reference Ethereum, which is presently the most used

blockchain to develop smart contracts on public blockchains [8] [9].

Data on dApps running on permissioned blockchains are more difficult to find, because

they refer to projects which are not publicly accessible, but Ethereum is very popular also for

dApps running on permissioned blockchains. Open source DLTs such as Hyperledger and Corda

are also widely used.

The Ethereum Virtual Machine (EVM), able to execute SC bytecode, runs on all nodes of

the Ethereum blockchain [10]. In practice, the SCs are written in high-level languages (HLL).

Nowadays, the most popular HLL for Ethereum is called Solidity. As already mentioned, SCs run

in an isolated environment. The results of their execution must be the same whatever node they

are executed on; consequently, they cannot get information from the external world (which

mutates with time) and cannot initiate a computation autonomously (for instance at given

times). SCs can only access and change their state, and send messages to other SCs.

The state of a SC is permanently stored in the blockchain, using storage variables.

Moreover, once a SC is deployed, it is in the blockchain forever - it cannot be modified or erased,

though it can be forever disabled. Creating a SC and changing its state costs units of "gas", which

must be paid in Ether (the digital currency of the Ethereum Blockchain). Each SC has a unique

Ethereum address. In Solidity, a SC can inherit from other SCs; it has a public interface, that is a

set of functions that can be called through a transaction. The call of a public function of a SC is

called a "message". Sending a message to a SC can be performed either by posting a transaction

coming from an address, or by executing code of the same, or of another, SC. In the former case,

the transaction must be accepted by the network, and it will take time (at least 10-15 secs.), and

a greater amount of gas. In the latter case, the transaction is executed immediately. A SC can

24

receive and send Ethers, from and to another SC, or an address. A function which returns a value

without changing the state of its SC is executed immediately by the EVM and costs nothing. This

kind of function is called "view".

A typical dApp architecture is shown in Figure 6. Here, the Ethereum blockchain is shown

on the left, highlighting that a node is composed of its enabling software, of the EVM, and of the

SC bytecode and its storage, recorded in the blockchain. The software system running on mobile

devices and/or on servers, possibly on the Cloud, exchanging information with users and

external devices, which we call "App System", is shown on the right. Its User Interface (UI)

typically runs on a web browser. The server component stores data that cannot be stored in the

blockchain, and performs business computations. In a non-trivial system, a dApp is typically

composed of various SCs deployed on the blockchain.

Figure 6 A typical architecture of an Ethereum dApp application. The blockchain with its SCs is
shown on the left, the App System on the right.

25

Part II

Agile BlockChain Dapp

Engineering

26

2 Introduction
Part II of this thesis focuses on the study and development of innovative software

engineering practices for blockchain applications.

Blockchain software development is becoming more and more important for any modern

software developer and IT startup. Nonetheless, blockchain software production still lacks a

disciplined, organized and mature development process, as demonstrated by the many and

(in)famous failures and frauds occurred in recent years.

In particular, section 2.1 investigates the potentiality of agile in the context of dApp

development. Section 2.3 explores the related work. In section 2.4, I present a complete method

addressing blockchain software development, called ABCDE, meaning Agile BlockChain Dapp

Engineering. The method considers the software integration among the blockchain components

- smart contracts, libraries, data structures - and the off-chain components, such as web or

mobile applications, which all together constitute a complete dApp system.

I advocate for ABCDE the use of agile practices, because these are suited to develop

systems whose requirements are not completely understood since the beginning, or tend to

change, as it is the case of most blockchain-based applications. ABCDE is based on Scrum, and is

therefore iterative and incremental. From Scrum, the method keeps the requirement gathering

with user stories, the iterative-incremental approach, the key roles, and the cerimonies. The

main difference with Scrum is the separation of development activities in two flows - one for

smart contracts and the other for off-chain software interacting with the blockchain - each

performed iteratively, with integration activities every 2-3 iterations.

ABCDE makes explicit the activities that must be performed to design, develop, test and

integrate smart contracts and off-chain software, and documents the smart contracts using

formal diagrams to help development, security assessment, and maintenance. A diagram

derived from UML class diagram helps to effectively model the data structure of smart contracts,

whereas the exchange of messages between the entities of the system is modeled using a

modified UML sequence diagram.

The proposed method has also specific activities for security assessment and gas

optimization, through systematic use of patterns and checklists. These will be detailed in section

2.4.4 Security assessment for Smart Contracts and 2.4.5 Gas optimization. The method is

described in detail and an example is given in section 2.5 to show how to concretely implement

the various development steps.

Agile methodologies aim to reduce software development risk using short iterations,

feature-driven development, continuous integration, testing automation, and other practices.

However, the risk of project failure or time and budget overruns is still a relevant problem.

Always with a view to developing innovative software engineering techniques, in section 3 I

present and discuss a new approach to model some key risk factors in agile development, using

software process simulation modeling (SPSM). The approach includes modeling the agile

process, gathering data from the tool used for project management, and performing Monte

Carlo simulations of the process, to get insights about the expected time and effort to complete

the project, and about their distributions. To validate the simulator, and to demonstrate how

27

the method can be used, I analyzed three open-source projects, gathering their data from JIRA

repositories. In the future I plan to apply it to blockchain project repositories as well.

The researches presented in the followings were partially published in:

• “Abcde–agile block chain dapp engineering”, L. Marchesi, M. Marchesi, R. Tonelli. In

Blockchain: Research and Applications, Volume 1, pp. 100002, Elsevier, 2020. [11]

• “Design patterns for gas optimization in Ethereum”, L. Marchesi, M. Marchesi, G.

Destefanis, G. Barabino, D. Tigano. In Proceeding of the 2020 International Workshop

on Blockchain Oriented Software Engineering, pp. 9-15, IEEE, 2020. [12]

• “Security checklists for Ethereum smart contract development: patterns and best

practices”, L. Marchesi, M. Marchesi, L. Pompianu, R. Tonelli. arXiv preprint

arXiv:2008.04761 [13]

• “Assessing the Risk of Software Development in Agile Methodologies Using Simulation”,

Maria Ilaria Lunesu, Roberto Tonelli, Lodovica Marchesi, Michele Marchesi. In IEEE

Access, Volume 9, pp. 134240-134258, IEEE, 2021. [14]

2.1 Agility and dApp development
Nowadays, the developments of dApps worldwide share some common characteristics.

Several teams involved are typically working on ICO projects, which gathered money through

tokens and are about applications of blockchain technology [15]. Other teams are working on

DeFi (Decentralized Finance) projects, which gathered money through venture capital and/or

token minting. Other kinds of projects are promoted by startups trying to take advantage of the

novelty of dApps to develop disruptive solutions, or to get a niche where to thrive. In all cases,

they are typically small, self-organizing co-located teams, where experts of system requirements

are highly available.

Other characteristics of dApp development is that dApps typically are not life-critical

applications, though several among them can be mission-critical. However, the time-to-market

and the ability to get early feedback from the users and the stakeholders are essential, because

often the requirements of the dApp initially are only vaguely defined and are subject to change.

All these features make dApp development an ideal candidate for the use of Agile Methods

(AMs). In fact, AMs are suited for small, self-organizing teams, possibly co-located, working on

projects whose requirements can change [16]. AMs are considered to be able to deliver quickly

and often, as needed by dApp projects.

The most used AM is presently Scrum, which is iterative and incremental, with short

iterations (1-4 weeks) [17]. Scrum does not prescribe specific software development practices,

but is focused on the process. In short, Scrum, as most other AMs, typically performs

requirement elicitation through user stories (USs), that are short descriptions of how the system

answers to inputs from users, or from external devices [18].

USs are mostly gathered at the beginning of the development, but can be modified and

augmented at any time. The project advances iteratively implementing a subset of the USs at

each iteration. The person in charge of choosing the goal of each iteration, and explaining it to

the team is called "Product Owner", to reach goal a subset of USs is selected and implemented.

28

As described below in section 2.4.1, the proposed ABCDE method is based on Scrum, and

is specifically focused on the software development process, and not on specific design or

programming practices.

Besides Scrum process, there are other agile practices that are well suited to dApp

development. In the followings, I list and shortly describe agile practices suggested in ABCDE

process, and how they can be applied to smart contract development.

• Test Driven Development (TDD): this practice prescribes writing the tests before the

code [19], using an automated test suite that can be run whenever needed. For the App

System, one can use one of the many existing testing frameworks. For SCs written in

Solidity, at the moment the most popular testing environment is Truffle [20]. Note that

performing automated testing on SCs is not trivial, because tests need to be run on the

blockchain, which is a separate entity from the testing environment itself. This is similar

to testing the interface of a database. Also, in order to test the software interacting with

the SCs, we need a "mock object" able to simulate the blockchain, if the required SCs

are not yet implemented, and/or if we need to improve the speed of testing.

• Continuous Integration: merging all developers working copies to a shared mainline,

even several times a day. Developing dApps, this practice is critical, and it should be

practiced both on the App System and the SCs, checking at each merging also how the

two systems interact through transactions. This practice, and the following one, requires

the use of a version control system helping integration and versioning, as well as of an

automated test suite, to assess the absence of undesirable side-effects.

• Collective code ownership: every developer is allowed to intervene on whatever code

s/he considers appropriate to modify. With small, dynamic teams as typically happens

with dApp development, this practice should clearly be applied. As regards smart

contract development, team members modifying code written by other members

should be very careful not to infringe security and gas optimization provisions. Note that

often the team members expert in SC development differ from those expert in App

System, so their spheres of influence should remain separate.

• Refactoring: this practice too needs to have an automated test suite, that can be run

when the refactoring is made, to assess the absence of unwanted side effects [21]. This

is especially needed with the complex architecture of dApps, whose components

interacts through transactions.

• Information Radiators (Cards, Boards, Burndown charts): making visible the status of a

project using boards that can be observed by everyone and updated in real time can

obviously greatly benefit dApp development and its use is therefore strongly

encouraged in ABCDE.

• Coding Standards: the dynamicity of the teams and the push to quickly develop

applications make necessary that the project manager (or the Scrum Master) ensures

that this practice is strictly followed. This would greatly facilitate code understanding,

and ease subsequent maintenance activities.

29

• Pair Programming (PP): using ABCDE, I suggest to use PP in the case the software to be

developed is critical, is not yet well understood, or there are new team members to train

on the job.

2.2 Security assessment
Many dApps deal with direct digital currency or token usage, that is with entities that have

a direct, real monetary value. In other cases, they may deal with contractual issues, again with

strong economic implications, as in the case of document certification, supply chain

management, voting systems. Therefore, in many cases dApps are business-critical, and very

strict security requirements should be assured. Code inspection, security patterns, and thorough

tests must be applied to get a reasonable security level. ABCDE proposed security assessment

will be described in section 2.4.4.

2.3 Related work

2.3.1 Software Engineering for Dapp development
Software Engineering (SE) for dApp development, sometime called Blockchain-Oriented

Software Engineering (BOSE) is still in its infancy. The first call for BOSE was made in 2017 by

Porru et al. [22]. They highlight "the need for new professional roles, enhanced security and

reliability, novel modeling languages, and specialized metrics", and propose "new directions for

blockchain-oriented software engineering, focusing on collaboration among large teams, testing

activities, and specialized tools for the creation of smart contracts". They also suggest the

adaptation of existing design notations, such as UML, the Unified Modelling Language [23] to

unambiguously specify and document dApps.

The book by Xu et al. is perhaps the most complete overview of the engineering aspects of

blockchains to date [24]. Among others, it deals with some SE issues, such as the evaluation of

the suitability to use a dApp or not, the selection and configuration of the proper blockchain

solution (public, permissioned, private), a collection of patterns for the design of blockchain-

based applications, and even model-driven generation of SC code. Some of the topics of the

book were introduced previously in [25].

Wessling et al. propose a method to find how the architecture of an application could

benefit from blockchain technology. They identify the actors involved and how they trust each

other’s to derive a high-level hybrid architecture of a blockchain-based application [26].

Fridgen et al. propose an approach for eliciting use cases in the context of blockchain-based

applications, applying action design research method. Their method is evaluated in four distinct

case studies regarding banking, insurance, automotive and construction [27].

Jurgelaitis et al. propose a method based on Model Driven Architecture, which could be

used for describing blockchain-based systems using a general language in order to facilitate

blockchain development process [28].

30

A paper by Beller and Hejderup [29] is worth mentioning, though it does not really advocate

to use SE practices to develop blockchain-based applications. Instead, it is about "how

blockchain technology could solve two core SE problems: Continuous Integration (CI) Services

such as Travis CI and Package Managers such as apt-get". The use of SCs to manage agile

development, including the automated compensation of developers when their software passes

acceptance tests was also proposed by Lenarduzzi et al. [30].

Chakraborty et al. used an online survey to get answers from 156 active blockchain

software (BCS) developers, finding that "standard software engineering methods including

testing and security best practices need to be adapted with more seriousness to address unique

characteristics of blockchain and mitigate potential threats" [31].

The same authors published an extended version of the same research, further highlighting

that there is a need for "an array of new or improved tools, such as: customized IDE for BCS

development tasks, debuggers for smart-contracts, testing support, easily deployable simulators,

and BCS domain specific design notations" [32]. They found that most BCS developers feel that

BCS development is different from traditional one, due to the strict and non-conventional

security and reliability requirements, and to other unique characteristics of the dApp

development domain (e.g., immutability, difficulty in upgrading the software, operations on a

complex, secured, distributed and decentralized network). As anticipated in the Introduction,

these findings confirm the expedience to devise a software engineering process such as ABCDE

for BCS development.

2.3.2 Security for dApps
Regarding dApp security, many publicly available documents, and scientific papers have

been already published. Among the most recent ones, the survey of Praitheeshan et al. analyzes

the literature about Ethereum smart contract security, summarizing the main security attacks

against SCs, their key vulnerabilities, the security analysis methods and tools [33]. They classify

analysis methods in static analysis, dynamic analysis, and formal verification, and discuss the

relative pros and cons of these classes, also providing a large bibliography with 160 references.

Huang et al. deal with SC security in a broader way, considering also Hyperledger security,

and performing a survey from a software lifecycle perspective [34]. After a classification of

security issues in SCs, both in Ethereum and Hyperledger Fabric, they consider the security

activities according to the various phases of dApp development (design, implementation, testing

before deployment, and runtime monitoring), quoting several references and giving practical

advice. These two papers together include references to virtually all the work which have been

published about SC security to date.

The works on SC security consider in depth the various kinds of attacks and vulnerabilities

of dApps, and how to find and mitigate them. However, they typically do not take an overall

approach to secure software development life cycle. This is a relatively recent field, whose

forefront representatives are Microsoft’s Security Development Life cycle (SDL), OWASP’s

Comprehensive, Lightweight Application Security Process (CLASP) and McGraw’ Touchpoints

[35].

31

Though secure software development mostly prefers waterfall-like methodologies, it can

be performed also with agile processes [36].

2.3.3 Domain-specific UML additions
Various papers have been published to suggest upgrades of Unified Modeling Language

[23] notation to enable it to better represent specific application fields.

Baumeister et al. described an extension of UML for Hypermedia design, through the

addition of a new Navigational Structure Model and new stereotypes [37].

Baresi et al. [38] extend and customize UML with web design concepts borrowed from the

Hypermedia Design Model. Hypermedia elements are described through appropriate UML

stereotypes.

Rocha and Ducasse [39] study SC design and compare three complementary software

engineering models - Entity-Relationship diagrams, UML and BPMN. To better represent SC

concepts, they propose a simple addition to UML Class Diagrams, that is a small "chain" icon in

the UML class representing a contract as a notation to more easily identify it as a blockchain

artifact.

2.4 Proposed Method for dApp Development

2.4.1 Rationale and motivation
This approach, ABCDE, takes into account the substantial difference between developing

traditional software (the App System) and developing smart contracts, and separates the two

activities.

For both developments, ABCDE takes advantage of an agile approach, because agile

methods are suited to develop systems whose requirements are not completely understood

since the beginning, or tend to change, as it is the case of dApps. This ruled out the use of plan-

driven methods such as waterfall, and iterative-incremental methods relying on longer

iterations.

ABCDE is an agile method based on Scrum [17], due to Scrum's simplicity and popularity -

Scrum is by far the most used software development method [40]. In Scrum, a subset of USs is

implemented at each iteration.

Also a Lean-Kanban approach would be feasible, implementing the USs in a continuous

flow, with the work in progress controlled by the Kanban board [41]. In this case, the board

should show, in different "lanes", the USs of both the SC system and the App System. However,

because many dApp development projects are new, and thus being built from scratch and with

a dedicated team, Scrum is more suited than Kanban - which is instead very suited for teams

working concurrently on multiple projects.

32

From Scrum, ABCDE keeps the requirement gathering with user stories, the iterative-

incremental approach, the key roles, and the meetings (sprint planning, daily Scrum, sprint

review, and sprint retrospective). The main differences with Scrum are:

• the separation of development activities in two flows, each performed iteratively, with

integration activities every 2-3 iterations;

• clarification of the activities that must be performed to design, develop, test and

integrate smart contracts and dApp system - this is not included in Scrum;

• emphasis on documenting the smart contracts using formal diagrams, to help

development, security assessment, and maintenance - these diagrams are not intended

to be exhaustive, but are not required in Scrum;

• specific activities related to security assessment and gas optimization.

To document in a structured way the smart contracts, I found very useful some UML

diagrams, properly modified, which are described in section 2.4.3. I used UML because it is by

far the most used modeling language in software engineering, and is provided of the

"stereotype" construct which enables to add easily the required features to the diagrams. UML

provides standard diagrams to effectively model both the data structure of smart contracts

(class diagram), and the exchange of messages between the entities of the dApp system

(sequence diagram).

Eventually, my and my team’s experience in software quality assessment, made us

appreciate the systematic use of patterns and checklists. These tools greatly help developers to

proceed in a structured and systematic way. For this reason, we used this approach for security

assessment and gas optimization, starting from an accurate literature investigation on the

subject. Sections 2.4.4 and 2.4.5 describe in detail these components of ABCDE.

2.4.2 The process
As written before, ABCDE is based on Scrum. The key roles of Scrum, and consequently of

ABCDE, are Scrum Master (which might be called ABCDE Master), Product Owner and Team.

These roles are well known, so I will not describe them in detail.

The steps of the proposed ABCDE design method, which is currently focused on Ethereum

blockchain and Solidity language, are shown in Figure 7. Note that most steps are in fact

performed many times, because the approach is iterative and incremental.

In the figure, the pink circles represent sprint planning meetings (SPM) held at the

beginning of each sprint (iteration), and sprint review meetings (SRM) held at the end of sprints.

Daily scrums (stand-up meeting held each day) and retrospective meetings are not reported.

33

Figure 7 The proposed ABCDE process; the circles represent the Scrum meetings.

In deeper detail, the proposed development process is the following:

1. Goal of the system. Write 10-30 words summing up the goal, and display them in a place

that is visible to the whole team. This is a practice that, as far as I know, was introduced

by Coad and Yourdon in their 1991 book on object-oriented analysis [42], and that I

always found useful. It has some similarities with the "Sprint Goal" that Scrum method

prescribes to find and make visible to the team, at the beginning of each iteration [17],

but here the goal is for the whole system.

2. Find the actors. Identify the actors who will interact with the dApp System. The actors

are human roles, and external systems or devices that exchange information with the

dApp to build.

3. User Stories. The system requirements are expressed as user stories (USs) [18], to be

able to follow the classical agile approach for project management, used in Scrum [17].

34

In this step, the dApp System under development should be considered in full. The

decision to develop it using a blockchain, a set of servers, possibly in the cloud, or

another architecture, is not important here. At this point, I found useful, though not

mandatory, to use a UML Use Case Diagram to graphically show the relationships among

the actors and the USs. If the decision is taken to implement the system using a

blockchain, for instance by applying the decision framework proposed by Scriber [43],

the following steps are taken.

4. Divide the system in two subsystems.

• The smart contracts running on the blockchain (Steps 5-6).

• The App System, that is the external system that interacts with the blockchain,

creating and sending transactions, and monitoring the Events that may happen

when a smart contract executes a function (Steps 7-8).

At this point, an architecture of the whole system should be drafted, highlighting

what data should be put on-chain and what should be placed off-chain. The guideline is

that SCs should manage the data and processing that need to be transparent and

immutable for the dApp to be trusted by its actors. This includes the management of

actors' identity. All other data, processing and user interfaces should be managed off-

chain. In the case of data which must be trusted, but cannot be stored in the blockchain

due to its transparency, data privacy can be achieved using the "Off-Chain Data Storage"

pattern [24]. Leakage of transaction volume and parties involved might still be possible,

and can be avoided by further obfuscating techniques.

5. Design of the smart contracts. This step is about designing the SCs, using in this case

the Solidity language. This activity has very peculiar characteristics with respect to

standard software design, as highlighted by [31]. The activity is performed through

iterations that include coding and delivering increments of SCs, which are the USs

chosen for each iteration. It is divided in sub-steps, which we explicitly consider and list

following a logical sequencing (but which should not necessarily be performed in a

"waterfall" sequence). These sub-steps, as well all the sub-steps of the following main

steps, derive from our experience in smart contract and dApp development, and from

discussions had with many dApp developers. They are the following:

5.1 Replay Steps 2 and 3 (finding Actors and USs) by focusing only on actors directly

interacting with the SCs. If external SCs are used by the SCs of the system under

development, they should be included among the actors. For each user story

defined in this step, define also the related acceptance test(s).

5.2 Define broadly the SCs composing the SC subsystem. For each SC, state its

responsibilities to store information and to perform computations, and the

related collaborations with other SCs. For non-trivial systems, you will typically

need various interacting SCs. Also consider the use of inheritance for abstracting

common features of SCs. Describe in detail the collaborations with external SCs,

including libraries. UML class diagrams with proper additions will be used, as

shown later in section 2.4.3.

35

5.3 Define the flow of messages and Ether transfers among SCs, external SCs and

the App System. Use augmented UML sequence diagrams to document these

interactions, if they are non-trivial (see section 2.4.3). If needed, define the state

changes of SCs using UML statecharts.

5.4 Define in detail the data structure of each SC, its external interface (Application

Binary Interface, ABI) and the relevant events that can be raised by it.

5.5 Define the internal, private functions and the modifiers - special functions that

usually test the preconditions needed before a function can be safely executed

5.6 Define the tests and perform the security assessment practices. This is a very

important step because, as already explained above, most SCs are very critical

and deal with money. Sec. 2.4.4 will describe in deeper detail the security

assessment used for Ethereum SCs.

6. Coding and testing the SC system. Following the agile approach, the SC system is built

and tested incrementally. The coding and testing activities are:

6.1 Incrementally write and test the SCs. Owing to the strict security requirements,

typically this activity cannot be performed in a strict incremental way, just

implementing one user story after another. Instead, starting from the data

structure and interfaces of SCs, the overall kernel SC architecture is

implemented and tested first. This can be accomplished by using special "user

stories" which are not the description of the interaction with users, but are

about the implementation of the architecture of the system. Then,

complementary USs can be added

6.2 Perform the security assessment and gas optimization of the code written for

the increment (see Tables reported in [44] and in section 2.4.5).

6.3 Write automated Unit Tests (UTs) and Acceptance Tests (ATs) for the SCs and

USs implemented, respectively. Add the new tests to the test suite. The most

used testing environments for Solidity is Truffle [20]. Run the whole test suite

to make sure that the additions did not break the system.

7. Design of the external interaction subsystem (App System). This step is about designing

the App System, which interacts with the users and devices, send messages to the

blockchain, and can manage its own repositories (data bases and/or documents). This

activity is very similar to designing a standard web application. It just adds another actor

- the blockchain - which can receive (but cannot send) messages, and can raise events.

Note that also in this case we must be very careful about security aspects. In fact, often

the hacks of dApps systems are made exploiting App System weaknesses, rather that

SCs' ones.

7.1 Redefine the actors and the USs for the App System, starting from those

gathered in Steps 2 and 3, adding the new actors represented by the SCs that

interact with the App System. Define the acceptance tests of the App System.

36

7.2 Design the high-level architecture of the App System, including server and client

tiers, and detail the way it accesses the blockchain, setting up and running one

or more nodes, through an external provider, or using a standard wallet.

7.3 Define the UI of the App System, typically with a responsive approach, so that it

can run on both mobile terminals and PCs. Having a fancy UI is of paramount

importance to achieve the market success of the application. I suggest to

perform UI design using a well-known standard approach, such as Usage-

Centered Design [45] or Interaction Design [46].

7.4 Define how the App System is decomposed in modules, their interfaces and the

flow of messages between them. Define, if needed, the state diagrams of the

modules, and the actions they take when events are raised by SCs. Define the

structure and memorization of permanent data. Select which data are anchored

to the blockchain, by notarization of their hash digest through the "Off-Chain

Data Storage" pattern [24]. Define the structure of the data or classes of the

App System, including the flow of data and control between modules. The

interactions with the SCs must be consistent with the analysis of Step 5.3. This

design activity is not performed up-front, but through iterations that include

coding and delivering increments of the App System, implementing USs chosen

for the iteration. Due to the strict security requirements, this design phase must

be quite detailed, and made consistently with the corresponding activities of

SCs design. UML class and sequence diagrams can help to design and document

also this system.

7.5 Perform a security assessment of the external system, as described below in

section 2.4.4.

8. Coding and testing the App System. In parallel to the SCs system, the App System is

built and tested, using the same approach of SCs development (Scrum or Lean-Kanban).

If the developments of SCs and App System are made iteratively, every two or three

iterations the results of the two branches must be integrated, as shown in Figure 7. If a

continuous-flow, Lean-Kanban approach is performed, the integration should happen at

the completion of a given set of USs, in both branches; it will be activated by a specific

user story put on the Kanban board. The activities happening in parallel are:

8.1 Incrementally implement the USs of App System. This step belongs to the "right

flow" of ABCDE (see Figure 7), and does not differ from the implementation of

a web application.

8.2 Perform the security assessment of the code written for the increment.

8.3 Write automated Unit Tests (UTs) and Acceptance Tests (ATs) for the USs

implemented. Add the new tests to the test suite. Run the whole test suite to

make sure that the additions did not break the system.

9. Integrate, test and deploy the dApp System. To integrate SCs and App System, the

overall systems built up to that moment must be deployed into a local or a testnet

blockchain, and integration tests must be run to check whether all the components

37

interact together as expected (e.g., events raised by SCs are collected by the App

System, messages sent by the App System activate blockchain transactions that are

validated and correctly executed, and so on).

2.4.3 UML diagrams for modeling SCs
As written before, the most popular blockchain for dApp development is presently

Ethereum, and the most used language is Solidity [47]. This language is object-oriented (OOPL)

because smart contracts are defined similarly to classes - they have internal variables, and public

and private functions able to access these variables. However, Solidity has no true classes, but

only smart contracts. Each SC can inherit from one or more other SCs. With respect to a standard

OOPL, Solidity adds specific concepts like events and modifiers, and exhibits strong limitations

in the types available for the SC data structure, and in the management of collections of data -

the only collections available so far are the array and the mapping. In the followings, I will

describe an adaptation of UML diagrams specific for Solidity 0.8. Possible modifications and

extensions for other SC languages will be discussed in the section about future developments.

When designing and documenting SCs, graphic diagrams can be very useful to highlight the

connections and the exchange of messages. To this purpose, I advocate the use of a subset of

UML diagrams, being UML the universal standard for software design diagrams. Note that some

specific concepts must be introduced to account for peculiar SC features. Luckily, UML has an

extensibility mechanism called stereotype, which can be used to introduce new concepts,

through tagging.

The UML diagrams considered to model SCs are Class diagrams and Sequence diagrams.

Also, UML Statecharts can be used to graphically represent the various states of a SC, or of a App

System module and its transitions. Statecharts, however, do not need any specific stereotype. I

already suggested to use also the Use Case diagrams to graphically show actors and related USs

(in place of Use Cases).

The Class diagram enables to represent the structure and relationships of SCs. Table 2

shows the stereotypes introduced in UML class diagrams in order to tag the SC specificities, and

their description.

A special kind of transaction is used to create a SC, after its source code has been compiled

to bytecode. The other two kinds of transactions are the transfer of Ethers, and the invocation

of a function on an existing SC (message).

Table 2 Additions to UML class diagram (stereotypes).

Stereotype Position Description

<<contract>> Class symbol - upper compartment Denotes a SC. May also be <<abstract
contract>>

<< interface>> ditto A kind of contract holding only function
declarations

38

<< library
contract>>

ditto A contract taken from a standard library

<< enum>> ditto A list of possible values, assigned to some
variable. The values are listed in the middle
compartment. There is no bottom
compartment (holding operations).

<< struct>> ditto A record, able to hold heterogeneous data.
The fields are listed in the middle
compartment. There is no bottom
compartment.

<<event>> Class symbol - middle
compartment

An event that can be raised by a SC's
function, signaling something relevant to
external observers.

<< modifier>> Class symbol – bottom
compartment

A particular kind of guard function, called
before another function.

<< array>> Class symbol, middle
compartment, or role of an
association

The multiple variable, or the 1:n
relationship, is implemented using an array.

<< mapping>> ditto The multiple variable, or the 1:n
relationship, is implemented using a
generic mapping.

<<mapping
[address]>>

ditto A multiple variable, or the 1:n relationship,
which is implemented using a mapping
from an Ethereum address to the value.

<<mapping
[uint]>>

ditto A multiple variable, or the 1:n relationship
which is implemented using a mapping
from a unsigned integer to the value.

To address the need to manage complex data, Solidity has the "struct" construct. The

relationships among SCs and/or structs can be effectively captured by a UML class diagram:

• the multiple inheritance among SCs is the same as with classes;

• when a SC sends a message to another SCs, they can be linked using an association (if

they are logically associated), or a dependence;

• item structs and enums can be included in the data structure of a SC, and this

relationship is modelled using a composition.

A specific concept of Solidity is that of events, raised when something relevant happens,

which can be caught by external observer programs. Remember that SCs cannot directly invoke

functions of external systems, and thus events are a mean for SCs to communicate with the

external world.

Another peculiar concept of Solidity are the modifiers. These are Boolean functions called

before a function is executed. They are able to check constraints, and possibly to stop the

function execution.

The last four stereotypes of Table 2 are about Solidity collections. Owing to the limitations

of blockchain storage, Solidity allows only two kinds of collections - the array and the mapping.

These stereotypes denote the kind of collection used for multiple variables of a data structure

39

(middle compartment of UML class symbol), or for implementing an association, aggregation or

composition. The array is an ordered set of values, indexed by their position, as in most

computer languages. The corresponding stereotype is "<<array>>".

The mapping is able to store key-value pairs - the keys being stored as hash values of the

actual keys. Given a key, a mapping can efficiently retrieve the value, but it is unable to iterate

on its elements, both keys and values. Given the importance of the mapping in Solidity, I

introduced three stereotypes to represent a mapping, denoted by the homonymous keyword.

The first is the generic mapping; the second is the mapping having an Ethereum address as key,

which is very used. The third refers to a common Solidity pattern - using as keys positive,

sequential integers, so that it is possible to iterate over them.

Another UML diagram very useful to represent the interactions among SCs and external

actors is the Sequence Diagram, used in UML to model messaging. In a blockchain, the relevant

messages are related to the transactions, which are sent from external actors, or from SCs to

other SCs. Remember that messages are synonyms of "calls of public functions".

A characteristic of Ethereum main net is that messages sent to a SC through a transaction

take time (typically 15-20 seconds or more) to be answered. However, if a message is sent to

another SC during the execution of a function of a given SC (Contract Internal Transaction), the

time delay is negligible. This happens because the EVM, during the execution of the calling

function, is able to locate in the blockchain and call any other SC. To explicitly show this

difference, which can be very important for response time, security and gas consumption, I

introduced the stereotypes <<trans-msg>> and <<internal-msg>> tagging the message calls sent

through a transaction, and directly by a SC, respectively.

Another peculiarity of Ethereum is that a SC function which does not change the Blockchain

is called a "view" function and can be called immediately and at no cost. Again, this is because

the EVM can locate the SC in the blockchain, verify that the function is "view" and call it very

quickly, using a negligible amount of resources. All other messages are executed only if proper

gas is paid.

Another kind of message that can be sent is the transfer of Ethers from an address to

another. To represent this transfer, I use the Return Message of UML (a dashed arrow), tagged

with the stereotype <<ethers>>.

Finally, the <<fallback>> stereotype tags the homonymous special function of each SC,

which is called whenever a message is not matched, or an Ether transfer fails. This function

implements recovery procedures and is particularly critical for security.

The Sequence Diagrams represent the message exchange among external actors and SCs,

all called participants, in each scenario. The messages between external actors follow the usual

UML notation. An external actor, however, can also send Ethers to another. This notation allows

the use of standard frames and fragments, such as "alt", "opt" for condition testing, "loop" for

loops and "par" for fragments running in parallel. Table 3 reports the stereotypes introduced in

UML Sequence diagrams to identify the participants sending messages from their unique

address, and the kinds of messages they exchange.

40

Table 3 The stereotypes added to UML Sequence diagrams.

Stereotype Position Description

<<person>> Participant box A human role who posts transactions using a
wallet or an application.

<<system>> ditto An external software system, able to send
transactions to the Blockchain.

<<device>> ditto An IoT device, able to send transactions to the
Blockchain.

<<contract>> ditto A SC belonging to the system.

<<external contract>> ditto A SC external to the system.

<<oracle>> ditto A particular type of SC, which holds information
coming from the external world, provided by a
trusted provider.

<<account>> ditto An Ethereum address, just holding Ethers. It can
only receive or send Ethers, when its owner
activates the transfer.

<<wallet>> ditto An Ethereum wallet, holding the private keys to
access addresses, able to send transactions and to
interface with its owner.

<<trans-msg>> Message The message is sent using an Ethereum
transaction.

<<internal-msg>> Message The message is sent by a SC, so it is executed
immediately.

<<view>> or <<pure>> Message The function called is of type "view" or "pure", so
it costs no gas.

<<fallback>> Message Call to the fallback function. Only called by a SC on
itself.

<<ethers>> Return Message The dashed arrow represents a transfer of Ethers,
and is can be drawn also as a stand-alone
message.

2.4.4 Security assessment for Smart Contracts
Assessing and defining patterns of good programming practice for SCs for granting security

in dApps is a difficult task and is an ongoing area of research. Nevertheless, based on the

programmers' experience and on recent exploited weaknesses - very (in)famous and critical also

for the amount of real money involved-, some major suggestions for security assessment in SCs

have been identified and discussed among the Solidity developer community. In fact, Ethereum

and Blockchain ecosystem are highly new and still somewhat experimental. In addition, SCs are

often designed to handle and transfer significant amount of money (in cryptocurrency, but easily

exchangeable to real money). Therefore, it is necessary that they correctly achieve their

purposes, but it is also crucial that their execution is secure against attacks.

A sound method for dApp development cannot overlook security. While various research

papers discuss smart contract design patterns [48] [49] [50] or apply them to specific domains

[51] [52], the goal is to provide users with a guide that helps them during the smart contract

development process, allowing developers to easily verify if they applied all the relevant security

patterns and best practices to their smart contracts.

41

Following a secure software development lifecycle approach, ABCDE does not limit security

assessment to testing, or to a specific phase performed after development, but it introduces

security assurance practices in all three phases of design, coding and testing. Moreover, ABCDE

stresses that the first and foremost concept in security management is to have a security

mindset. The development team(s), and the whole organization, must be fully aware of the

importance of security and protection from attacks.

Since ABCDE is an agile process, it is based on principles and practices such as: maximize

communication, short iterations, refactoring, continuous testing, simplicity, intention-revealing

code, use of simple tools. All these practices surely help security. However, Agile means also

incremental development, where USs are continuously completed, added to the current

working system and tested. This greatly helps productivity, but might be at the expense of

security, because there is the risk that these continuous additions may introduce unwanted side

effects, and even security breaches.

In this section I present the security pattern collection and the three security checklists to

be performed during the different phases of the development process. Section 2.4.4.1 defines

the critical issues regarding the safety of a dApp and provides general guidelines specifically

related to SC security. Sections 2.4.4.2 and 2.4.4.3 present the methodology for collecting

patterns. Section 2.4.4.4 discusses the abstract security patterns. The remainder of the section

presents the three checklists for the design (section 2.4.4.5), coding (section 2.4.4.6), and test

(section 2.4.4.7) phases. Finally, section 2.4.4.8 presents other design patterns discussed in

literature.

In order to both keep the checklists updated and provide them as a tool that can be easily

used by developers, I also released the checklists in a spreadsheet file available at the following

link: http://tiny.cc/security_checklist [13]. These checklists can be customized, removing the not

relevant parts, on a project-by-project basis.

2.4.4.1 General concepts of dApp security

The critical issues regarding the safety of a dApp can be divided in three areas:

• Issues related to Blockchain itself: the blockchain itself could be attacked. It is known,

for instance, that blockchains using proof-of-work for block generation are subject, at

least theoretically, to the so-called "51% attack". Those based on proof-of-stake are

vulnerable to other types of attack, for example to "fake stake attack". Using Ethereum

technology, the use of the main net lowers the probability of a "51% attack", given the

number and the computing power fielded by the miners. Instead, using Ethereum

Classic blockchain, a fork derived from Ethereum in 2016, the probability is higher

because its miners' computer power is much lower. Using a permissioned blockchain,

for instance Ethereum Parity "proof-of-authority", the blockchain security depends on

the honesty and reliability of the validating members, and on their control over their

respective IT services. Clearly, this kind of attacks are more a problem of design choice

of the technology to be used than of proper dApp design, so their prevention goes

beyond the scope of this thesis.

• Issues related to SCs: the most critical part of a dApp are the SCs, whose bytecode is

publicly available, and exposed to all possible exploits. Moreover, developers often lack

http://tiny.cc/security_checklist

42

a full knowledge about implementation and usage of SCs, because this technology is in

its early stage, it is evolving fast and is different from traditional development. In

literature there are several analyses of possible vulnerabilities related to both Ethereum

virtual machine and Solidity language [33] [34] [53]. These are a good starting point for

providing a checklist of patterns to verify the SCs under development.

• Issues related to the App System: The App System is composed of the server and client

side of the dApp, interacting with the SCs on one side, and with human actors, IoT

devices and other systems on the other side. It must be designed and implemented with

care, but it is somewhat less critical, provided that all best practices related to the

security of Web applications are used; a special emphasis must be made to safeguard

the access to the private keys of the various actors.

In this section I tackle the issues related to SCs development which are the most critical,

common and interesting for blockchain software developers. A good starting point to focus on

security are the Top 10 Proactive Controls of OWASP organization [54]. Among them I identified

those most relevant for dApp security, often neglected in SCs development, and report them

ordered by importance:

• C1: Define Security Requirements. This looks straightforward, but it is often

underestimated. You must explicitly define the security requirements needed for your

system. The requirements can be written as User Stories, or as non-functional features,

and should have acceptance tests in the form of test cases to confirm these

requirements have been implemented.

• C2: Leverage Security Frameworks and Libraries. Don't write everything from scratch,

but reuse software that is security-hardened, is coming from trusted sources and is

maintained up to date.

• C5: Validate All Inputs. This should be performed for user inputs on server-side, because

client-side validation can be bypassed. Also, let the SC itself perform validation of key

data sent to it through messages.

• C6: Implement Digital Identity. In a dApp environment, digital identities are guaranteed

by addresses and by the ownership of the relative private key, so this control is quite

straightforward. Nevertheless, specific checks for address ownership must be

implemented to grant SCs security from unauthorized uses.

• C7: Enforce Access Controls. SC can check access levels of addresses through a mapping,

and act accordingly.

• C8: Protect Data Everywhere. Be aware that data stored in a SC are always accessible

to read, independently of their visibility.

• C10: Handle All Errors and Exceptions. It is known that even small mistakes in error

handling or forgetting to handle errors can lead to catastrophic failures in distributed

systems. This is particularly true for SCs.

43

The general guidelines reported by the Solidity best practices [55], section "General

Philosophy", which complement OWASP ones, are specifically related to SC security:

1. Prepare for failure. Be able to respond to errors, also in the context of SCs, which cannot

be changed once deployed.

2. Rollout carefully. Try your best to catch and fix the bugs before the SC is fully released.

Test contracts thoroughly and add tests whenever new attack vectors are discovered.

3. Keep SCs simple. Complexity increases the risk of errors, so ensure that SCs and

functions are small and modular, reuse SCs that are proven, prefer clarity to

performance.

4. Keep up to date. Keep track of new security developments and upgrade to the latest

version of any tool or library as quickly as possible. It can be hard to enforce this security

pattern once the SC has been deployed, since the code cannot be directly updated. Thus,

special care must be devoted to this pattern before deploying.

5. Be aware of blockchain properties. While your previous programming experience is also

applicable to SC programming, there are several pitfalls to be aware of. An example can

be the well-known Parity Wallet “Hack” occurred in November 2017, where the

(apparently incidental) use of a self-destruct function by a user who took ownership of

the library frozen all Parity multisig wallets and all the cryptocurrencies kept in there.

Although the literature provides various lists of guidelines and best practices to improve

security, it is not trivial to apply them to the SC development process. For this reason, the focus

is to provide users with checklists that can be easily adopted during the development activity.

In the following, I focus on security assurance practices regarding SC design, coding, and testing.

Indeed, issues related to SCs are the most critical and less studied among the three categories

of issues cited above. Specifically, performing this analysis, I considered both the Proactive

Controls of OWASP, and the general guidelines reported above.

2.4.4.2 Security: patterns and best practices

The aim is to provide the reader with an easy way to verify that all the known security issues

are managed. Several related works provide various practices to mitigate these issues. They

often refer to all these practices as patterns. Indeed, most of these items are very simple and

not structured to be properly called patterns.

Accordingly, I divide them into two different categories: abstract security patterns and best

practices. The first category includes patterns that are not related to a specific step of the

development process. The second category includes those items related to a specific phase of

the smart contract development process. Moreover, from the best practices, it is easy to extract

checklists to be used to perform security assurance during each development phase. The

complete checklists is provided online at http://tiny.cc/security_checklist [13]. These checklists

can be customized based on the project requirements. These practices should complement a

broader software development process for producing dApps, such as an agile one.

Table 4 collects the abstract security patterns. For each pattern, I provide a brief description

of both the problem addressed and its solution, along with a list of references to the papers and

http://tiny.cc/security_checklist

44

articles discussing it. A short discussion is also presented in section 2.4.4.4. Tables Table 5, Table

6 and Table 7 present the security assurance practices I propose. They describe the checks to be

performed (column Name), a short description of the vulnerabilities and how to avoid them, one

or more references to learn more about the problem and a reference to the related security

patterns shown in Table 4.

Table 4 Abstract security patterns.

ID Name Description Ref.

CEI Check Effect
Interaction

When performing a function in a SC: first, check all the
preconditions, then apply the effects to the contract's state, and
finally interact with other contracts. Never alter this sequence.

[49]

PD Proxy Delegate
/ Decorator

Proxy patterns are a set of SCs working together to facilitate
upgrading of SCs, despite their intrinsic immutability. A Proxy is used
to refer to another SC, whose address can be changed. This
approach also ensures that blockchain resources are used sparingly,
thus saving GAS.

[56]
[57]
[51]
[52]
[12]

AU Authorization Restrict the execution of critical methods to specific users. This is
accomplished using mappings of addresses and is typically checked
using modifiers.

[48]

OW Ownership Specify the contract owner, which is responsible for contract
management and has special permissions, e.g., it is the only address
authorized to call critical methods. This pattern can be seen as a
special instance of the authorization pattern.

[48]

OR Oracle An oracle is a SC providing data from outside the blockchain, which
are in turn fed to the oracle by a trusted source. Here the security
risk lies in how the source can be actually trusted.

[48]
[50]

RO Reverse Oracle A reverse oracle is a SC providing data to be read by off-chain
components for checking specific conditions.

[50]

RL Rate Limit Regulate how often a task can be executed within a period of time,
to limit the number of messages sent to a SC, and thus its
computational load.

[49]

BL Balance Limit Limit the maximum amount of funds held within a SC. [49]

GC Guard Check Ensure that all requirements on a SC state and on function inputs are
met.

[57]

TC Time
Constraint

A time constraint specifies when an action is permitted, depending
on the time registered in the block holding the transaction. It could
be also used in Speed Bump and Rate Limit patterns.

[48]

TE Termination Used when the life of a SC has come to an end. This can be done by
inserting ad-hoc code in the contract or calling the selfdestruct
function. Usually, only the contract owner is authorized to terminate
a contract.

[48]

MH Math A logic which computes some critical operations, protecting from
overflows, underflows or other undesired characteristics of finite
arithmetic.

[48]

PR Privacy Encrypt on-chain critical data improving confidentiality and meeting
legal requirements, such as the European GDPR

[50]

REU Reusability Use contract libraries and templates as a factory for creating
multiple instances.

[50]

MU Mutex A mutex is a mechanism to restrict concurrent access to a resource.
Utilize it to hinder an external call from re-entering its caller function
again.

[49]

45

SB Speed Bump Slow down contract sensitive tasks, so when malicious actions occur,
the damage is limited and more time to counteract is available. For
instance, limit the amount of money a user can withdraw per day, or
impose a delay before withdrawals.

[49]

2.4.4.3 Collecting design patterns

The methodology for collecting design patterns and building the best practices checklists is

described in the following steps:

1. I queried on June 1st, 2020 the Web, searching for design patterns and best practices

for smart contracts.

2. I then manually inspected the results, collecting several data sources gathering different

lists of patterns. Most of the sources are scientific papers, but I also found some forum

articles.

3. I built a first list of 54 items potentially relevant to this work, by merging all the lists

collected in the previous step.

4. I filtered out the list, by excluding 6 items that, although are useful patterns, are not

directly related to security aspects. For the sake of completeness, I decide to include

those items in Table 8 and discuss them in section 2.4.4.8.

5. I analyzed all the remaining items and split them into two main categories: 16 abstract

security patterns and 32 best practices.

6. I split the best practices into three groups according to the related phase in the

development process: design, coding, testing and deployment.

Summing up, I identified 16 abstract security patterns, and 32 best security practices: 8 for

designing, 18 for coding, and 6 for testing and deployment of SCs. The other design patterns not

related to security are 6.

2.4.4.4 Abstract security patterns

Patterns are schemes of a standard solution to a recurring problem, with a certain

structure. However, the security patterns in the dApps scenario, do not always have a structure

and uniformity comparable to traditional design patterns [58]. Some of the presented patterns

are variants of well-known traditional design patterns, applied in the blockchain and smart

contracts scenario, whereas others are specifically designed to address the peculiarities of

Ethereum and Solidity context.

I describe below some of the patterns I deem to be the most significant. A complete

description of all the patterns is available in the previously reported Table 4.

An example of traditional design pattern which is useful also in the blockchain context is

the Proxy pattern. It introduces the possibility of upgrading a contract, which is by nature

immutable, without breaking any dependency. The idea is to divide the contract into modules

and to use a Proxy contract to delegate calls to specific modules. In this way, indeed, it is possible

46

to modify a contract by implementing a new version and replacing its address with the previous

one in the archive stored in the Proxy.

An example of pattern specific of the blockchain context is the Oracle pattern, which is

introduced to respond to the need to acquire information from the outside world. In fact, a

smart contract is by nature isolated, and cannot acquire information directly. This is because

network nodes must agree on the state of transactions. To accomplish this, nodes should

evaluate only static data. On the contrary, the outside world, for instance a website API, could

provide different responses to the same query performed by different network nodes, breaking

blockchain consensus. An oracle is a smart contract handled by a trusted authority for uploading

outside data to the blockchain. This allows network nodes to query the static blockchain data

instead of the outside world, overcoming the limits described above.

Another pattern particularly important in a decentralized context is the Authorization

pattern. Since SCs are publicly accessible to all blockchain participants, it is critical to restrict

authorizations to perform specific tasks. Specifically, for each contract method, developers must

specify the subset of participants who can call it. Contracts usually define at least one contract

owner, which is the only entity authorized to call critical methods. Table 6 shows various

techniques to handle authorizations properly during the coding phase.

A Time constraint defines when the related action is allowed to be performed. Different

blockchain nodes could process transactions at different timestamps, due to network latency or

further causes. Consequently, part of the network could consider an action as executed beyond

the time constraint, and the corresponding transaction could be rejected by the whole network.

Accordingly, developers must set time constraints carefully, for instance by ensuring that there

is enough time between two consecutive time constraints.

2.4.4.5 Security in the design phase

In the design phase, developers must be aware of, and use security patterns, as reported

in references [49] [48] [56], which I refer to. During smart contract design, you must think

strategically, and apply patterns and checks regarding the architecture and general modeling of

the SCs. Here, you must decide if and how to apply decoupling and fail-safe patterns, such as

Proxy [52] and Check-Effect-Interactions [49]. Minimization of dependencies, and careful

planning of reuse through inheritance and external libraries is another activity typically

performed in the design phase [55]. You should also decide how to manage authorizations to

the use of the system, and how to avoid race conditions due to wrong assumptions on system

time and transaction ordering [48]. You should carefully plan Ether management, if your SCs

must hold, receive and deliver Ethers. To this purpose, it is wise to limit amounts and frequency

of Ether withdrawals and use a "pull" approach to it [55].

In the remainder of this section, I describe some of the design best practices. For the sake

of brevity, I describe a few of them, while Table 5 shows the full list.

47

Table 5 Security assurance checklist for the design phase.

Name Description Ref. Related
Pattern

Include fail-safe
mechanisms

It is important to have some way to update the contract in the
case some bugs will be discovered. Incorporate an emergency
stop functionality into the SC that can be triggered by an
authenticated party to disable sensitive functions. The fail-safe
mechanism, if implemented using the Proxy Delegate could be
also exploited for forwarding calls and data to another
contract, which is an updated version of the current one (for
instance, a version where the bug has been fixed).

[49] SB,
RL,
TE,
PD,
OW

Never assume
that a contract
has zero balance

Be aware of coding an invariant that strictly checks the balance
of a contract. An attacker can forcibly send ether to any
account, and this cannot be prevented.

[55] CEI, MH,
GC

State
Channel/Off-
chain Support

In some contexts, transactions either have too high fee
compared to their value or must have low latency. In these
cases, rather than performing each blockchain transaction, it is
possible to firstly perform the operations outside the
blockchain, and then register all the results batching the
requests in a unique blockchain transaction.

[50]
[59]

RL

Limit the
amount of ether

If the code, the compiler or the platform has a bug, the funds
stored in your smart contract may be lost, so limit the
maximum amount. Check that all money transfers are
performed through explicit withdrawals made by the
beneficiary.

[60]
[60]

RL,
BL,
AU

Beware of
transaction
ordering

Miners have the power to alter the order of transactions
arriving in short times. Inconsistent transactions' orders, with
respect to the time of invocations, can cause race conditions.

[33] TC

Be careful with
multiple
inheritance

Solidity uses the "C3 linearization". This means that when a
contract is deployed, the compiler will linearize the inheritance
from right to left. Multiple overrides of a function in complex
inheritance hierarchies could potentially interact in tricky
ways.

[55] PD, REU

Use trustworthy
dependencies

Use audited and trustworthy dependencies to existing SCs and
ensure that newly written code is minimized by using libraries.

[55] REU

Withdrawal
from Contracts /
Pull over Push

When you need to send Ethers or tokens to an address, don't
send them directly. Instead, authorize the address' owner to
withdraw the funds, and let s/he perform the job.

[47]
[57]

CEI

A fail-safe mechanism is a function that allows contract owners to disable specific SC

methods. Developers should always design mechanisms to either update or terminate contracts

because, due to the immutability of blockchains, SCs cannot be removed once published. The

fail-safe best practice can be exploited to accomplish several security patterns. For instance, it

can be used for terminating a contract (Termination pattern), and optionally for enabling a new

version of the contract (Proxy delegate). Moreover, this mechanism could be used for slowing

down sensitive tasks (Speed Bump, Rate Limit). Usually, this mechanism is enabled by the

contract owner (Ownership).

48

2.4.4.6 Security in the coding phase

Below, I describe some of the most representative coding best practices. The full checklist

for security assessment in the coding phase is reported in Table 6.

During coding, one major class of problems derives from external calls, namely from

functions which recur to others' SC code for completing their execution. In fact, a SC can call

another SC, exploiting the execution of code contained in the latter contract. The pattern can

be recursive, so the called SC can in turn perform an external call, and so on. Therefore, external

calls must be treated like calls to ‘untrusted’ software. They should be avoided or minimized,

because some malicious code could be introduced somewhere in a SC belonging to this path,

and any external call represents a security risk. It is true that all external SCs are already present

in the blockchain, and thus are immutable. However:

• if their code is not thoroughly checked by a competent professional, a SC might not work

as intended;

• if the called SC makes use of the Proxy pattern, it can be changed by its author;

• in complex dApps, to avoid rewriting of the whole system in the case of a change,

mechanisms to dynamically change the address of the called SC are typically used;

• another typical risk of such contract interaction is reentrancy, namely the called contract

can call back the calling function before the overall function execution has been

completed. This pattern has been performed in the DAO attack.

When it is not possible to avoid external calls, label all the potentially unsafe variables,

functions and contracts interfaces as "untrusted".

To prevent these issues, check accurately all preconditions and restrict concurrent accesses

to resources, as defined by the Check-effect-interaction and Mutex patterns.

Another important best practice for SC security and error handling is to validate inputs by

using assert(), require() and revert() guard functions. They are a very powerful security tool, and

are the subject of security pattern Guard Check presented in Table 4. In general, use assert() to

check for invariants, to validate state after making changes, to prevent wrong conditions; if an

assert() statement fails, something very wrong happened and you need to fix the code. Use

require() when you want to validate user inputs, state conditions preceding an execution, or the

response of an external call. Use revert() to handle the same type of cases as require(), but with

more complex logic [55].

Table 6 Security assurance checklist for the coding phase.

Name Description Ref. Related
Patterns

Be careful with
external calls

If possible, avoid them. When using low-level call functions
make sure to handle the possibility that the call will fail, by
checking the return value. Also, avoid combining multiple ether
transfers in a single transaction. Mark untrusted interactions:
name the variables, methods, and contract interfaces of the

[55] CEI, MU,
GC

49

functions that call external contracts, in a way that makes it
clear that interacting with them is potentially unsafe.

Beware of re-
entrancy

Never write functions that could be called recursively, before
the first invocations is finished. This may cause destructive
consequences. Ensure state committed before an external call.

[60]
[55]

CEI,
MU

Embed
addresses to
grant
permissions

Make sure that critical methods can be invoked only by a
specific set of addresses, which belong to privileged users. For
instance, each contract has an owner and only this address can
invoke certain methods, like the method for updating the
address of the owner of the contract.

[50] AU,
OW

Use hash
secrets to grant
permissions

Sometimes you need to provide authorizations to some
authorities whose addresses are not known yet in the
developing phase (for instance, they are unknown authorities).
Although the Embed permissions pattern cannot be applied,
hash secrets help providing user permissions without specifying
any address. First, generate a secret key and, in the contract,
provide permissions by requiring its hash. Then, send (off-chain)
the secret key to the authorities you want to grant permissions.

[52]
[50]

AU

Use multi-
signature

Define a set of entities (or addresses) that can authorize an
action and require that only a subset of them is required to
authorize the action.

[52]
[50]

AU,
OW

Avoid using
tx.origin for
authorizations

tx.origin is a global variable that returns the address of the
message sender. Do not use it as an authorization mechanism.

[61]

AU

Encrypt on-
chain data

Encrypt blockchain data for improving confidentiality and
privacy. This is particularly important when actors are in
competition.

[50] PR

Hash objects for
tracking off-
chain data

Large objects (such as videos) should not be embedded in the
blockchain, their hashes can be easily uploaded instead.
Hashing objects can be also applied to hide sensitive data in
order to meet specific legal requirements, such as the European
GDPR.

[50] PR

Use platform
related
standards

Use platform related standards, like the ERC (Ethereum Request
for Comment) standards, which are application-level blueprints
and conventions in the Ethereum ecosystem.

[50] REU

Prevent
overflow and
underflow

If a balance reaches the maximum uint value it will circle back
to zero; similarly, if a uint is made to be less than zero, it will
cause an underflow and get set to its maximum value. One
simple solution to this issue is to use a library like SafeMath.sol
by OpenZeppelin. This issue has been partially solved in Solidity
8.0.

[33] MH,
GC, REU,
BL

Beware of
rounding errors

All integer divisions round down to the nearest integer. Check
that truncation does not produce unexpected behavior (locked
funds, incorrect results).

[55] MH,
GC,
REU

Validate inputs
to external and
public functions

Make sure the requirements are verified and check for
arguments. Use properly assert(), require() and revert() to check
user inputs, SC state, invariants.

[33]
[57]

GC

Prevent
unbounded
loops

When executing loops, the gas consumed increases with each
iteration until it hits the block's gasLimit, stopping the
execution. Accordingly, plan the number of iterations you need
to perform and establish a maximum number. If you still need
more iterations, divide computation among distinct
transactions.

[57]
[12]

RL,
BL,
TC,
TE

50

Provide fallback
functions

The "fallback function" is called whenever a contract receive a
message which does not match any of the available functions,
or whenever it receives Ethers without any other data
associated with the transaction. Remember to mark it as
payable, be sure it does not have any arguments, has external
visibility and does not return anything. Moreover, keep it
simple and if the fallback function is intended to be used only
for the purpose of logging received Ether, check that the data is
empty (i.e. require(msg.data.length == 0)).

[55]
[33]

CEI, MU,
GC

Check if built-in
variables or
functions were
overridden

It is possible to override built-in globals in Solidity. This allows
SCs to override the functionality of built-ins such as msg and
revert(). Although this is intended, it can mislead users of a SC,
so the whole code of every SC called from the SC you are
writing must be checked.

[55] GC

Use interface
type instead of
the address for
type safety

When a function takes a contract address as an argument, it is
better to pass an interface or contract type rather than a raw
address. If the function is called elsewhere within the source
code, the compiler will provide additional type safety
guarantees.

[55] GC

Be careful with
randomness

Random number generation in a deterministic system is very
difficult. Do not rely on pseudo-randomness for important
mechanisms. Current best solutions include hash-commit-
reveal schemes (ie. one party generates a number, publishes its
hash to "commit" to the value, and then reveals the value
later), querying oracles, and RANDAO.

[48]
[34]

OR,
REU

Be careful with
Timestamp

Be aware that the timestamp of a block can be manipulated by
a miner; all direct and indirect uses of timestamp should be
analyzed and verified. If the scale of your time-dependent event
can vary by 30 seconds and maintain integrity, it is safe to use a
timestamp. This includes things like ending of auctions,
registration periods, etc. Do not use the block.number property
as a timestamp.

[33] TC

2.4.4.7 Security in the testing and deployment phases

In this subsection I focus on the testing and deployment steps and describe some of the

best practices shown in Table 7.

As in traditional software engineering, also in the smart contract context developing unit

testing is important. Currently, there are several techniques for testing smart contracts. ABCDE

does not prescribe the use of specific testing practices, such as Test-Driven Design, but I highlight

the importance of testing. One way is to use a browser-based real-time compiler and runtime

environment for Solidity, such as Remix.

Another way is to use frameworks for testing. Presently, among the most popular testing

frameworks for Ethereum dApps there are Truffle [20], Embark [62] and Etherlime [63].

Moreover, the Ethereum community operates multiple test networks. These are used by

developers to test applications under different conditions before deploying them on the main

Ethereum network. The most famous ones are Ropsten [64] , Rinkeby [65] and Goerli [66].

Finally, it is possible to set up a local Ethereum blockchain which can be used to run tests,

51

execute commands, and inspect state while controlling how the chain operates. An example of

such a software is Ganache [67], from the Truffle suite.

Table 7 Security assurance checklist for the testing and deployment phases.

Name Description Ref.

Fix compiler warnings Take warnings seriously and fix them. Always use the latest version
of the compiler to be notified about all recently introduced
warnings.

[47]

Lock programs to
specific compiler version

Contracts should be deployed with the same compiler version and
flags that they have been tested with, so locking the version helps
avoid the risk of undiscovered bugs.

[55]

Enforce invariants with
assert

An assert guard triggers when an assertion fails - for instance an
invariant property changing. You can verify it with a call to assert().
Assert guards should be combined with other techniques, such as
pausing the contract and allowing upgrades. (Otherwise, you may
end up stuck, with an assertion that is always failing.)

[55]

Develop unit testing Be sure to have a 100% text coverage and cover all critical edge
cases with unit tests. Do not deploy recently written code,
especially if it was written under tight deadline.

[55]

Use frameworks for
testing

When approaching smart contract testing, do not start from scratch
but use existing framework for contract testing.

[55]

Use test networks Before deploying the smart contract in the main network, try it in a
public test network or use a software for configuring a private local
network.

[55]

2.4.4.8 Other patterns

As described in the methodology (2.4.4.3), 6 more patterns emerged from the literature.

Those patterns are not strictly related to contract security but are useful for a good SC design.

Therefore, I decided to include them in this work for completeness and briefly describe some of

them in the followings. Table 8 shows the full list of those patterns.

The Publisher-Subscriber pattern is a well-known design pattern studied in traditional (i.e.,

not blockchain-based) software engineering. According to this pattern, when a module needs to

receive some messages from other software modules (e.g., a smart contract), developers should

implement a messaging infrastructure that allows each module to be easily notified when a new

message is generated.

The Tokenisation pattern suggests using tokens for representing good and services in the

blockchain. The Ethereum ecosystem provides standards to handle several types of tokens, such

as the ERC20 and ERC721.

Table 8 Other design patterns.

Name Description Ref.

Publisher-
Subscriber

When a state change must trigger a computation in a different object,
implement a messaging infrastructure where the contracts that produce
messages (called publishers) can generate messages and the other contracts
(called subscribers) receive them. The pattern, also known as Observer,
reduces the overhead of constant information filtering.

[51]

52

Tokenization Use tokens for transferring digital or physical services. Use standards, such
as ERC20 and ERC721.

[50]

X-confirmation To ensure that a transaction is confirmed (i.e., there is a low probability that
a fork happens), wait for new blocks to be added to the blockchain. The
number of blocks depends on the adopted blockchain.

[50]

Contract
Registry

Often a smart contract needs to interact with other contracts which can be
updated over time. A contract registry maps each smart contract to the
address of its latest version. Accordingly, when invoking a smart contract,
the correct address should be retrieved from the registry.

[50]

Eternal storage
/ Data
Contract

Contract data and logic should be stored into separate contracts. In this way,
when the logic needs to be updated (by using a new smart contract), there is
no need to migrate old data.

[50]

Abstract
factory

Sometimes, systems need to work with groups of related contracts, for
instance with contracts which represent various level user account. To keep
the system independent from the different contracts, define an abstract
contract for creating all the related contracts.

[51]
[50]
[52]

2.4.5 Gas optimization
Besides security, another important factor of SCs that must be carefully designed since the

beginning is their cost. Creating SCs and writing permanent data in a public blockchain can be

very costly, so it is important to keep them to a minimum, and to limit the transactions that

write or modify these data. Also, the messages exchanged among the App System and the SCs,

and among SCs, must be properly designed and well documented.

In this subsection I present a collection of patterns for the design and development of

Smart Contracts, with the aim of saving gas. So far, only a few efforts have been made to collect

and classify patterns related to this issue, mainly published on blogs or discussion lists [68] [69]

[70] [71].

As already discussed in 1.8, during the development and execution of an Ethereum SC there

are costs, calculated in gas/gwei; these costs can be divided in fixed costs related to the creation

of the SC or to the sending of the transaction; costs related to the permanent storage of the SC

state, in storage; costs relating to the storage of temporary variables, necessary for the

execution of functions, in memory; costs related to the execution of the operations.

Accordingly to the literature, each pattern is described by:

 • a Name: it must be simple, focused on the issue and easy to remember. It allows you

to unambiguously refer to the pattern;

 • the Problem: it describes the issue that the pattern resolves. It may include a list of

conditions that must be met for the solution to be valid.

 • the proposed Solution: it clarifies what to do in order to overcome the Problem. It does

not describe a specific concrete implementation, but an abstract and precise enough solution,

that can be immediately applied, and reused multiple times.

I collected 24 gas saving patterns, which I assigned to 5 categories. The categories resulted

from analyzing the collected patterns and observing in which context they are used – for

instance, limiting the storage (which is ludicrously costly), or limiting the computations made by

53

function execution. Some patterns might belong to more than one category. I assign it to the

most appropriate one.

Applying patterns to an application can better align it with the unique properties provided

by the blockchain, overcoming its limitations. The presented patterns are based on multiple

sources, such as the Solidity documentation, the study of blogs and discussion forums on

Ethereum on the Web, and the examination of existing SCs.

Moreover, in Ethereum the maximum size of the bytecode of a SC is restricted to 24576

Bytes by the standard EIP 170 (see section 13.4.2 of [24]). For complex SCs, that size limit can be

hit easily, so many of the gas saving patterns are useful also to make a SC viable.

2.4.5.1 External Transactions

This category, detailed in Table 9, includes patterns related to the creation of contracts and

the sending of transactions from external addresses, including JavaScript applications, using

Web3.js standard library.

Table 9 External transactions gas-saving patterns.

Name Problem Solution

Proxy SCs are immutable. If a SC must be
changed due to a bug or a needed
extension, you must deploy a new
contract, and update all SCs making
direct calls to the old SC, thus deploying
also new versions of these. This can be
very expensive.

Use Proxy delegate pattern. Proxy patterns
are a set of SCs working together to
facilitate upgrading of SCs, despite their
intrinsic immutability. A Proxy holds the
addresses of referred SCs, in its state
variables, which can be changed. In this way,
only the references to the new SC must be
updated.

Data
Contract

When a SC holding a significant amount
of data must be updated, also all its data
must be copied to the newly deployed
SC, consuming a lot of gas.

Keep the data in a separate SC, accessed by
one or more SC, using the data and holding
the processing logic. If this logic must be
updated, the data remain in the Data
Contract. This pattern usually is included
also in the implementations of the Proxy
pattern.

Event Log Often events maintain important
information about the system, which
must be later used by the external
system interacting with the blockchain.
Storing this information in the
blockchain can be very expensive, if the
number of events is high.

If past events data are needed by the
external system, but not by SCs, let the
external system directly access the Event
Log in the blockchain. Note that this Log is
not accessible by SCs, and that if the event
happened far in time, the time to retrieve it
may be long.

2.4.5.2 Storage

This category, detailed in Table 10, includes patterns related to the usage of Storage for

storing permanent data.

54

Table 10 Storage gas-saving patterns.

Name Problem Solution

Limit
Storage

Storage is by far the most expensive kind
of memory, so its usage should be
minimized.

Limit data stored in the blockchain, always
use memory for non-permanent data. Also,
limit changes in storage: when executing
functions, save the intermediate results in
memory or stack and update the storage
only at the end of all computations.

Packing
Variables

In Ethereum, the minimum unit of
memory is a slot of 256 bits. You pay for
an integer number of slots even if they
are not full.

Pack the variables. When declaring storage
variables, the packable ones, with the
same data type, should be declared
consecutively. In this way, the packing is
done automatically by the Solidity
compiler. (Note that this pattern does not
work for Memory and Calldata memories,
whose variables cannot be packed.)

Packing
Booleans

In Solidity, Boolean variables are stored
as uint8 (unsigned integer of 8 bits).
However, only 1 bit would be enough to
store them. If you need up to 32 Booleans
together, you can just follow the Packing
Variables pattern. If you need more, you
will use more slots than needed.

Pack Booleans in a single uint256 variable.
To this purpose, create functions that pack
and unpack the Booleans into and from a
single variable. The cost of running these
functions is cheaper than the cost of extra
Storage.

2.4.5.3 Saving Space

This category, detailed in Table 11, includes patterns related to saving space both in

Memory and Storage.

Table 11 Memory and Storage gas-saving patterns.

Name Problem Solution

Uint* vs
Uint256

The EVM run on 256 bits at a time,
thus using an uint* (unsigned
integers smaller than 256 bits), it will
first be converted to uint256 and it
costs extra gas.

Use unsigned integers smaller or equal than
128 bits when packing more variables in one
slot (see Variables Packing pattern). If not, it is
better to use uint256 variables.

Mapping vs
Array

Solidity provides only two data types
to represents list of data: arrays and
maps. Mappings are cheaper, while
arrays are packable and iterable.

To save gas, it is recommended to use
mappings to manage lists of data, unless there
is a need to iterate, or it is possible to pack
data types. This is useful both for Storage and
Memory. You can manage an ordered list with
a mapping using an integer index as a key.

Fixed Size In Solidity, any fixed size variable is
cheaper than variable size.

Whenever it is possible to set an upper bound
on the size of an array, use a fixed size array
instead of a dynamic one.

Default
Value

It is good software engineering
practice to initialize all variables
when they are created. However,
this costs gas in Ethereum.

In Solidity, all variables are set to zeroes by
default. So, do not explicitly initialize a
variable with its default value if it is zero.

55

Minimize
on-chain
data

The gas costs of Storage are very
high, and much higher than the cost
of Memory.

Minimize on-chain data. The less data you put
on-chain in Storage variables, the less your gas
costs. Store on-chain only critical data for the
SC and keep all possible data off-chain.

Explicitly
mark
external
function

The input parameters of public
functions are copied to memory
automatically, and this costs gas.

The input parameters of external functions
are read right from Calldata memory.
Therefore, explicitly mark as external
functions called only externally.

2.4.5.4 Operations

This category, detailed in Table 12, includes patterns related to the gas used for the

operations performed within SC functions.

Table 12 Operations gas-saving patterns.

Name Problem Solution

Limit
External
Calls

Every call to an external SC is
rather expensive, and even
potentially unsafe.

Limit external calls. In Solidity, differently from
other programming languages, it is better to call a
single, multi-purpose function with many
parameters and get back the requested results,
rather than making different calls for each data.

Internal
Function
Calls

Calling public functions is more
expensive than calling internal
functions, because in the former
case all the parameters are
copied into Memory.

Whenever possible, prefer internal function calls,
where the parameters are passed as references.

Fewer
functions

Implementing a function in an
Ethereum SC costs gas.

In general, keep in mind that implementing a SC
with many small functions is expensive. However,
having too big functions complicates the testing
and potentially compromises the security. So, try
to have fewer functions, but not too few,
balancing the function number with their
complexity.

Use
Libraries

If a SC tends to perform all its
tasks by its own code, it will
grow and be very expensive.

Use libraries. The bytecode of external libraries is
not part of your SC, thus saving gas. However,
calling them is costly and has security issues. Use
libraries in a balanced way, for complex tasks.

Short Circuit Every single operation cost gas.

When using the logical operators, order the
expressions to reduce the probability of
evaluating the second expression. Remember that
in the logical disjunction (OR, ||), if the first
expression resolves to true, the second one will
not be executed; or that in the logical disjunction
(AND, &&), if the first expression is evaluated as
false, the next one will not be evaluated.

Short
Constant
Strings

Storing strings is costly.

Keep constant strings short. Be sure that constant
strings fit 32 bytes. For example, it is possible to
clarify an error using a string; these messages,
however, are included in the bytecode, so they
must be kept short to avoid wasting memory.

Limit
Modifiers

The code of modifiers is inlined
inside the modified function,

Limit the modifiers. Internal functions are not
inlined, but called as separate functions. They are

56

thus adding up size and costing
gas.

slightly more expensive at run time, but save a lot
of redundant bytecode in deployment, if used
more than once.

Avoid
redundant
operations

Every single operation cost gas. Avoid redundant operations. For instance, avoid
double checks; the use of SafeMath library
prevents underflow and overflow, so there is no
need to check for them.

Single Line
Swap

Each assignment and defining
variables costs gas.

Solidity allows to swap the values of two variables
in one instruction. So, instead of the classical
swap using an auxiliary variable, use: (a, b) = (b, a)

Write
Values

Every single operation cost gas. Write values instead of computing them. If you
already know the value of some data at compile
time, write directly these values. Do not use
Solidity functions to derive the value of the data
during their initialization. Doing so, might lead to
a less clear code, but it saves gas.

2.4.5.5 Miscellaneous

This category, detailed in Table 13, includes patterns that cannot be included in the

previous ones.

Table 13 Miscellaneous gas-saving patterns.

Name Problem Solution

Freeing
storage

Sometimes, Storage
variables are no longer used.
Is there a way to take
advantage of this?

To help keeping the size of the blockchain smaller, you
get a gas refund every time you free the Storage.
Therefore, it is convenient to delete the variables on
the Storage, using the keyword delete, as soon as they
are no longer necessary.

Optimizer Optimizing Solidity code to
save gas in exhaustive way is
difficult.

Always turn on the Solidity Optimizer. It is an option of
all Solidity compilers, which performs all the
optimizations that can be made by the compiler.
However, it does not substitute the usage of the
presented patterns, most of which need information
that is not available to the compiler.

2.5 Experimental Validation
The development process which later was named ABCDE was first devised in 2018 [72], and

since then it has been used in several projects carried on in my University’s group, and in firms

we are consulting.

Among the projects which were developed, or which are in development, I may quote a

system to manage temporary job contracts; a couple of systems to trace the provenance of

foods (one of which developed using Hyperledger technology) [73]; two voting systems, one

managing voting in firm shareholders' and board of directors meetings, the other for anonymous

voting; a system to manage energy exchange in local networks of electricity producers and

consumers; a system to automate agile software development [30]; a system to notarize and to

manage incentives for check-up visits.

57

Table 14 Survey on ABCDE Usage.

Nr. Question Mean St. Dev. Min Max

1 Years of sw. development experience 8 9.21 2 35

2 Years of agile sw. development experience 4.5 4.54 0 15

3 Years of dApp development experience 2.6 1.70 7 months 5

4 Number of completed dApp projects 2.5 2.44 1 9

5 Number of ongoing dApp projects 1.3 0.91 0 3

6 Number of dApp projects performed using ABCDE 1.9 1.14 1 5

7 ABCDE is overall useful 4.3 0.61 3 5

8 ABCDE is useful for requirements elicitation 4.4 0.65 3 5

9 ABCDE is useful in system design using UML
diagrams

4.5 0.66 3 5

10 ABCDE is useful for its iterative/incremental
approach

4.0 0.68 3 5

11 ABCDE is useful in security analysis 3.8 0.70 3 5

12 ABCDE is useful in optimization of gas consumption 3.5 0.85 2 5

13 ABCDE is useful in the testing phase 3.8 0.97 3 5

14 ABCDE is useful for integrating SC and dApp
systems

3.7 0.95 2 5

15 ABCDE is easy to use 4.4 0.50 4 5

The feedback of dApp developers using ABCDE method was generally positive and was used

to improve the method - especially concerning security and gas optimization practices.

In Table 14 I report the results of a survey conducted among 14 developers and graduate

students who used ABCDE on at least one dApp project. The scores regarding the features of

ABCDE method (questions 7-15) span from 1 (not useful at all) to 5 (very useful); a neutral

opinion corresponds to a score of 3. As you can see, the experience in software and dApp

development varies greatly. The average number of dApp projects performed by respondents is

fairly high (almost 4 projects each, of which 2.5 closed and 1.3 ongoing). The overall satisfaction

for ABCDE method is quite high, as well as its ease of use. The strengths of the method are

especially in the analysis and design phases, whereas it is less appreciated (but still above

sufficiency) in gas optimization, and final integration. The respondents gave also several

suggestions on possible improvements to ABCDE, some of which are reported in the final section

of this part 2.7.

2.5.1 Building an example dApp
Here I present, as an example of ABCDE usage, a simplified version of a dApp application

aiming to implement a decentralized exchange (DEX) for tokens managed on Ethereum

blockchain. A DEX is a system enabling the exchange of different tokens between two holders,

who interact directly, without intermediaries. I started from the well-known 0x protocol project,

the subject of a successful ICO held in 2017. The specification of the DEX can be found in the 0x

Whitepaper [74]. I present a simplified version of the whole system. In particular, I dropped the

part related to the protocol token (Section 4 of the Whitepaper), and the signing of the offers

by traders. In this example, a trading offer is simply posted to the DEX, and who wish to accept

58

it simply sends a transaction to the DEX. The guarantees against frauds are the transparency of

the underlying SC, and the hash signature of each offer, which guarantees against fraudulent

changes of the offer after it is accepted.

2.5.2 The first steps of ABCDE
For the sake of brevity, I will not present the App System coding phase, and the system

integration phase (phases 8 and 9), but I stop at the end the design phases (phases 5 and 7). The

steps of ABCDE are presented below.

1. Goal of the system. To manage a decentralized exchange, able to enable pairs of ERC20

token holders to exchange their tokens at an agreed rate on the Ethereum blockchain.

2. Actors. The system has the following actors:

• Trader: owner of tokens, wishing to post an offer, or to accept a posted offer.

• Maker: a trader who posts an offer to sell a given amount of her/his tokens, in

exchange to tokens of another type, at a given exchange rate.

• Taker: a trader who accepts the offer of a Maker.

• Relayer: a web system which facilitates signaling between market participants

by hosting and propagating an order book of the offers.

• DEX: smart contract(s) on the Ethereum blockchain which accept orders signed

by both a Maker and Taker and activate the exchange of tokens.

• Token: a SC on the Ethereum blockchain, managing a given token according to

the ERC20 protocol.

3. User Stories. Figure 8 shows the actors and the user stories they are involved in, using

a UML Use Case diagram, where the use cases are in fact USs. Note that these USs just

specify the DEX, and do not depend on the specific technology used to implement it,

except for the Ethereum blockchain, which the DEX necessarily must interact with. Given

the simplicity of the example, I will not show the USs in detail, since they are self-

explaining. In Figure 9 I show the UML class diagram derived by an analysis of the given

USs. This diagram is not bound to a specific implementation of the relayer system, but

just shows schematically the entities, the data structures and the operations emerging

from the USs shown in Figure 8. In short, the system just deals with orders, posted by

makers and later accepted by takers, both of who are kinds of traders. The Relayer is

the service which publishes the offers and makes possible the exchange of tokens. Both

traders and relayer access the smart contracts implementing the tokens in the

blockchain.

4. Divide the system into SC and App subsystems. In this case the subdivision is trivial,

because the Relayer system is a typical web application, whereas the DEX and the

Tokens are smart contracts by design. The USs of the external app subsystem are the

same of those reported in Figure 8, except those related with direct interaction with the

59

blockchain, tagged "SC" in the diagram of Figure 8. Also, the USs of the blockchain

subsystem are the same of those reported in Figure 8, but that tagged "AS".

5. Design of the SC subsystem. The SC system is quite simple, and mainly involves the

"DEX" SC, which interacts with the SCs managing the supported tokens to exchange.

The data managed by the DEX are the trading fees, the list of supported tokens, and

the list of the offers. To hold these lists, we use the "Eternal Storage" pattern,

consisting in storing them in an external SC, so that possible changes to the DEX can be

managed with no need to store again all these data [75]. Conversely, the use of the

Proxy pattern [56] is excluded, because the guarantee that the DEX works properly is

given by inspecting its source code. Giving the DEX's owner the ability to change the

DEX, leaving the Proxy unchanged, would void this guarantee. I report in Figure 10 the

UML class diagrams showing the SCs of the system. This diagram shows some of the

specific stereotypes used to document an SC system, as described in section 2.4.3.

The entities shown in the top of the diagram are standard library contract "Ownable",

library "SafeMath" and "ERC20" token interface, used in most contracts dealing with tokens.

"ERC20" contract represent at least two token contracts active on Ethereum blockchain and

managed by the DEX. The DEXStorage contract holds zero or more "Offer" records and is linked

to the related DEX contracts. Modifiers and events are shown in the corresponding contracts.

Figure 11 shows a UML sequence diagram representing the interactions among most

Actors of the systems, when a Taker accepts - through her/his wallet - an order seen in the

Relayer's book, and sends it to the DEX for execution, including the messages exchanged among

the SCs. Basically, the Taker approves, the transfer to the DEX of the tokens to give to the Maker,

plus the DEX fee; after that, the DEX cashes the tokens from both Maker and Taker, keeps the

fees and gives back the proper tokens to both Traders' wallets.

6. Coding of the SC subsystem. The developed SCs make use of existing library SCs, namely

"OnlyOwner" to manage the ownership of a SC, and "SafeMath" to avoid over- and

under-flow errors. They also refer to SCs already deployed on the blockchain and

implementing the ERC20 standard interface for managing tokens. Note that, since

Solidity version 8.0, the SafeMath library is not needed anymore, because over- and

under-flow controls are made by the EVM.

The contract "DEXstorage" holds and manages the mapping "tokens" having as key the

supported token symbol (4 characters) and as value the token address, and the mapping “offers”

having as key the Maker's address and as value the details of the offer (symbols and quantities

of the tokens to sell and buy, and their hash digest of these data). The owner of DEXstorage is

its creator, who is able to change the address of the DEX, stored in "dexLatestVersion" variable.

All other DEXstorage operations can be performed only by the DEX. This is ensured by using

"onlyLatestVersion" modifier. A part of DEXstorage contract follows, with the Offer definition:

pragma solidity ^0.7.0;
import "Ownable.sol";

contract DEXstorage is Ownable {
 address dexLatestVersion; // Address of DEX contract using this storage.

60

 struct Offer {
 bytes32 offerHash; // Hash of offer's parameters.
 bytes4 tokenToSell; // Token to sell symbol.
 bytes4 tokenToBuy; // Token to buy symbol.
 uint256 amountToSell; // Amount to sell.
 uint256 amountToBuy; // Amount to buy.
 }
 mapping (bytes4 => ERC20) public tokens;
 mapping (address => Offer) public offers;

 modifier onlyLatestVersion() { // Only DEX contract using this storage.
 require(msg.sender == dexLatestVersion); _; }

 function setCurrentDEXVersion(address _dex) external onlyOwner {
 dexLatestVersion = _dex; }

 function addOffer(address _maker, bytes4 _symbolToSell, bytes4 _symbolToBuy,
 uint256 _toSell, uint256 _toBuy)
 external onlyLatestVersion {
 offers[_maker] = Offer(
 keccak256(abi.encodePacked(_symbolToSell, _symbolToBuy, _toSell,
_toBuy)),
 _symbolToSell, _symbolToBuy, _toSell, _toBuy); }

 function getOffer(address _maker) external view
 returns(bytes32, bytes32, bytes32, uint256, uint256) {
 Offer memory _makerOffer = offers[_maker];
 return (_makerOffer.offerHash, _makerOffer.tokenToSell,
_makerOffer.tokenToBuy,
 _makerOffer.amountToSell, _makerOffer.amountToBuy);
 }

 function removeOffer(address _maker) external onlyLatestVersion {
 Offer memory nullOffer;
 offers[_maker] = nullOffer;
 }
}

The contract "DEX" implements the decentralized exchange. It allows its owner to add

the supported tokens, and then the Maker to add offers. Each Maker can have just one offer

active at a given time. Before posting the offer, the Maker must approve the DEX address to

withdraw from the SC managing the token to sell the offered amount, plus the selling fee. The

function "addOffer" is shown below:

pragma solidity ^0.7.0;
import "SafeMath.sol";
import "ERC20.sol";
import "DEXstorage.sol";

contract DEX is Ownable {
 using SafeMath for uint256;
 uint256 public sellFee; // Constant amount of fee paid by makers.
 uint256 public buyFee; // Constant amount of fee paid by takers.
 DEXstorage private dexStorage; // DEXstorage implementation reference.
...
 function addOffer(bytes32 _symbolToSell, bytes32 _symbolToBuy,
 uint256 _amountToSell, uint256 _amountToBuy) external {
 require(address(dexStorage.tokens(_symbolToSell)) != address(0));
 require(address(dexStorage.tokens(_symbolToBuy)) != address(0));
 require(dexStorage.tokens(_symbolToSell).allowance(msg.sender,

61

 address(this)) >= (_amountToSell.add(sellFee)),
 "Amount to sell exceeds allowance.");
 dexStorage.addOffer(msg.sender, _symbolToSell, _symbolToBuy,
 _amountToSell, _amountToBuy);
 }
...
}

A Taker can accept the Maker's offer. Of course, also the Taker must previously approve

the DEX address to withdraw from the SC managing the token to buy the offered amount, plus

the buying fee. The "acceptOffer" code is shown below:

function acceptOffer(address _maker, bytes32 _offerHash) external {
 bytes32 offerHash;
 bytes4 tokenToSell; bytes4 tokenToBuy;
 uint256 amountToSell; uint256 amountToBuy;
 (offerHash, tokenToSell, tokenToBuy, amountToSell, amountToBuy) =
 dexStorage.getOffer(_maker);
 require(offerHash == _offerHash, "The offer hash doesn't match.");
 require(dexStorage.tokens(tokenToSell).transferFrom(_maker, address(this),
 amountToSell + sellFee),"Transfer from Maker to DEX
unsuccessful.");
 require(dexStorage.tokens(tokenToBuy).transferFrom(msg.sender,
address(this),
 amountToBuy + buyFee), "Transfer from Taker to DEX
unsuccessful.");
 require(dexStorage.tokens(tokenToBuy).transfer(_maker, amountToBuy),
 "Transfer from DEX to Maker unsuccessful");
 require(dexStorage.tokens(tokenToSell).transfer(msg.sender, amountToSell),
 "Transfer from DEX to Taker unsuccessful");
 dexStorage.removeOffer(_maker); }

As in the "addOffer" function, most actions are performed inside a "require" clause,

meaning that if the action aborts, the whole computation aborts, the blockchain state does not

change, and the remaining gas is sent back to the caller.

62

Figure 8 The User Stories of the DEX system specification.

Figure 9 The standard UML class diagram derived from the USs.

63

Figure 10 The modified UML class diagram, showing the structure of the required smart

contracts of the DEX system.

Figure 11 The UML sequence diagram showing a Taker accepting an offer and sending it to the

DEX for execution.

64

2.5.3 Security assessment
Although the DEX system is quite simple, it has strict security requirements, because it

manages tokens, which can usually be exchanged with real money. In the followings, I follow the

security checklist to be applied in design phase (8 items) and coding phase (18 items), as

reported in section 2.4.4. For the sake of brevity, I will not report 18 checks which are not

relevant for this case study.

• Limit the amount of ether: I check that all money transfers are performed through

explicit withdrawals made by the beneficiary address.

• Transaction Ordering: I added the hashing check of orders because, lacking it, a

fraudulent Maker could post a very favorable offer; then the Maker might detect a

Taker's transaction to accept the offer, and quickly post a faster transaction (with much

higher gas value) changing the offer in an unfavorable way. The hash signature of the

offer solves the problem.

• Use trustworthy dependencies: I use only standard and very proven libraries, such as

"SafeMath.sol" and "ERC20.sol".

• Beware of re-entrancy: using the Check-effect-interaction, all relevant actions are

preceded by checks. No call to other SCs is made which might trigger reentrancy issues.

• Embed addresses to grant permissions: most functions able to modify the SC storage

can be called only by the owner, or by the DEX in the case of DEXstorage. The only

functions callable by external addresses are those used by the Maker to post an offer,

and by Taker to accept an offer.

• Use platform related standards: the only external SC called are ERC20 tokens, which

are a proven Ethereum standard.

• Prevent overflow and underflow and Beware of rounding errors: the (few) relevant

computations are performed using "SafeMath" library, which protects from these kinds

of errors.

• Validate inputs to external and public functions: not only all relevant actions are

preceded by checks, but all actions are performed including them inside a "require"

clause. If a guard is not satisfied, the whole action aborts.

2.5.4 Gas optimization
The minimization of gas consumption might be considered part of performance

optimization of any software solution. With dApps, the blockchain itself is the main performance

bottleneck, because external transactions take time to be processed and accepted, even in a

permissioned blockchain. With Ethereum, optimizing the performance of smart contracts

corresponds to minimize gas consumption, which is linked also to the number of bytecode

instructions executed.

65

The presented code follows the gas optimization patterns, as presented in section 2.4.5. In

particular, the following patterns are relevant:

• Proxy Delegate: I did not use Proxy Delegate pattern for the reason explained in Step 5

of section 2.4.2.

• Eternal Storage: this pattern corresponds to the use of "DEXStorage" contract, which

would allow to save a lot of gas in the case the DEX contract needs to be upgraded. In

fact, if the new DEX version uses the same DEXstorage of the previous one, all tokens

and offers can be re-used. In this case, however, the Makers must be warned to change

the DEX address in their approval to withdraw tokens.

• Pack variables: I packed the token symbol byte arrays is in the "Offer" structure.

• Do not initialize variables: I did not initialize variables with default values.

• Use Mappings: all the needed collections in contracts are implemented using mappings.

• Execution paths: functions do not perform heavy computations. However, I checked all

possible execution paths to make sure they are minimized.

• Limit external calls: functions are typically declared as "external", which are cheaper

than "public" functions.

• Limit modifiers: at most one modifier is used per function.

2.5.5 Writing automated tests
Each non-trivial function of the contracts written so far must be provided of Unit and

Acceptance Tests. Truffle framework [20] makes available two methods for testing Ethereum

smart contracts: Solidity test and JavaScript test. For the sake of brevity, here I report just a

fragment of the Solidity unit test written to verify "addToken()" and "addOffer()" functions of

"DEXstorage" contract:

pragma solidity ^0.7.0;
import "truffle/Assert.sol";
import "truffle/DeployedAddresses.sol";
import "DEXstorage.sol";

contract TestDEXstorage {
 DEXstorage public dexStore;
 address public tok1;
 address public tok2;
 address public address1;
 address public address2;
 bytes4 symbTok1;
 bytes4 symbTok2;

// Run before every test run
 function beforeAll() public {
 tok1 = 0xdf9c2dD7397F7f010E20e2c3b600372c8866Beb4;
 tok2 = 0x11261dB2A31C1b02ac1D8Dbb083c917123De160F;
 symbTok1 = "TOKA";

66

 symbTok2 = "TOKB";
 address1 = 0x9ef914c91980995913e8b846fbFD25814708bc8A;
 address2 = 0xac0C4bBd7481e6299082a5c1CD2D2e1Bf6291De2;
 }

// Run before every test function
 function beforeEach() public {
 dexStore = new DEXstorage();
 dexStore.addToken(symbTok1, tok1);
 dexStore.addToken(symbTok2, tok2);
 }

// Test that it adds tokens correctly
 function testAddToken() public {
 Assert.equal(dexStore.getToken(symbTok1),tok1,"Address of Token A not
correct");
 Assert.equal(dexStore.getToken(symbTok2),tok2,"Address of Token B not
correct");
 }

// Test that it adds an offer correctly
 function testAddOffer() public {
 dexStore.addOffer(address1,symbTok1,100,symbTok2,200);
 DEXstorage.Offer offer;
 offer = dexStore.offers[address1];
 Assert.equal(offer.tokenToSell,symbTok1, "Token to sell not correct");
 Assert.equal(offer.tokenToBuy,symbTok2, "Token to buy not correct");
 Assert.equal(offer.amountToSell,100, "Amount to sell not correct");
 Assert.equal(offer.amountToBuy,200, "AMount to buy not correct");
 }
...
}

The automated tests follow the standard pattern of resetting the test environment and

building the "test fixture" - that is the data needed for testing - before each test call. This is

accomplished by the functions "beforeAll()" and "beforeEach()". In this way, the test results do

not depend on test ordering. The tests are run by creating a "TestDEXstorage" contract, and

sending the proper test messages to it, which is automated by Truffle.

2.5.6 Design and coding of App System
This subsection covers steps 7 and 8 of ABCDE process. The App System is composed of the

software able to present the current offers of tokens posted by the takers, and of the software

used by takers and makers, respectively to post, modify or delete offers, and to accept offers.

The latter software must be provided of a wallet able to store Ethers and send transactions to

Ethereum blockchain.

The design of this subsystem includes that of its user interfaces. The system is fairly

complex, and the wallets must be designed and implemented using strong security practices. I

will not dig further into this subsystem because, except for the wallet, it is a standard, web-

based system.

67

2.6 Threats to Validity
In software engineering, there are three main types of validity that contribute to the overall

validity of a research, i.e., internal, construct, and external validity [76]. This research regards

the proposal of a new software development method for dApps, so its validity assessment is

quite different from that of empirical researches.

Internal validity concerns causal relationship between independent and dependent

variables, and if there is only one explanation for the research results. In this case, I do not have

empirical results on the validity of the method because the application field is relatively new,

ABCDE is the first proposed structured method to develop dApps, and some teams are just

starting to use it. For these reasons, I believe that internal validity assessment is out of the scope

of this threat analysis.

Construct validity concerns the correspondence between the research and the theory that

underlies the research itself. From this point of view, a research is valid if one may exclude

alternative explanations of the results. In our case, a threat to construct validity might regard

the possibility that other approaches might be better than ABCDE for dApp development. For

instance, one might argue that a waterfall process combined to a secure software development

methodology might better address security concerns of smart contracts. My team’s experiences

with agile methods, which began in the late 90s, and on dApp development make us pretty

confident that ABCDE is well balanced between the need to proceed quickly in the presence of

uncertain requirements - as it is almost always the case for dApps - without compromising

security. Moreover, as reported in section 2.5, a survey among 14 early developers who used

ABCDE gave favorable results. As always, improvements might be made to ABCDE method, and

the release of better methods cannot be ruled out. In this case, ABCDE will still be a yardstick

for comparison for other dApp development methods.

Threats to external validity are related to generalization of this approach: ABCDE was

developed specifically for Ethereum dApps. Is it equally valid for dApps intended to run on

Ethereum main-net, and on Ethereum permissioned blockchains? How about the applicability

to languages different from Solidity, and to other blockchains? Regarding the first issue, ABCDE

was developed considering both kinds of dApps - for public and permissioned blockchains. The

former has typically much stricter security and gas consumption requirements, whereas the

latter tend to make use of more complex smart contracts. The approach was balanced

considering both issues, addressing security and gas optimization with specific steps, and

contract complexity with design diagrams and iterative and incremental development.

Therefore, I believe that the validity threat of ABCDE being poorly suited to either public or

private blockchain dApps is overcome.

The applicability to other languages and blockchains is a bigger threat, which will be

mitigated only by extending ABCDE to cover these subjects. This is work in progress.

2.7 Conclusions and Future Work
Despite the substantial inflow of money and the strong efforts made in the development

of blockchain-based applications, the application of sound software engineering processes and

68

practices is still quite low. Moreover, dApp development has peculiar characteristics that must

be addressed with specific tools and guidelines, and research on these issues has just started,

being this field still in its infancy.

Applying a sound software engineering approach might greatly help to overcome many of

the issues of dApp development. These include specific architectural design issues, security

issues related to how a blockchain works, the need to spare gas, testing plans and strategies in

the blockchain environment, corrective and evolutionary maintenance issues, also related to

blockchain immutability.

To my knowledge, the work presented in this research is the first attempt to develop an

organic process for dApp development, from requirement gathering to design, coding, security

assurance, and deployment. The proposed method is presently focused on the Ethereum

blockchain and its Solidity language, which are at the current time the most used to develop

dApps. However, it can be adapted to other environments. For instance, it was used to model a

dApp developed using Hyperledger Fabric [73].

ABCDE takes advantage of agile practices, because dApp development usually deals with

rapid implementation of systems whose requirements are not fully understood at the beginning,

and tend to change over time. However, given the specificity of blockchains, ABCDE

complements the incremental and iterative development through boxed iterations, typical of

agility, with more formal tools. These tools include a full modeling of interactions among

traditional software and blockchain environment, using UML class diagrams, UML Use Case

diagrams (in fact, representing user stories), UML sequence diagrams - all specialized for

blockchain-based application development using stereotypes.

ABCDE also provides valuable practices, patterns and checklists to promote and evaluate

the security of a dApp written in Solidity language, and also to reduce its gas consumption.

In this research, I also present an example of application of ABCDE for the development of

a simplified Distributed Exchange system to enable trading between pairs of Ethereum tokens.

This example is a useful step by step tutorial on the application of guidelines and patterns

discussed.

I believe that ABCDE method can be really valuable to blockchain firms and ICO startups,

which might develop a competitive advantage using it since the beginning of their development

projects.

Future work will address the improvement suggestions gathered by the survey reported in

section 2.5, which include: (i) extending the method to other dApp development environments,

such as Hyperledger Fabric; (ii) adding best practices/guidelines for dApp maintenance; (iii)

being more specific on the App System development, and on the integration and testing of SC

and App systems; (iv) providing teaching materials and more practical examples. I also plan to

develop tools such as automated compilers of ABCDE class diagrams into smart contract data

structure.

69

3 Assessing the Risk of Software Development in Agile

Methodologies Using Simulation
As already stressed in previous sections, agile methodologies aim to reduce software

development risk using short iterations, feature-driven development, continuous integration,

testing automation, and other practices. However, the risk of project failure or time and budget

overruns is still a relevant problem.

In this section I present and discuss a new approach to model some key risk factors in agile

development, using software process simulation modeling (SPSM), which can complement

other approaches, and whose usage is particularly suited for agile development. I introduce a

new approach to model some key risk factors - namely project duration, number of

implemented issues, and key statistics of issue completion time - using a simulator of agile

development, which we developed for this purpose. The approach includes modeling the agile

process, gathering data from the tool used for project management, and performing Monte

Carlo simulations of the process, to get insights about the expected time and effort to complete

the project, and about their distributions. The model's parameters that can cause risk are errors

in effort estimation of the features to develop, variations in developers' assignment to these

features, impediments related to developers' availability and work completion. To validate the

simulator, and to demonstrate how the method can be used, I analyzed three open-source

projects, gathering their data from JIRA repositories. I ran Monte Carlo simulations of these

projects, showing that the simulator can well approximate the progress of the real project, then

varying the identified risk factors and statistically evaluating their effects on the risk parameters.

The proposed approach is relevant for project managers, being able to quantitatively

evaluate the risks, provided that the process and the project's data are properly modeled and

gathered.

As for the future, I am working to improve the risk assessment method, evaluating it on

more case studies, scaling the model from a single team to multiple teams involved in one or

more projects. Moreover, I plan to apply it also to the study of dApp projects, developed

following the ABCDE method presented in the previous chapter 2.4. Being an agile development

process, ABCDE is suitable to be modeled through this simulator.

3.1 Introduction
Software technical risk is hard to define and there is no agreement on a common definition.

Risk is somehow defined as a measure of the probability and severity of adverse effects [77],

inherent in the development of software that does not meet its intended functions and

performance requirements [78].

The Software Engineering Institute (SEI) defines risk as the possibility of suffering loss [79].

In such context, the loss may describe any impact to the project, which could be in the form of

diminished quality of the end product, increased costs, delayed completion, loss of market

share, failure, and so on.

70

A broader definition is given by PMBoK (Project Management Body of Knowledge) book.

Here, risk is defined as an "event or an uncertain condition that, if it occurs, can result in positive

(opportunities) or negative impacts (threats) in one or more project objectives, such as scope,

time, cost, and quality" [80].

Wallace et al. [81] identified and studied six dimensions of software project risk, i.e. risks

related to: Organization environment, User, Requirements, Project complexity, Planning and

control, Team.

Traditional software development methodologies deal with risk by performing a detailed

up-front analysis to lower risks related to poor requirements specification and enforcing strict

control planning, with frequent risk re-evaluations. However, they tend to integrate the various

software modules late in the project, leaving room for integration risks.

A newer approach is adopted by Agile Methodologies, which were introduced in the late

90's precisely to lower risks due to changing requirements –- a characteristic common to most

Internet-age software projects –- but related also to other issues, such as user involvement,

team cooperation, late integration, insufficient feedback [82] [83] [84] [85].

3.1.1 Problem statement
Software risk management is crucial for successful project management, but it is often an

aspect not properly taken into account in real projects. One of the main reasons is that project

managers often do not have effective tools and practices for software risk management.

In their work [86] Chadli and collaborators presented a research focused on discovering

and classifying the various tools mentioned in the literature which support Global software

development (GSD) project managers, and on identifying in which way they support group

interaction. In this paper, the authors state that “Decision management, risk management, and

measurement processes are not adequately supported by tools when compared to the other

Software Process Management processes”.

Only recently, a few frameworks and tools have been introduced for better addressing risk

management in Agile Software Development (ASD). The results of a survey conducted using a

qualitative approach to analyze how risk management is carried out in Scrum software projects

were presented in [87]. De Souza Lopes et al. in [88] established a framework called RIsk

Management PRoduct Owner (RIMPRO), which intends to support project teams to

systematically manage risks related to PO activities that may arise during the project definition

proposed by PMBoK.

Risk is an “event or an uncertain condition that, if it occurs, can result in positive

(opportunities) or negative impacts (threats) in one or more project objectives, such as scope,

time, cost, and quality” (PMI, 2017), in [89] intelligent agents are used to manage risk. They do

not simulate the process but only the stochastic impact of the variation [90] [91].

In such a scenario, Software Process Simulation Modeling (SPSM) has emerged as a

promising approach to address a variety of issues related to software engineering, including risk

management [92] [93]. Clearly, SPSM cannot address risk dimensions such as organization

71

environment stability and management support, lack of user involvement, team motivation, and

communication issues. SPSM can be useful to establish the impact of risks on specific topics,

such as requirement estimation errors, rework due to software that does not meet its intended

functions and performance requirements (software technical risk), project complexity, planning

and control practices [94]. However, how and to which extent SPSM can support software risk

management is a topic that still needs to be better clarified, especially in the case of ASD.

The goal of this work is to present a viable approach to risk management using SPSM when

using an agile development process, that is a process based on implementing requirements or

change requests specified as atomic "features" or "issues". In terms of research questions, this

goal can be specified as:

• RQ1: To what extent it is possible to automatically import into the simulator data of

real projects, from issue management systems?

• RQ2: How accurate can the simulator be in predicting project completion times?

• RQ3: Can the simulator be useful to estimate project risk (induced by errors in efforts

estimation, and random developer issues assignment) with a Monte Carlo approach?

3.1.2 Contribution
In this research, I present a system to perform risk assessment of ASD projects using SPSM

and a Monte Carlo stochastic approach. Regarding Wallace's risk dimensions [81], this system

mainly considers requirement correctness and estimation. This approach can improve the

planning and control of the project, and the management of its complexity. Also, team factors

can be taken into account, by explicitly modeling developers' skills, impediments, and turnover.

The dimensions of the organization environment and of user are out of the scope of the

proposed approach.

The basic tool of the system is an event-based simulator, able to simulate ASD based on

the implementation of User Stories (USs), or features, kept as independent as possible from one

another. The agile process may be iterative, as in Scrum, or using a continuous flow approach,

as in the Lean-Kanban approach.

The basic inputs to the simulator are the team composition and skills, and the USs

themselves. These inputs can be fed to the simulator from the Issue Management tools. So far,

the interface to the popular JIRA tool [95] was implemented. Other inputs are parameters

driving the random variation of teamwork, and of USs estimation and actual cost, as well as of

possible events able to influence the project.

The outputs of the simulation are key risk parameters, such as the distribution of times to

complete the project or the iteration, and of the forecast project cost. The simulations are

performed hundreds, or thousands, of times, properly varying the inputs, to get the distribution

of the required outputs. The resulting distributions can provide hints on the expected outputs

and of their variances, including proper risk percentiles, useful to monitor development and to

control risk. In fact, if risk assessment is not done in the initial stage, effort estimation will be

strongly affected and the overall project may risk failure [96].

72

The main contributions of this work are:

• The development of a flexible and extensible ASD simulator, able to simulate virtually

every Agile development process, based on incremental development. This simulator

models most aspects of ASD - team members, USs, activities, events - and can be easily

extended and customized, due to the full object-oriented approach used for its

development.

• The development of a risk management model, considering team factors, requirement

correctness, and effort estimation. The input data, parameters, and events, as well as

the relevant output distributions, are analyzed and discussed.

• The ability to feed project data from popular issue management tools, namely JIRA, with

the ability to extend the simulator taking into account also other tools.

• A risk management analysis performed on three medium-sized Open-Source projects,

comparing the simulation results of different choices of the input parameters. The

results highlight both the prediction accuracy of our tool and how it can be used to

manage risk.

3.1.3 Outline
The remainder of this section is structured as follows. Section 3.2 reports the main related

works on software risk management and on the application of SPSM to it. Section 3.3 presents

the proposed risk-assessment method. Section 3.4 describes the simulation model. Section 3.5

presents how the risk-assessment method is applied. Section 3.6 presents the case studies.

Section 3.7 presents the results of the case studies, and how they can be generalized and applied

to other projects. Section 3.8 presents the threats to validity. Section 3.9 eventually concludes

this chapter and discusses future work.

3.2 Related work

3.2.1 Risk Management in Software Projects
It is well known that several software projects suffer from various kinds of problems, such

as cost overruns, missing delivery deadlines, and poor product quality. One of the factors that

cause these problems is the fact that the risks are not handled, as shown by Charette [97].

Risk management in software projects is a key component of the success of a project.

Software engineering researchers and professionals have proposed several systematic

approaches and techniques for effective risk management as reported by Boehm [98].

A study conducted by the Project Management Institute has shown that risk management

is an activity not practiced among all the disciplines of project management in the IT industry

[99]. In real software projects, risks are often managed using the insights of the project manager,

and the entire process of risk management is rarely followed [100]. One of the main reasons for

this is that project managers lack practical techniques and tools to effectively manage the risks.

73

The paper by de Oliveira Barros et al. [101] presents an approach to develop, retrieve, and

reuse management knowledge and experience concerned with software development risks,

using scenarios to model risk impact and resolution strategies efficacy.

Shahzad and Al-Mudimigh [102] propose a model that takes care of the most frequently

occurring risks and provides a way for handling all of them. The sequence of activities for

mitigating all risk factors is presented in a comprehensive model, which is useful for improving

management and avoidance of software risk.

Xiaosong et al. [103] use a classical matrix approach, defining 82 software project risk

factors, aggregated in 14 kinds of risk, each one with an impact level on the overall project, from

Negligible to Critical. Once experts evaluate each factor, the risks are evaluated using the risk

matrix. Thereafter, high-level risks should be immediately addressed, whereas medium and low

risks will be monitored and kept under control.

Roy et al. identified key risk factors and risk types for each of the development phases of

SDLC (Software Development Life Cycle) [104], including services and maintenance of software

products.

Thieme et al. in their paper [105] present a study about the process for the analysis of

functional software failures, their propagation, and incorporation of the results in traditional

risk analysis methods (fault trees and event trees). A functional view on software is taken by

allowing integration of software failure modes into risk analysis of the events and effects. The

proposed process can be applied during system development and operation to analyze the risk

level and identify measures for system improvement.

3.2.2 Risk Management in ASD
Recently, agile software development methods have been introduced, to be able to

manage requirement changes throughout project development. ASD might be considered also

as a risk management approach because errors and changes in requirements are one of the main

risk factors in software development. Among specific studies and approaches to manage project

risk in ASD processes we already quoted the RIMPRO framework by de Souza Lopes et al. [88]. I

also recall the work of Tavares et al. [106] who propose Rm4Am, a tool that identified 5

components and 48 sub-components important in ASD and conducted an experiment with the

supervision and participation of Agile expert.

3.2.3 Simulation of Software Process
Software Process Simulation Modeling (SPSM) is presented as a promising approach

suitable to address various kinds of issues in software engineering [107]. The results of the

review conducted by Zhang et al. [108] showed that risk management is one of the several

purposes for SPSM. Liu et. al. performed a systematic review on this topic, concluding that the

number of SPSM studies on software risk management has been gradually increasing in recent

years and that discrete-event simulation and system dynamics are the two most popular

simulation paradigms, while hybrid simulation methods are more and more widely used [109].

74

Practical examples of the use of SPSM are the works by Baum et al. [110], who compares

pre-commit reviews and post-commit reviews using process simulation through a parametric

discrete event simulation model of a given development process, and by Zhao et al. [111] who

present a fine-grained dynamic micro-simulation system based on an agent model at the project

level for Open Source Software Development.

Discrete-event simulation of agile development practices was first introduced by Melis et

al. [112]. Anderson et al. [113] proposed an event-driven, agent-based simulation model for the

Lean-Kanban process, extensible to other Agile software processes, and used it to demonstrate

the effectiveness of a WIP-limited approach and to optimize the WIP limits in the various process

activities. In a subsequent work, Anderson et al. [114] used an extended version of their

simulator to compare Lean-Kanban with traditional and Scrum approaches on the data collected

from a Microsoft maintenance project, showing that the Lean-Kanban approach is superior to

the others.

Turner et al. worked on modeling and simulation of Kanban processes in Systems

Engineering [115] [116]. These two works, though quite preliminary, propose the use of a mixed

approach, merging Discrete Event and Agent-based simulation approaches. In particular,

Discrete Event simulation is used to simulate the flow of high-level tasks and the accumulation

of value, whereas Agent-based simulation is used to model the workflow at a lower level,

including working teams, Kanban boards, work items, and activities.

Wang [117] introduces an agent-based simulation tool to compare solo and pair-

programming, and other agile practices, in the context of Scrum development. The simulation

tool can simulate all types of Scrum context and team composition to test designed strategies

under various what-if assumptions in agent-based modeling.

3.2.4 Automated Approaches for Software Risk Management
Another field of interest related to software risk management is the application of Machine

Learning, and similar automated techniques. In this field, Fenton et al. [118] developed a

complex causal model based on Bayesian networks for predicting the number of residual defects

of a system. Their approach accounts for various phases of software development, among which

requirement analysis, design, and programming, testing, and rework. Each phase is modeled by

a Bayesian net, whose probability values and functions are set by project managers. The model

allows managers to perform various types of what-if-analyses and trade-offs, focusing on

minimizing the number of defects, which is a key factor in risk management.

Tinjacá Rodríguez et al. [119] present a model based on the A.I. technique called "Rough

Set" for selecting and prioritizing, in environments of uncertainty, a set of critical threats in a

software development project, to minimize risks. Their model, named "Apollonian", generated

20 rules that work as a reference for any software development project, to assess the main

threats to the project.

Raymond Joseph [120] proposes a machine-learning algorithm to generate risk prompts,

based on software project characteristics and other factors. His approach uses multiple

75

multilabel artificial neural networks to label software projects according to the risks to which

they are most exposed.

Han [121] trained a multi-layer-perceptron to assess the risk level of a software project,

using as a learning set the OMRON dataset of 40 projects, each described by 24 risk-related

parameters. The results look better than a more traditional logistic regression.

Min et al. [122] applied fuzzy comprehensive evaluation to estimate a project's risk level.

The approach is somewhat similar to, though much simpler than, that of ref. Fenton, but instead

of Bayesian nets fuzzy algebra is used to find the probability of risks, given estimated risk factors.

Alencar et al. [89] propose a proactive and automated approach based on agent technology

to assist the software project manager in the execution of the Risk Management processes.

Abioye et al. [123] present a life-cycle approach to ontology-based risk management

framework for software projects using a dataset gathered from literature, domain experts, and

practitioners. The risks are conceptualized, modeled, and developed using Protégé. The

framework was adopted in real-life software projects.

Asif et al. [124] identify the relationship between risk factors and mitigation actions

automatically by using an intelligent Decision Support System. The DSS is rule-based and

identifies the rules using the Equivalence Class Clustering and bottom-up Lattice Traversal

(ECLAT) algorithm, starting from expert knowledge and literature. 26 highly cited risk factors and

57 risk mitigations were identified from the literature and associated through the rules of the

DSS, to help project managers to mitigate the risks.

3.2.5 SPSM for Risk Management
The literature about SPSM applied to risk management is still quite limited. Ghane [125]

observes that ASD delivers workable software in short cycles, and this helps with collecting more

heuristic data as compared to traditional waterfall methodologies. Such data can be used as

quantitative metrics for time and effort estimation. He then introduces a risk management

model that uses project simulation to produce risk metrics used to help with risk avoidance and

mitigation. These metrics are used to adjust project factors such as time, cost, and scope during

the lifespan of a project.

Singh et al. [126] represent the PERT graph of a software project, where nodes are the

states, and arcs represent activities. Each arc bears the mean and standard deviation of its cost.

A Monte Carlo simulator stimulates the model with thousands of executions, to find the cost

distribution and the critical paths.

3.3 Risk Assessment through Simulation

3.3.1 The Risk-assessment methodology
The starting points in Risk assessment are the Six dimensions of risk, as defined by Wallace

et al. [81]. They are:

76

1. Organizational Environment Risk, including change in organizational management

during the project, corporate politics with a negative effect on the project, unstable

organizational environment, organization undergoing restructuring during the project.

2. User Risk, including users resistant to change, the conflict between users, users with

negative attitudes toward the project, users not committed to the project, lack of

cooperation from users.

3. Requirements Risk, that is continually changing system requirements, system

requirements not adequately identified or incorrect, system requirements not properly

defined or understood.

4. Project Complexity Risk, encompassing a high level of technical complexity, the use of

new or immature technology.

5. Planning & Control Risk, including the setting of unrealistic schedules and budget, lack

of an effective project management methodology, project progress not monitored

closely enough, inadequate estimation of required resources, project milestones not

clearly defined, inexperienced project manager.

6. Team Risk, including inadequately trained and/or inexperienced team members, team

member turnover, ineffective team communication.

I recall that risk management involves the following three steps:

1. Risk identification: where possible risks related to a project are enumerated and

discussed, typically preempting what might go wrong in a proactive way.

2. Risk analysis: where identified risks are quantitatively and qualitatively evaluated, to

ascertain the probability and critical level of their impact.

3. Risk mitigation: actions to both lower the probability that the adverse event occurs and

reduce its impact on the project before it happens.

SPSM can be applied to risk analysis, greatly helping the quantitative assessment of some

risk dimensions. This approach is intended to work together with other risk management

frameworks, and not as a stand-alone method.

The use of the SPSM approach addresses mainly dimensions 3, 4, and 5, and specifically

inadequate estimations of requirements, project complexity in terms of number and complexity

of requirements (including sequence constraints), and poor quality of software artifacts, due

again to requirements not properly understood, or to issues in project management and

planning. Team risk can also be modeled by setting proper developers' skills, by representing

developers' turnover, task switching, and absences due to various causes.

The Risk-assessment methodology I propose is performed in subsequent steps:

1. The development (or maintenance) process is modeled (activities, team, process, issues,

constraints), and the simulator is configured to simulate it.

77

2. Key quantitative risk factors are identified; in our case, they are estimation errors in

efforts to complete features or resolve issues, percentage of rework, variations in the

skills of team members, probability of events that stall the development of single

features, or block one or more developers, and so on.

3. Probability distributions are given to these risk factors, for instance, the probability

distribution of actual effort needed to fix an issue, or the probability that a developer is

blocked, together with the probability distribution of the time length of this block.

4. Key process outputs are identified, such as project total time, throughput, average and

95% percentile of lead and cycle times to resolve issues.

5. Hundreds or thousands of Monte Carlo simulations of the project are made varying the

risk factors accordingly to their probability distributions and recording the process

outputs.

6. The resulting distributions are analyzed, assessing for instance the most likely duration

and cost of the project, the average time – or the distribution of times – to implement

an issue or to fix a bug, the probability that a given percentage of issues is implemented

within a given time.

This Monte Carlo assessment can be performed also on an ongoing project, by simulating

the continuous flow of new requirements or maintenance requests, or just the remaining

features to be implemented.

The proposed approach was inspired by the ever-increasing use of Issue Tracking Systems

(ITS) that allow developers to easily gather all data related to change requests and defect

correction, as well as to schedule and track the project flow. I started by creating a connection

with the JIRA system [95], one of the most popular ITS worldwide, throughout REST calls, using

JIRA APIs. Once the connection is established, it is possible to download project data and all

related information in a file in JSON or CSV formats. In particular, the simulator can collect

detailed data related to developers, issues, process activities, and others, as shown in Figure 12.

Figure 12 Interaction between JIRA Issue tracking System and the simulator.

3.4 The Simulation Model
This SPSM model uses an approach that is both event-driven and agent-based. The

operations of the system are represented by a sequence of events in chronological order. Each

event occurs at an instant of the simulation time and causes a change in the state of the system.

78

The simulator is also based on agents (the team members), who exhibit autonomous behavior.

The agent's actions are not fixed but depend on the simulated environment.

3.4.1 Basic Components
The basic components of the SPSM model are the issues, the activities, the team members,

and the events:

• Issues are the atomic work items in a development or maintenance project. They

correspond to the features described in the Lean-Kanban approach and are like Scrum

USs. Each unit of work is characterized by a unique identifier, a collection of effort values

(in man-days) expressing the amount of work needed in each activity to complete the

issue, a priority (an integer in a given range, expressing the importance of the issue),

and information of the actual effort spent in each activity. When the last activity is

completed, the issue becomes closed.

• Activities represent the kinds of work that must be done on the issues to complete

them. Typically, they are Planning, Analysis, Coding, and Testing, but they can be

configured on the specific development process chosen by the team.

• Team members (Developers) hold the information on the actual developers, which

includes the skills in the various activities. If the skill is equal to one, it means that the

team member will perform work in that activity according to the declared effort. For

instance, if the effort is one man-day, the member will complete that effort in one man-

day. If the skill is lower than one, for instance 0.8, it means that one-day effort will be

completed in 1/0.8 = 1.25 days. A skill lower than one can represent an actual

impairment of members or the fact that they have also other duties and are not able to

work full time on the issues. If the skill for an activity is zero, the member will not work

in that activity.

• Events represent what happens at a given time, which is relevant to the development.

Each event has a time and is executed by the simulator when its time arrives. Three

kinds of events are managed:

i. the creation of an issue;

ii. the start of work on an issue in a given activity;

iii. the end of the work on the issue in a given activity.

3.4.2 The simulation process
The modeled development process proceeds through a sequence of steps. Preliminarily,

one must define the ASD process, that is what are the activities of the process, their sequence,

and their average relative weight on the total effort to complete an issue. Secondly, the

development team members must be created, each having different skills in the various

activities. Then, the simulator is started, executing steps with the following characteristics:

79

1. The simulation starts at time zero: t=0. Time t is expressed in working days. Each day

involves 8 hours of work. At the beginning, the system may already hold an initial

backlog of issues to be worked out.

2. The simulation proceeds by time steps of one day, until a predefined end, or until the

event queue is empty.

3. Issues are entered at given days, drawn from a random distribution, or given as input to

the system. Each issue is endowed with a collection of effort values for each activity (in

days of work), to be performed to complete the issue. These values can be drawn from

a distribution or obtained from real data.

4. Each issue passes through the activities. Each activity takes a percentage of the whole

effort to process the issue. The sum of the percentages of all the activities must be 100%.

When an issue enters an activity, the actual effort (in man-days) needed to complete

the activity is equal to the total effort of the issue multiplied by the proper percentage.

5. At the beginning of each day, the developers choose the issue (and the activity) they will

work on in the day. This choice is driven by the developer's skills, by the issue priority,

and by the preference to keep working on the same issue of the preceding day, if

possible. Whenever an issue is processed for the first time, or in the case of developer

switching from another issue, a multiplicative penalty factor p, with p ≥ 1, is applied to

compute the time effort, to model time waste due to task switching (extra time needed

to study the issue, which is proportional to the size of the task). The task switching

problem is well known in software engineering, as reported also recently by Abad et al.

[127].

6. When the work on an issue in a given activity ends, the issue is pulled to the next activity,

where it can be chosen by a developer, or is closed in the case of the last activity. The

developer who ended the work will choose another issue to work on, which might be

the same issue, in the subsequent activity, or not.

The presented simulation model can represent development, or maintenance processes, and

can be customized to cater to the specific process of an organization. From this generic model,

we can derive various specific models. For instance, one might introduce WIP limits, as

suggested by the Lean-Kanban approach. For a WIP-limited process, the model must be

complemented by adding limits to the maximum number of issues that can be processed at any

given time inside an activity.

If a Scrum-like development must be modeled, this can be accomplished by defining the length

of the iteration (Sprint) and managing the number and total effort of new issues entering at the

beginning of each Sprint.

80

Figure 13 UML simulator class diagram.

3.4.3 Simulator Design
The simulator is implemented using Smalltalk, a language very suited to event-driven

simulation and very flexible to accommodate any kind of changes and upgrades to the model.

The simulator design is fully object-oriented, allowing to easily add new features if needed.

The simulation model records all the significant events related to issues, developers, and

activities during the simulation, to be able to compute any sort of statistics and to draw various

diagrams.

In the simulator, software requirements are decomposed into issues that can be

independently implemented. The implementation is accomplished through a continuous flow

across different activities, from being in Backlog to being Closed. The work is performed by a

team of developers, able to work on one or more activities, depending on their background.

The different entities of the simulator are represented in the class diagram shown in Figure

13. Here you can find the four basic classes outlined in section 3.4.1, plus other key classes. The

Simulator is a singleton (a class with just one instance) managing the simulation through the

event queue. A Project defines its activities and holds the pertaining issues. The present version

of the simulator allows simulating a single project, with one team working on the issues.

The team is composed of a given number of developers. Each i-th developer is

characterized by a skill array (one skill for each Activity), and a productivity factor at time t, qi(t),

obtained as the ratio between the number of closed issues of i-th developer at time t, Ci(t) and

the number of project days elapsed:

𝑞𝑖(t) =
𝑐𝑖(t)

𝑡
 (1)

81

Each developer works on an available issue until the end of the day, or until the issue has

been completed. When the state of the system changes, for instance, because a new issue has

been introduced, an issue is pulled to an activity, the work on an issue ends and, in any case, at

the beginning of a new day, the system looks for idle developers and tries to assign them to the

issues available to be worked on in the activities they belong to.

As reported in section 3.4.2, the developer's productivity may be affected by the penalty

factor p used to compute issues time effort in case of developer switching.

The penalty factor p is equal to one (no penalty) if the same developer, at the beginning of

a day, works on the same issue s/he worked the day before. If the developer starts a new issue

or changes issue at the beginning of the day, it is assumed that s/he will have to devote extra

time to understand how to work on the issue. In this case, the value of p is greater than one and

the required effort to complete the issue is the original effort, multiplied by p.

3.4.3.1 Issues

The issues that make up a project are categorized into various types: features, tasks, epics,

bugs, user stories, which are given as inputs to the simulator. In the present model, the issues

are atomic - meaning that they can be implemented independently from other issues - and are

explicitly linked to a specific project.

New issues can be created as time proceeds. Each issue is characterized by an id, a state,

the original effort estimate, the effort actually spent to date. All efforts are in man-days. The

possible states of the issue are shown in Figure 14. At the beginning, an issue is in backlog. Then,

it can be chosen for development (To Do), and subsequently is pulled into the first activity, where

it waits to be assigned to a developer (Waiting to be assigned). When a developer subscribes to

it, its state becomes Under work. When work in the current activity is finished, its state becomes

Work done, and the issue waits to be pulled into the next activity. If the activity where the work

was done is the last one of the process, the status of the issue becomes Released, which is the

final state.

3.4.3.2 Activities

Each project holds a list of all activities defining the ASD process followed. These represent

the specific work to be done on the issues; each of them covers a given percentage of the total

effort needed to complete the issue.

Activities can be freely configured according to the process steps. Each activity is

characterized by its name, and by the typical percentage of the total estimated time effort of an

issue that pertains to the activity. For instance, if an issue has an overall estimate of 10 days,

and the Testing activity has a percentage of 15%, in this phase the feature will be estimated to

last 1.5 days. The sum of the percentages of all the project activities must be one.

The first and the last activities are Backlog and Live (Released). They are special activities

because no work is performed on them - so their effort percentage is zero. The former is a

placeholder, containing all issues put into processing, for instance at the beginning of each Sprint

in Scrum. The latter is where the completed issues are kept.

When work starts on one issue within a given activity, the actual effort of development of

the issue in the activity is computed. This is accomplished by randomly increasing or decreasing

82

it of a percentage drawn from a given distribution. Of course, the average effort of all issues

must be equal to the average of their initial estimates. A way to obtain this behavior is to multiply

the estimated effort by a random number r drawn from a log-normal distribution with a mean

equal to 1 and standard deviation depending on the wished perturbation.

Figure 14 The possible states of an Issue.

3.4.3.3 Events

The simulator is event-driven, meaning that the simulation proceeds by executing events,

according to their time ordering and priority. When an event is executed, the time of the

simulation is set to the time of the event. The simulator holds an event queue, where events to

be executed are stored sorted by time and priority. When an event is executed, it changes the

state of the system, and it can generate new events, with times equal to, or greater than, the

current time, inserting them into the event queue. The simulation ends when the event queue

is empty, or possibly if a maximum time is reached, marked by an "End of simulation" event.

Figure 15 shows an activity diagram explaining the simulator's workflow. After an initial

configuration, which includes inserting into the event queue the issue creation events, and

possibly the end of simulation event, the simulator main cycle starts and is shown in the diagram.

The time is recorded in nominal working days, from the start of the simulation. A day can

be considered to have 8 nominal working hours, but developers can work more or less than 8

hours. To consider calendar days, it is always possible to convert from nominal working days to

them. The supported events are described in Table 15.

83

Figure 15 The UML activity diagram showing how the event-driven simulator works.

Table 15 Simulation Event Description

Event Description

IssueCreation It is raised to create a new Issue. This event refers only to issues introduced
after the start of the simulation, and not to the issues already included in the
initial queue. Its execution creates and inserts into the event queue, on the
same time, an IssueToPull to activate pulling the issue from the Backlog
activity.

IssueWorkEnded It is raised when the work of a developer on an issue, within a given activity,
ends. This may happen when the work on the issue in the activity is
completed, or at the end of the working day. In the former case, the state of
the issue is changed, and an event IssueToPull is generated for the next
activity, at the same time.

IssueToPull It is raised to request to pull an issue from one activity to the next. If the
activity to which the issue should be pulled to is the last one (Live), the issue is
forthwith moved to it, and an event IssueWorkEnded is created for the issue,
and inserted into the event queue at the same time.

EndOfSimulation When raised, the simulation is ended, and its results are written into a file.

84

The mentioned events are enough to manage the whole simulation. The simulation is

started by creating the initial issues, putting them in the Backlog activity, and generating a

number of IssueToPull events for the first activity equal to the number of issues ready to be

pulled in the next activity, and then generating as many IssueCreation events for future times as

required. The simulator is then asked to run, using the event queue created in this way. When

the work on all issues has been completed in all activities, no more issues can be pulled and no

more work can start, so the event queue becomes empty, and the simulation ends.

3.4.3.4 Component Validation

The proposed SPSM model reflects standard concepts of ASD: features (here called issues),

development activities, team members, events (which are instrumental to simulate an iterative,

o continuous-flow development). Most of its parameters are directly taken from real project

data through an interface to an issue management system (see next Section 3.4.4).

A few parameters, however, must be properly estimated and validated. The penalty factor

p described above was set to p=1.15, meaning a 15% increment in the work to be done when a

developer changes the issue s/he is working on. This figure is consistent with the data by

Tregubov et al. [128] who estimate that "developers who work on 2 or 3 projects spend on

average 17% of their effort on context switching between tasks from different projects". In this

case, the switching can be also between different issues of the same project, and the penalty is

applied only to the time to work on that issue for the present day.

Another key parameter to be estimated, which may differ from project to project, is the

percentage of work to assign to the various activities of a project. Following the same approach

reported in [129], we assigned most of the effort (70%) to the "in progress" activity -

representing the actual development made on an issue - and a residual effort to testing (15%)

and deploying (15%) activities.

This choice was reviewed and approved by six expert project managers (more than 10 years

of experience in managing medium-to-large size Java and Python projects) of three firms we

work with, and by one expert consultant in Python and Javascript development. Their

experience is mainly in Web applications (including apps for mobile devices), ERP platforms,

business intelligence applications. Using a Delphi online panel, we got seven answers (with

percentages obtained by rounding to five percent), made a refinement round, and adopted the

median result.

3.4.4 JIRA Interface
The simulator reads data directly from JIRA through its APIs. JIRA REST APIs allow users to

use several kinds of REST calls to get information about projects, issues, developers, and more.

The system asks all data about a project with the specific query:

--data '{"jql":"project = GROOV",
"startAt":0, "maxResults":100},
"http://localhost:8099/rest/api/2/search"

85

JIRA responds by providing a JSON file that includes the following fields: project name,

project starting date, project workflows, developers, a backlog of issues, issues arrival dates,

issue types, issues estimate, times, issues original times, issues times spent. Then the simulator

parses the file and organizes the data to be processed. In particular, it builds the initial queue

(backlog) of issues according to their priority. For each issue, the simulator sets all attributes

(key, effort spent, original effort estimate, issue type, developer, issue state, issue description,

…), then creates the collection of developers, the collection of activities, and finally sets up the

project's starting date.

3.5 Research Design
The overall research objective is to better understand how to use SPSM to perform risk

analysis on ASD projects. The inputs to the model, taken from an ITS such as JIRA and related to

an ASD project, are information on team members involved, and information on all issues

managed at a given time. The latter kind of information includes the date an issue entered the

system, its original effort estimate, the actual time spent on it, and an estimate of the remaining

effort. Information on the ASD process used must also be collected from the team. It includes:

• the sequence of activities performed by the team; at least they include: Backlog, In

progress, Done;

• the duration of a Sprint, and the way Story Points are computed to decide how many

USs to include in each Sprint if Scrum is used;

• the maximum number of USs allowed in each activity if the Lean-Kanban approach is

used.

Starting from this information, it is possible to compute the outputs of SPSM, which

typically are:

• The project duration if no more issues are entered;

• The number and effort of issued forecast to be closed on a given date;

• An estimate of average, standard deviation, and median of the issue cycle time, that is

the time needed from the start of item processing to its completion.

Figure 16 shows the basic inputs and outputs of our model, based on JIRA issue data. Table

16 shows the parameters used in the simulation, including the class they belong to, their type,

and whether they were read from JIRA, estimated from JIRA data, set after expert consultation,

or dynamically computed during the simulation.

To perform risk analysis using SPSM, first we need to assess the suitability of the simulator

to effectively model the software development process. This can be accomplished by running

the simulator on real data and verifying its ability to mimic the real development.

86

Figure 16 The Inputs and Outputs to JIRA simulation model.

Subsequently, we need to define what are the causes of risk, which can affect the desired

outcomes of the project - in this case duration and cost. The main risk factors identified are

erroneous effort estimates of the issues, suboptimal allocation of the issues to developers, and

blocks and impediments to the work of developers. Once the statistics of these factors are

precisely defined, a Monte Carlo simulation can be used to assess the risks quantitatively.

Table 16 The simulator inputs, highlighting the inputs imported from JIRA. "PART." means
"partially".

Class Parameter Type Description From
JIRA

Notes

Project ProjectName String Name of the project YES

Project ProjectStart Date Start date of the project YES Corrected to the
date of the first
completed issue

Project NoOfActivities Integer Number of activities YES

Activity ActivityID String Unique short identifier NO Generated by the
system

Activity ActivityName String Name of the activity YES Chosen through
expert
consultation

Activity ActivityEffort Percentage Effort perc. of the
activity

NO

Team NoOfDevs Integer No. of developers YES

Developer DevID String Unique short identifier NO Generated by the
system

Developer DevName String Name of the developer YES

Developer Skills Float[] Array of the dev. skill for
each activity

PART. Estimated from
JIRA data

Developer Productivity Float Productivity factor PART. Estimated from
JIRA data

Issue IssueID String Unique short identifier YES

Issue IssueDescr String Issue description NO Not used

Issue IssueStart Date Start date of issue
development

YES

Issue IssueCreation Date Creation date of the
issue

YES

Issue IssueType String Type of the issue YES

Issue IssueState String State of the issue NO Dynamic value

Issue IssuePriority String Priority of the issue YES

Issue IssueOrig-
Estimate

Float Original estimated effort YES

87

Issue IssueEffortSpent Float Original remaining effort YES

Issue IssueWorkRatio Percentage Actual percentage of
work performed

NO Dynamic value

Issue Assignee String Name of developer in
charge

YES Converted to
DevID of the
developer

Simulator PenaltyFactor Percentage Penalty factor p for issue
switchng

NO See section
843.4.3.4

Simulator StDvPertErr Float Standard dev. of the
perturbation on issue
estimate

NO Typically set to
20%

3.6 Experimental Data
I analyzed three open-source projects which comply with the following preconditions:

1. they are tracked on the JIRA System,

2. they have CreationDate, OriginalTimeEstimate, TimeSpent and Assignee fields filled out

for each issue; the last two are reported in man-hours;

3. they are medium size (meaning a number of issues above a few hundreds, and below

one thousand).

The medium-sized requirement allows us to perform a deeper analysis of the project and

the correspondent outcomes when two-month intervals are examined, which would be too time

consuming for large size projects. The size is also kept limited to be able to perform several

Monte Carlo runs (≥ 100).

The selected projects have a duration of around 15-20 months and an average period of

330 days. The number of team members varies between 15 and 60, but in the latter case team

members do not work simultaneously, so on average, there are 15-20 developers active.

These projects, all tracked in JIRA, are built for different domains and purposes, so they

present differences in topic, duration, team size and composition, workflow. The simulator can

quite faithfully reproduce each of them.

3.6.1 Project: Test Engineering
The first development project is TE (Test Engineering), carried on by edX (www.edx.org), a

consortium of more than 160 universities offering courses and programs through an e-learning

platform completely open-source. TE is an internal project to perform testing and continuous

integration of the software developed for edX and by edX partners. TE is an ongoing project,

which I analyzed for a total of 570 working days, including 675 issues classified as bug, epic,

story, and task. The team is composed of 13 developers with different skills and productivity,

inferred by analyzing the number and effort of issues completed by each developer in the

considered time interval. Issues effort estimation follows a very skewed, fat-tail distribution,

which is fairly approximated by a Pareto distribution:

88

𝑝(𝑋) =
𝑏

Xb+1 (2)

where X is expressed in man-days, and the shape value is b≈1.35.

The basic statistics for the TE project are shown in Table 17.

Table 17 Projects' Statistics. Effort statistics in man days.

Project name Days Issues Developers Mean Std Dev Median

Test Engineering (TE) 570 675 15-20 2.9 4.2 1.33

Platform 622 853 14-15 4.4 6.4 1.1

CORD 192 523 13 4.3 6.4 1.0

3.6.2 Project: Platform
The second project is also carried on by edX and regards the e-learning platform of the edX

consortium. In fact, it is called "Platform". Platform is an ongoing project, which I analyzed for a

total of 622 working days, including 853 issues classified as: subtask, bug, story, and epic.

The team size is 65 people. At a first glance, it might seem too big, but after a careful check,

I found that there was a high turnover. Most team members worked only for a limited amount

of time so that the average team size is about 14-15 people, similar to the other projects.

Issues effort estimation approximately follows a Pareto distribution with shape value

b=1.38. The basic statistics for the Platform project are shown in Table 17.

3.6.3 Project: CORD
The last project is called CORD (Central Office Re-architected as a Datacenter). It is a project

of the Open Networking Foundation (ONF), a non-profit operator-led consortium driving

transformation of network infrastructure and carrier business models. CORD is a platform

leveraging leading edge SDN, NFV and Cloud technologies to build agile in-line datacenters at

the edge of operator networks.

I analyzed the CORD project for a total of 192 working days, including 523 issues classified

as: subtask, feature, bug, story, and epic. Issues effort estimation approximately also follows a

Pareto distribution with shape value b=1.51. The basic statistics for the CORD project are shown

in Table 17.

3.6.4 Simulator Assessment
The first step to assess the validity of the simulator was to check whether it can produce

time duration for completion of all issues similar to those of the real projects.

I performed simulations giving as input all issues which resulted in Closed state, or with a

remaining effort equal to zero, among all issues read from JIRA repositories. The work on each

89

issue was performed by the same team member of JIRA data, using the developer's productivity

as estimated from the same data.

For performing the simulations, I shortened their duration to an interval of about 70% of

the total, starting from the date of the first completed issue. This is because almost all issues

created afterward were not yet completed.

Two of the selected projects have a simulation duration of about 14 months (408 and 445

days). CORD was tested for a shorter period of 138 days, or 4.5 months. The number of team

members is around fifteen people in all projects, remembering that this is an average team size,

obtained by putting to work only the developers who are active in the proper time interval, as

inferred by JIRA data.

These projects are built for different domains and purposes, so they present differences in

topic, duration, team size and composition, workflow. The simulator can faithfully reproduce

each of them. All projects are decomposed into several issues. Each issue has a total effort

estimation given in man-days. Different kinds of issues belonging to a project may have a

different workflow. This is modeled according to the real schema including all main activities

(states).

The results for the three projects are shown in Table 18, which shows the actual duration

with the average duration of the simulations. Standard deviations are shown within round

brackets after the means.

Table 18 Total project duration. Mean (st. dev.) over 100 simulations.

 N. days to close project

Project name N. Issues Real case Simulated case (s.d.)

Test Engineering (TE) 285 408 433 (31)

Platform 321 445 415 (26)

CORD 205 138 154 (12)

Besides running the simulator for the whole development time, I also refined the

effectiveness tests by considering shorter time intervals. I considered time intervals of 60 days,

being two months the shortest time suitable to get significant results. Trying shorter duration

did not work, both because some issues require at least 60 days to be completed, and because

the number of issues to test in each interval becomes too small.

I divided the project duration into intervals of 60 days, considering for each interval the

issues actually created, and the team members actually working in the real project. The issues

not yet completed at the end of the interval are left to the next one for the remaining part and

are considered to be completed only when their status becomes Closed. In these tests, the key

parameter is not the duration of the project, but the number of issues completed in each

interval, and the total number of issues completed at the end of the last interval.

Table 19 shows statistics and results of the simulations for the three examined projects.

Note that overall time intervals considered are longer than those of the preceding simulations,

and run as long as possible, compatibly with the constraint to be multiple of 60 days. The

90

reported mean and standard deviations are made on real issues, over the 60 days time intervals.

The simulated issues are averaged over 100 simulations for each project.

To give further insight on these simulations, Table 20 reports the number of issues closed

in every 60-day interval for project Test Engineering. The number referring to simulated issues

is again the average of over 100 simulations. The last columns report the real values. Similar

behavior can be found in the issue management of the other projects. As you can see, the

number of closed issues varies a great deal from two months to two months. The simulation can

reproduce quite well the number of closed issues in every 60-day interval. I deemed these

results good enough to consider the simulator suitable for its use in risk analysis.

Table 19 Results of simulations with 60 days intervals.

Project name Days Issues Mean Std Dev Simul. Issues Diff.

Test Engineering (TE) 540 369 41 24.5 370 1

Platform 600 431 43 26.9 426 -5

CORD 180 265 83.3 62.9 267 2

Table 20 Issue Management in 60-day intervals.

TE (Test Engineering) Project

Days Closed Issues (Mean) Real Closed Issues

60 56 54

120 10 9

180 39 36

240 58 60

300 44 46

360 84 85

420 25 26

480 10 9

540 44 44

3.7 Risk Assessment Through Simulation
I applied the Risk assessment methodology outlined in Section 3.3.1 on the reported cases,

to test its effectiveness. The key risk factors identified are variations in efforts estimated by

developers to complete USs, and random developer issues assignment - to be compared with

assignment according to real data. In this preliminary study, I did not consider variations in the

skills of team members, and events stalling the development of single features or blocking one

or more developers, though the simulator could account also for these factors.

The effort estimation error of each issue is modeled using random variations. The

Percentage differences between estimated and actual times to close an issue in the three

projects are very close to zero, and show a standard deviation between 0.17 and 0.26. Averaging

on all closed issues of the three projects, the standard deviation is 0.22, which I approximate to

0.2.

91

So, the effort estimation error is obtained by multiplying the original issue effort value by

a number that follows a log-normal distribution with an average equal to one, and a standard

deviation equal to 0.2. In this way, the efforts averaged on all issues remain equal to the average

of original issues, and the standard deviation of errors is very similar.

The key process outputs whose variations are checked are the project total time and

statistics on cycle times to implement a feature. The time from the project start to the time

when the last feature is released is inversely proportional to the throughput and is an excellent

indicator of the good performance of the project.

The statistics on cycle times, measuring time to give value to the customer, are:

• average time to implement a feature;

• standard deviation of the time;

• median time, measuring the most likely time to complete a feature;

• 95% percentile of times, measuring the limit of the worst 5% times;

• 5%percentile of times, measuring the limit of the best 5% times;

• maximum time, measuring the worst case.

I performed a given number of Monte Carlo simulations - typically one hundred, but they

might be more - for each choice of the tested risk factors, varying random perturbation, or

developers' assignments to issues, recording the key outputs.

From these outputs, it is then possible to compute the desired statistics. On each of these

values, it is possible to set risk thresholds that, if reached or overcome, trigger proper mitigation

actions.

3.7.1 Real Cases Risk Analysis
I used the three open-source projects described in Section 3.6, considering the time interval

from the first issue project creation date until the end of the projects. I started by analyzing the

time estimation of project duration when only time estimation variations are considered as risk

factors, but issue resolutions are made by the same developers of the real case. For a better

interpretation of the results, I divided the simulations into time intervals of 60 days, as made

before.

92

Figure 17 TE Project: N. of completed issues vs. time. Averages and percentiles over 100
simulations.

Figure 18 Platform Project: N. of completed issues vs. time. Averages and percentiles over 100
simulations.

Figure 17, Figure 18 and Figure 19 show the results for projects TE, Platform and CORD,

respectively. Here, for each time interval, the values of the real number of issues completed in

that interval, of the average on 100 simulations varying the issue estimates as described in

Section 3.7, and of the 5% and 95% percentiles of the simulated completed issues are shown. I

do not show the medians of completed issues because they are very similar to the averages, and

would not add significant information to the figures.

93

Figure 19 CORD Project: N. of completed issues vs. time. Averages and percentiles over 100
simulations.

In all projects, the number of completed issues every 60 days greatly varies. This variability

is due to different reasons, such as the different commitments of the developers in different

months, the tendency of issues to be completed in “batches” rather than in a continuous flow,

and the low number of active developers, which makes the project output more susceptible to

random variations.

Regarding the TE project, the real number of completed issues and the average of

simulated numbers are quite close to each other, being the maximum percentage error equal to

33%. The real number of completed issues is almost always contained between 5% and 95%

percentiles, but in the second and sixth intervals. Only in the latter case, the discrepancy looks

significant. In these two cases, the risk analysis would have triggered corrective actions.

Note, however, that the average estimation of all completed issues is 354, with a

percentage error of 4%, being the real number equal to 369. Considering the cumulative number

of completed issues over time, the error peaks at 180 days with a value of 17%, and then

decreases. On day 360 and thereafter, the error is always under 4%.

In the Platform project, whose results are shown in Figure 18, the differences between real

and simulated cases look slightly lower than in the TE project. In time intervals with very few

issues completed, obviously, the percentage errors are quite high, but the overall percentage

difference between the total number of completed issues (423) and the average number of

simulated ones over 100 simulations (416) is about 2%.

Considering the cumulative number of completed issues over time, the error is always

under 6%, but after the first 120 days, where it is 25% after 60 days, and 13% after 120 days.

In Platform project, 5% and 95% percentiles over 100 simulations include the real number

of completed issues, but for the result at 300 days, where the real number is lower than the 5%

percentile.

94

The results of the CORD project are shown in Figure 19. Here there are only three simulated

intervals of 60 days, with very few completed issues after the first one. For this reason, the

differences between real and average numbers over 100 simulated cases of the completed

issues are higher, being 25% after the second time interval.

The average of total closed issues after 180 days is 291, versus the real value of 265 (the

difference is 10%). The real number of completed issues is always contained between 5% and

95% percentiles of the simulated cases.

3.7.2 Risk Analysis with Random Developer Allocation
In this section, I consider the effect of the application of both risk factors in the simulations,

namely random estimation errors and random allocation of issues among developers. The

estimation errors are introduced using the same approach of the previous section, multiplying

the original estimates by a random number following a log-normal distribution with an average

equal to one, and a standard deviation of 0.2.

The allocation of developers to issues is not equal to the real case, but developers simply

“decide” what issue to work on depending on a random choice of available issues with the

highest priority. This mimics better the real situation, where of course it is not known in advance

which developer will work on which issue, and a risk analysis must consider an issue allocation

not known in advance.

As in the previous Section, I divided the simulations into time intervals of 60 days, and

report the number of issues completed in each of them. I report the number of issues of the real

case, the average and the 5% and 95% percentiles computed over 100 simulations.

Figure 20 shows the results for the TE project. As you can see, the four curves are closer

than in the case without random developer allocation, as shown in Figure 17.

Figure 20 TE Project: N. of completed issues vs. time. Averages and percentiles over 100
simulations, with random allocation of developers.

95

These results are consistent with those found without risk parameters. The overall

percentage difference between the total number of completed issues (369) and the average

number of simulated ones over 100 simulations (362) is about 2%.

Considering the cumulative number of completed issues over time, the error is always

under 5%. The 5% and 95% percentiles over 100 simulations always include the real number of

completed issues.

The reproducibility of real data is well provided by the model. Having in place both risk

parameters results in outputs that, on average, are closer to real data with respect to using only

effort estimation perturbations.

Figure 21 Platform Project: N. of completed issues vs. time. Averages and percentiles over 100
simulations, with random allocation of developers.

The data on the Platform project are reported in Figure 21. Also here, the four curves are

closer than in the case without random developer allocation, as shown in Figure 18.

The overall percentage difference between the total number of completed issues (426) and

the average number of simulated ones over 100 simulations (431) is about 1%.

Considering the cumulative number of completed issues over time, the error is always

under 11%, but for the first time interval where it is 100%, due to the very low of completed

issues (4 in the real case, 8 in the average of simulated cases). The 5% and 95% percentiles over

100 simulations include the real number of completed issues, but again at the end of the first

time interval.

96

Figure 22 CORD Project: N. of completed issues vs. time. Averages and percentiles over 100
simulations, with random allocation of developers.

Eventually, Figure 22 shows the results for the CORD project. The results do not differ much

from the case with variations only in issue effort estimation and are slightly better.

The average of total closed issues after 180 days is 271, versus the real value of 265 (the

difference is 2%). The real number of completed issues is well contained between 5% and 95%

percentiles of the simulated cases, but after the first time interval, for the usual reason of a very

low number of issues.

3.7.3 Discussion
Starting from the analysis of three real projects tracked on JIRA, I made four different types

of analysis with four scenarios.

The first scenario had the aim to test the simulator reliability by comparing the number of

days needed to close the project in the real and simulated cases for the three projects, as shown

in Table 19. The simulator reproduces the project duration in days with an error margin between

6% and 11%, considering the average of 100 simulations, with a standard deviation between 6%

and 8% of the related average.

The second scenario is aimed at improving forecasts by reducing the time interval of

predictions to time intervals of sixty days each. In this way, the model simulates the number of

closed issues for a limited period and resets itself at the end of the interval to perform the next

interval forecast, according to the supplied real data. The results show that in this way the model

performs better than using the entire project lasting time.

Here the key output is not the duration of the project, but the number of issues that are

completed during each time interval. In the case of issues only partially completed, they are not

considered but are moved to be completed to the next time interval. The results of these

simulations, obtained again by performing 100 simulations for each interval and averaging the

number of issues completed after each simulation, show that the percentage error between the

97

average and the real data is typically less than 10% in all intervals, except sometimes the first

one, characterized by a low number of completed issues in the real case.

Summing up, all completed issues on all intervals yields a total number of completed issues

(averaged over 100 simulations) which differ less than 1.5% with respect to the real number of

completed issues.

These scenarios prove that the simulator can reproduce with enough precision the real ASD

process. Referring to the Research Questions asked in the Introduction, I am able to answer to

RQ1 and RQ2:

• RQ1: To which extent it is possible to automatically import into the simulator data of

real projects, from issue management systems? Importing issue data directly from the

popular system JIRA is quite straightforward. However, importing the sequence of

activities actually used for a specific project, as well as estimating the skills and time

commitment of developers need manual intervention. This must be done before the

simulation starts, by analyzing project data. During project execution, new issues can be

periodically read to update the simulation state, without further intervention.

• RQ2: How accurate can the simulator be in predicting project completion times? The

case studies analyzed show that the simulator can be quite accurate in reproducing a

real project progress - that is, the project completion time - if it is fed with accurate data

about issue estimates and team composition and skills. Simulating whole projects, which

lasted between six and twenty months, the error margin is of the order of 10%.

Shortening the simulation intervals to two months, and then resynchronizing the

simulator, yields an even lower error of the order of 1-2% averaged over 100

simulations. So, the answer to this question is that the simulator accuracy to predict

project completion times is high.

The third and fourth scenarios introduce the use of the simulator for risk analysis. Basically,

in both scenarios, random perturbations are applied to issue estimations, chosen from a log-

normal distribution, derived from statistical analysis of the real data set. The fourth scenario

adds a random choice of the developers who subscribe for resolving an issue.

I ran 100 simulations for each considered project, for both scenarios, to check the extent

to which the simulated outputs differ from the real ones, in the case of random estimation

errors. So, I computed not only the mean value of the forecasted number of closed issues in the

time intervals but also proper percentiles, helpful to check if the real values stay within these

limits.

I found that just applying random perturbations to issue estimation - which in a real project

would mean that the original estimation was wrong, whereas the perturbated one is the “right”

value - has limited impact on the goodness of the approximation of the simulation results with

respect to the real case. This is shown in Figure 17, Figure 18 and Figure 19, and in the discussion

thereof.

When random issue assignment to developers is added, the results are even better,

meaning that the simulation outputs tend to be even closer to the real ones, as shown in Figure

98

20, Figure 21 and Figure 22, and in the discussion thereof. This result can be attributed to the

fact that in the real case simulated work on the issues is performed by the developers who

registered it in JIRA. So, the simulator applies a rigid assignment, which mimics the delays and

unavailability of real development. When issues are randomly assigned, however, when work

on an issue is needed in a given activity, all available developers are polled, and one is chosen at

random. If there are available developers, work on the issue begins with no delay, and this

justifies the better results in terms of completion time.

Practically, the simulator can be applied to actual risk management by applying the proper

random variations to the parameters that could be the major causes of risk, performing a

sufficiently high number of simulations, and evaluating the distributions of key output

parameters. Moreover, in a real case, future issues can be randomly generated, using their

expected effort distribution, to get a more realistic simulation of the work to be performed.

Being still an ongoing research project, the simulator has not been yet used in real

development. To get feedback, I presented the results to the same experts involved in helping

us to estimate the penalty factor p, as reported in Section 3.4.3.4 "Component Validation". Most

experts encouraged us to continue the work, believing that assessing project risks using SPSM is

a valid and promising approach, provided that other kinds of risks are considered, besides error

in issue estimation. A couple of the project managers stressed that this tool might be useful, but

only if provided with a user interface able to ease the tuning of the simulation parameters and

to immediately highlight the risks to exceed time and costs.

This leads to the answer to the last research question:

• RQ3: Can the simulator be useful to estimate project risk (induced by errors in efforts

estimation, and random developer issues assignment) with a Monte Carlo approach?

By varying parameters - such as the variance of issue estimation errors, and developers'

availability - and performing Monte Carlo simulations, a project manager can compute

statistics on forecast project completion times and average time to complete issues and

take proper action to control this kind of risk. Consequently, also the answer to this

question is positive. Clearly, much more causes of risk might be accounted for, as

described below, and we are actively working to include them in the simulator.

In this research, for the sake of simplicity, I limited to use just issue effort perturbations,

and random developers' assignment. However, other causes of risk can be easily simulated, such

as:

• Sequentiality constraints between issues, so that delaying or stalling the development

of an issue directly influences other issues.

• Problems related to specific issues, whose development is delayed or stalled for external

reasons.

• Change or deletion of existing issues.

• Different skills of developers in the process activities, and consequent preferential

choices of issues to work on.

99

Other important causes of risk, which can also be simulated, and which embody random

components and add "uncertainty" to the process are shown in the followings. The distributions

of the value of these factors must be studied and defined in advance, typically by analyzing the

past history of the project, or of similar projects:

• Arrival of new issues, real or simulated to account for forecasts of future work to be

done; here the distribution of issue effort estimates, issue priorities, and issue arrival

time must be defined. Also, change requests of existing issues not yet implemented

might be considered.

• Issues which do not pass quality controls, and must be reworked, whose probability and

extent of rework must, in turn, be specified.

• Changes in the availability of team members, due to various causes (vacation, illness,

resignation, more important commitments to carry out). This is an important risk factor,

able to substantially change the project schedule. Again, the probability and duration of

developers' unavailability must be defined in advance

Clearly, in real projects, this approach should be embedded in other risk management

approaches, which include risk identification and risk mitigation. This SPSM-based approach can

substantially help in quantitative risk analysis but cannot cover different kinds of risk that cannot

be modeled and simulated, such as Organizational Environment Risk, User Risk, and Team Risk

[81]. In other words, I do not claim that the simulation technique is better than other known

techniques to manage risk, but I claim that it should be used as another tool, able to complement

other approaches.

For instance, in Rm4Am risk management tool for ASD [106], this tool might be used for

assessing the risk of Increments (i.e., user stories/features), in the risk analysis of Product and

Sprint backlogs. This should be done during the Risk weekly meeting, a subcomponent

specifically added in Rm4Am to manage project risk.

3.8 Threats to Validity
The goal of this section is to discuss the threats to validity that I need to consider regarding

the study of JIRA open-source projects performed to evaluate the presented risk assessment

method. The typical threats to validity taken into consideration in a software process

development are construct validity, internal validity, and external validity [130].

• Internal Validity is the approximate truth about inferences regarding cause-effect or

causal relationships. Thus, it is only relevant in studies that try to establish a causal

relationship and it is not relevant in most observational or descriptive studies. In this

case, the analysis is focused to demonstrate the abilities to manage the risk using

statistical analysis, and internal validity is not relevant to find this kind of relationship.

• Construct validity is focused on the relation between the theory behind the experiment

and the observations. Even when it has been established that there is a casual

relationship between the execution of an experiment and the observed outcome, the

treatment might not correspond to the cause one thinks to have controlled and altered,

100

or the observed outcome might not correspond to the effect people think they are

measuring. In this case, the main threat to construct validity is whether the models are

accurate enough to be realistic. In other words, are issues, activities, and developers, as

modeled by us, enough reliable to get plausible results? Other studies on empirical data

seem to answer favorably to this question [114] [129], but more research is clearly

needed. Another issue related to constructing validity is the characteristics of feature

effort variations and the random issues to developers' allocation. Though these

characteristics are common to many projects, the exact distribution of effort variations

and the random assignment performed might be improved. Moreover, there are other

possible risk factors, such as inaccurate requirements and team-related issues, such as

the resignation of developers, the introduction of new developers, intra-team

dependencies, and so on. What I proposed is a model able to represent some key

aspects of software development, without trying to model every possible aspect.

• External validity is concerned with whether one can generalize the results outside the

scope of the study and hold them across different experimental settings, procedures,

and participants. If a study possesses external validity, its results will generalize to a

larger population not considered in the experiment [114].

In this specific study, I performed hundreds of simulation runs. An important aspect to be

taken into consideration is that data analyzed are real, but the analysis refers to just three

simplified test cases. Although the scope of this research would not have allowed simulating

more complex cases, this must be considered when considering external validity. Also, the fact

that all features were available at the beginning of the simulated project, and that no more

feature was added, limits the generalization of the results.

3.9 Conclusion and Future Work
Risk management is essential to software development. Agile methodologies were

introduced precisely to minimize the risk inherent in traditional waterfall processes, with very

high risks related to requirement changes and final integration. However, only a few studies

have been devoted to explicit risk management of agile processes.

I presented a risk assessment procedure based on process modeling and simulation and

tested it on three open-source projects developed using an agile approach, with requirements

collected as user stories and managed as an atomic unit of work, using JIRA popular issue

management tool. The process can be organized into a sequence of basic activities and can thus

be modeled using an event-based simulation. The developers are in turn modeled as agents,

who decide the units of work they develop and complete.

To be able to work with real data, I linked the simulator with JIRA to collect the needed

information (used process, team composition, project size, number of issues, estimated effort)

and show the reliability of the tool.

I have shown how it is possible to run the simulator in a Monte Carlo fashion, varying the

identified risk factors and statistically evaluating their effects on the critical outputs. In this way,

a risk manager will be able to analyze the expected parameters of the examined project,

101

including the expected optimal closing time of the project, and of the various issues and

features, and evaluate the percentiles of their distributions, to assess the probability of adverse

and favorable variations.

I validated the simulator using three open-source medium-sized projects, whose data are

available on open JIRA repositories, and considered four kinds of scenarios. The first two were

used to test the reliability of the simulator; the third and fourth scenarios were used to make a

risk analysis introducing the variation in the estimated effort to complete features, and when

there are changes in their allocation to developers.

The proposed approach is clearly relevant for project managers, who get a tool able to

quantitatively evaluate the risks, provided that the process and the project's data are properly

modeled. This is made possible by the relative simplicity of Agile processes, that typically

operate on atomic requirements – the features, or issues – through a sequence of activities.

Clearly, in real projects the approach should be complemented with other risk

management approaches, able to cover different kinds of risk that cannot be modeled and

simulated, such as Organizational Environment Risk, User Risk, and Team Risk [81].

I limited the study considering only the effort variations and the random assignment of

developers to issues. Even though the obtained results are limited to the analyzed projects, the

model could be customized and adapted for other projects.

In the future, I will improve the risk assessment method, evaluating it on many other case

studies, and exploring the optimal parameter settings that can minimize the overall risk. An

improvement I am considering is to scale the model from a single team to multiple teams,

involved in one project, or even in several projects. This would greatly improve the utility of the

tool for risk management in large organizations.

102

Part III

Blockchain Applications

103

4 Introduction
Blockchain and the programs running on it, called Smart Contracts, are more and more

applied in all fields requiring trust and strong certifications. In the context of the study of

blockchain applications, Part III firstly formalizes an analysis of the characteristics of a

permissioned blockchain, in order to have the same benefits of a public blockchain, reducing its

disadvantages, then it presents two possible applications of blockchain technology, in the agri-

food supply chain domain and in an interport community network.

 Particularly, in section 4.1 I propose a framework to compare public and permissioned

blockchains, specifically suited for industrial applications. I also propose a complete solution

based on Ethereum to implement a decentralized application, putting together in an original

way components and patterns already used and proved. This solution is characterized by a set

of validator nodes running the blockchain using Proof-of-Authority or similar efficient consensus

algorithms, by the use of an Explorer enabling users to check blockchain state, and the source

code of the Smart Contracts running on it. From time to time, the hash digest of the last mined

block is written into a public blockchain to guarantee immutability. The right to send

transactions is granted by validator nodes to users by endowing them with the Ethers mined

locally. Overall, the proposed approach has the same transparency and immutability of a public

blockchain, largely reducing its drawbacks.

Then, in section 5 I propose a novel approach for easily customizing and composing general

Ethereum-based smart contracts designed for the agri-food industrial domain, to be able to

reuse the code and modules and automate the process to shorten the time of development,

keeping it secure and trusted.

Finally, section 6 explores the application prospects and practical implications of the

application of Blockchain technology for the establishment of an interport community within

which different ports organized as a network can exchange information and data in a secure and

effective way.

The study presented in this chapter was partially published in:

• “A Blockchain Architecture for Industrial Applications”, Lodovica Marchesi, Michele

Marchesi, Roberto Tonelli, Maria Ilaria Lunesu. Submitted to Blockchain: Research

and Applications, Elsevier, 2021.

• “Automatic Generation of Blockchain Agri-food Traceability Systems”, L. Marchesi,

K. Mannaro, R. Porcu. In Proceeding of the 2021 IEEE/ACM 4th International

Workshop on Emerging Trends in Software Engineering for Blockchain, WETSEB

2021, pp. 41–48, 9474795, 2021.

• “Automatic generation of Ethereum-based Smart Contracts for Agri-Food

Traceability System”, L. Marchesi, K. Mannaro, M. Marchesi and R. Tonelli.

Submitted to IEEE Transaction, 2022.

• “Can the Blockchain Facilitate the Development of an Interport Community?”, P.

Serra, G. Fancello, R. Tonelli, L. Marchesi. In proceeding of the International

Conference on Computational Science and Its Applications, pp. 240-251, Springer

Cham, 2021.

104

4.1 A Blockchain Architecture for Industrial Applications
As already mentioned, a few years after the introduction of Bitcoin in 2009, developers and

business men realized that a blockchain can be also used to run a decentralized computer.

The main objective of this work is to clarify, discuss and add new ideas and tools to the

structure and management of permissioned, or consortium, blockchains, that is blockchains

whose nodes are run by selected organizations. These systems are also called "distributed

ledgers" (DL or DLT, where 'T' is for "technology"). In principle, a blockchain is a DLT, but a DLT

does not necessarily uses a chain of blocks to store its information, guaranteeing its

immutability. In this chapter, I mainly use the term "blockchain", but most of the concepts can

also be applied to DLT.

In particular, I address those based on blockchains similar to Ethereum, where you need to

consume their cryptocurrency to send transactions able to modify the blockchain's state. I recall

that the amount to consume is called "gas".

The main contributions of this work are the following:

i. I recap the features and qualities of blockchain-based systems, based on both public

and the so-called "permissioned" or "consortium" blockchains. I propose a new

framework for choosing the blockchain architecture most suited to a specific

application.

ii. I use this framework to justify and propose an architecture for managing consortium

blockchains, which retains all the positive characteristics of public blockchains, but

largely reduces their drawbacks regarding scalability, privacy, cost and efficiency.

iii. I collect together, in a structured way, many ideas already present in the blockchain

realm. The result is an architecture which is easily applicable to most consortium

blockchains, being efficient, highly configurable and scalable. This architecture makes

use of the Ethereum technology, but can be easily changed to support other

blockchains, such as Hyperledger.

iv. I better formalize the typical permissioned architecture, explaining the characteristics

it must have in order to have a transparency and strength almost equal to that of a

public blockchain. Precisely, the permissioned blockchain must be periodically

anchored to a public blockchain (which is a tool already used, especially in distributed

data storage solutions), and at the same time an explorer able to explore the blockchain

independently from the provided apps must be provided.

v. For blockchains based on the gas mechanism, a further contribution is to use gas (Ether

or other cryptocurrency of that specific blockchain) to enable writing only for

authorized actors. The idea is: instead of giving permissions depending on your login

authorization, you are enabled because you have gas available. This is useful because

since gas is limited, it also allows to dynamically manage the write permissions.

105

The reminder is organized as follows. Section 4.2 presents the related work; Section 4.3

discusses what are the requirements of permissioned blockchains for industrial applications, and

introduces the evaluation framework; in Section 4.4 I apply the framework to choose the

blockchain platform best suited to our purposes; Section 4.5 describes the proposed dApp

architecture. Section 4.6 draws the conclusions.

4.2 Related Work
I aim to discuss the differences between public and permissioned blockchains, to propose

a framework to choose among different kinds of blockchains and DLT, and to propose a specific

solution to implement publicly accessible permissioned blockchains. Consequently, I will

consider only the works on these specific subjects, and not generic works on blockchain and SC

technologies and applications.

Regarding evaluation frameworks, some papers were published addressing the choice

whether to use or not a blockchain to implement a specific information system. Among them, I

may quote the seminal work by Peck [133], and the more recent works by Wüst and Gervais

[134], and by Hassija et al. [135], though here I already assume that the choice to use a

blockchain has already been made.

Once the choice to use a blockchain is made, there are many papers in literature that

provide guidelines on how to choose the best suited blockchain technology for a specific

application. In 2017, Koteska et al. investigated the quality requirements and solutions for

blockchain implementations, starting from a literature review [136]. They analyzed the various

quality issues of blockchain systems, focusing in particular on public blockchains. They gave a

catalog of blockchain-specific quality criteria to provide high data integrity, security, reliability

and node privacy.

In 2018, Scriber proposed a framework for determining blockchain applicability, which

includes a list of 10 blockchain characteristics whose presence makes it desirable a dApp system

[43]. Though Scriber's work is mainly oriented to decide whether a blockchain is suitable for a

given application or not, I used many concepts and ideas of his framework to build this one,

which is instead oriented to comparatively evaluate different blockchain solutions.

Maranao et al., working in a focus group promoted by the U.N. agency International

Telecommunication Union (ITU) to assess criteria for distributed ledger technology platforms,

proposed a DLT Assessment Framework [137]. They defined three layers: (i) Core Technology

Layer; (ii) Application Layer; (iii) Operation Layer; and assigned specific criteria to each layer.

They proposed one of the first DLT assessment frameworks to be standardized by an

international standardization body. They then showed how the framework can be applied,

evaluating the public Ethereum blockchain.

In their very detailed work, Gourisetti et al. proposed the blockchain applicability

framework (BAF), specifically designed with the purpose of helping to choose not only whether

a blockchain is suitable for a specific application, but also what kind of blockchain, consensus

model, and features are most appropriate [138]. The BAF is divided into five domains, 18

106

subdomains, and about 100 controls, being comprehensive but conversely not easy to master

and apply.

Colomo-Palacios et al. discussed blockchain assessment initiatives from a technology

evolution viewpoint, from Blockchain 1.0 (Bitcoin and the like) to Blockchain 2.0 (Ethereum and

SCs), to Blockchain 3.0 (IOTA, Cardano, Tezos, etc.), and Blockchain 4.0 (use of A.I., Blockchain

as a Service, etc., still ongoing). They examined 9 papers on blockchain assessment models

(including [43] and [137]), extracting technical and business oriented aspects. A total of 19

factors were found, 14 technical and five business oriented.

Garriga et al. proposed Chainmaster, a conceptual framework to aid software architects,

developers, and decision makers to adopt the right blockchain technology [139]. They identified

seven key architecture features of blockchain systems: (1) Cost, (2) Consistency, (3) Functionality

and Functional Extensibility, (4) Performance and Scalability, (5) Security, (6) Decentralization,

and (7) Privacy. They then analyzed the technological decisions in the most popular blockchains

and DLT, and mapped them against the key features. Chainmaster framework was then

evaluated on four real blockchain projects.

Regarding works supporting architectural design decisions on the blockchain most suited

to an application, the literature is still very limited. Wessling et al. support the process of

integrating decentralized elements, but they focus on lower level design patterns and do not

provide true architectural guidance [26]. A very recent work by Woehrer and Zdun about

architectural design decisions covers the implementation and integration of blockchain-based

solutions [140]. They describe architectural design decisions and related options in terms of

patterns and practices. Since most design decisions are driven by the need to offset current

blockchain drawbacks - typically scalability, privacy, and usability - by using centralized elements,

the authors conclude that a hybrid architecture is beneficial in many design situations.

Regarding the consensus in permissioned blockchains, their controlled environment, the

need to get high performances, and the absence of necessity to directly compensate the

validators, rules out the Proof-of-Work and the Proof-of-Stake approaches. In these blockchains,

nodes are divided between validators and simple nodes. Simple nodes can send transactions

and query the blockchain, whereas only validators can create new blocks and add them to the

blockchain.

Most algorithms used in permissioned blockchains belong to the Byzantine fault-tolerant

(BFT) consensus family [141]. In BFT, the consensus can tolerate a percentage of malicious

validators below 1/3 of the total number of validators. In an industrial permissioned blockchain,

validators belong to trusted organizations. So, the probability that one validator might become

malicious and cheat is low, and that malicious ones become one-third of all validators, or more,

is negligible. Of course, the total number of independent validators should be at least seven, and

preferably ten or more.

Depending on the number of validators and simple nodes, the actual consensus algorithm

used may vary. In the case of permissioned blockchains for industrial applications, it is difficult

to forecast networks with more than a few tens of validators. In this case the preferred

consensus mechanisms are variations of BFT, namely "Practical BFT" (PBFT) [142], Istanbul BFT"

(IBFT) [143], QBFT [143], "Delegated BFT" (DBFT) [144], or other specific algorithms such as

107

"Clique" [143], "Proof of Elapsed Time" (PoET) [145], "Authority Round" (AuRa) [146],

Tendermint protocol [144].

Comparative evaluations of these consensus mechanisms in practical blockchain testbeds

were presented by Shapiro et al. [144], Ahmad et al. [145] and Gerrits et al. [143]. All these works

evaluate the throughput of the system, measured in the maximum number of transactions per

second (Tx/s), as a function of the number of nodes. Note that, due to communication overload,

performances tend to decrease with the number of validators.

Shapiro et al. evaluated IBFT, DBFT, and Tendermint, showing that DBFT outperforms the

other two by about one order of magnitude.

Gerrits et al. compared PBFT, IBFT, QBFT, and Clique, in the context of a use case taken

from automotive industry. This study shows that the performance of the original PBFT is not

adequate; IBFT and QBFT can handle up to about 450 Tx/s and Clique three times more.

Ahmad et al. compared PBFT, PoET and Clique, as well as Proof-of-Work and Proof-of-

Stake. In their test, Clique outperformed PoET in terms of Tx/s, up to 50 validators. For more

validators, Clique and PoET have approximately the same throughput. PoS was substantially

slower, except for blockchains of more than 150 nodes. PoW and PBFT were always heavily

outperformed.

The cited works cannot be directly compared, because they used very different

benchmarks and contexts. However, DBFT and Clique look the best choices for permissioned

blockchain consensus. Accordingly to Gerrits et al., Clique can handle a maximum of 1500 Tx/s,

decreasing to 1100 with 25 validator nodes. Ahmad et al. claim 8000 T/s with 5 and 10 nodes,

and almost 5000 up to 50 nodes. Afterwards, the throughput decreases to around 1000 Tx/s for

200 and 250 nodes. All things considered, Clique emerged as the best consensus mechanism for

permissioned blockchains up to about 50 validator nodes, also due to its popularity and

availability. In our experience, the number of independent organizations participating to the

blockchain and willing to run a validator node, seldom exceeds 20-30 units. This further confirms

Clique to be the consensus protocol of choice.

4.3 Uses of dApps and kinds of blockchains
The software programs using a blockchain are called "decentralized applications", or

“DApps”, or "dApps" are one of the main new trends of software development. A search of

scientific and technical documents made with Google Scholar in July 2021 found 36,700 results

for "smart contracts" development, a number higher or much higher than the results for

microservices development (20,500), global software engineering (7,670), devops development

(23,500), and even than IoT "software development" (30,400). dApps include the SCs running

on a blockchain, but also the software managing data outside the blockchain and the user

interface to interact with it.

Initially, the primary use of SCs was to manage second-level digital currencies, called

"tokens", mainly used to finance the Initial Coin Offers - crowdfunding operations gathering

cryptocurrencies to finance startups [15]. Besides tokens, dApps are now being used for many

108

applications, in the fields of data notarization, finance and insurance contracts, supply chain

management [147] , [148], [149], smart and micro grid management [150], health sector

(personal records, pharmaceutical product delivery, clinical trials, etc.) [151], identity

management and access control systems [149], decentralized notary [149], gambling, gaming,

voting [149], and many others [24] [150].

dApps and SCs can be used for automated enforcement of contractual obligations, without

having to trust a central authority, and without space and time constraints.

4.3.1 Kinds of blockchains
The first blockchains were public, that is truly decentralized, censorship resistant,

anonymous, and without participation and access limits. However, public blockchains are not

without problems and limitations. They are typically unique systems, so they have performance

and scalability issues, because the maximum number of transactions per second is low, and the

size of the blockchain is ever growing. Moreover, their energy consumption is high, due to the

"Proof of Work" consensus still used by the most popular ones, and there is no privacy or control

of the information to be written and read.

To address these issues, and still being able to use the technology in real-world

applications, permissioned blockchains were introduced. These are closed networks in which

previously designated parties interact and participate in data validation and management. For

this reason, they are also called "consortium blockchains".

The main feature a blockchain must exhibit is that it is an intrinsically distributed system

without central authority. In permissioned blockchains, the number of nodes is much lower than

in public ones, but they must still be decentralized across known participants. The reasons for

decentralization may be various, for instance, no single organization might be willing to run the

system for reasons related to cost, or to legal liability; or the organizations involved might not

wish to let just one of them run the system; or having many, independent nodes could be a

guarantee of persistence and immutability of the system.

It is also possible that a single organization runs individually a blockchain or DLT, to take

advantage of its features for internal applications. Then, however, most of the reasons to use a

blockchain do not hold, so I will not consider this case in the rest of this work.

Nodes in a permissioned blockchain can be validators, which are able to participate in the

consensus mechanism to validate and add new blocks to the blockchain, or simple nodes holding

a copy of the blockchain.

To run a consortium blockchain, there are many software systems available. Most public

blockchain software is open source and suitable also to be used to manage a consortium one. A

prominent consortium blockchain, aimed mainly to banking applications, is Ripple, developed

by a private company and presently run by about 150 invited validators. There are also projects

aimed to build consortium blockchain software. The most popular among these is Hyperledger,

an open-source collaborative effort hosted by the Linux Foundation, aiming to build cross-

industry blockchain technologies.

109

In general, blockchains can be classified according to how they grant the right to add new

validators or simple nodes, and the right to read/write information. Regarding permissioned

blockchains, I made a further distinction between systems intended only to be used by specific,

authorized partners (closed systems), and systems intended to be accessed also by the general

public (open systems). An example of the former might be a system to perform and clear money

transfers among banks, which should be accessed only by the banks, and possibly by a control

authority. An example of the latter might be a system to guarantee the provenance and quality

of foods, which should be accessible by whoever buys the certified food. Figure 23 shows the

proposed classification.

In public blockchains, everyone can add a node, and also be able to validate and add new

blocks through mining, Proof of Stake or other consensus algorithms compatible with

uncensored participation. The access to the functions of specific SCs, however, might be granted

only to authorized addresses, implementing a control at SC level. For instance, you can change

the state of a SC holding ERC20 tokens on Ethereum blockchain only if your address already

owns some tokens - the change can only consist in the transfer of one's own tokens to another

address.

In permissioned blockchains, the right to add a node is managed by the consortium of

organizations running the blockchain, according to the original legal contract among them. Both

open and closed permissioned blockchains manage validators, and simple nodes, by granting

them specific permissions, at Internet connection level. This requires intervention of systems

engineers, administrating the network.

In open permissioned blockchains, the addition of a node, and the downloading of the

blockchain is granted to everyone. Validator nodes, however, must be approved, either

automatically through a poll among existing validators, using a suitable SC, or by the consortium

members. Deploying a new SC on the blockchain can be made only by participants with the

permission to do so. Everyone can send transactions to the blockchain but, as in public ones, it

is task of the SC receiving the transaction to decide whether to accept or not the request.

110

Figure 23 Classification of blockchain types, in relation to validation and access.

Closed permissioned blockchains typically grant access permission only to clients which

access the system using appropriate credentials. The specific authorizations granted also

depend on these credentials, as in classic information systems.

Of course, it is also possible to have a permissioned blockchain granting open access only

to specific SCs, but not to the whole blockchain. In this case, the system is classified as closed,

but holding services which are in fact open.

4.3.2 An Evaluation Framework
One of the main goals of this study is to facilitate the decision of what specific blockchain

architecture to choose, once made the choice to use a dApp for implementing a given

application. To this purpose there are already various frameworks, among which the most

relevant were reported in Section 4.2. I decided to use the work of Scriber as a starting point,

noting however that this framework is focused to evaluate the suitability of blockchain

technology for a given application, more than to choose among different blockchain

architectures.

I kept 7 features of Scriber, removing "Workflow", "Transactions" and "Inefficiency", which

are more focused on the decision whether to use a dApp to implement a specific system, or not.

I added three blockchain-specific quality criteria taken from three other evaluation frameworks

(described below), which complement Scriber's ones: "Privacy", "Cost" and "Scalability". I also

added two more specifications of cost - the cost to add a new node (Deployment cost), and of

dApp development (Development cost), both very important in the choice of the architecture

and technology to adopt.

111

The features a dApp system must exhibit according to the chosen evaluation criteria are

reported in the first three columns of the table shown in Figure 24. The remaining two columns

show an evaluation of generic public and permissioned blockchains, as described in Section

4.3.1.

Features 1-6, taken from Scriber, are basically aimed to gain user trust without having to

trust all blockchain nodes. Here a node might cease to be trustworthy also because it withdraws

from the network, and not necessarily because it tries to attack the system. Features 7-12 are

desirable for all software systems, but are especially difficult to obtain in public blockchains.

Developing a dApp system, the first issue to address is whether to use a public or a

consortium blockchain. Public blockchains are open to everyone; the most used for

implementing dApps is Ethereum, but others are available, such as EOS, Binance Smart Chain,

Steem, TRON and many others. As of November 2021, 2886 dApps were running on Ethereum

public blockchain, out of a total of 3799 surveyed dApps [9].

Figure 24 shows also a comparison of public and permissioned blockchains with regard to

the proposed framework, with qualitative scores. Note that in the table I consider the features

of the most used and proved blockchains, such as those cited above. I am aware that there are

new projects aiming to overcome the limitations of public blockchains in terms of throughput,

cost and scalability. However, these projects are still work in progress. For an industrial

applicability perspective, the cited technologies are by far still the best in terms of reliability and

easiness to find development resources - both tools and skilled people.

Public blockchains look the most stable, and easiest to start with, but lack performances

and scalability. Their cost is not predictable, due to the high volatility in cryptocurrency values

and in transaction validation fees. Moreover, they do not support data privacy, and thus can be

non-compliant with respect to the strict guidelines of modern privacy laws, such as European

GDPR.

For these reasons, public blockchains are mainly used for applications managing digital

money, such as the above cited tokens, and for the notarization of information. In this proposal,

I focus on non-monetary, industrial applications, and thus on consortium blockchains. The

proposed solution includes also the use of a public blockchain, to make the permissioned one

immutable.

112

Figure 24 The features needed by a dApp system, and how public and permissioned
blockchains support them.

In the table of Figure 25 I show the criteria of this framework against those of four other

evaluation frameworks, that is; (i) the ten criteria of Maranao et al. [137], which will be part of

ITU forthcoming standard; (ii) those of Chainmaster by Garriga et al [139]; (iii) the assessment

factors of Colomo-Palacios et al. [152]; (iV) the characteristics of Scriber [43].

113

Figure 25 A comparison of the features needed by a dApp system according to different
evaluation frameworks.

Note that I considered some criteria - those tagged with "This feature is assumed" - to be

fulfilled by default by blockchain technology, or to be not relevant for permissioned blockchains,

so they are not considered by this framework. The last criterion shown, "Consistency" of

Chainmaster framework, was deemed not relevant because it is defined as the time to confirm

that a transaction is securely appended to the blockchain. This criterion is important in public

PoW blockchains, but it is not relevant in permissioned blockchains, whose consensus

algorithms are not subjected to forks which can cancel valid transactions.

4.4 Choosing the blockchain platform
A dApp is a software system that uses DLT, typically a blockchain, as a central hub to store

and exchange information, through SCs. It is composed of SCs running on a blockchain, and of

applications able to create and send transactions to them. These applications typically provide

a human interaction interface, running on a PC or on a mobile device. Additional information

could be stored on one or more servers, and business logic could be executed on these.

My primary goal was to design a suitable blockchain architecture for "industrial"

applications, that is information systems whose goal is to manage contractual relationships

between industrial customers and suppliers, including supply chain management. Clearly, the

first step is to choose the underlying blockchain "engine". I evaluated the public Ethereum

blockchain against what I believe are the most mature and used technologies to implement

permissioned blockchains. They are: (i) Ethereum using Clique, a Proof-of-Authority (PoA)

consensus mechanism discussed in Section 4.2 – let’s call "Ethereum PoA" this platform; (ii)

Hyperledger Fabric.

114

This choice is confirmed by the recent work of Polge et al. [153], who list and compare five

major private blockchain frameworks. Besides Ethereum and Hyperledger Fabric, they consider

also Quorum, which is a fork of Ethereum; MultiChain, which is a fork of the Bitcoin blockchain,

but in its stable version 1.0 does not allow SCs; R3 Corda, which is especially devoted to financial

applications. Another platform whose popularity is increasing is Hyperledger Besu, which is

compatible with Ethereum. Both Quorum and Besu can easily be used in place of Ethereum PoA,

so I just evaluated the latter.

To justify the choice of the blockchain platform, it is possible to use the features of Figure

24 to define a framework to determine the best architecture, with respect to a specific

application. Each feature is evaluated using an integer scale from 1 (least suited) to 5 (most

suited).

The criteria are subjectively weighted by importance, being the weight values related to

the specific system to implement. I chose the weights targeting a system whose goal is to

manage contractual relationships between industrial customers and suppliers, including supply

chains. Such a system would certify orders, provisions and shipments of raw materials, semi-

finished and final products, and their processing steps. The system actors are the various

supplier and customer firms, the wholesalers, the certification authorities.

Figure 26 The features needed by a dApp system, and how public and permissioned blockchain
support them.

Figure 26 shows the 12 criteria, the weight given to each of them, and the evaluation scores

of the three platforms. The total scores are the weighted sums of all 12 criteria.

To get these scores I interviewed seven blockchain experts, five from academia and two

from a private company which produces dApps. The experts agreed on the weights to assign to

each feature and voted independently. The median of the seven votes was adopted to rate every

criterion for the three platforms, and the total score was computed for comparison.

115

The rationale behind these weights is the following:

• The most important criteria for a permissioned blockchain were deemed to be:

o Immutability, because a data structure managed by a limited set of

organizations might be the target of a successful attach, or even some of the

participants might collude to alter the data.

o Identity, because being certain about the identity of participants who send

transactions is a key requirement in contractual relationships.

o Efficiency, both in throughput and data storage - an obviously important

requirement.

o Cost, again for obvious reasons; note that various types of cost are taken into

account in three criteria, so overall it is the most important requirement.

• The second most important criteria are transparency (this could have been even higher),

stability over time, ease of management of access permissions, compliance with privacy

law, and scalability. All these criteria are very important when managing contractual

obligations, or guarantees of quality and provenance.

• Slightly less important, but still important, are trust, which in a permissioned blockchain

is often taken for granted, and ease of integration among parties, which is partially

already included in the cost criteria.

Note that there is no criterion whose weight is below 3 - in fact, all the framework criteria

are important for judging the suitability of a blockchain architecture for industrial applications.

The scores regarding immutability, transparency and trust of the permissioned blockchains

are very close to those of the public one. This is due to the fact that the permissioned blockchains

considered are periodically “anchored” to a public blockchain, and that they are provided of an

explorer enabling independent browsing of their state. These features will be described in detail

in the next Section.

The “winner” is Ethereum PoA, with 206 points, whereas Hyperledger largely prevails over

Ethereum main network.

The Ethereum main network was penalized mainly by the unpredictability and amount of

its transaction costs, as well as by its low efficiency and scalability, which were quite highly

weighted criteria. Note that the new Ethereum 2.0, or Eth2, which was recently released in

December 2020 with the shipping of the Beacon Chain, will provide much higher efficiency and

scalability [154]. However, the new version is still in its early, experimental phases.

Regarding Hyperledger Fabric, I know that it is one of the most used DLT systems for

industrial applications [155] [156]. In my comparison, Fabric got a score almost equal to

Ethereum PoA's. It was considered slightly better for Privacy, but slightly less transparent, and

with higher development costs, due to the higher complexity of the Hyperledger Fabric platform

with respect to Ethereum one, and to the smaller number of skilled developers available.

116

4.5 The proposed dApp architecture
Once chosen the platform, I derived the overall dApp architecture, starting from general

considerations, but also considering the specificities of Ethereum, among which the need to

consume "gas" for sending transactions is perhaps the most relevant. The proposed dApp

architecture is shown in Figure 27. This is a general-purpose architecture, showing all the

possible components. In specific applications, some components might not be needed, and

should be removed.

Figure 27 The proposed architecture of a dApp application.

The proposed architecture has four kinds of actors:

• Validators (shown with a bold "V"), the nodes running the system, managed by the key

consortium participants. These nodes hold a copy of the blockchain, validate

transactions, group them in blocks, and decide to add blocks to the blockchain using

Clique consensus mechanism, or a similar one.

• Participants, the nodes holding a copy of the blockchain, and able to receive, validate

and broadcast transactions, but not to participate in the consensus mechanism. These

nodes are managed by organizations which obtained the permission to do so, but are

not (yet) full members of the consortium.

117

• Operators, who are enabled to send transactions changing the blockchain state.

Operators use terminals and GUI software which are part of the overall system, and

belong to organizations participating to the system.

• External users, who can access the system nodes in read-only mode, using standard

terminals and with software provided by the system.

The validators are run by the organizations of the consortium, which should be

independent from each other, to avoid that a single organization might try to falsify the

blockchain data, or simply decide to stop supporting the system.

It is important to assess the reasons why validators take the burden of managing the

blockchain. The main reasons are either to propose the blockchain as a service to customers for

a profit or being involved in the management of the dApp(s), which in turn can provide a benefit

to the validators. This benefit might be direct, coming from the sale of products or services, or

indirect, think for instance to a public body promoting some service linked to its mission. An

assessment of validators before they are added to the system is necessary, and allows to

perform risk analysis, estimating the probability validators might turn off their node within one

or more years, and thus computing the minimum number of them needed to guarantee the

persistence of the dApp. Clearly, in the case some validators leave, this should trigger a search

for new validators, to keep the dApp stability.

Regarding external users, there are two possibilities:

• everyone can access the blockchain - in this case, the validators allow public access to

the SC interfaces and to the explorer (see later);

• the access is reserved to authorized users - in this case, authentication and access

control must be provided by validators, before users can access the dApp.

The components of the architecture are:

• The Ethereum PoA blockchain, shown as a network of validators and regular nodes on

the left.

• An external system, called App System, holding the data and applications not residing in

the blockchain; it is shown in the center.

• The terminals of operators and external users (top and bottom of the figure), running

dApp software providing the user interface, and able to manage the private keys of

operators.

• A system to perform identity management and access control, integrated in the App

System, and possibly also using a SC.

• A link to a public blockchain (in this case Ethereum), to periodically write the hash digest

of the last block locally mined.

• An Explorer running on one or more nodes holding a copy of the blockchain, to browse

the actual state of the blockchain without the mediation of the user interface.

118

• Links to IoT devices, which send data to the blockchain, or receive commands from the

system.

In the following I will describe in greater detail these components.

4.5.1 Ethereum PoA blockchain
Ethereum Foundation, and Ethereum implementation under Hyperledger project (called

Besu), offer Clique as one of the preferred consensus protocols. Clique is a form of Proof of

Authority (PoA), a customized form of Proof of Stake where the identity and reputation of the

validator performs the role of stake instead of stake with some monetary value. As already

stated in Section 4.2, Clique is one of the best and most popular consensus algorithms for

permissioned blockchain, so it was chosen for this architecture.

In Clique, each validator is not allowed to validate two consecutive blocks, in order to

preserve equilibrium among validators, and to minimize damage if a validator become malicious

and validates a wrong block - in which case it is quickly spotted by other validators, ousted from

the validators' set using a vote, and the wrong block is eliminated from the valid blockchain

through a fork. Also regular nodes may be present, holding a copy of the blockchain.

The validators also create Ethers expendable in the consortium blockchain, which we call

“Local Ethers” (LOCETH). LOCETHs do not have monetary value, and cannot be exchanged

against other currencies. However, they must be used to send transactions able to change the

status of the system, as further explained in Subsections 4.5.3 and 4.5.4.

All nodes hold the blockchain enabling software, which includes the Ethereum Virtual

Machine, running SCs. The SC bytecode, endowed with its permanent data (Storage), is stored

in the blockchain, and is loaded into the node memory for its execution. All the nodes execute

every SC, and execution results must be the same for all nodes, hence the impossibility for SCs

to access the external world. They can access only their data and other SCs stored in the

blockchain, which are the same in all nodes.

4.5.2 App System
Another key dApp component is a software system running on mobile devices and/or on

servers, possibly on the Cloud, which we call "App System", following the nomenclature of

ABCDE method presented in Part II. It holds the information which cannot stay in the blockchain

- because it is too large, or for privacy reasons. The App System exchanges information with

users and external systems and devices, and performs business computations. Of course, it is

also able to send transactions to the blockchain, having a direct connection with a node, and

being the owner of an address and of the corresponding private key.

If the dApp must hold large amounts of information, such as documents and images, these

documents are stored off-chain on one or more Document Management Systems (DMS), by the

App System. The hash digest of the document and a link to retrieve can be stored in the

blockchain, guaranteeing the date of the document, and its integrity. This approach is also called

“Off-Chain Data Storage” pattern [50] [24]. In the case of sensitive data stored off-chain, the App

119

System also takes care of managing access rights to them, providing the information only to

qualified users.

Saving data in this way is compatible with privacy regulations, because no actual data is

stored in a transparent medium such as the blockchain. Moreover, huge amounts of data can

be managed, stored and certified, despite the relatively limited room available in blockchains,

most of which were never intended to substitute a DMS or a database. In fact, storing large

amounts of information on a permissioned blockchain based on Ethereum is not viable for the

following reasons: (i) big data means big transactions to write them into the blockchain, which

in turn means overladen communications and less performance; (ii) the computation needed to

assemble and communicate the block with these transactions again means reduced

performance of the system; (iii) the size of the blockchain, which is an append-only repository,

would quickly become huge, and impair efficient data retrieval.

To conclude this section, I stress that the App System is not necessarily a single, centralized

system, nor does it have to manage a single, centralized database or DMS. The App System is a

service that, if needed, can run on several physical or cloud servers. The operators who need to

store a document can directly specify the URL of the DMS where to store it, and there can be

many of them. For instance, each organization storing data might manage its own DMS,

including granting access permission to it. What is important is that the data can be accessed by

whoever is entitled to access it, and that the access permission is given by the owner of data,

possibly also through the blockchain itself. Also, the database holding the system data might be

a decentralized one, like IPFS. An example of medical records management using IPFS is reported

in [157].

4.5.3 Terminals and apps
This component includes the applications, running on PCs and/or mobile terminals, which

enable the interaction with human users. For external users, it can be a simple app, able to

connect to a blockchain node or to an authentication server, and to show to the user the

requested information, gathered from the blockchain and/or from the App Server. In Ethereum

all users can send “view” queries, which return information from the SCs, without changing the

blockchain, and which cost no gas.

For operators, the app includes a wallet, that is software able to generate and store the

private key associated to the operator's blockchain address, to create transactions, sign them

with the private key and send them to a node. The operator's private key is unblocked by a

password, and possibly by the very ownership of a mobile phone. In this way, the identity of the

sender of the transaction is guaranteed, in a way compatible with European Union eIDAS

Regulation [158].

Since operators send write transactions to the blockchain, their wallet also holds LOCETHs,

which are used to pay the needed gas, thus acting like a true cryptocurrency wallet. In this way,

writing can be controlled by the validators, providing LOCETHs only to approved organizations,

and in the proper amount. These organizations will in turn send the LOCETHs to their operators'

wallets, to enable writing to the blockchain.

120

If an organization opts out of the system, they will have to return the residual LOCETHs,

and will not be provided of more, thus effectively stopping their use of the system.

The operator's app will also facilitate the data input and control operations the operator is

in charge of. Depending on the specific applications, the app is able to exchange data with the

blockchain (by sending transactions), and/or with the App System.

4.5.4 Identity management and access control
In the previous section, I stressed how the apps running on mobile or PC terminals can work

as a wallet, guaranteeing the association between the address and the ownership of the

corresponding private key.

When operators register to the system, they generate the address, and a register managed

by the App System associates the address with their identity (name, SSN, and other data). This

association can be made public - for instance to identify an authorized auditor, or the

organization which the operator is the legal representative of - or not.

Additionally, the system must register the access permissions of the user. This can be done

in a traditional way, using access control lists or role-based access control managed by a server

(which is part of the App System), or through a dedicated SC able to associate the users'

addresses to their permissions.

A further access control, as cited before, can be granted by endowing operators with

LOCETH, the gas enabling the sending of transactions. This functionality of the system works in

the following way:

1. LOCETHs generated by validators are sent to a system wallet.

2. From this wallet, LOCETHs are sent to the wallets of the organizations which need to use

the system, in proper amounts. In this way it is possible to control system usage, and to

bill for it.

3. The organizations send the LOCETHs to the wallets of their operators, thus enabling

them to send transactions. The amounts depend on the actual number and complexity

of transactions to be sent.

4. When the LOCETH level in a given operator's wallet falls below a given threshold, a

request to top up the wallet is sent to the wallet of their organization.

5. Organizations can receive LOCETHs by the system wallet upon request, or according to

an agreed schedule.

4.5.5 Explorer and anchoring on a public blockchain
In the architecture presented, one or more blockchain nodes provide an Explorer, which is

a software that allows its users to access the blockchain transactions, and to inspect the source

code of SCs. For Ethereum, there are various open-source Explorers available for this task.

Among them, I may quote BlockScout, Expedition Block Explorer, and Alethio.

121

In this way, the transparency of the consortium blockchain equals that of a public one,

because all transactions and accounts, including those of SCs, can be independently inspected.

The use of the Explorer can be granted to everyone, or only to registered users with the proper

credentials, depending on the specific system.

If the Explorer guarantees a transparency similar to that of public blockchains, anchoring

to a public blockchain guarantees a similar level of immutability. The idea is that, from time to

time, the hash digest of the last block validated in the permissioned blockchain is written into a

public blockchain. This idea has already been applied, especially in the field of distributed data

storage solutions [159]. The time interval might be 12 or 24 hours, or even less.

The public blockchain used to anchor the permissioned one can be Ethereum, but also

Bitcoin or others, provided they are consolidated enough and stable. The cost of each

registration, at the current fee rate, are of the order of a few USD or less, so it should not be an

issue for an industrial initiative. The transaction towards the public blockchain is sent by an

address managed by the App System, which is published. Clearly these registrations need to

manage a "true" cryptocurrency wallet, which is not related in any way to the wallets holding

LOCETHs.

In this way, everyone can access the last registration on the public blockchain, using a public

Explorer on it, which can access all the transactions sent by a given address. Then, it is possible

to verify that the registered hash digest is equal to that of a block validated in the permissioned

blockchain, at a date and time immediately prior to the public registration. The hash digest of

local blocks can be browsed using the local Explorer.

The combination of the immutability of the public blockchain, and of the transparency of

both public and permissioned blockchains, made possible by the respective Explorers, make the

latter as immutable and transparent as the former.

4.5.6 IoT devices
The Internet of Things (IoT) is the extension of the Internet to connected physical objects

that can be monitored, controlled, or interacted with, to enable ubiquitous industrial services.

Examples of IoT industrial use are freight transportation, automatically registering

temperatures, position, arrival times, and status of shipping containers and trucks as they move;

tracking components in aircraft, automotive, or other industries, which is critical for both safety

and regulatory compliance; supply chain and Digital Product Passport digitalization and control;

logging of operational maintenance data, and many others.

The interaction between blockchain and IoT has been proposed since the introduction of

SCs, for two main reasons. The first is because the blockchain can provide IoT devices the

security and the ability to be tamper-proof. The second is the fact that a blockchain is

distributed, and an IoT device can connect to any of its nodes, avoiding the bottleneck of a single

access point.

An IoT sensor can be provided with an address, a private key, and a connection to the

blockchain, and thus be able to send its data through a transaction, which guarantees timestamp

and immutability of the registration. To this purpose, many initiatives aim to develop and field

blockchains specifically suited to IoT management, such as IOTA and IoTex.

122

Things, however, are not so simple, because the number of IoT devices can be huge, and

the rate of transactions coming from each of them can be high, stressing both the throughput

and the size of the blockchain. To solve this issue, sets of IoT devices are connected to some

flexible and robust cloud computing environments, able to process and manage IoT services.

This solution is called "Cloud of Things" (CoT), and its integration with the blockchain (BCoT) is

the subject of a large amount of research, aptly reviewed and summarized by Nguyen et al.

[160].

In Figure 27 I show both single IoT devices directly connected to the blockchain, and a set

of them connected to a CoT, a service running on the Cloud, gathering the IoT data, and

registering them to the blockchain - thus becoming a BCoT. The IoT data are typically not entirely

registered on the blockchain, but only a digest of them is written. If needed, the raw data can

be stored in the Cloud, or in a server of the App System, which is drawn as connected with a line

to the CoT.

4.6 Conclusions and future work
The key reason to use a blockchain is trust. If a system can be developed and deployed by

an organization, and its users trust this organization, there is no reason to use a blockchain.

In the case that it is not possible to trust a single organization managing the system, which

should be open to all participants - some of whom might try to attack or exploit the system - a

public blockchain is the choice. In managing digital currencies and tokens, public blockchains like

Bitcoin, Ethereum and many others proved to be very effective and reliable.

If the system to develop deals with contractual relationships between participants, does

not directly manage digital currencies, and there is no single operator which has everybody's

trust, a permissioned blockchain is the typical choice. There are many possible platforms and

architectures to develop such a system, so I proposed an evaluation framework to ease the

choice, which extends and blends the criteria of existing frameworks.

I also specified in detail an architecture for industrial dApp systems, which again clarifies,

extends and merges existing ideas and patterns in a comprehensive approach. It is based on

Ethereum software, using a Proof of Authority consensus mechanism, which is fast and energy-

saving. The described architecture guarantees the same level of trust and transparency of the

public blockchain it is anchored to, allowing much better performances and scalability, at low,

predictable cost.

At the same time, it encompasses compliance to privacy regulations, preserving the same

level of privacy granted by a private blockchain, and enables the consortium to set different

access permissions for different users. The control of writing rights is also performed by means

of the local Ethers produced by validator nodes, embracing the advantages of a public blockchain

and those of a private one.

I used Ethereum PoA as a reference blockchain, but in principle it could be substituted by

any blockchain provided with the possibility to install an explorer. The proposed architecture is

already used in some industrial projects, among which I may quote Etherna, a BaaS (Blockchain

123

as a Service) product, which allows and encourages customers to setup and run their own nodes

[161]. Depending on the participants' commitment, these nodes can even be validators.

Presently, we are working with a set of Sardinian institutions and firms to start a consortium

blockchain, with the aim to certify the provenance and quality of local products.

We are also working on extending the architecture, enabling multiple blockchains to

communicate and exchange transactions. This functionality is obtained by defining "Edge

nodes", which are validators in a blockchain, but also have the credentials and gas to send

transactions to other blockchains, through the Edge nodes of the latter. This allows the approach

to scale virtually without limits, adding new nodes and new blockchains.

The target application is the Digital Product Passport (DPP), which is part of the Europe

Union Circular Economy Action Plan [162]. A DPP is a combination of: (1) a unique product

identifier; (2) data collected by different value chain actors related to this unique identifier; and

(3) a physical link (tagging) between the product and the data. Note that a final industrial

product will be often an assembly of complex parts, each in turn having its DPP.

An architecture like the one proposed here is very suited to DPP management, with

multiple instances aimed to manage the supply chains and to certify the quality of the various

sub-products, and of the final product. The final blockchain system would be devoted to track

and certify also the useful life of a product, including maintenance and repairs, and also the

operations on its parts after its disposal, tracking reuse, recycling and final disposal. Each dApp

instance tracking one or more parts would manage their unique identifiers, and the various

dApps should be able to easily exchange data, thus providing a complete DPP of the product and

its parts, in a tamper-proof and transparent way.

124

5 Automatic generation of Ethereum-based Smart Contracts for

Agri-Food Traceability System
There is a growing demand for transparency across the agri-food supply chain from

customers and governments. The adoption of blockchain technology to enable secure

traceability for the agri-food supply chain management, provide information such as the

provenance of a food product, and prevent food fraud, is rapidly emerging, due to the inherent

trust and inalterability provided by this technology. However, developing correct smart

contracts for these use cases is still more of a challenge than it is for those executed in other

fields.

Numerous agri-food supply chain management systems based on blockchain technology

and smart contracts have been proposed, all however ad-hoc for a specific product or

production process and difficult to generalize.

In this chapter, I propose a novel approach for easily customizing and composing general

Ethereum-based smart contracts designed for the agri-food industrial domain, to be able to

reuse the code and modules and automate the process to shorten the time of development,

keeping it secure and trusted.

Starting from the definition of the real production process, I aim to automatically generate

both the smart contracts to manage the system and the user interfaces to interact with them,

thus producing a working system in a semi-automated way. In addition, I describe a case study

on honey production to show how the approach works. Future work will first extend the scope

of the approach to other supply chains, moreover, while the current platform used is Ethereum,

in the future the approach will be easily extended to other blockchain platforms.

5.1 Introduction
A decentralized application (DApp, Dapp, dapp, or more frequently dApp) is a computer

application that runs on a distributed peer-to-peer (P2P) system, that is on a network of nodes,

with no node acting as supervisor. A dApp is stored and executed on a blockchain, in order to

be decentralized, transparent, deterministic, and redundant. It is developed by writing smart

contracts (SCs), which are small script programs running on every node of the blockchain and

may have a user interface (UI) that allows users and devices to interact with SCs. SCs are

immutable - no one can tamper with the code of the contract - and distributed, because of their

storage inside the blockchain.

In the last decade, there has been a huge development in the field of blockchain technology

applied to various economic sectors, due to the advantages that the implementation of such a

system could provide.

Many companies and startups are already adopting, and working on blockchain

technology, trying exploit the many advantages it promises, so we are experiencing a strong

growth of ideas and applications.

125

Several research papers, like [163] [164] [165] [166] [167], just to cite a few, have shown

that the use of the blockchain can advantageously help to achieve traceability, by storing data

which are non-forgeable, and with certain date. Consequently, companies are trying to adopt

this technology in various sectors by harnessing in particular its ability to get transparency in

scenarios where numerous untrusted actors get involved.

For these reasons, the blockchain is gaining increasing popularity as a technology to enable

traceability in a certified and immutable way in the agri-food sector, helping to avoid fraud and

counterfeiting by creating an auditable record of the journey from the farm to the fork behind

all physical components of the food products. Today more than ever, customers are demanding

transparency, especially with food. People want to feel secure and to know how a product was

farmed or manufactured, and which ingredients are involved in its production. In Europe, food

legislation is particularly strict and the implementation of traceability systems are mandatory,

but they are unable to fully guarantee consumers against fraud. For this reason, innovative

methods for traceability systems based on product identification are needed.

This has also given rise to a growing demand for blockchain developers, and today SC

development experience is one of the most sought-after skills by large companies. According to

[28], developers need to have a clear understanding of the capabilities and limitations of

blockchain technology, and to acquire the skills needed to implement the technology by

knowing how the new architecture would affect the application trustfulness.

Some companies have launched pilot or proof of concept projects to implement blockchain

technology in a wide range of sectors, but at present many limitations still have to be considered

and addressed. Most of the published works concerning the application of blockchain

technologies, for example into the supply chain management, reported no detailed information

about the technical implementation, and there are still few practical uses of blockchain

technology.

Research on blockchain in many different application areas is going through an exploratory

phase, and supply chain management is one of the main areas of interest to be studied in terms

of the benefits that would be obtained on the traceability system, such as facilitating food safety

and fraud prevention.

Clearly, there is a need for structured methods to facilitate and make more efficient the

development of applications based on blockchain technology for the management of the

traceability of the agri-food supply chain.

In previous research works [168] [169], my research group explored how the Internet of

Things can be combined with blockchain technologies to address potential issues in the agri-

food industry, and we implemented a model proposal by combining internet of things (IoT)

technology - in particular radio frequency identification (RFID) sensors and near field

communication (NFC) tags - with blockchain and interplanetary file system (IPFS) technology,

to guarantee transparent and auditable traceability of the goods from farm to fork, providing

data that demonstrate the quality of all intermediate products. I believe that, also in the light of

our experience, researchers and developers could benefit from a general-purpose approach for

agri-food supply-chain management.

126

The goal of this work is to facilitate and make more efficient the development of blockchain

applications for the agri-food supply chain management, by using configurable blocks to be

assembled together, so as not to start from scratch every time.

Starting from the definition of the real production process, I aim to automatically generate

both the smart contracts to manage the system, and the user interfaces to interact with them,

thus producing a working system in a semi-automated way.

To summarize, I propose a novel approach for customizing and composing general

Ethereum-based smart contracts (SCs) designed for the agri-food industrial domain in a simple

way, to be able to reuse the code and modules and automate the process to shorten the time

of development, keeping its secure and trusted. As far as I know, this is the first attempt to

develop a semi-automatic configurable system that supports the entire class of supply chains

for the agri-food industrial domain.

Though the approach is targeted to the agri-food domain, it can be easily extended to many

other kinds of supply chains, where a product, a service or a shipment is delivered by assembling

and working on parts, and/or passes through different kinds of transformations and state

changes.

The main contributions of this work are:

i. The study and development of a general model of food production, specifically targeted

to field traceability systems using blockchain technology;

ii. The development of a set of modules, both general SCs and UI applications, able to be

easily configured to generate a system for tracking real agri-food supply chains;

iii. The development of a structured way, starting from the definition of the food

production process through pre-defined tables, to configure these modules and to

easily generate the final system also by developers with only limited knowledge of

blockchain technology;

iv. The development of a case study (honey production) to show how the approach works.

 The remainder of this chapter is organized as follows. Section 5.2 deals with the

background and related work. In section 5.3, I describe the proposed methodology by identifying

entities and events of food production. In section 5.4 I present the design of the general software

modules supporting these entities and events. Section 5.5 presents the case study of a

traceability system for the honey production, explaining how this approach works. This goal has

been evaluated through a case study in which the approach is demonstrated. Finally, section 5.6

discusses and draws conclusions.

5.2 Background and Related Work
In this section, I first introduce an overview of blockchain technology and SCs, then I

present the state-of-the-art of modeling techniques for developing blockchain-based systems.

Finally, I recall the main studies that highlight the benefits of the use of blockchain systems in

the agri-food supply chain domain.

127

5.2.1 Modeling Proposals for Smart Contracts Development: Related Research
In the last years, smart contracts have increasingly gained ground in ICT applications, but

smart contract development still remains a challenging task to many developers. This is largely

due to its special design challenges, and to the differences between SC development and

traditional software development.

In [170], the authors found four issues that might face developers when writing smart

contracts:

1. the difficulty of writing correct contracts;

2. the inability to modify or terminate contracts;

3. the lack of support to identify under-optimized contracts, and finally;

4. the complexity of SC programming languages.

Subsequently, [171] conducted an empirical study to explore the potential challenges faced

by developers during SC development, with a focus on Ethereum blockchain. The survey results

revealed several major challenges. In particular, existing tools for SC development are still very

basic. Programming SCs is different than programming in standard programming languages, due

to the fact that the blockchain and the code residing there cannot be changed after it has been

deployed.

Currently, the are different blockchain platforms (e.g., Bitcoin, Corda, Ethereum,

Hyperledger Fabric, Tendermint, etc.) but not all of them support SCs. Moreover, each platform

offers distinctive features, and there is no standard way to write SCs. For instance, Corda is an

open-source permissioned blockchain platform - meaning a blockchain managed by a

consortium of organizations, which run the validator nodes and perform the consensus

mechanism - that allows transacting directly with SCs, and it is explicitly designed to account for

a highly regulated environment, e.g. the financial service industry.

I focus on the difficulty of writing correct SCs, that are contracts functioning as intended by

their developers. If a SC does not execute as intended, some or the whole currency managed by

it would disappear, or other unintended effects might be triggered by an attacker.

To tackle this issue, [170] identified three solutions: i) to semi-automate the creation of

SCs; ii) to provide developers with guidelines; iii) adoption of formal verification techniques. In

my opinion, a solution to ease the process of writing SCs is to semi-automate the creation of

smart contracts.

In [172] a general proposal is presented for extending existing software modeling notations

to include specific blockchain concepts or integrations. According to these authors, modeling is

an important part of designing software and in their preliminary work they start the discussion

on specialized modeling notations for dApps. The authors show three complementary modeling

approaches based on well-known software engineering models: entity relationship model

(ERM), unified modeling language (UML), and business process model and notation (BPMN).

128

Then they apply them to an example of blockchain-oriented software (BOS) that implements

part of the business logic in the blockchain by using SCs.

In the literature, there are a few proposals for standardization of software engineering of

blockchain technologies with reference also to automatic generation of SCs from formal models.

According to [28], Blockchain technology and SC development lack clarity in their

implementation. They propose a method based on Model Driven Architecture, which could be

used for describing blockchain-based systems in a more general language to determine whether

it is possible to model blockchain structure and SC logic, and which business logic should be

conveyed in SCs, and which should stay off-chain.

In [173] a model-driven engineering (MDE) tool called Lorikeet for the implementation of

business processes on blockchain to manage assets was presented. Model-driven engineering is

a software engineering methodology that automatically creates software system code from

formal models, and helps developers to manage software complexity by only focusing on

building high-level models. Lorikeet can automatically create well-tested SC code from

specifications that are encoded in the business process data schema.

In a subsequent work, in [174] the authors presented a model-driven blockchain

application development approach for business processes and asset management. They provide

templates for the customizing data schemata for both fungible and non-fungible assets

registries. Moreover, they propose SC generation methods to automatically transform models

into SC programming language code, namely into Solidity. The generated SCs consist of SCs for

business process execution, and SCs managing standard ERC-20/ERC-721 compliant tokens. The

proposed approach is implemented using their smart contract generation tool: Lorikeet.

In [175] the authors proposed a modeling approach that supports the semi-automated

translation of human-readable contract representations in terms of ADICO statements -

different components that include attributes, deontic, aim, conditions, Or else (consequences

associated with non-conformance) - to enable the codification of laws into verifiable and

enforceable computational structures in the public blockchain.

In [176] the authors proposed B-MERODE, to fulfill the need to develop new methods for

the analysis and engineering of Business Processes (BPs) supported by a blockchain. This is a

novel approach to generate SCs supporting cross-organizational collaborations, and relying on

model-driven engineering and artifact-centric business processes. Finally, they demonstrated its

feasibility by modeling the case of a rice supply chain through B-MERODE.

In [177] the authors introduced a framework for designing smart contracts in terms of finite

state machines. They provide a tool with a graphical editor for defining the contract

specifications as automata, and for translating them into SC code.

5.2.2 Blockchain Technology in Agri-Food Supply Chain
Blockchain, and more generally the distributed ledger technology (DLT), is a promising

technology that is tamper-proof and decentralized. Self-executing and self-verifying SCs can

manage transactions between mutually untrusted parties. In this context, scholarly literature on

129

the adoption of blockchain technology in specific traceability systems for the agri-food supply

chain is beginning to emerge. In particular, since 2018, a lot of research efforts have been made

on the use of blockchain technology for traceability systems [163].

In [178] the authors discussed the potential of distributed systems to transform the agri-

food industry. In [179] the authors performed a literature review of relevant papers about the

adoption of blockchain technology for generic supply chain management, covering the literature

until 2018, and found out that most of the papers were focused on the use of blockchain for

traceability, but only one out of 40 papers dealt with the agricultural field. Another relevant

literature review about the use of IoT technology in agriculture, which is a prerequisite for

automated blockchain registrations, was performed by [180].

Other research papers, namely [165] [181] [147] [182] [183] [184], just to cite a few,

presented traceability systems that use blockchain technology and SCs.

According to these researches, this technology guarantees:

• Data integrity and provenance of documents and records on the blockchain;

• Immutability and transparency of data recorded on the blockchain, resulting in

traceability of agri-food products from root to retail;

• Compliance for the quantities of the products involved (grapes, wine, bottles), based on

the annual production of the land and the yield in the various stages of processing. This

is achieved with the system of tokens, which are associated with the products and

cannot be altered, as they are managed on a blockchain;

• Ability to retrace the entire supply chain, simply by accessing the blockchain, and public

servers storing relevant documents, starting from the QR code shown on the final

product.

In [185] claim that by 2023 the global blockchain supply chain market will grow to $ 3,314.6

million, with an increase in annual growth rate of 87% .

Various papers presented real blockchain solutions for supply chain management, which

proved to be successful. Among others, AgriDigital [186] an Australian system for managing grain

supply chain released in 2017, counts at the end of 2020, more than 7000 users and a transaction

value of $ 3,793 million. In [187], the authors developed AgriBlockIoT, a fully decentralized,

blockchain-based traceability solution for agri-food supply chain management, able to

seamlessly integrate IoT devices, using and comparing both Ethereum and Hyperledger

Sawtooth blockchains. In [165], the authors studied and developed an agri-food supply chain

traceability system for China based on RFID (radio frequency identification) and blockchain

technology, to guarantee food safety. In [73], the authors proposed a generic agri-food supply

chain traceability system based on blockchain technology implementing the “farm-to-fork” (F2F)

model currently used in the European Union, which can integrate current traceability rules and

processes, using Hyperledger Sawtooth, and implemented following an agile approach.

In [188], the authors proposed a product traceability system based on blockchain

technology, in which all product registration and transfer histories are perpetually recorded by

130

using SCs. An event response mechanism was designed to verify the identities of both parties of

the transaction, and guarantee the validity of the transaction.

In [189], the authors proposed a monitoring framework that combines SCs and evaluation

models for the automatic evaluation of the quality of fruit juice samples. SCs are executed to

record production data on a blockchain, and can decide whether the production process is

working correctly, or should be terminated for non-compliance. The feasibility of the system has

been evaluated by implementing a prototype version of the quality monitoring system for flat

peach juice production based on the Ethereum platform and executed in the Remix IDE.

Many studies in the literature focused on highlighting the benefits and value derived by

blockchain implementation in the agri-food supply chain domain. In particular, the authors in

[184] conducted an analysis to model a traceability system based on blockchain technology in

the agriculture supply chain. They identified thirteen enablers that encourage blockchain

adoption in the agriculture supply chain, such as anonymity and privacy, immutability, SCs,

secured and shared database, traceability, transparency, and others. Then they established

hierarchical levels and relationships between the involved actors in the supply chain through

interpretive structural modeling (ISM), and decision-making trial and evaluation laboratory

(DEMATEL) methodologies. The enablers were identified from existing literature and validated

by experts from the field of agri-based supply chains and technology. Moreover, the authors

conducted an interesting literature review revealing that BC technology offers various benefits

leading to improvements in the sustainability of agricultural supply chains.

Recently, also in [190] the authors demonstrated in their work how the applicability of

blockchain and SCs in the field of agriculture can ensure traceability of agricultural products. In

their research, they described in detail two SCs, and showed a gas cost analysis of the

operations. Specifically, a SC called Storage Contract is used in the pre-harvesting period for

monitoring the storage condition connected with the system, the second SC is called Distribution

Contract and is used in the post-harvesting period. Finally, they analyzed the model in terms of

advantages and disadvantages.

In a similar work, the authors proposed in [191] a framework for providing complete

transparency and unforgeable product information in the oil supply chain. They tried to

conceptualize the process for end-to-end product tracking. They identified the role and function

of every actor and described the structure of two SCs in terms of attributes, events, modifiers,

and functions. The first SC, named CheckProgress, aims to monitor the product’s information

and keep track of it. The second SC, the OilDistribution contract, checks the authenticity of the

actors.

In all these research papers, no approach was formalized for the development of SCs.

Domain concepts are entirely delegated to the individual work of software developers,

potentially leading to pitfalls well known in the field of software engineering, such as poor

maintainability and low levels of reuse.

To the best of my knowledge, and by comparing this work to others which deal with the

use of dApps to certify the origin of food and prevent food fraud, I assert that this is the first

work that proposes and formalizes a general approach to develop dApps to track agri-food

supply chains, useful for most kinds of food production.

131

5.3 Methodology and Problem Representation
According to [192], to present this approach I first describe the adopted methodology that

acts as a guideline to address the problem. The relatively young field of SC development is made

problematic by their current lack of formalization. So, this work is focused on defining and using

a template easy to modify and customize, able to automatically generate SC code. I start by

describing in detail which are the configurable SC building blocks, which represent the key

entities and concepts of agri-food supply chain, and how to represent them using SCs in the

blockchain. Note that, starting from this description of the system, it is possible to automatically

generate also the User Interface able to interact with the SCs and other components of the

system.

The entire approach was carried on taking advantage of ABCDE (Agile blockchain dapp

engineering) method to design and implement dApps, presented in 2.4. The approach aims to:

• Document in a transparent and immutable way all relevant events relevant to

production;

• Allow authorities, laboratories and certified experts to asseverate the production, giving

proof of their identity and their certifications;

• Integrate manual registrations and automatic registrations made by Internet of Things

(IoT) devices, which are increasingly widespread;

• Keep track of the quantities produced, so that these cannot be increased by introducing

products of non-certified origin;

• Give evidence of all stages of production to the authorities responsible for verifying the

specifications;

• Allow retailers and end consumers to learn about the history of the products purchased,

from the field to the purchased product, using an app.

5.3.1 The Problem Domain in Agri-food Supply-Chain
Before building a software system, software engineers need to capture the knowledge of

the problem domain, that is all information that defines the problem the software system aims

to solve. The first step is to get a deep and consistent understanding of the area under analysis.

Most agri-food supply chain systems get their primary inputs from one or more primary

sources (soil, herd, beehives, lake, sea, and so on.), then a primitive resource is produced

(harvest, milk, raw honey, fishes, etc.), this product is transformed, possibly several times, until

the final product is packed and delivered to customers. Events relevant to the process can occur

in each of these phases. Most of the processes in the agri-food industry manage "batches",

where a batch means a specific quantity of product that is intended to have uniform character

and quality.

132

In general, the agri-food products are identified through a batch management system, both

in the case in which the product is marketed without undergoing significant transformations,

and when it is processed to obtain output products that are significantly different from input

ones. The reliability of a production batch can be guaranteed through an efficient and

transparent system of product and process traceability.

Certifying the origin, ingredients, and processing methods to guarantee high quality

standards of an agri-food product is a problem too complex to be tackled top-down, therefore I

propose a bottom-up approach to correctly identify incoming, processing, and outgoing goods.

By using analysis techniques and object-oriented design, I performed the analysis of the

agri-food industrial domain from the software engineering viewpoint, to find common objects,

and objects linked to specific processes. In particular, this phase aims to:

• Investigate and define the roles of major actors involved in the system;

• Determine the entities that emerge and recur in this type of system;

• Decide how to be able to represent a general-purpose system;

• Determine the relationships between these entities and the events of interest for the

traceability system (events that need to be made permanent for the traceability).

5.3.1.1 Identifying the Actors

The first step in use case analysis is to identify the major actors. The agri-food supply chain

domain is primarily characterized by autonomous and independent actors that in recent years

are more and more interacting with globally interconnected systems. I consider the agri-food

supply chain as a sequence of processes from production to the final product, that involves

directly or indirectly individuals or groups of actors with different roles, at various levels and

steps of the production process. For instance, there are the producer, its suppliers, people who

make up the workforce, retailers, and consumers themselves. Not all processes involve all of

these actors, but they are found in most agri-food processes. Note also that if an actor is an

organization, like the producer firm or the analysis lab, the actions related to this actor are

performed by one or more human person who have the right to represent the organization.

In the model, each actor is identified by a unique address, and is able to send transactions

to the blockchain from this address. The actor owns the private key associated with the address,

thus being the only person able to send messages from that address. For human actors, a

mechanism which associates a human identity to the address is also needed, which is performed

by the Address Catalog described in section 5.3.1.2.

The key actors of a typical agri-food production system are:

• Administrator/Owner: administers the software system by managing and controlling

the reading and writing access to the system by other actors, and their permissions. This

is a role present in most business process management systems.

• Producer: produces the raw materials that are the inputs of the supply chain. It is able

to generate tokens associated with the produced materials. It can manage information

certified in the system.

133

• Supplier: supplies materials, services, or devices needed for producing the target goods.

It is able to generate tokens associated with the produced materials. It can manage

information certified in the system.

• Transformer: transforms raw material, or already transformed material, into

intermediate goods or into the final good. It is able to take ownership of tokens

associated with the produced materials. A transformer can work on multiple input

materials or goods, and produce multiple goods. It can manage information certified in

the system.

• Wholesaler: buys the target good in large quantities and sells it to other wholesalers, or

to retailers. It is able to take ownership of tokens associated to target good. It could

manage information certified in the system.

• Retailer: buys the target good to sell it to End Customers. It is able to take ownership of

tokens associated to target good. It could manage information certified in the system.

• End Customer: buys the target good from Retailers. S/he is usually not provided with an

address.

• Certification Authority: Public or private authority in charge of controlling and certifying

a given production. It is able to certify the goodness of amounts and documents, or to

directly produce certificates. Usually, it manages information certified in the system. For

instance, the Regional Authority, or Protection Consortium that perform inspections to

verify the conformity of the products and the work of each actor of the supply chain.

The inspections can be performed by viewing the data documents stored by the nodes

of the blockchain.

• Professional: is a person with a given degree and experience, qualified to certify the

goodness of amounts and documents. The list of professionals qualified in a given field

is usually maintained by a Certification Authority.

• Analysis Lab: is a laboratory able to perform physical, chemical, and/or biological

analysis of given materials, products, or goods. The list of Labs qualified in a given field

is usually maintained by a Certification Authority. It can manage information certified in

the system.

• Warehouse: receives, stores and sends goods. It is able to take ownership of the tokens

associated to target good, or simply to register their storage, leaving the ownership to

the original one.

• Device: is an IoT device connected to the Internet, able to send transactions with

measurements relevant to the supply chain. It can provide for instance weights,

temperatures, Ph values, RFID tracks of shipments, positions, etc.

There can be different sub-types of each actor. Some actors could bear different roles

together; for instance, a transformer or a wholesaler could also be a retailer, if enabled to sell

goods directly to the end customer.

134

5.3.1.2 Entities

The next step is to decompose the design of an agri-food supply chain into its "entities",

identified as either an object or a process, understood as a concept that has an identity and is

meaningful for the model. In this phase, I focus on their identification and not on the

relationships between objects and processes. I identified the main entities involved in an agri-

food supply chain, that have distinct identities and share common features. They are:

• Address Catalog: for each address, the identity and the role(s) of the owner are

specified; the catalog is managed by the Administrator/Owner of the system.

• Producer: a farmer or a firm producing or transforming agri-food products. Its

representative(s) are identified by blockchain addresses.

• Productive Resource: it represents something that produces the main raw agri-food

products. Typically, it is a field (orchard, vineyard, wheat field, vegetable garden,

greenhouse, olive grove, etc.), a group of animals (flock, herd, poultry, etc.), a set of

beehives. It is owned by a Producer. The system can hold information and documents

on it and can register events related to its cultivation or farming.

• Product: it represents a production batch of something that comes from a Productive

Resource, or from the transformation of other products. For instance, grapes are

produced from a vineyard, must from pressed grapes, wine from must. It is linked to a

Producer which is in charge of its processing. The system can hold information and

documents on it and can register events related to its processing.

• Token: a given quantity (a number) created and assigned to a given address. The token

represents the ownership of a specific amount of material, good, or asset. It can be split

and transferred to other address(es). Since the token, once created, cannot be

increased, it guarantees that only the original material/good/asset is managed by the

system. Many kinds of tokens can be managed by the system.

• Notarization of documents assessing the process (treatments, harvest, chemical

analysis, quantity produced in subsequent steps, etc.) and assuring the parties that the

document is authentic and can be trusted. It enables verification of the originality of a

document that must be kept on a server and available to download to authorized users.

The notarization must include:

o hash of the document;

o registration date (always available as date and time of the transaction);

o link to the document in the server, or information on how to access it;

o possible metadata.

5.3.1.3 Data Types

The object model represents the part of the world that is of interest to the agri-food supply

chain domain. Some attributes of the model, represent groups of related data that are the same

in every agri-food supply chain, such as type, name, unique identifier, owner. However, an agri-

135

food supply system may hold many more data, specific to the particular production, and

production process.

Since the goal is to develop a general-purpose system, able to be configured for every agri-

food production process, I use a flexible data representation. A first set of types allowed by the

model are basic types, such as int, float, string, date, text (multiline string), enum. Other data

types are more structured, and represent information needed to access data on the Internet, or

to notarize and check the notarization of data. The allowed types are:

• int: numeric input field (digits with an initial '+' or '-' sign). It may have minimum and

maximum value constraints.

• float: numeric input field, with decimal point. It may have minimum and maximum

value, and precision of decimal part constraints.

• string: one-line string input field. It may have maximum length. Be careful to filter out

any control characters.

• enum: input field of a string chosen from a given list. The admissible values are given in

a list.

• text: multi-line string input field. It may have maximum length. Be careful to filter out

any control characters.

• link: a one-line string input field containing a URL. It checks that the URL corresponds to

an existing page or file. If the operator clicks on the URL, it shows its content in a pop-

up.

• hashlink: a one-line string input field containing a URL pointing to a file, with another

read-only input field holding the hash digest of the file. It checks that the URL

corresponds to an existing file. It calculates the hash of the file with the given algorithm

and shows it. If the operator clicks on the URL, it shows its content in a pop-up.

• upload: a local file input field that allows the operator to navigate the file system,

choose a file, and then activate an "upload" button. If the operator clicks on the file

name, it shows its contents in a pop-up.

• hashupload: a local file input field as above. It calculates the hash of the file with the

given algorithm and shows it, allowing the upload of the file. If the operator clicks on

the file name, it shows its contents in a pop-up.

• upload or hashupload with photo: it allows the operator to activate the camera of a

device, to take a photo, to view it, to discard it and take another, to confirm its sending

as a .jpg file, as in the case of "upload". Show a second read-only input field with the file

hash digest if hashupload. If the operator clicks on the file name, it shows its contents

in a pop-up.

5.3.1.4 Events in Agri-Food Supply Chain

The presented concepts are general of an agri-food supply chain, and would be valid also

for information systems not based on a blockchain. On the contrary, the events that I am going

136

to describe are directly linked to a supply chain management system based on SCs executed on

a blockchain. In other words, they are events registered and enabled by blockchain technology.

In the specific case of Solidity language, an event is an inheritable member of the contract,

which stores the arguments in the transaction's log for notifying services outside of the

blockchain. In addition, for a better understanding of an agri-food supply chain process, I have

grouped all these events into two macro categories:

1. Transformation events, which create a product starting from one or more resources,

transform one or more products into one or more others, or divide the product into

more sub-products that are of the same kind, but of lower quantities;

2. Documentation events, which associate data related to the production process to a

product (or resource), but do not transform it and do not create other products.

I identified the most common events managed by a supply chain management system that

uses a blockchain:

• Asseveration: a given entity stored on the blockchain (hash of a document, data, etc.)

is certified by a transaction sent from an address of a person/body able to certify it. Also,

the compliance of a product and token creation or transformation can be asseverated.

• Creation of tokens associated with some products of the process, at a given date. The

creation can be provided of further data about the physical product associated with the

tokens, and even of the notarization of documents attesting the truthfulness of the

creation.

• Product Merging: the act of merging products of the same kind, producing other

products of the same kind. Different batches of the same material can be merged,

producing one or more new batches. The tokens associated with the products must be

burned, and new tokens associated with the new products are created, preserving the

overall number of tokens.

• Product Splitting: the act of splitting one product batch into two or more batches of the

same kind. Also in this case the tokens associated with the original product must be

burned, and new tokens associated with the new products are created, preserving the

overall number of tokens.

• Product Transformation: the act of merging one or more products, producing one or

more products of different kinds. For instance, grapes can be transformed into must,

used to produce wine, but also to marc used to produce grape pomace brandy. Also in

this case the tokens associated with the original products must be burned. So, new

tokens associated with the new products are created by preserving the overall balance

of quantities. The transformation is often associated with asseveration events.

• Data Registration: a record holding specific data is stored in the blockchain by a given

address, guaranteeing the date and the actor who stored it. For instance, fertilization,

pesticide treatments, and pruning are recorded as events linked to a field (Productive

Resource).

137

• Notarization Event: the data concerning a Notarization (see section 5.3.1.2) are

registered by a specific address, ensuring the date and inalterability of the document,

and the signature of the registrant.

• Certification of data or of a notarization: a third party certifies, with a transaction

coming from its address, the correctness of a data registration, or of a notarized

document.

• Unlocking: one or more transactions from given addresses are needed to unlock a

process, that is to register another event (typically, a transformation event).

• Payment: a payment (in cryptocurrency) is made available to a given address.

Events are declared by using a keyword followed by the name of the event to identify it,

and a parameters list to save when the event is triggered. These parameter values enable to log

the information or for executing the conditional logic. Events enable communication with the

smart contract from front-end or other applications.

5.4 Building a configurable dApp system for agri-food traceability
Starting from the aforementioned phase, this approach proposes configurable and

modular building blocks for agri-food supply chain management systems which can be

represented on a blockchain.

After having analyzed the problem domain and identified the actors and the key entities, I

designed a general SC structure, able to represent the problem domain, and to be configured to

support specific agri-food supply chains. The SCs run on Ethereum blockchain, typically a

permissioned version of it, and are written in Solidity language. The data structures of these

general SCs include general data, which all instances of the SCs should have, and configurable

data, specific for each supply chain.

Figure 28 shows the UML class diagram representing the basic structure of the system of

Smart Contracts. This diagram uses the ABCDE method notation, which augments UML with

stereotypes specific to Solidity language. Here, the UML class notation is used to represent

classes and records - denoted with stereotypes "<<class>>" and "<<struct>>”, respectively. The

meaning of other stereotypes I used are easily understood. The general data of contracts are

shown as UML attributes. Each productive resource or product has a mapping of relevant events,

which are the elements where the configurable data are stored. In fact, the data pertaining

specific agri-food productions are always associated to events happening to the resources or

products. These data are stored in a byte array named "parameters" of struct "AgriEvent". For

each data, I store its type, name and value, packed into bytes. In this way, the SC representing a

single productive resource or product, can be configured to represent virtually any possible data

structure and all kinds of events.

The automatic generation of the system's SCs is done starting from JSON, or .scv, files. In

this system, the SCs used are the same regardless of the use case (for instance, olive oil, wine or

honey production, just to cite a few). The customization is made by specifying the actual

producers involved, the roles active in the system, the name and basic data of the resources and

138

of the kind of products managed, the supported events, and finally the actual data used (name

and type).

The system creates a SC for each producer (Producer), and a SC for each resource

(ProductiveResource). These SCs, once created, do not change during the supply chain

management.

Figure 28 UML class diagram, with ABCDE method extensions, representing the Smart
Contracts used in the system.

Each batch of product being grown, processed or transformed (AgriProduct), is associated

to a SC, which takes into account the recordings of events (AgriEvent) on it.

Since both a ProductiveResource and an AgriProduct share several data and operations,

they inherit from AbstractResource abstract SC.

Producer contains a mapping with the identifiers and the addresses all productive

resources and products owned by, or related to it.

Products are generated or transformed starting from one or more productive resources, or

from one or more existing products. Each product tracks its origin(s) through an array of

addresses of the upstream resources or products. An AbstractResource holds a list of events

(AgriEvent), which in turn contain a list of data related to the event (all encoded in the string of

bytes named “parameters”), to flexibly attribute data to the events, as written above. If

139

necessary, a list of generic data could also be added to the AbstractResource, encoded in a string

of bytes, as in the “parameters” field of AgriEvent.

A QR code printed on the final product allows to find the related AgriProduct on the

blockchain. It will directly hold the blockchain address of the SC associated with the batch of

final products. From the QR code it is possible to retrieve all the events in (reverse) registration

order and, for each event, all relevant data, including links to documents and their possible hash

digest.

If an AgriProduct has one or more origins, by navigating to these further origins

(AgriProduct or ProductiveResource), all upstream products/resources can be found, with the

related events, and so on. At the end of this chain of products, you will also access its

ProductiveResources, and from this its original Producers. Backward navigation must be

thoroughly designed, to make it easier in the case of multiple origins.

The relationship between product and upstream products/resources is navigable in both

directions. An AgriProduct contains the array “origins”, with the addresses of the contracts of

type ProductiveResource or AgriProduct that created it (ProductiveResource has no origins). This

is a list created during the creation of AgriProduct and cannot be modified. A generic

product/resource also contains a “produced” array with the addresses of the generated

AgriProducts, due to events of kind: Creation, Transformation, Division, or Contribution. This

array can be updated, typically by appending the address of a newly created AgriProduct.

To optimize the code, I use OpenZeppelin [193] - a toolkit to develop, compile, update,

deploy and interact with Smart Contracts. I also systematically apply gas-saving patterns (section

2.4.5).

Note, however, that the flexibility of this approach will lead to high gas costs in creating

and updating SCs on the Ethereum blockchain. Representing data using arrays of bytes (see next

Section 5.4.1 is way more costly than using native data, both in terms of storage and of

computations needed to code and decode it. For this reason, I advise using a permissioned

blockchain publicly accessible for reading, and not a public blockchain. The costs of using a

permissioned, or consortium, blockchain is much lower, and above all much more predictable

than the cost of a public blockchain.

5.4.1 Data Types Representation
As already mentioned, since the goal is to develop a general-purpose system, able to be

configured for every agri-food production process, I use a flexible data representation. Besides

the common data, such as type, name, unique identifier, and owner, each element can be

provided of a list of data, each represented by a string. The string representing a data includes

three sub-strings giving the name of the data, its type, chosen among the set of allowed types

previously described, and its value.

For instance, the grape harvest event could have associated the list of parameters that

describe how many quintals were collected (type int), the grape variety (type string), and even

140

a photo taken during the harvest (type upload). The following piece of code shows how these

three data might be embedded in a string:

1harvest#4t#3grape#nebbiolo#Bphoto#https://langhe.it/nebb-12.jpg

Here the first character is the data type (1: int, 3: string, B: photo upload), then there is the

name of the field, the#' separator, and the encoded data. Each field ends with a '#' separator.

The harvest amount is 225 quintals (4t is the Base 58 encoding of 225). The field (“grape” has

“nebbiolo” as a value (a well-known variety of red grapes); the field, whose name is “photo”,

holds the URL of an image related to the harvest.

5.4.2 Off-Chain Components

5.4.2.1 Off-chain Data

The costs of data storage in public blockchain are volatile and very expensive, so the

blockchain is not a place suitable for containing large amounts of data. Even if a permissioned

blockchain is used, the amount of data that can be stored inside a blockchain is limited, because

data would be replicated in every node, unnecessarily wasting resources. Moreover, sometimes

storing large amounts of data within a transaction can be downright impossible, due to the

limited block size of the blockchain. For example, Ethereum has a block gas limit to limit the

number, computational complexity, and size of transaction data included in any block.

In the case of large data, rather than storing the raw data directly on the blockchain, it is

useful to store there a link to the data, and a short information able to identify the data. This

pattern, known as Off-Chain Data Storage [24], consists in storing the hash digest of the raw

data on-chain. This approach can be used to guarantee the date and integrity of such data. The

hash value, recorded immutably in a blockchain transaction, guarantees that the original raw

data from which the hash was derived were not changed afterwards. If the off-chain data change

after the recording of their hash digest, the hash digest read from the blockchain and that

computed on the changed data will differ, thus demonstrating the alteration.

The data stored off-chain have the following characteristics:

• They are accessed through a URL stored in the blockchain.

• They can be stored in different repositories, under different URL locations.

• If their immutability needs to be certified, their hash digest is stored in the blockchain,

together with their URL. The date or registration and the address of the registrant are

also always stored.

• The access control to the data must be performed off-chain, by the same system holding

the data. In fact, the URL written in the blockchain cannot be hidden, due to the

blockchain transparency.

• If the data are simple - that is a record with a few, simple fields - it is more convenient

to store them directly on-chain. In agri-food management, many operations - for

141

instance fertilization, pesticide treatments, pruning, Ph analysis, weighing - are

described by a few data.

Recently, the combination of a blockchain and a distributed file systems has been used,

and looks promising. According to [169], a well-established platform, Inter Planetary File System

(IPFS), that is a peer-to-peer distributed file system ensuring immutability and non-reliance on

a central server, could be a valid solution to store data off-chain. This solution has cost

advantages, and ensures the integrity of the hash value that represents the raw data.

5.4.2.2 User Interface

The entities and the events of an agri-food supply chain, as defined in the sections above,

are standard, and can cover most of production process. Consequently, also the applications

enabling their input, editing (when allowed), and retrieving, will perform standard tasks.

For this reason, their user interface (UI) can be automatically generated, starting from the

same description of the system used to generate the SCs. More precisely, once the producers,

actors, resources, products and events of a specific production process are defined, with their

data, constraints, and authorizations, it is possible to automatically generate an app able to

create and edit the events defined for the production process. In this approach, the app is in fact

a responsive HTML5 Web page provided with Javascript code.

The style and the appearance of the UI can be customized, but the data input, with all

proper checks, does not require further programmer's intervention. Also, the navigation among

the events, the products, and the productive resources can be automatically programmed,

starting from a QR code written on the final product. This navigation does not require the user

controls a blockchain address, and can be performed by every customer.

Figure 29 Recording an event and navigating a product's event history.

142

Figure 29 shows some possible screenshots of the application, automatically generated,

relating to the honey case study that I am going to present in Section 5.5. In this figure, you see

how easily it is possible to record an event (for example Harvest) and the data associated with

it, to view the history of events associated with a product, or to view the details of an event

already recorded.

5.5 Case study: a blockchain traceability system for the honey supply chain
In this section, I show the effectiveness of the approach proposed in the previous section

by providing a practical case study from the domain of the agri-food supply chain. This case study

is a simplified version of a blockchain-based traceability system for certifying the origin and the

quality of honey produced by members of a consortium. In particular, the system allows to trace

the honey production, from the beehives to the honey harvest, to the honey potting, until the

sale of jars to a wholesaler and finally to shops and supermarkets.

The choice is not accidental because honey, the main consumer product from beekeeping,

has been identified as one of the most adulterated foods in the world through dilutions,

substitution, or other fraudulent forms as misleading description of sources and geographical

origin.

Figure 30 Simplified view of the honey supply chain process.

In Figure 30 I represent, in a simplified way, the process of the honey supply chain, in

different layers. From top to bottom, the figure shows the actors, the layer of physical products

(apiary, honey, jars), that of digital documents stored in one or more servers accessible from the

Internet, the layer of “tokens”, and of course the blockchain.

In the physical world, the actors perform actions, and register the related events in the

underlying layers. Some events produce documents or images, which are stored off-chain in the

layer of Digital Data, and record the document's link and hash digest on the blockchain, as

143

described in section 5.4.2.1. Other events simply directly record the related information on the

blockchain.

The tokens, stored in the blockchain, represent the physical quantities of productive

resources and products. In this case study, the first token represents the number of beehives of

the Productive Resource at the source of the represented honey production. The second token

represents the amount of extracted honey expressed in Kg, which is related to the number of

beehives - N beehives cannot produce more than kN Kg of honey, where k is a proper constant,

depending on the specific kind of bee, beehive, and year. The third token represents the number

of jars of a given weight produced, which is obviously related to the amount of honey poured

into the jars. The SCs managing the transformation events from the Productive Resource (the

apiary, with its beehives) to the Agri Product honey, and from the Agri Product honey to the Agri

Product "batch of jars" will enforce the constraints that the amount of honey depends on the

number and constant k of beehives, and that the amount of honey poured into the jars is greater

or equal to the number of jars, multiplied by their capacity.

The proposed solution is designed to be highly transparent and scalable. Anyone can access

the dApp website, open the Web page designed for customer access, read the QR code printed

on the honey jar which includes the address of the Agri Product corresponding to the batch of

the jar, and from this access the blockchain and start to navigate through the SCs holding the

events describing the history of the honey in the jar.

Manufacturers and distributors, as well as retailers, can also create transactions through

the mobile application, after a login giving their credentials. After the login, the system Web site

will redirect the user to the proper Web page, which of course differs from that shown to generic

users. A second control of the actors' ability to send transactions is also made by the SCs, which

will accept transactions only from a list of accredited addresses, and further control that the

specific service was invoked by an actor enabled to invoke it.

Figure 31 schematically shows some of the basic interactions that make up the system. The

system consists of the blockchain with its SCs, of one or more servers that manage data on the

cloud (documents, images, maps, etc.) and which might be also the websites of the consortium

or of the beekeepers, and of the applications that run on a PC or on smartphones connected to

the network.

Beekeepers, with their smartphones, can record the treatments done on the apiary, the

honey extraction, and all the stages of its transformation. The analysis laboratory records the

results on the cloud server, and certifies their hash digest on the blockchain, with a program that

runs on a PC. An inspector of the Apiary Consortium examines the certified history of the honey

in production and records in turn his certification. A consumer, reading the label of the honey

jar she bought with a smartphone, can access the whole history of honey, certified on the

blockchain.

5.5.1 Defining the actors
Accordingly to the methodology described, the honey passes through different chain actors

to reach the final consumers. The first step is to identify and describe the actors involved in the

system:

144

• Beekeeper: owns the apiaries and takes care of the breeding and good health of the

bees. These are people engaged in beekeeping for the production of honey for sale and

consumption. They sell raw honey to processors, or package and sell it directly to

retailers and consumers.

• Apiary Consortium: a consortium of beekeepers that acts as a certifier of the quality

and origin of honey. They do not participate directly in the production of honey, but

promote marketing campaigns.

• Processor: this actor purchases crude honey from beekeepers, packages it with its brand

name, and then sells the processed honey to retailers and consumers.

• Certifier: any independent actor who certifies the quality of the beehives and of the

honey (agricultural expert, analysis laboratory, regional body, and the like);

• Retailer: delivers honey to consumers. This is a shop that engages in honey trading by

buying honey directly from producers and sell it to final consumers.

• Customer: a person who, given a barrel, bucket, or jar of honey, even before buying the

product, wants to verify its origin and history.

Figure 31 System interactions among actors.

145

5.5.2 Defining the entities
Traditionally, the best-known primary products of beekeeping are honey and wax. Pollen,

propolis, royal jelly, poison, bees’ larvae are also primary marketable bee products. For the sake

of simplicity, I only deal with honey, and not with other products derived from the beehive.

The traceability system is therefore built starting from the entities of the honey chain and

from the basic events, shown in Table 21 and Table 22, respectively, which are drawn up

describing the specific production process. The primary productive resources are the apiaries,

which vary little over time, and usually produce various products, on a periodic basis.

In this analysis, “honey” actually means a specific batch of product, whose processing chain

is tracked by the system. A product or a resource can be transformed into another product (for

example, an apiary into extracted honey, and then this into honey jars), or it can be divided into

batches (which are also “products”) for different processes (for example, a product “Honey” can

be divided to be given to two different producers for potting and reselling). A product can derive

from one or more primary resources, or from one or more upstream products.

Table 21 Resources and products managed by a honey traceability system.

Entity Data storage Description

Apiary Blockchain,
Producer's server

Registration of a production area, and related beehives. It can
include photos, maps and other documents, which are kept on a
dedicated server. The recording of this data takes place during
the system initialization phase, before it enters operations. New
data can be added, or data can be modified, at a later time. The
blockchain holds links to the data, as well as their hash digest.

Honeycomb Blockchain,
possibly
Producer's server

Registration of a specific set of honeycombs, harvested from the
beehives. It is associated with events that document its
harvesting, and which may include pdf files, photos, and other
documents, which are kept on a dedicated server.

Honey Blockchain,
possibly
Producer's or
Retailer's server

Registration of a specific batch of honey, extracted from the
honeycombs. It is associated with events that document its
processing, and which may include pdf files, photos, and other
documents, which are kept on a dedicated server.

Honey jars Blockchain,
possibly
Producer's server

Registration of a batch of packaged honey, in which all jars have
the same QR code on the label, allowing product tracing. Here
we deal with jars, but in principle they might be also drums or
buckets.

Both productive resources and agro-industrial products contain the following data,

recorded in the blockchain:

• id: unique internal identifier, managed by the system;

• name: name of the product (or apiary);

• quantity: quantity of the product or resource;

• unit of measure: unit of measure of the given quantity;

146

• producer: the beekeeper, producer or retailer which produces, works on, or is in charge

of the product or resource;

• authorized list of operators enabled to enter events on the product or resource.

The quantity serves to prevent products that are not tracked from being introduced into

the process in an uncontrolled way. Data relating to a product or resource are associated with

it through specific events.

Table 21 shows the system entities, the data associated with them and their description.

5.5.3 The system's events
I recall that there are two types of events: Transformation Events (TE) and Documentation

Events (DE). Transformation events transform Apiary Productive resource into Honeycombs,

Honeycombs into Honey, Honey into Honey jars (or buckets). The system also handles events

able to transform two or more products into a single product (in this case, several batches of

honey, coming from different hives, could be merged into a single batch), and to create one or

more products starting from one or more products of the same kind (in this case, a batch of

honey could be divided into smaller batches).

Table 22 shows the types of events managed by the system. The “Device” column shows

the device with which the relative data are entered, which can be: PC, Smartphone, Tablet, or

IoT device. The “Data storage” column illustrates where the data related to the event are stored:

if it reports “blockchain”, the data are only in the blockchain, if it reports anything else, the data

are in the indicated device and a corresponding link to the real data, and their hash digest, is

registered in the blockchain. For each event, a description is provided. The “Entity” column

describes the resources/products holding the data of the event.

Table 22 Events and functions of a honey traceability system: Transformation Events (TE),
Documentation Events (DE).

Event/
Type

Device Data
Storage

Entity Description

Harvest TE Smartphone
or Tablet

Blockchain,
Producer's
server

Apiary This event takes place when honeycombs are
harvested from beehives, at a given time of
the year. It creates a Honeycomb batch. It
guarantees that the transformation takes
place respecting the temporal and quantitative
constraints, that is the total quantity collected
per year must be consistent with the number
of hives in the apiary, according to a
parameter defined when initializing the Apiary
SC. For instance, a given apiary cannot
produce more than 300 kg of honey per year.

Extraction
TE

Smartphone
or Tablet

Blockchain,
Producer's
server

Honey-
comb

This event takes place when honey is
extracted from honeycombs, after their
harvesting. It creates a Honey batch. It
guarantees that the transformation takes
place respecting the constraints on the total

147

quantity of honey contained inside the
honeycombs, and on the percentage that can
be extracted.

Merging TE Smartphone
or Tablet

Blockchain Honey Two or more batches of honey are merged,
and transformed into a new batch. The event
ensures that the total amount of honey is
conserved. This event is initiated by a "pivot"
honey Agri-Product, and is registered for all
input honey batches. It does not include off-
chain information.

Splitting TE Smartphone
or Tablet

Blockchain Honey A (batch of) honey is split into two or more
batches. The sum of the quantities of the new
products created must be equal to (or possibly
less than) the quantity of the original product.

Potting TE Smartphone
or Tablet

Blockchain,
Producer's
server

Honey A batch of honey is potted into a lot of jars.
The event guarantees that the total amount of
honey of the jars is equal (or less than) the
quantity of the input honey batch. Additional
information related to the event can be stored
off-chain.

Conferral
DE

Smartphone
or Tablet

Blockchain Honey
or
Honey
jars

A product is conferred by the Producer in
charge of it to another actor. For example, a
given quantity of honey jars is sold to a
wholesaler. The conferral must be accepted by
the destination producer; this event, if
conferral is not accepted, produces nothing
and can be canceled by the simple insertion of
subsequent events. Hence, it is a
Documentation Event.

Acceptance
DE

Smartphone
or Tablet

Blockchain Honey
or
Honey
jars

A Producer (Processor or Retailer) accepts the
conferral of a product by another Producer.
The ownership of the Agri-Product is
transferred to this Producer; no new product
is created, so this is not a transformation
event. Subsequent events will be registered by
the new owner.

Description
DE

PC Blockchain,
Producer's
server

Apiary,
Honey
or
Honey
jars

Descriptive data associated with a product or
an apiary are recorded. It can include photos,
maps, and other documents, which are kept
on a dedicated server. It can affect the
quantities produced (e.g.: if hives are added or
removed to an apiary).

Treatment
DE

Smartphone
or Tablet

Blockchain,
possibly
Producer’s
server

Apiary
or
Honey

Registration of bee breeding practices made
on an apiary, or treatments made during the
production process (addition of preservatives,
pasteurization and so on.). It is possible to
integrate it with off-chain documents, kept on
the Producer's server.

Certification
DE

Smartphone
or Tablet

Blockchain,
Producer's
or Certifier’s
server

Apiary,
Honey
or
Honey
jars

A certifier (Apiary Consortium, or another
Certifier) certifies a treatment, or the
produced honey. It produces a certificate, kept
on the server, whose hash digest is registered
on the blockchain. This event is registered by a

148

transaction sent from the address of the
certifier, so its origin is certain.

Automatic
Registration

IoT Blockchain Agri-
Product

An IoT device performs a registration following
an external event. For example, a refrigerator
records the internal temperature every 2
hours. In this way, it will be possible to
ascertain the storage conditions of fresh food.
Not relevant for the honey system.

Verification Smartphone
or Tablet or
PC

 Honey
jars

This is not a true event, but a service provided
by the system. End customers, or any other
actor in the process, check the integrity and
history of the product. They read the product
QR code, which includes the address of the SC
related to the honey jars lot, and can read its
history on the blockchain. If they want, they
can also find the related documents (e.g.:.pdf
files, images) following the links.

Figure 32 shows a simplified honey production process. Agro-industrial products are

denoted with icons depicting the product. Each product can be associated with one or more

Documentation events (DE), in the image denoted by the document with seal icon, and the

dotted arrow. Transformation events (TE) are denoted by solid arrows with the corresponding

event label, starting from the right side of products or resources, and cause them to be

transformed into other products, or divided into batches. In the example shown, the honey

comes from two apiaries (1 and 2). Through a single event (Harvest) it becomes honeycomb.

Once extracted (Extraction), it becomes honey and is then divided (Splitting) into two batches

(Honey 1 and Honey 2). These batches are then potted; the first is put in jars, the second in

buckets.

Figure 32 Honey production flow.

149

5.5.4 Automatic generation of the system's Smart Contracts
As already mentioned, the system's SCs are automatically generated from JSON, or .csv,

files (in fact, .csv files are converted into JSON ones). In the case study system, I have five JSON

files. Specifically, a JSON file for each of the following entities: actors, producers,

resources/products, events, and parameters.

Figure 33 The content of the .csv files describing Actors, Producers and Resources.

Figure 33 shows the content of these files for actors, producers and resources (Productive

Resources and Products), for three producers - a beekeper (Miele Monte Arcosu), a firm which

pots and sells honey (Miele di Sardegna), and a honey retailer (Mielizia).

The described resources are two apiaries managed by the beekeper, and various kinds of

intermediate (honeycombs and raw honey) and final products (buckets and jars of honey). Only

the apiaries have a defined quantity of beehives, which is set when the system is initialized, and

can be changed using a specific function of the Product SC, called by its owner. The quantities of

other products are set by the events which create them, under the constraints quoted in Section

5.3.1.4, "Transformation events".

The beekeeper also pots and sells honey, the producer just pots and sells it, whereas the

retailer is only able to sell honey jars and buckets.

150

Figure 34 The content of the .csv files describing Events, and Parameters, that is data values.

Figure 34 shows the content of the .csv file with the Event definition, and of the file with

the definition of the data fields specific for each event.

The event definition includes the list of the resources the event can be attached to and, in

the case of transformation event, the list of the products that can be generated. These events

define also the factor k, which is used to determine the quantity of the generated product, given

the quantity of the generating product. For instance, the unit of measure of honey is Kg, whereas

the unit of measure of 500 g jars is their number. So, the conversion factor is 2 - 1 Kg of honey

will produce 2 jars. Description events have nor output products, neither conversion factor.

The parameters table, shown in the same figure, reports for each event the data specific

for that event. For instance, let examine the Harvest event (HVT). Remember that in this process

harvest means to collect the honeycombs full of honey from the apiaries. The harvest event has

three data fields:

• Honeycombs No: is equal to the number of harvested honeycombs, is an integer and is

mandatory.

• Description: is a string holding a description of no more than 80 characters, optional.

• Image: is an optional image, obtained also using the smartphone camera, uploaded to

a cloud server, and whose URL and hash digest are stored in the blockchain; it is

optional.

151

This information is also used to automatically generate the user interface of the apps in

charge of taking inputs from the operators of the system, and of the app able to navigate

through the history of a final product.

5.5.4.1 System's characteristics

To summarize, the proposed system has the following characteristics:

1. Ability to manage the honey production cycle, as described following field inspections

and interviews with beekeepers; later, other products can be added such as propolis,

royal jelly, wax, etc.

2. Use of cloud space to store and retrieve documents, both documents produced by the

operators, such as photos, and documents available in other ways, as long as they are

accessible from the Internet.

3. Use of standard Android smartphones or tablets for data entry by system operators, via

an easy-to-use user interface.

4. Use of a responsive website for system operations and management by the operators,

and for retrieving information on honey batches by consumers.

5. Use of a permissioned blockchain with public access to ensure cost stability.

6. Need to produce and associate appropriate labels with QR code, to tag the final products

(jars, buckets, honey drums).

7. Opportunity for the Apiary Consortium to become an official actor and certifier of the

traced batches of honey. for this purpose, it must:

a. Have a blockchain address, and an administrator to manage its private key and

send transactions.

b. Advertise the address on its site, to assure users about the identity behind the

transactions originating from that address.

c. Define procedures and parameters to certify the batches of honey produced by

its members, like actual size and good state of health of an apiary, organoleptic

qualities of the batch of honey analyzed, certification of laboratory analyses

made on honey samples, etc.

8. The final consumer, pointing the smartphone at the QR code of the honey jar label, is

connected to the website of point 4, and here s/he can go back to the “history” and

certifications of the honey purchased.

5.6 Conclusions and Future Work
Nowadays, consumers worldwide want to be sure that the food they eat is safe and can be

reliably traced back to its point of origin to give assurance that what they are buying is authentic

and healthy. For this reason, they are demanding the highest standards of food safety

throughout the supply chain, and they are willing to pay for the intangible attributes of secure

152

traceability and country of origin labeling. Traceability systems are considered important to

ensure the safety of a food product and prevent food fraud in the food supply chain. It is

essential to improve the current traceability systems, as unscrupulous producers could exploit

the gaps in the systems to their advantage and to the detriment of consumers.

Systems based on blockchain technology and smart contracts, integrated with the Internet

of Things, allow to implement a traceability system where the producers can share the

responsibility to contribute information to their products, and independent third parts can

identify themselves and certify the correctness of the data related to products' origin and

quality. In this way, the customer can be assured of the truthfulness of the reported information

with a high degree of confidence.

In this context, I proposed a system enabling developers to quickly and smoothly develop

traceability systems in the agri-food domain, without the need to grasp in every detail the

technicalities of SC development, which is clearly different from classical software development.

To this purpose, I accurately represented the problem domain, which was found suitable to such

an approach, and developed a system able to automatically generate both the SCs and the UI of

a tracing system.

The approach starts from the description of the supply chain to be traced in terms of actors,

producers, resources and products, events and data. This description is given using a set of

spreadsheet pages, which is a tool very easy to use also by people expert in the domain, but not

in computer science. From these pages, converted to .csv files, the SCs are generated, as well as

the HTML5 pages able to interact with them and providing the UI of the Dapp.

This methodology can be used at every node of the supply chain, and can capture critical

events, which are subsequently recorded immutably. Also, the actors who registered the events

can be identified with a very high degree of certainty. In this way, the certification of every step

of the production process is not only made by the producer itself - as it is in traditional systems

- but can be audited by trusted third parties, which give a much higher degree of trust that the

information on the product is correct.

Specifically, the advantages of the management system of an agri-food supply chain via

blockchain, generated in a semi-automatic way, are:

• The consumer can be sure of the origin, of the production process, and of the quality of

the product purchased.

• The task of authorities in charge of the control of products, and of production processes,

is facilitated, and on-site inspections can be reduced.

• The manufacturer can certify in a simple and non-falsifiable way all the steps of a

production.

• Software development times and costs are reduced, while maintaining a high level of

security and trust.

153

• Blockchain system might also manage contractual transactions and payments. In this

case, the system could also be extended to allow payments, and the transfer of

ownership of a product could also be associated to a cryptocurrency transfer.

To the best of my knowledge, this is the first attempt to automatically develop custom

dApps for the agri-food supply chain, by building configurable SCs to be assembled together. I

truly believe that the proposed approach is very innovative. Moreover, the proposed approach

was actually used to develop some real tracing systems, thus confirming its capacities.

The research presented in this chapter adds value to the state of the art in several ways.

Firstly, it helps the developers in creating higher-quality SCs, because the SC which are

configured for a specific system are already proven and debugged. Secondly, it can help reducing

development time, because systems are generated by compiling a description of the system

given as tables of data. Thirdly, this approach makes food safety compliance easy, and

significantly cuts down on paperwork for the actors in the agri-food supply chain.

This flexible approach has potential applications well beyond the honey industry, which I

proposed as a case study, to a range of other agri-food producers. It could will be widely used

for the design and development of dApps aimed to implement agri-food supply chain traceability

systems. The presented methodology facilitates the communication between domain experts

and developers, and then automatically transform the key concepts of the problem domain into

SC code.

I am presently working on two extensions of the approach. First, to reduce the cost in gas

of SC creation and execution, I am working to give the system the ability to automatically

generate specific SC data structures from the data specification, instead of using the

representation with byte arrays. This is not a simple task, because I also have to generate getter

and setter functions, maintaining the security and reliability level of the present system.

Secondly, I am working to port the approach and the system to other Distributed Ledger

Technology systems which are used for implementing permissioned blockchains, namely

Hyperledger Fabric and Tendermint. I am also considering to generalize the system to support

other kinds of supply chains, besides agri-food sector.

154

6 Can the Blockchain facilitate the development of an interport

community?
Seaports are part of a complex and information-intensive maritime supply chain that

includes a set of organizations and operators who need to exchange a large amount of

information and data with each other. As supply chains become increasingly integrated and

connected, the connectivity of stakeholders must be ensured not only within individual ports

but also between ports.

This section explores the application prospects and practical implications of the

application of Blockchain technology for the establishment of an interport community within

which different ports organized as a network can exchange information and data in a secure

and effective way.

With the support of SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis, I

address several research questions concerning the practical impacts, benefits, pros and cons,

economic and technical barriers related to the implementation of Blockchain technology to

support the creation of an interport community.

The remainder of this chapter is organized as follows. Section 6.1 introduces the study;

section 6.2 briefly describes the case study. In section 6.3 I highlight the research questions I

addressed. Section 6.4 presents the SWOT analysis performed on the application prospects of

using blockchain technology to manage logistics in an interport community. Finally, section 6.5

answers to the research questions and draws some conclusions.

6.1 Introduction
In the framework of the 4.0 revolution, digital transformation is of utmost importance for

port and maritime logistics. Particularly, as crucial nodes in supply chains, seaports are required

to constantly innovate and evolve to keep up with technological changes and remain

competitive. Since the 1980s, the modernization of seaports has been shaped by digital

innovation through three main stages of transformation:

• first stage (1980s): transformation into paperless procedures (development of the first

EDI-based port community system, development of maritime industry-specific

UN/EDIFACT message standards, etc.)

• second stage (1990s - 2000s): transformation into automated procedures (application

of automatic identification systems AIS, introduction of radio-frequency identification

for port operations, etc.)

• third stage (2010s - onwards): transformation into digital procedures to improve

responsiveness and decision making (sensors, mobile technologies, cloud computing,

machine learning, etc.), and to support the ongoing interaction and connection between

the actors involved.

Now, as supply chains become increasingly integrated and connected, it is essential to

ensure the connectivity of stakeholders not only within the single port but also between the

155

various nodes of the transport network [194] [195]. Seaports are part of a complex and

information-intensive maritime supply chain that includes a set of organizations and operators

that are connected and distributed [196]. However, several challenges have so far characterized

and slowed down the development of shared digital solutions in the port community: different

levels of digital maturity between actors, missing standards, reluctance of operators to

participate and share information, etc. [197]. The recently much debated Blockchain technology

could offer interesting opportunities in this regard and is believed to have a huge impact on the

future of the digitization of port and maritime logistics [198].

Whatever the sector of application, Blockchain technology allows for more secure tracking

of all types of transactions (money transactions, data transactions, information transactions,

etc.), reducing delays, additional costs and human errors [199]. Blockchain is designed to achieve

decentralization, real-time peer-to-peer operation, anonymity, transparency, irreversibility and

integrity in a widely applicable manner [200]. In the context of shipping, Blockchain technology

is potentially a solution to the problem of distrust among players, as it does not rely on

commercial third parties, but on a network of peers [201]. It is also believed to have the potential

to positively affect maritime processes [202] and accelerate the physical flow of goods [203].

The growing interest towards Blockchain technology in the shipping sector is also

evidenced by the development of the related scientific literature. To have an overview of the

quantitative impact (in terms of number of published works) the topic of Blockchain in the

maritime sector is having on the scientific literature, in early December 2020 a preliminary

keyword search was carried out using the Scopus database. The search identified 61 studies

(including only journal articles and conference proceedings), all published starting from 2017,

which contained the following terms in the title, abstract or keywords: Blockchain + shipping,

Blockchain + maritime, Blockchain + port(s). Most of these studies seem to focus primarily on

the main trends and challenges, technical aspects, general opportunities and impacts related to

state-of-the-art technologies, while the practical implications of adopting Blockchain solutions

for specific port processes, as well as the actual repercussions for the different actors, seem to

need further investigation, also considering that the technology is still new and immature [204]

[205]. In fact, some trials and Blockchain pilot projects are already available in the maritime

industry. However, most of them are linked to autonomous initiatives of industrial operators or

single ports. For example, Maersk and IBM have decided to jointly build their own Blockchain

solution to reduce the cost of global shipping by eliminating inefficiencies resulting from paper-

based processes [206] while the ports of Rotterdam and Antwerp are developing their own

Blockchains. In this regard, it should be emphasized that as long as Blockchain exists only in

individual ports or in small groups of operators, its benefits will not be fully explored and

exploited. In fact, in increasingly connected and integrated markets, the new era of digitization

concerns not only the port's ability to become smart, but above all the ability to do so by

connecting to larger networks.

Considering the above, this study intends to add to the existing literature by exploring the

application prospects and practical implications of Blockchain technology for the construction

of an interport community within which different ports organized as a network can exchange

information and data in a secure and effective way.

156

6.2 Case study
The idea for this exploratory study was born in the framework of a previous research

project, the so-called EasyLog project, which designed and implemented an ICT system for the

exchange and sharing of operational data between five ro-ro ports in the upper Tyrrhenian Sea

[194]. The EasyLog system was designed according to a modular structure in which each port

had its own customized local module for managing gate-in gate-out operations, and the five

local modules communicated with each other using a shared set of rules for data exchange,

formatting and availability. The EasyLog system allowed the exchange of data both within the

port (between haulers, port authorities, and terminal operators) and between the five ports of

the network. Despite the important innovation introduced by the EasyLog system, it did not

include all the parties involved in the process (for example, shipping companies), it concerned

only a limited number of operational information related to gate operations but no sensitive

data, its process phases were not systematically linked between the stakeholders, thus leaving

some room for improvements that Blockchain technology can potentially achieve. Figure 35

illustrates a simplified flow diagram relating to the diverse activities, and related information

flows and operators involved, that could potentially benefit from the use of Blockchain for the

purpose of creating an interport community between port “x” and port “y”.

With the support of SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis,

this work analyzes the application prospects to exploit the advantages of Blockchain to facilitate

the secure exchange of information between the ports and the parties involved in an interport

logistics chain.

6.3 Research Questions
It should be emphasized that, to the best of my knowledge, no available studies have been

found that explore the practical implications and impacts of the application of Blockchain

technology for the establishment of an interport community. Through this exploratory study, I

try to provide insights on the topic by addressing the following research questions:

• Can Blockchain facilitate the development of an integrated port community?

• Which logistic activities in an interport community would be most impacted by

Blockchain and in which way?

• What parties involved in a port community would benefit the most from Blockchain?

• What are the pros and cons of introducing Blockchain in a port community?

157

Figure 35 Flow diagram of processes in a ro-ro interport logistics chain.

 Table 23 SWOT analysis of Blockchain technology.

Strengths

• Trust

• Security

• Transparency

• Tamper proof

• Identity management

Weaknesses

• Governance

• Scalability

• Adoption

• Redundancy

• Compliancy to GDPR

Opportunities

• Traceability

• Disintermediation

• Cost reduction

• Supply chain flow management

• Coordination

Threats

• Privacy

• Legal aspects and normative

• Connection to off-chain data

158

6.4 SWOT analysis
It should be emphasized that, to the best of my knowledge, no available studies have been

found that explore the practical implications of Blockchain technologies for what concerns

strengths, weaknesses, opportunities and threats in managing port logistic, in particular for the

case of an interport community.

In the following, I present a SWOT analysis for this specific case examining how the

Blockchain can be used to concretely contribute to enhance port logistics. Table 23 identifies

the main features contributing to the four dimensions of the SWOT analysis. The individual

aspects are then discussed in the following paragraphs.

6.4.1 Strengths
Trust: In ports it is important that companies in the supply chain can trust each other to

share information and increase efficiency in shared processes. A major obstacle to data sharing

is that a leakage in sensitive information can affect companies’ business. Managing the

information flow of shared data with the Blockchain on the contrary can provide a trusted and

unforgeable corpus of data records that can help in clearly identify responsibilities and sources

of damages, delays, misconducts, errors and other aspects.

Security: Records stored into Blockchain blocks are secure since a double encryption

mechanism is in place [207]. First, transactions are validated by means of private keys that make

extensive use of cryptography. Thus, transactions cannot be altered and are secure. Second,

each block is cryptographically chained to the previous one so that any attempt of records

manipulation in a block is mirrored in changes in all the following blocks, so that after the

addition of some block at the end of the chain data can be considered secured.

Transparency: Shipping companies typically keep their data reserved and secret to keep a

competitive advantage over their competitors. On the other hand, port logistics can benefit from

data sharing for planning in advance, for monitoring and coordinating operations and so on.

Recording data on the Blockchain directly provides transparency and renders information

directly and immediately available to authorized actors [207]. This is especially useful when the

information needs to be updated and quickly broadcast to all the actors. With Blockchain

solutions, data is shared in real-time, and payment can be made and confirmed almost instantly.

Tamper proof: Transparency is also provided by the tamper proof of Blockchain data. In

fact, once data are loaded into the blocks they cannot be manipulated or altered in any way. All

the actors involved in port logistic will benefit from this certainty of information not only in real

time but also for what concerns historical data for retrospective analysis for process

improvement.

Identity management: Given that all writing operations on Blockchain are managed

through Blockchain addresses which can operate only using the associated private keyword all

operations can directly be reconducted to the address’ owners providing a transparent a built-

in mechanism for managing identities. Furthermore, Smart Contracts can be written so that only

specific addresses are allowed to perform specific operations providing a built- in secure

mechanism for managing permits and authorizations.

159

6.4.2 Weaknesses
Governance: The missing of a central authority can be an advantage but also a problem. In

some cases, in fact there is the need for organizing some governance at different levels. In port

logistic, once multiple participants are connected, questions will arise about the governance of

the system, how and who is authorized to access the data (accessibility), and who owns the data

(ownership) shared in the Blockchain. Furthermore, in the case of a private Blockchain solution,

there is the question of who is the neutral party in charge of setting the network rules and

granting access authorization.

Scalability: Blockchain technology suffers from scalability and performance problems: all

nodes in the chain must process all transactions and this may present a problem with large-scale

and especially global implementations [200]. In a large interport community the number of

actors and operation involved can be cumbersome and peaks of activities in short time (e.g.,

load or download of a ferry carrier) can become critical. The adoption of the correct Blockchain

solution must consider this problematic so that the proper transaction rates and throughputs

must be assured to match logistic needs.

Adoption: The adoption of Blockchain technology can be difficult due to technical and

functional aspects. Implementing Blockchain technology on a very large scale would require a

great deal of computing power. Currently, only a few larger companies seem to be

experimenting with Blockchain. Eventually, they will create a platform that SMEs could also

connect to. SMEs, however, may be reluctant to participate in the platforms of these large

players. Also, because different companies' databases may use different standards or languages

to store data, interaction may prove difficult. Addressing this would require resources and time

to align databases or invest in a shared language for the Blockchain.

Redundancy: Blockchain provides a redundant distributed ledger replicated on all the

nodes. If this is an advantage for what concerns security, transparency and trust, it can be seen

as a waste of resources which could be leveraged to other purposes. This may become

particularly problematic when storage and computational power are critical resources for the

actors involved.

Compliance to GDPR: In the framework of EU GDPR (General Data Protection Regulation)

all sensitive data pertaining to private citizens or companies must be treated according to a strict

regulation. In particular, citizens and companies have the right to be forgotten, so that upon a

specific request all organization keeping citizens’ or companies’ data must remove them from

their public databases. In the case of Blockchain all data recorded on the ledger cannot be

removed or canceled anymore. This means that a specific strategy must be adopted from the

very beginning to decide and plan what data must be recorded on-chain and what data must be

kept off-chain.

6.4.3 Opportunities
Traceability: The Blockchain natively stores record in a temporally ordered sequence of

valid transactions so that all operations related to port logistic can immediately be tracked, like

load or unload of tracks and containers into shipments and other physical movements. But also,

160

other events, like business agreements, buy and sell, signing of insurance contracts, can be easily

included into the Blockchain tracking system, strongly reducing monitoring and auditing costs

[207].

Disintermediation and Cost Reduction: Currently many of the port logistic transactions are

carried out by e-mail or telephone calls, there are several intermediaries involved, with

consequent increases in costs and possible human errors. As for the Blockchain and the smart

contracts, these promise an increase in efficiency, a reduction in brokerage costs and greater

neutrality in the regulation of contracts. In fact, since all the relevant events of a supply chain

are recorded in a certain and immutable way, all the notified parties can immediately plan the

consequent actions, including any payments [208].

Supply chain flow management: The Blockchain is the ideal technology for supply chain

management, where the supply can be physical or simply information flow [18]. Instead of

exchanging documentation, the stakeholders involved in the process are given permission to

access the blocks where the data is stored. This leads to the creation of unique and shared

information that can be accessed in real-time and with lower transaction costs. The process can

be further accelerated by involving stakeholders external to the process (banks and insurance

companies). The database can be further enhanced by using Internet of Things (IoT) devices and

connecting them as Blockchain nodes. Furthermore, by connecting smart devices, it is also

possible to fully automate the process.

Coordination: Currently, each freight operator has its own management platform and data

set, with limited interconnection capacities. Operators operate with a limited view of the

situation and of the impact of each element on the overall performance of the supply chain.

Container supply chain information is dispersed. With Blockchain, transport operators can

securely share their information with their trading partners through a reliable, multi-layered

data access architecture. This would foster interoperability, efficiency and productivity.

Furthermore, different Blockchain networks could interact with each other around the world

[208].

6.4.4 Threats
Privacy: User privacy could be reduced because all nodes contain a complete copy of the

ledger and there is no central authority to contact in the event of an obvious security breach

[200]. One of the solutions is a platform that will combine a Blockchain, repurposed as an access

control moderator, with an off-chain storage solution [209]. Users will not have to trust third

parties and are always aware of the data that is collected about them and how it is used.

Furthermore, the Blockchain recognizes users as owners of their personal data.

Legal aspects and normative: Currently there is a lack in the normative and regulation for

what concerns the role of Blockchain technology as distributed ledger and on the legal

recognition of Smart Contracts. This lack creates insecurity, because some aspects of smart

contract technology could be adopted by the logistics market, only to be upregulated, or even

to be considered illegal [210].

161

Connection to off-chain data: When dealing with massive documents, due to space

constraints or costs, the typical pattern is to store them off-chain and to upload on-chain only

their hashes and a pointer or reference to the external storage location. This does not grant that

the external storage has the same properties the Blockchain has, and eventually the external

storage can be dismissed over time. In this case only the metadata related to the documents can

be retrieved but not the documents themselves. When planning to use off-chain storage this

aspect must be considered [12].

6.5 Answer to Research Questions and Conclusions
Based on the considerations made, it can be said that Blockchain has considerable potential

to facilitate the development of an integrated cross-border port community as it can increase

trust between the parties, it can provide a facilitated communication platform, and it allows to

guarantee the identities of the involved parties and their will to send the transaction.

The logistic activities that can be most affected by the Blockchain seem to be those relating

to the notarization of contractual documents and passageways to the gates, including

photographs and documents relating to the state of vehicles and goods for any insurance

purposes. In addition, the management of access authorizations to the system in all ports with

a single system and in a decentralized way, the guarantee of the origin of documents, and the

sharing and secure transmission of information and notifications of events between the port

actors, while preserving privacy and data ownership, can significantly benefit from the

Blockchain.

All the players may benefit from the use of the Blockchain in support of intermodal traffic,

from the for-profit enterprises, such as freight forwarders, terminal operators, shipping

companies, haulers, to the port authorities. The former can think of reducing direct costs and

increasing efficiency, thanks to a greater automation, the reduction of intermediaries and

delays, but also of reducing indirect costs, such as legal ones, thanks to the decrease in disputes

guaranteed by Blockchain certification and smart contracts. The latter can also have advantages

in terms of reducing costs and having greater guarantees that laws and regulations are

respected.

The pros of introducing Blockchain to a cross-border port community have been clearly

listed in the previous sections. As for the cons, there are probably no negative consequences

related to the introduction of a technology that increases the transparency of operations, the

trust of the parties, the automation of many activities, the security and confidentiality of data

transfers. The only reasons, not all justifiable, why one party could negatively view the

introduction of the Blockchain in a cross-border port community may include the need to bear

the costs of technological adoption and transition, low propensity to increase transparency, little

trust against a new technology, possible privacy or scalability issues or system governance

issues.

162

Part IV

Cryptocurrencies price

forecasting

163

7 Forecasting Bitcoin closing price series using linear regression

and neural networks models
In Part IV I present a work to forecast daily closing price series of Bitcoin, Litecoin and

Ethereum cryptocurrencies, using data on prices and volumes of prior days.

Cryptocurrencies price behavior is still largely unexplored, presenting new opportunities

for researchers and economists to highlight similarities and differences with standard financial

prices. I compared my results with various benchmarks: one recent work on Bitcoin prices

forecasting that follow different approaches, a well-known paper that uses Intel, National Bank

shares and Microsoft daily NASDAQ closing prices spanning a 3-year interval and another, more

recent paper which gives quantitative results on stock market index predictions.

I followed different approaches in parallel, implementing both statistical techniques and

machine learning algorithms: the Simple Linear Regression (SLR) model for uni-variate series

forecast using only closing prices, and the Multiple Linear Regression (MLR) model for

multivariate series using both price and volume data.

I used two artificial neural networks as well: Multilayer Perceptron (MLP) and Long short-

term memory (LSTM).

While the entire time series resulted to be indistinguishable from a random walk, the

partitioning of datasets into shorter sequences, representing different price “regimes”, allows

to obtain precise forecast as evaluated in terms of Mean Absolute Percentage Error (MAPE) and

relative Root Mean Square Error (relativeRMSE). In this case the best results are obtained using

more than one previous price, thus confirming the existence of time regimes different from

random walks.

The models perform well also in terms of time complexity, and provide overall results

better than those obtained in the benchmark studies, improving the state-of-the-art.

The content of this part was partially published in:

• “Forecasting Bitcoin closing price series using linear regression and neural

networks models”, N. Uras, L. Marchesi, M. Marchesi, R. Tonelli. In PeerJ Computer

Science, Volume 6, pp. e279, PeerJ Inc., 2020. [211]

 Even if it is not completely centered on the topic of this thesis, this work has to do with

the study of the phenomenon of blockchain technology and is part of the work done during my

doctoral studies, so I decided to include it, albeit marginally.

7.1 Introduction
Bitcoin is a new entry in currency markets, it is the world's most valuable cryptocurrency,

though it is officially considered as a commodity rather than a currency, and its price behaviour

is still largely unexplored, presenting new opportunities for researchers and economists to

highlight similarities and differences with standard financial currencies, also in view of its very

different nature with respect to more traditional currencies or commodities. The price volatility

164

of Bitcoin is far greater than that of fiat currencies [212], providing significant potential in

comparison to mature financial markets [213] [214] [215].

According to coinmarketcap website [216], one of the most popular sites that provides

almost real-time data on the listing of the various cryptocurrencies in global exchanges, on May

2019 Bitcoin market capitalization value is valued at approximately 105 billion of USD. Hence,

forecasting Bitcoin price has also great implications both for investors and traders. Even if the

number of bitcoin price forecasting studies is increasing, it still remains limited [217].

In this work, I approach the forecast of daily closing price series of the Bitcoin

cryptocurrency using data on prices and volumes of prior days. I compare my results with three

well-known recent papers, one dealing with Bitcoin prices forecasting using other approaches,

one forecasting Intel, National Bank shares and Microsoft daily NASDAQ prices and one on stock

market index forecasting using fusion of machine learning techniques.

The first paper I compare to, tries to predict three of the most challenging stock market

time series data from NASDAQ historical quotes, namely Intel, National Bank shares and

Microsoft daily closed (last) stock price, using a model based on chaotic mapping, firefly

algorithm, and Support Vector Regression (SVR) [218].

In the second one [217] Mallqui and Fernandez used different machine learning techniques

such as Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to predict, among

other things, closing prices of Bitcoin.

The third paper proposes a two-stage fusion approach to forecast stock market index. The

first stage involves SVR. The second stage uses ANN, Random Forest (RF) and SVR [219].

I decided to predict these three share prices to give a sense of how Bitcoin is different from

traditional markets. Moreover, to enrich my work, I applied the models also to two other two

well-known cryptocurrencies: Ethereum and Litecoin.

In this work I forecast daily closing price series of Bitcoin cryptocurrency using data of prior

days following different approaches in parallel, implementing both statistical techniques and

machine learning algorithms. I tested the chosen algorithms on two datasets: the first consisting

only of the closing prices of the previous days; the second adding the volume data. Since Bitcoin

exchanges are open 24/7, the closing price reported on coinmarketcap I used, refers to the price

at 11:59 PM UTC of any given day. The implemented algorithms are Simple Linear Regression

(SLR) model for univariate series forecast, using only closing prices; a Multiple Linear Regression

(MLR) model for multivariate series, using both price and volume data; a Multilayer Perceptron

and a Long Short-Term Memory neural network tested using both the datasets.

The first step consisted in a statistical analysis of the overall series. From this analysis I show

that the entire series are not distinguishable from a random walk. If the series were truly random

walks, it would not be possible to make any forecasts.

Since I am interested in prices and not in price variations, I avoided the time series

differencing technique by introducing and using the novel presented approach.

165

Therefore, each time series was segmented in shorter overlapping sequences in order to

find shorter time regimes that do not resemble a random walk so that they can be easily

modeled. Afterwards, I run all the algorithms again on the partitioned dataset.

The reminder of this chapter is organized as follows. Section 7.2 gives an overview of the

current literature. Section 7.3 presents the methodology, briefly describing the data, their pre-

processing, and finally the models used. Section 7.4 presents and discuss the results. Section 7.5

concludes the chapter.

7.2 Literature Review
Over the years many algorithms have been developed for forecasting time series in stock

markets. The most widely adopted are based on the analysis of past market movements [220].

Among the others, Armano proposed a prediction system using a combination of genetic and

neural approaches, having as inputs technical analysis factors that are combined with daily

prices [221].

Enke discussed a hybrid prediction model that combines differential evolution-based fuzzy

clustering with a fuzzy inference neural network for performing an index level forecast [222].

Kazem presented a forecasting model based on chaotic mapping, firefly algorithm, and

support vector regression (SVR) to predict stock market prices [218]. Unlike other widely studied

time series, still very few researches have focused on bitcoin price prediction. In a recent

exploration McNally tried to ascertain with what accuracy the direction of Bitcoin price in USD

can be predicted using machine learning algorithms like LSTM (Long short-term memory) and

RNN (Recurrent Neural Network) [223].

Naimy tried to forecast the volatility of the Bitcoin/USD exchange rate using GARCH

(Generalized Auto-Regressive Conditional Heteroscedasticity) models [224].

Sutiksno studied and applied α-Sutte indicator and Arima (Autoregressive Integrated

Moving Average) methods to forecast historical data of Bitcoin [225]. Stocchi proposed the use

of Fast Wavelet Transform to forecast Bitcoin prices [226].

Yang examined a few complexity measures of the Bitcoin transaction flow networks, and

modeled the joint dynamic relationship between these complexity measures and Bitcoin market

variables such as return and volatility [227].

Bakar presented a forecasting Bitcoin exchange rate model in high volatility environment,

using autoregressive integrated moving average (ARIMA) algorithms [228].

Catania studied the predictability of cryptocurrencies time series, comparing several

alternative univariate and multivariate models in point and density forecasting of four of the

most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum, using univariate Dynamic Linear

Models and several multivariate Vector Autoregressive models with different forms of time

variation [229].

166

Vo used knowledge of statistics for financial time series and machine learning to fit the

parametric distribution and model and forecast the volatility of Bitcoin returns, and analyze its

correlation to other financial market indicators [230].

Other approaches try to predict stock market index using fusion of machine learning

techniques [219].

Akcora introduced a novel concept of chainlets, or bitcoin subgraphs, to evaluate the local

topological structure of the Bitcoin graph over time and the role of chainlets on bitcoin price

formation and dynamics [231].

Greave predicted the future price of bitcoin investigating the predictive power of

blockchain network-based, in particular using the bitcoin transaction graph [232].

Since the cryptocurrencies market is at an early stage, the cited papers that deals with

forecasting bitcoin prices had the opportunity to train and test their models on a quite narrow

dataset. In particular, bitcoin market has been at first characterized by an almost constantly

ascending price trend, the so-called bull-market condition. However, since 2018, it has been

characterized by a strong descending price trend, the so-called bear-market condition.

Therefore, the cited papers trained their models on data of the first market condition, and

tested them on data of the second type. These market conditions are shown in Figure 36 (a: bull-

market condition; b: bear-market condition).

This study spans over a period of more than 4 years, characterized by different price

dynamics. Therefore, I was able to train and test the models, including in each stage both bull-

and bear- market conditions. For these reasons, this study enriches the state-of-the-art, as it is

the most updated and deals with the biggest and more complete dataset.

7.3 Methods
In this section I first introduce some notions on time series analysis, which helped me to

take the operational decisions about the algorithms I used and to better understand the results

presented in the following. Then, I present the used dataset, including its pre-processing

analysis. Finally, I introduce the proposed algorithms with the metrics employed to evaluate

their performance and the statistical tools I adopted.

167

Figure 36 Bull (a) and Bear (b) price dynamics for Bitcoin market.

7.3.1 Time Series Analysis

7.3.1.1 Time Series Components

Any time series is supposed to consist of three systematic components that can be

described and modelled. These are 'base level', 'trend' and 'seasonality', plus one non-systematic

component called 'noise'. The base level is defined as the average value in the series. A trend is

observed when there is an increasing or decreasing slope in the time series. Seasonality is

observed when there is a repeated pattern between regular intervals, due to seasonal factors.

Noise represents the random variations in the series. Every time series is a combination of these

four components, where base level and noise always occur, whereas trend and seasonality are

optional.

Depending on the nature of the trend and seasonality, a time series can be described as an

additive or multiplicative model. This means that each observation in the series can be

expressed as either a sum or a product of the components [233].

An additive model is described by following the linear equation:

 𝑦(𝑡) = 𝐵𝑎𝑠𝑒𝐿𝑒𝑣𝑒𝑙 + 𝑇𝑟𝑒𝑛𝑑 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝑁𝑜𝑖𝑠𝑒 (3)

A multiplicative model is instead represented by the following non-linear equation:

 𝑦(𝑡) = 𝐵𝑎𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∗ 𝑇𝑟𝑒𝑛𝑑 ∗ 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 ∗ 𝑁𝑜𝑖𝑠𝑒 (4)

An additive model would be used when the variations around the trend does not vary with

the level of the time series whereas a multiplicative model would be appropriate if the trend is

168

proportional to the level of the time series. This method of time series decomposition is called

"classical decomposition" [233].

7.3.1.2 Statistical Measures

The statistical measures calculated for each time series are the mean, labelled with µ, the

standard deviation σ and the trimmed mean µ̅, obtained discarding a portion of data from both

tails of the distribution. The trimmed mean is less sensitive to outliers than the mean, but it still

gives a reasonable estimate of central tendency and can be very helpful for time series with high

volatility.

7.3.2 Collected data
I tested the algorithms on six daily price series. Three of them are stock market series, all

the data were extracted from the 'Historical Data' available on yahoofinance website [234]; the

other ones are cryptocurrencies, namely Bitcoin, Ethereum and Litecoin price daily series, all the

data were extracted from coinmarketcap website [216].

• Daily stock market prices for Microsoft Corporation (MSFT), from 9/12/2007 to

11/11/2011.

• Daily stock market prices for Intel Corporation (INTC), from 9/12/2007 to 11/11/2010.

• Daily stock market prices for National Bankshares Inc. (NKSH), from 6/27/2008 to

8/29/2011.

• Daily Bitcoin, Ethereum and Litecoin price series, from 15/11/2015 to 12/03/2020.

I state once more that I choose these price series and the related time intervals as

benchmark to compare my results with well-known literature results obtained by using other

methods.

Specifically, I have chosen for the stock market series the same time intervals chosen in

[218].

The choice of Bitcoin as cryptocurrency is quite natural since it represents about 60% of

the Total Market Capitalization. Ethereum and Litecoin were chosen since they are among the

most important and well-known cryptocurrencies.

It is worth noting that, for the stock market series I used the same data of the work I

compare to, whereas for the cryptocurrencies I used all the available data to have more

significant results.

The dataset was divided into two sets, a training part and a testing part. After some

empirical test the partition of the data which lead us to optimal solutions was 80% of the daily

data for the training dataset and the remaining for the testing dataset.

169

7.3.3 Data pre-processing
For both models I prepared the dataset in order to have a set of inputs (X) and outputs (Y)

with temporal dependence. I performed a one-step ahead forecast: the output Y is the value

from the next (future) point of time while the inputs X are one or several values from the past,

i.e. the so called lagged values. From now on I identify the number of used lagged values with

the lag parameter. In the Linear Regression and Univariate LSTM models the dataset includes

only the daily closing price series, hence there is only one single lag parameter for the close

feature. On the contrary, in the Multiple Linear Regression and Multivariate LSTM models the

dataset includes both close and volume (USD) series, hence I use two different lag parameters,

one for the close and one for the volume feature. In both cases, I attempted to optimize the

predictive performance of the models by varying the lag from 1 to 10.

7.3.4 Univariate versus Multivariate Forecasting
A univariate forecast consists of predicting time series made by observations belonging to

a single feature recorded over time, in this case the closing price of the series considered. A

multivariate forecast is a forecast in which the dataset consists of the observations of several

features. Here I used:

• for BTC, ETH and LTC series all the features provided by Coinmarketcap website [216]:

Open, High, Low, Close, Volume.

• for MSFT, INTC, NKSH series all the features provided by Yahoofinance website [234]:

Date, Open, High, Low, Close, Volume.

I observed that adding features to the dataset did not lead to better predictions, but

performance and sometimes also results worsened. For this reason, I decided to use in the

multivariate analysis only the close and volume features, that provided the best results.

7.3.5 Statistical Analysis
As a first step I carried out a statistical analysis in order to check for non-stationarity in the

time series, using the augmented Dickey-Fuller test and autocorrelation plots [235] [236].

A stochastic process with a unit root is non-stationary, namely shows statistical properties

that change over time, including mean, variance and covariance, and can cause problems in

predictability of time series models. A common process with unit root is the random walk. Often

price time series show some characteristics which makes them indistinguishable from a random

walk. The presence of such a process can be tested using a unit root test.

The ADF test is a statistical test that can be used to test for a unit root in a univariate

process, such as time series samples. The null hypothesis H0 of the ADF test is that there is a unit

root, with the alternative Ha that there is no unit root. The most significant results provided by

this test are the observed test statistic, the Mackinnon's approximate p-value and the critical

values at the 1%, 5% and 10% levels.

170

The test statistic is simply the value provided by the ADF test for a given time series. Once

this value is computed it can be compared to the relevant critical value for the Dickey-Fuller

Test.

Critical values, usually referred to as α levels, are an error rate defined in the hypothesis

test. They give the probability to reject the null hypothesis H0. So if the observed test statistic is

less than the critical value (keep in mind that ADF statistic values are always negative [235]),

then the null hypothesis H0 is rejected and no unit root is present.

The p-value is instead the probability to get a "more extreme" test statistic than the one

observed, based on the assumed statistical hypothesis H0, and its mathematical definition is

shown in the equation:

𝑝𝑣𝑎𝑙𝑢𝑒 = 𝑃(t ≥ 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑| H0) (5)

The p-value is sometimes called significance, actually meaning the closeness of the p-value

to zero: the lower the p-value, the higher the significance.

In my analysis I performed this test using the adfuller() function provided by the

statsmodels Python library, and I chose a significance level of 5%.

Furthermore, the autocorrelation plot, also known as correlogram, allowed me to calculate

the correlation between each observation and the observations at previous time steps, called

lag values. In my case I employed the autocorrelation_plot() function provided by the python

Pandas library [237].

7.3.6 Forecasting
I decided to follow two different approaches: the first uses two well-known statistical

methods: Linear Regression (LR) and Multiple Linear Regression (MLR). The second uses two

very common neural networks (NN): Multilayer Perceptron (MLP) NN and Long Short-Term

Memory (LSTM) NN. The reasons of this choices are explained below.

7.3.6.1 Linear Regression and Multiple Linear Regression

Linear regression is a linear approach for modelling the relationship between a dependent

variable and one independent variable, represented by the main equation:

𝑦 = 𝑏0 + 𝑏1
⃗⃗ ⃗ ∙ 𝑥1⃗⃗⃗⃗ (6)

where y and 𝑥1⃗⃗⃗⃗ are the dependent and the independent variable respectively, while 𝑏0 is

the intercept and 𝑏1
⃗⃗ ⃗ is the vector of slope coefficients. In my case the components of the vector

𝑥1⃗⃗⃗⃗ , the independent variable, are the values of the closing prices of the previous days.

171

Therefore, 𝑥1⃗⃗⃗⃗ size is the value of the lag parameter. In this case y represents the closing price

to be predicted.

This algorithm aims to find the curve that best fits the data, which best describes the

relation between the dependent and independent variable. The algorithm finds the best fitting

line plotting all the possible trend lines through our data and for each of them calculates and

stores the amount (𝑦 − �̅�2), and then choose the one that minimizes the squared differences

sum ∑ (𝑦𝑖 − 𝑦�̅�
2)𝑖 , namely the line that minimizes the distance between the real points and those

crossed by the line of best fit.

I then tried to forecast with multiple independent variables, adding to the close price

feature the observations of several features, including volume, highest value and lowest value

of the previous day. These information were gained from coinmarketcap website. In these cases,

I used a Multiple Linear Regression model (MLR). The MLR equation is:

𝑦 = 𝑏0 + 𝑏1
⃗⃗ ⃗ ∙ 𝑥1⃗⃗⃗⃗ + ⋯+ 𝑏𝑛

⃗⃗⃗⃗ ∙ 𝑥𝑛⃗⃗⃗⃗ = 𝑏0 + ∑ 𝑏𝑖
⃗⃗⃗ ∙ 𝑥𝑖⃗⃗ ⃗

𝑛
𝑖=1 (7)

where the index I refers to a particular independent variable and n is the dimension of the

independent variables space.

I used the Linear and Multiple regression model of scikit learn [238]. I decided to use these

two models for several reasons: they are simple to write, use and understand, they are fast to

compute, they are commonly used models and fit well to datasets with few features, like mine.

Their disadvantage is that they can model only linear relationships.

7.3.6.2 Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network that generates a

set of outputs from a set of inputs. It consists of at least three layers of neurons: an input layer,

a hidden layer and an output layer. Each neuron, apart from the input ones, has a nonlinear

activation function. MLP uses backpropagation for training the network.

In my model I keep the structure as simple as possible, with a single hidden layer. The inputs

are the closing prices of the previous days, where the number of values considered depends on

the lag parameter. The output is the forecast price. The optimal number of neurons were found

by optimizing the network architecture on the number of neurons itself, varying it in an interval

between 5 and 100. I used the Python Keras library [239].

7.3.6.3 LSTM Networks

Long Short-Term Memory networks are nothing more than a prominent variation of

Recurrent Neural Network (RNN). RNN's are a class of artificial neural network with a specific

architecture oriented at recognizing patterns in sequences of data of various kinds: texts,

genomes, handwriting, the spoken word, or numerical time series data emanating from sensors,

markets or other sources [240]. Simple recurrent neural networks are proven to perform well

only for short-term memory and are unable to capture long-term dependencies in a sequence.

172

On the contrary, LSTM networks are a special kind of RNN, able at learning long-term

dependencies.

The model is organized in cells which include several operations. LSTM hold an internal

state variable, which is passed from one cell to another and modified by Operation Gates (forget

gate, input gate, output gate). These gates control how much of the internal state is passed to

the output and work in a similar way to other gates. These three gates have independent weights

and biases; hence the network will learn how much of the past output and of the current input

to retain and how much of the internal state to send out to the output.

In my case the inputs are the closing prices of the previous days and the number of values

considered depends on the lag parameter. The output is the forecast price. I used the Keras

framework for deep learning. My model consists of one stacked LSTM layer with 64 units each

and the densely connected output layer with one neuron. I used Adam optimizer and MSE (mean

squared error) as a loss.

I optimized the LSTM model searching for the best set of epochs and batch size

hyperparameters values. These hyperparameters strongly depend on the number of

observations available for the experiment.

Due to the recently birth of the cryptocurrency markets, the dimensions of my datasets are

quite limited (around 1000 observations), therefore I decided to vary the epochs

hyperparameter from 300 to 800 with a step of 100.

The Keras LSTM algorithm I used sets as default value for batch size 32. So, for each fixed

epoch, I trained the model varying the batch size within the interval [22, 82] with a step of 10.

I did not take into account values less than 300 epochs, nor greater than 800 in order to

avoid underfitting and overfitting problems. Furthermore, I did not consider batch size values

less than 22, since they would lead to extremely long training times. Similarly, batch size values

greater than 82 would not allow to find a good local minimum point of the chosen loss function

during the learning procedure. The results obtained during the hyperparameters tuning are

shown in Figure 37.

173

Figure 37 Bitcoin hyperparameters tuning results.

This figure shows the MAPE error as a function of the batch size hyperparameter, for each

fixed epoch. As can be seen from the figure, I considered the batch size equal to 72 to be the

optimal value. In fact, it is an excellent compromise, having a low MAPE value, which is also

practically the same for all tested epochs. The optimal choice for the epochs hyperparameter is

600, which is the one that minimizes the MAPE error for batch size equal to 72, and is

consistently among the best choices for almost all batch sizes considered. Therefore, the best

set of epochs and batch size hyperparameters values chosen is 600 and 72, respectively.

7.3.7 Time Regimes
The time series considered are found to be indistinguishable from a random walk. This

peculiarity is common for time series of financial markets, and in this case is confirmed by the

predictions of the models, in which the best result is obtained considering only the price of the

previous day.

The purpose is to find an approach that allows to avoid time series differencing technique,

in view of the fact that I am interested in prices and not in price variations represented by

integrated series of d-order. For this reason, each time series was segmented into short partially

overlapping sequences, in order to find if shorter time regimes are present, where the series do

not resemble a random walk. Finally, to continue with the forecasting procedure, a train and a

test set were identified within each time regime.

For each regime I always sampled 200 observations - namely 200 daily prices. The beginning

of the next regime is obtained with a shift of 120 points from the previous one. Thus, every

regime is 200 points wide and has 80 points in common with the following one.

I chose a regime length of 200 days because, in this way, I obtain at least 5 regimes (from

5 to 12) for each time series to test the effectiveness of the algorithms, without excessively

reducing the number of samples needed for training and testing. The choice was determined

174

also according to the following: I performed the augmented Dickey-Fuller test on subsets of the

data, starting from the whole set and progressively reducing the data window and sliding it

through the data. The first subset of data that does not behave as random walks appears at time

interval of 230 days, which I rounded to 200.

Since the time series considered have different lengths, the partition in regimes has

generated:

• Bitcoin, Ethereum and Litecoin: 12 regimes

• Microsoft: 8 regimes

• Intel and National Bankshares: 5 regimes

From a mathematical point of view, the used approach can be described as follows. Let us

target a vector 𝑂𝐴⃗⃗⃗⃗ ⃗ along the t axis, with length 200. This vector is identified by the points

𝑂(1,0), 𝐴(𝑎, 0) ≡ (200,0). The length of this vector represents the width of each time regime.

Let 𝑂𝐻⃗⃗⃗⃗⃗⃗ be a fixed translation vector along the t axis, identified by the points

𝑂(1,0), 𝐻(ℎ, 0) ≡ (120,0). The length of 𝑂𝐻⃗⃗⃗⃗⃗⃗ represents the translation size.

For the sake of simplicity, let us label 𝑂𝐴⃗⃗⃗⃗ ⃗ and 𝑂𝐻⃗⃗⃗⃗⃗⃗ vectors with 𝐴 and �⃗⃗� .

Let 𝐴′⃗⃗ ⃗ be the vector 𝐴 shifted by �⃗⃗� and 𝐴𝑛⃗⃗⃗⃗ ⃗ the vector 𝐴 shifted by n times �⃗⃗� . Therefore,

the vector that identifies the nth sequence to be sampled along the series is given by:

𝐴𝑛⃗⃗⃗⃗ ⃗ = 𝐴 + 𝑛�⃗⃗� (8)

where 𝑛 ∈ [0,
 𝐷 − 𝐴

ℎ
], being D the dimension of the sampling space, A the time regimes

width and h the translation size. So, the nth time regime is given by:

𝑅𝑛 = 𝑓(𝐴𝑛⃗⃗⃗⃗ ⃗) = 𝑓(𝐴 + 𝑛�⃗⃗�) (9)

where f is the function that maps the values along the t axis (dates) to the respective

regimes y values (actual prices).

7.3.8 Performance Measures
To evaluate the effectiveness of different approaches, I used the relative Root Mean Square

Error (rRMSE) and the Mean Absolute Percentage Error (MAPE), defined respectively as:

175

relativeRMSE = √
1

𝑁
∑ (

𝑦𝑖−𝑓𝑖

𝑦𝑖
)2𝑁

𝑖=1 (10)

𝑀𝐴𝑃𝐸 =
1

𝑁
 ∑ |

𝑦𝑖−𝑓𝑖

𝑦𝑖
|𝑁

𝑖=1 (11)

In both formulas 𝑦𝑖 and 𝑓𝑖 represent the actual and forecast values, and 𝑁 is the number

of forecasting periods. These are scale free performance measures, so that they are well

appropriate to compare model performance results across series with different orders of

magnitude, as in this study.

7.4 Results

7.4.1 Time Series Analysis
In Figure 38 I report the decomposition of Bitcoin (a-d) and Microsoft (e-h) time series, for

comparison purposes, as obtained using the seasonal_decompose() method, provided by the

Python statsmodels library [241].

The seasonal_decompose() method requires to specify whether the model is additive or

multiplicative. In the Bitcoin time series, the trend of increase at the beginning is almost

absent (from around 2016-04 to 2017-02); in later years, the frequency and the amplitude of

the cycle appears to change over time.

Figure 38 Decomposition of Bitcoin (a-d) and Microsoft (e-h) time series.

The Microsoft time series shows a non-linear seasonality over the whole period, with

frequency and amplitude of the cycles changing over time. These considerations suggest that

the model is multiplicative. Furthermore, if we look at the residuals, they look quite random, in

agreement with their definitions. The Bitcoin residuals are likewise meaningful, showing

periods of high variability in the later years of the series.

176

It is also possible to group the data at seasonal intervals, observing how the values are

distributed and how they evolve over time. In this work I grouped the data of the same month

over the considered years. This is achieved with the 'Box plot' of month-wide distribution,

shown in Figure 39 (a: Bitcoin; b: Microsoft).

The Box plot is a standardized way of displaying the distribution of data based on five

numbers summary: minimum, first quartile, median, third quartile and maximum. The box of

the plot is a rectangle which encloses the middle half of the sample, with an end at each

quartile. The length of the box is thus the inter-quartile range of the sample. The other

dimension of the box has no meaning. A line is drawn across the box at the sample median.

Whiskers sprout from the two ends of the box defining the outliers’ range. The box length

gives an indication of the sample variability, and for the Bitcoin samples shows a large

variance, in almost all months, except for April, September and October. Not surprisingly,

bitcoin volatility is much higher than Microsoft one. The line crossing the box shows where the

sample is centered, i.e. the median.

The position of the box in its whiskers and the position of the line in the box also tell us

whether the sample is symmetric or skewed, either to the right or to the left. The plot shows

that the Bitcoin monthly samples are therefore skewed to the right. The top whisker is much

longer than the bottom whiskers and the median is gravitating towards the bottom of the box.

This is due to the very high prices that Bitcoin reached throughout the period between 2017

and 2018. These large values tend to skew the sample statistics.

In Microsoft, an alternation between samples skewed to the left and samples skewed to

the right occurs, except for the sample of October that shows a symmetric distribution. Lack of

symmetry entails one tail being longer than the other, distinguishing between heavy-tailed or

light-tailed populations. In the Bitcoin case that the majority of the samples are left skewed

populations with short tails. Microsoft shows an alternation between heavy-tailed and light-

tailed distributions. Moreover, some Microsoft samples, particularly those with long tails,

present outliers, representing anomalous values. This is due to the fact that heavy tailed

distributions tend to have many outliers with very high values. The heavier the tail, the larger

the probability that you will get one or more disproportionate values in a sample.

Figure 39 Seasonality of Bitcoin (a) and Microsoft (b) time series.

177

Table 24 and table in Figure 42 show the statistics calculated for each time series and for

each short time regime. The unit of measurement of the values in the tables is the US dollar

($). In Table 24 we can observe that the only series for which the trimmed mean, obtained

with trim_mean() method provided by the Python scipy library [242], with a cut-off percentage

of 10%, is significantly different from the mean are Bitcoin, Ethereum and Litecoin. In

particular the trimmed mean decreased. This is due to the fact that these cryptocurrencies, for

a long period of time, registered a large price increment and this implies a shift of the mean to

the right (i.e. to highest prices). This confirms that cryptocurrencies distribution is right-

skewed. Table in Figure 42 shows that stock market series time regimes present a lower σ than

BTC, ETH and LTC ones, namely that cryptocurrencies distribution has higher variance.

Table 24 Time Series Statistical Measures.

Series µ σ µ̅

BTC 4931,3 3970,0 4593,1

ETH 216,8 239,8 171,2

LTC 55,9 58,0 45,6

MSFT 26,2 3,9 26,3

INTC 19,9 3,6 19,9

NKSH 24,3 3,9 24,5

Figure 40 and Figure 41 show the autocorrelation plots of BTC and MSFT series. The

others stock market series are not presented because they show the same features of the

MSFT series. Both autocorrelation plots (sub-figures c) show a strong autocorrelation between

the current price and the closest previous observations and a linear fall-off from there to the

first few hundred lag values.

I then tried to make the series stationary by taking the first difference. The

autocorrelation plots of the 'differences series' (sub-figures d) show no significant relationship

between the lagged observations. All correlations are small, close to zero and below the 95%

and 99% confidence levels.

As regards the augmented Dickey-Fuller results, shown in

Table 25, looking at the observed test statistics, we can state that all the series follows a

unit root process. I remind that the null hypothesis H0 of the ADF test is that there is a unit

root. In particular, all the observed test statistics are greater than those associated to all

significance levels. This implies that I cannot reject the null hypothesis H0, but does not imply

that the null hypothesis is true.

Observing the p-values, we notice that for the stock market series there is a low

probability to get a "more extreme" test statistic than the one observed under the null

hypothesis H0. Precisely, for both MSFT and INTC there is a probability of 29%, for NKSH a

probability of 25%. The same considerations also apply to the Bitcoin, Ethereum and Litecoin

cryptocurrency time series. So, H0 cannot be rejected and so each time series present a unit

root process.

178

We conclude that all the considered series show the statistical characteristics typical of a

random walk.

Figure 40 Microsoft time series autocorrelation plots.

Figure 41 Bitcoin time series autocorrelation plots.

Table 25 Augmented Dickey-Fuller test results.

Series ADF statistic p-value

BTC -2,12 0,24

ETH -2,17 0,22

LTC -2,34 0,16

MSFT -1,98 0,29

INTC -1,98 0,29

NKSH -2,10 0,25

179

Figure 42 Regimes Statistical Measures.

180

7.4.2 Time Series Forecasting
Table 26 and Table 27 show the best results, in terms of MAPE and rRMSE, obtained with

the different algorithms applied to the entire series. From now on, let us label the closing and

the volume features lag parameters with kp and kv respectively.

In particular, Table 26 reports the results obtained using the Linear Regression algorithm

for univariate series forecast, using only closing prices, and the Multiple Linear Regression

model for multivariate series, using both price and volume data.

Table 27 shows the results obtained with the LSTM neural network, distinguishing

between univariate LSTM, using only closing prices, and multivariate LSTM, using both price

and volume data.

Small values of the MAPE and rRMSE evaluation metrics suggest accurate predictions and

good performance of the considered model.

From the analysis of the series in their totality, it appears that linear models outperform

neural networks. However, for both models, most best results are obtained for a lag of 1, thus

confirming the hypothesis that the series are indistinguishable from a random walk.

To perform the time series forecasting, I also implemented a Multi-Layer Perceptron

model. Since the LSTM network outperforms the MLP one, I decided to show only the LST}

results. This is probably due to the architecture of the LSTM network, that can capture long-

term dependencies in a sequence.

It should be noted that better predictions are obtained for stock market series rather

than for the cryptocurrencies one. In particular, the best result is obtained for Microsoft series,

with a MAPE of 0,011 and kp equal to 1. This is probably due to the high price fluctuations that

Bitcoin and the other cryptocurrencies have suffered during the investigated time interval. This

is confirmed by the statistics shown in Table 24.

It must be noted that the addition of the volume feature to the dataset does not improve

the predictions.

Table 26 Linear and Multiple Linear Regression results.

 Linear Regression Multiple Linear Regression

Series MAPE rRMSE kp MAPE rRMSE kp kv

BTC 0,026 0,040 1 0,026 0,037 1 1

ETH 0,031 0,049 1 0,039 0,053 6 3

LTC 0,034 0,050 1 0,045 0,058 2 2

MSFT 0,011 0,015 1 0,011 0,015 1 1

INTC 0,013 0,017 1 0,013 0,017 1 1

NKSH 0,014 0,019 12 0,013 0,018 7 5

181

Table 27 Univariate and Multivariate LSTM results.

 Univariate LSTM Multivariate LSTM

Series MAPE rRMSE kp MAPE rRMSE kp kv

BTC 0,027 0,041 1 0,038 0,048 2 1

ETH 0,034 0,052 6 0,057 0,076 2 1

LTC 0,035 0,051 1 0,039 0,054 1 1

MSFT 0,012 0,015 1 0,012 0,015 1 2

INTC 0,013 0,017 2 0,013 0,017 1 1

NKSH 0,014 0,020 7 0,013 0,018 1 2

To perform price forecast I changed the approach and decided to split the time series

analysis using shorter time windows of 200 points, shifting the windows by 120 points, with

the aim of finding local time regimes where the series do not follow the global random walk

pattern.

Figure 43 and Figure 44 show the results obtained with the approach of partitioning the

series into shorter sequences. Let us label the moving step forward with h. Particularly, in

Figure 43 are presented the results obtained using the Linear Regression algorithm for

univariate series forecast, using only closing prices, and the Multiple Linear Regression model

for multivariate series, using both price and volume data. This approach, has the advantage of

being simple to implement and requires low computational complexity. Nevertheless, has led

to good results, similar to those present in the literature, if not better as in the Microsoft,

Bitcoin and National Bankshares cases, where the MAPE error is lower that 1%.

Figure 44 shows the results obtained with the LSTM neural network, distinguishing

between univariate LSTM, using only closing prices, and multivariate LSTM, using both price

and volume data. For each time regimes I show the best results obtained on a specific time

window defined by the kp and kv values reported in Figure 43 and Figure 44. Note that I

highlighted the best results in bold. In particular, it is worth noting that introducing the time

regimes, the best result is obtained for the Bitcoin time series, outperforming also the financial

ones.

These results show how such innovative partitioning approach allowed us to avoid the

''random walk problem'', finding that best results are obtained using more than one previous

price. Furthermore, this method leads to a significant improvement in predictions. It is worth

noting that, from this analysis the best result arises from the Bitcoin series, with a MAPE error

of 0,007, a temporal window kp of 7 and a translation step h of 120, obtained using both

regression models and LSTM network.

Another interesting consideration that arises from the results is that, as stated previously

in the analysis of the series in their entirety, the linear regression models generally outperform

the neural networks ones, while in the short-time regimes approach the different models

yielded to similar results.

For direct feedback, I report in Table 28 the best results obtained in the papers I

compared to and my best ones. In the event that the best MAPE error results from different

models, I consider the model whose computational complexity is the least as best. It is

182

noticeable that my results outperform those obtained in the benchmark papers, providing

notable contribution to the literature.

Table 28 Best Benchmarks Results compared to ours.

Reference Series Model MAPE

[217] BTC SVM:0.9-1(Relief) 0,011

[219] S&P BSE SENSEX SVR 0,009

[218] MSFT
INTC
NKSH

SVR-CFA
SVR-CFA
SVR-CFA

0,052
0,045
0,046

Our Work BTC
ETH
LTC
MSFT
INTC
NKSH

LR
MLR
Univariate LSTM
MLR
LR
LR

0,007
0,020
0,010
0,007
0,012
0,009

183

Figure 43 LR and MLR results with time regimes.

184

Figure 44 Univariate and Multivariate LSTM results with time regimes.

185

7.5 Conclusions
The results, obtained considering the series in their totality, reflect the considerations

made in the introduction. The predictions of the Bitcoin, Ethereum and Litecoin closing price

series are worse, in terms of MAPE error, than those obtained for the benchmark series (Intel,

Microsoft and National Bankshares). This is probably due to at least two reasons: high volatility

of the prices and market immaturity for cryptocurrencies. This is confirmed by the statistics

reported in Table 24 and Figure 42.

The results obtained partitioning the dataset into shorter sequences also confirmed the

correctness of my hypothesis of identifying time regimes that do not resemble a random walk

and that are easier to model, finding that best results are obtained using more than one

previous price. It is worth noting that, with this novel approach, I obtained the best results for

the Bitcoin price series rather than for the stock market series, as happened in the analysis of

the series in their totality. As stated before, this is probably due to the high volatility of the

Bitcoin price. In fact, it is no accident that the best result was found for the time regime

identified by a translation step h of 120, where the Bitcoin prices are more distributed around

the mean, showing a lower variance. This is confirmed by the standard deviation values shown

in Figure 42.

It is important to emphasize that the innovative approach proposed here, namely the

identification of short-time regimes within the entire series, allowed us to obtain leading-edge

results in the field of financial series forecasting.

Comparing the best result with those obtained in the considered benchmark papers, my

result represents one of the best found in the literature. I highlight that I obtained, both for

the Bitcoin and the traditional market series, better results than the benchmark ones.

Precisely, for Bitcoin I obtained a MAPE error of 0,007, while the benchmark best one [217] is

0,011.

For the stock market series my algorithms outperform those of benchmarks even more.

In fact, my errors are as low as between 15% and 30% with respect to the reference errors

reported in the literature.

Also for the Ethereum and Litecoin time series, the best results are those obtained with

the time regimes approach, with a MAPE of 2% and 1% respectively.

As regards the implemented algorithms, the best results were found with both regression

models and LSTM network. However, from the point of view of execution speed, the linear

regression models outperform neural networks.

It is worth noting that, since Bitcoin and the other cryptocurrencies still are at an early

stage, the length of the time series is limited, and future investigation might yield different

results.

186

8 References

[1] S. Nakamoto, "Bitcoin: a peer-to-peer electronic cash system," 2008. [Online].

Available: https://bitcoin.org/bitcoin.pdf. [Accessed January 2022].

[2] R. G. Brown, J. Carlyle, I. Grigg e M. Hearn, «Corda: An introduction,» 2016.

[3] A. Churyumov, «Byteball: a decentralized system for transfer of value,» 2016.

[4] G. Wood, «Ethereum: A secure decentralised generalised transaction ledger,»

2014.

[5] T. Chen, X. Li, X. Luo e X. Zhang, «Under-Optimized Smart Contracts Devour

Your Money,» in IEEE 24th International Conference on Software Analysis,

Evolution and Reengineering (SANER), 2017.

[6] "Ethereum Network Status," [Online]. Available: https://ethstats.net.

[Accessed January 2022].

[7] Z. Zheng, S. Xie, H.-N. Dai, X. Chen e H. Wang, «Blockchain challenges and

opportunities: a survey,» International Journal of Web and Grid Services , vol. 14,

p. 352–375, 2018.

[8] S. Tikhomirov, «Ethereum: state of knowledge and research perspectives,» in

International Symposium on Foundations and Practice of Security, 2017.

[9] "State of the dapps," 2019. [Online]. Available:

https://www.stateofthedapps.com/stats. [Accessed 2022 January].

[10] C. Dannen, Introducing Ethereum and Solidity, Springer, 2017.

[11] L. Marchesi, M. Marchesi e R. Tonelli, «Abcde–agile block chain dapp

engineering,» Blockchain: Research and Applications, vol. 1, p. 1000002, 2020.

[12] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino e D. Tigano, «Design

Patterns for gas optimization in ethereum,» in IEEE International Workshop on

Blockchain Oriented Software Engineering (IWBOSE 2020), 2020.

[13] L. Marchesi, M. Marchesi, L. Pompianu e R. Tonelli, «Security Pattern for

Ethereum and Solidity,» [Online]. Available: http://tiny.cc/security_checklist.

[14] M. I. Lunesu, R. Tonelli, L. Marchesi e M. Marchesi, «Assessing the Risk of

Software Development in Agile Methodologies Using Simulation,» IEEE Access, vol.

9, pp. 134240-134258, 2021.

187

[15] G. Fenu, L. Marchesi, M. Marchesi e R. Tonelli, «The ico phenomenon and its

relationships with ethereum smart contract environment,» in International

Workshop on Blockchain Oriented Software Engineering (IWBOSE), 2018.

[16] K. Beck, M. Beedle, A. V. Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Jeffries e e. al., «Manifesto for agile software

development,» 2001.

[17] K. Schwaber e M. Beedle, «Agile Software Development with Scrum,»

Pearson, 2001.

[18] M. Cohn, User Stories Applied: For Agile Software Development, Addison-

Wesley Professional, 2004.

[19] D. Janzen e H. Saiedian, «Test-driven development concepts, taxonomy, and

future direction,» Computer, vol. 38, n. 9, p. 43–50, 2005.

[20] "Truffle website," 2019. [Online]. Available: https://www.trufflesuite.com/.

[Accessed January 2022].

[21] M. Fowler, Refactoring: Improving the Design of Existing Code (2nd Edition),

Addison-Wesley Professional, 2018.

[22] S. Porru, A. Pinna, M. Marchesi e R. Tonelli, «Blockchain-oriented software

engineering: challenges and new directions,» in 39th International Conference on

Software Engineering Companion, 2017.

[23] J. Rumbaugh, G. Booch e I. Jacobson, The unified modeling language

reference manual, Addison Wesley, 2017.

[24] X. Xu, I. Weber e M. Staples, Architecture for Blockchain Applications,

Springer, 2019.

[25] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso e P. Rimba, «A

taxonomy of blockchain-based systems for architecture design,» in IEEE

International Conference on Software Architecture (ICSA), 2017.

[26] F. Wessling, C. Ehmke, M. Hesenius e V. Gruhn, «How much blockchain do

you need? towards a concept for building hybrid dapp architectures,» in 1st

International Workshop on Emerging Trends in Software Engineering for

Blockchain (WETSEB 2018), 2018.

[27] G. Fridgen, J. Lockl, S. Radszuwill, A. Rieger, A. Schweizer e N. Urbach, «A

solution in search of a problem: A method for the development of blockchain use

cases,» in 24th Americas Conference on Information Systems (AMCIS), New

Orleans, USA, 2018.

188

[28] M. Jurgelaitis, V. Drungilas, L. Ceponiene, R. Butkiene e E. Vaiciukynas,

«Modelling principles for blockchain-based implementation of business or

scientific processes,» in International Conference on Information Technologies

(IVUS 2019), Kaunas, Lithuania, 2019.

[29] M. Beller e J. Hejderup, «Blockchain-based software engineering,» in 41th

International Conference on Software Engineering Companion, 2019.

[30] V. Lenarduzzi, I. Lunesu, M. Marchesi e R. Tonelli, «Blockchain applications for

agile methodologies,» in 19th International Conference on Agile Software

Development: XP 2018 Companion, New York, USA, 2018.

[31] P. Chakraborty, R. Shahriyar, A. Iqbal e A. Bosu, «Understanding the software

development practices of blockchain projects: A survey,» in 12th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement

(ESEM 2018), Oulu, Finland, 2018.

[32] A. Bosu, A. Iqbal, R. Shahriyar e P. Chakraborty, «Understanding the

motivations, challenges and needs of blockchain software developers: a survey,»

Empirical Software Engineering, n. 24, p. 2636–2673, 2019.

[33] P. Praitheeshan, L. Pan, J. Yu, J. Liu and R. Doss, "Security analysis methods on

ethereum smart contract vulnerabilities: A survey," arXiv preprint: 1908.08605 ,

2019.

[34] Y. Huang, Y. Bian, R. Li, L. Zhao e P. Shi, «Smart contract security: A software

lifecycle perspective,» IEEE Access, vol. 7, 2019.

[35] B. D. Win, R. Scandariato, K. Buyens, J. Grégoire e W. Joosen, «On the secure

software development process: Clasp, sdl and touchpoints compared,»

Information and Software Technology, vol. 51, p. 1152–1171, 2009.

[36] K. Rindell, S. Hyrynsalmi e V. Leppänen, «Busting a myth: Review of agile

security engineering methods,» in 12th International Conference on Availability,

Reliability and Security, 2017.

[37] H. Baumeister, N. Koch e L. Mandel, «Towards a uml extension for

hypermedia design,» in International Conference on the Unified Modeling

Language, 1999.

[38] L. Baresi, F. Garzotto e P. Paolini, «Extending uml for modeling web

applications,» in 34th Annual Hawaii International Conference on System Sciences,

2001.

[39] H. Rocha e S. Ducasse, «Preliminary Steps Towards Modeling Blockchain-

oriented Software,» in 1th Workshop on Emerging Trends in Software Engineering

for Blockchain (WETSEB 2018), Gotheborg, Sweden, 2018.

189

[40] KPMG, «Agile transformation, Survey on agility,» 2019.

[41] D. J. Anderson, Kanban: successful evolutionary change for your technology

business, Blue Hole Press, 2010.

[42] P. Coad e E. Yourdon, Object-oriented analysis, vol. 2, Englewood Cliffs, NJ:

Yourdon press , 1991.

[43] B. Scriber, «A framework for determining blockchain applicability,» IEEE

Software, vol. 35, p. 70–77, 2018.

[44] L. Marchesi, M. Marchesi, L. Pompianu e R. Tonelli, «Security checklists for

ethereum smart contract development: patterns and best practices,» arXiv

preprint, 2020.

[45] L. L. Constantine e L. A. Lockwood, Software for use: a practical guide to the

models and methods of usage-centered design, Pearson Education, 1999.

[46] H. Sharp, Y. Rogers e J. Preece, Interaction design: beyond human computer

interaction, 5th edition, John Wiley & Sons, 2019.

[47] "Solidity website," 2019. [Online]. Available: https://solidity.readthedocs.io.

[Accessed January 2022].

[48] M. Bartoletti e L. Pompianu, «An empirical analysis of smart contracts:

platforms, applications, and design patterns,» in Financial Cryptography and Data

Security (FC 2017), Malta, 2017.

[49] M. Wohrer e U. Zdun, «Smart contracts: Security patterns in the Ethereum

ecosystem and solidity,» in International Workshop on Blockchain Oriented

Software Engineering (IWBOSE 2018), 2018.

[50] X. XU, C. PAUTASSO, L. ZHU, Q. LU e I. WEBER, «A pattern collection for

blockchain-based applications,» in 23rd European Conference on Pattern

Languages of Programs, 2018.

[51] P. Zhang, J. White, D. C. Schmidt e G. Lenz, «Applying software patterns to

address interoperability in blockchain-based healthcare apps.,» arXiv preprint:

1706.03700, 2017.

[52] Y. Liu, Q. Lu, X. Xu, L. Zhu e H. Yao, «Applying design patterns in smart

contracts,» in International Conference on Blockchain, 2018.

[53] J. Liu e Z. Liu, «A survey on security verification of blockchain smart

contracts,» IEEE Access, vol. 7, 2019.

190

[54] K. Anton, J. Manico and J. Bird, "Owasp proactive controls for developers,"

Open Web Application Security Project (OWASP) , 2018.

[55] "Consensys solidity best practices website," 2019. [Online]. Available:

https://consensys.github.io/smart-contract-best-practices/. [Accessed January

2022].

[56] "Proxy patterns," 2019. [Online]. Available:

https://blog.openzeppelin.com/proxy-patterns/. [Accessed January 2022].

[57] "Ethereum smart contract security best practices," 2019. [Online]. Available:

https://ethereum-contract-security-techniques-and-

tips.readthedocs.io/en/latest/. [Accessed January 2022].

[58] Gamma, Helm, Johnson e Vlissides, «Design Patterns: Elements of Reusable

Object-Oriented Software,» Addison-Wesley, 1995.

[59] A. S. Podda e L. Pompianu, «An overview of blockchain-based systems and

smart contracts for digital coupons,» in IEEE/ACM 42nd International Conference

on Software Engineering Workshops, 2020.

[60] N. Atzei, M. Bartoletti e T. Cimoli, «A survey of attacks on Ethereum smart

contracts,» Cryptology ePrint Archive, p. Report 2016/1007, 2016.

[61] A. Mense e M. Flatscher, «Security vulnerabilities in Ethereum smart

contracts,» in 20th International Conference on Information Integration and Web-

based Applications & Services (iiWAS 2018), New York, NY, USA, 2018.

[62] "Embark website," 2020. [Online]. Available:

https://framework.embarklabs.io/. [Accessed January 2022].

[63] "Etherlime website," 2020. [Online]. Available:

https://etherlime.gitbook.io/etherlime/. [Accessed January 2022].

[64] "Ropsten website," 2020. [Online]. Available: https://ropsten.etherscan.io/.

[Accessed January 2022].

[65] "Rinkeby website," 2020. [Online]. Available: https://www.rinkeby.io.

[Accessed January 2022].

[66] "Goerli website," 2020. [Online]. Available: https://github.com/goerli/testnet.

[Accessed January 2022].

[67] "Ganache website," 2020. [Online]. Available:

https://www.trufflesuite.com/ganache. [Accessed January 2022].

191

[68] Eattheblocks, "How to optimize gas cost in a Solidity smart contract? 6 tips,"

2019. [Online]. Available: https://eattheblocks.com/how-to-optimize-gas-cost-in-

a-solidity-smart-contract-6-tips/. [Accessed January 2022].

[69] M. Gupta, "Mudit Gupta’s Blog," 2018. [Online]. Available:

https://mudit.blog/solidity-gas-optimization-tips/.

[70] M. Gupta, «Solidity tips and tricks to save gas and reduce bytecode size,»

2019. [Online]. Available: https://blog.polymath.network/solidity-tips-and-tricks-

to-save-gas-and-reduce-bytecode-size-c44580b218e6. [Consultato il giorno

January 2022].

[71] W. Shahda, "Gas Optimization in Solidity Part I: Variables," 2019. [Online].

Available: https://medium.com/coinmonks/gas-optimization-in-solidity-part-i-

variables-9d5775e43dde. [Accessed January 2022].

[72] L. Marchesi, M. Marchesi e R. Tonelli, «An agile software engineering method

to design blockchain applications,» in Software Engineering Conference Russia

(SECR 2018), Moscow, Russia, 2018.

[73] G. Baralla, A. Pinna e G. Corrias, «Ensure traceability in european food supply

chain by using a blockchain system,» in 2nd International Workshop on Emerging

Trends in Software Engineering for Blockchain (WETSEB 2019), 2019.

[74] W. Warren e A. Bandeali, «0x: An open protocol for decentralized exchange

on the ethereum blockchain,» 2017.

[75] "Solidity patterns," 2019. [Online]. Available: https://fravoll.github.io/solidity-

patterns/. [Accessed January 2022].

[76] R. Conradi e A. I. Wang, Empirical Methods and Studies in Software

Engineering, vol. 2765 of LNCS, Springer Berlin Heidelberg, 2003.

[77] W. W. Lowrance, Of Acceptable Risk: Science and the Determination of

Safety, Kaufmann Inc., 1976.

[78] C. Chittister e Y. Y. Haimes, «Assessment and management of software

technical risk,» IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, n. 2,

pp. 187-202, 1994.

[79] C. Alberts e A. J. Dorofee, «Risk management framework,» Carnegie-Mellon

Univ Pittsburgh Pa Software Engineering Inst, 2010.

[80] P. M. Institute, A Guide to the Project Management Body of Knowledge

(PMBOK Guide), vol. 2, Project Management Institute, 2017.

192

[81] L. Wallace, M. Keil e A. Rai, «How software project risk affects project

performance: An investigation of the dimensions of risk and an exploratory

model,» Decision Sciences, vol. 35, n. 2, pp. 289-321, 2004.

[82] A. Albadarneh, I. Albadarneh e A. Qusef, «Risk management in agile software

development: A comparative study,» in IEEE Jordan Conference on Applied

Electrical Engineering and Computing Technologies (AEECT 2015), 2015.

[83] J. Nyfjord e M. Kajko-Mattsson, «Commonalities in risk management and

agile process models,» in International Conference on Software Engineering

Advances (ICSEA 2007), 2007.

[84] L. Siddique e B. A. Hussein, «Practical insight about risk management process

in agile software projects in norway,» in IEEE International Technology

Management Conference, 2014.

[85] D. HilˇCíková, M. Dohnanská, D. Lajˇcin e G. Gabrhelová, «Agile project

management as one of the critical success factors in project risk management in

machinery industry in slovakiaAgile project management as one of the critical

success factors in project risk management in machinery industry in slovakia,»

International Journal of Economics and Financial Issues, vol. 1, pp. 37-54, 2020.

[86] S. Y. Chadli, A. Idri, J. N. Ros, J. L. Fernández-Alemán, J. M. C. d. Gea e a. A.

Toval, «Software project management tools in global software development: a

systematic mapping study,» SpringerPlus, vol. 5, n. 1, pp. 1-38, 2016.

[87] B. G. Tavares, C. E. S. d. Silva e A. D. d. Souza, «Risk management analysis in

scrum software projects,» International Transactions in Operational Research, vol.

26, n. 5, pp. 1884-1905, 2019.

[88] S. d. S. Lopes, R. C. G. d. Souza, A. d. G. Contessoto, A. L. d. Oliveira e R. T. V.

Braga, «A risk management framework for scrum projects,» in 23rd International

Conference on Enterprise Information Systems (ICEIS 2021), 2021.

[89] T. Alencar, M. I. Cortés, N. L. Veras e L. Magno, «A proactive approach to

support risk management in software projects using multi-agent systems,» in 20th

International Conference on Enterprise Information Systems (ICEIS 2018), 2018.

[90] A. Mishra e D. Mishra, «Software project management tools: a brief

comparative view,» Software Engineering Notes, vol. 38, n. 3, pp. 1-4, 2013.

[91] H. M. Sarkan, T. P. S. Ahmad e A. A. Bakar, «Using jira and redmine in

requirement development for agile methodology,» in 2011 Malaysian Conference

in Software Engineering, 2011.

[92] D. Pfahl, «Prosim/ra—software process simulation in support of risk

assessment,» Value-based software engineering, p. 263–286, 2006.

193

[93] J. García-García, J. Enríquez, M. Ruiz, C. Arévalo e A. J.-. Ramírez, «Software

process simulation modeling: Systematic literature review,» Computer Standards

Interfaces, vol. 70, 2020.

[94] B. Verma, M. Dhanda, B. Verma e M. Dhanda, «A review on risk management

in software projects,» International Journal for Innovative Research in Science and

Technology, vol. 2, pp. 499-503, 2016.

[95] Atlassian, "Jira," [Online]. Available:

https://www.atlassian.com/software/jira. [Accessed January 2022].

[96] C. Lopez e J. L. Salmeron, «Dynamic risks modelling in erp maintenance

projects with fcm,» Information Sciences, vol. 256, pp. 25-45, 2014.

[97] R. N. Charette, «Why software fails [software failure].,» Ieee Spectrum, vol.

42, n. 9, pp. 42-49, 2005.

[98] B. W. Boehm, «Software risk management: principles and practices,» IEEE

software, vol. 8, n. 1, pp. 32-41, 1991.

[99] F. M. Dedolph, «The neglected management activity: Software risk

management,» Bell Labs Technical Journal, vol. 8, n. 3, pp. 91-95, 2003.

[100] C. R. Pandian, Applied software risk management: A guide for software

project managers, Auerbach Publications, 2006.

[101] M. d. O. Barros, C. M. L. Werner e G. H. Travassos, «Supporting risks in

software project management,» Journal of Systems and Software, vol. 70, n. 1-2,

pp. 21-35, 2004.

[102] B. Shahzad e A. S. Al-Mudimigh, «Risk identification, mitigation and avoidance

model for handling software risk,» in 2nd International Conference on

Computational Intelligence, Communication Systems and Networks, 2010.

[103] L. Xiaosong, L. Shushi, C. Wenjun e F. Songjiang, «The application of risk

matrix to software project risk management,» in International Forum on

Information Technology and Applications, 2009.

[104] B. Roy, R. Dasgupta e N. Chaki, «A study on software risk management

strategies and mapping with sdlc,» Advanced Computing and Systems for Security,

pp. 121-138, 2016.

[105] C. A. Thieme, A. Mosleh, I. B. Utne e J. Hegde, «Incorporating software failure

in risk analysis - part 2: Risk modeling process and case study,» Reliability

Engineering & System Safety, 2020.

194

[106] B. G. Tavares, M. Keil, C. E. S. d. Silva e A. D. d. Souza, «A risk management

tool for agile software development,» Journal of Computer Information Systems,

pp. 1-10, 2020.

[107] M. I. Kellner, R. J. Madachy e D. M. Raffo, «Software process simulation

modeling: why? what? how?,» Journal of Systems and Software, vol. 46, n. 2, pp.

91-105, 1999.

[108] H. Zhang, B. Kitchenham e D. Pfahl, «Reflections on 10 years of software

process simulation modeling: a systematic review,» in International Conference on

Software Process, 2008.

[109] D. Liu, Q. Wang e J. Xiao, «The role of software process simulation modeling

in software risk management: A systematic review,» in 3rd International

Symposium on Empirical Software Engineering and Measurement (ESEM 2009),

2009.

[110] T. Baum, F. Kortum, K. Schneider, A. Brack e J. Schauder, «Comparing pre-

commit reviews and post-commit reviews using process simulation,» Journal of

Software: Evolution and Process, vol. 29, n. 11, 2017.

[111] B. Zhao, J. Cao, S. Jiang e Q. Qi, «An agent based simulation system for open

source software development,» in IEEE World Congress on Services (SERVICES

2020), 2020.

[112] M. Melis, I. Turnu, A. Cau e G. Concas, «Evaluating the impact of test-first

programming and pair programming through software process simulation,»

Software Process: Improvement and Practice, vol. 11, n. 4, pp. 345-360, 2006.

[113] D. Anderson, G. Concas, M. I. Lunesu e M. Marchesi, «Studying lean-kanban

approach using software process simulation,» in International Conference on agile

software development, 2011.

[114] D. J. Anderson, G. Concas, M. I. Lunesu, M. Marchesi e H. Zhang, «A

comparative study of scrum and kanban approaches on a real case study using

simulation,» Agile Processes in Software Engineering and Extreme Programming,

pp. 23-137, 2012.

[115] R. Turner, R. Madachy, D. Ingold e J. A. Lane, «Modeling kanban processes in

systems engineering,» in International Conference on Software and System

Process, 2012.

[116] R. Turner, D. Ingold, J. A. Lane, R. Madachy e D. Anderson, «Effectiveness of

kanban approaches in systems engineering within rapid response environments,»

Procedia Computer Science, vol. 8, pp. 309-314, 2012.

195

[117] Z. Wang, «Modelling and simulation of scrum team strategies: A multiagent

approach,» in Computational Methods in Systems and Software, 2020.

[118] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski e P. Krause, «On the

effectiveness of early life cycle defect prediction with bayesian nets,» Empirical

Software Engineering, vol. 13, pp. 499-537, 2008.

[119] D. L. T. Rodríguez, V. H. M. García e G. A. M. Giraldo, «Dynamic model to

manage threats in software development projects through artificial intelligence

techniques,» in Workshop on Engineering Applications, 2012.

[120] H. R. Joseph, «Software development risk management: Using machine

learning for generating risk prompts,» in 37th IEEE International Conference on

Software Engineering, 2015.

[121] W.-M. Han, «Discriminating risky software project using neural networks,»

Computer Standards Interfaces, vol. 40, pp. 15-22, 2015.

[122] W. Min, Z. Jun e Z. Wei, «The application of fuzzy comprehensive evaluation

method in the software project risk assessment,» in International Conference on

Management Engineering, Software Engineering and Service Sciences (ICMSS 17),

New York, NY, USA, 2017.

[123] T. E. Abioye, O. T. Arogundade, S. Misra, A. T. Akinwale e O. J. Adeniran,

«Toward ontology based risk management framework for software projects: An

empirical study,» Journal of Software: Evolution and Process, vol. 32, n. 12, 2020.

[124] M. Asif e J. Ahmed, «A novel case base reasoning and frequent pattern based

decision support system for mitigating software risk factors,» IEEE Access, vol. 8, p.

102278–102291, 2020.

[125] K. Ghane, «Quantitative planning and risk management of agile software

development,» in IEEE Technology & Engineering Management Conference

(TEMSCON 2017), 2017.

[126] V. Singh, V. Malik e R. Mittal, «Risk analysis in software cost estimation: A

simulation-based approach,» Turkish Journal of Computer and Mathematics

Education , vol. 12, n. 6, p. 2176–2183, 2021.

[127] Z. S. H. Abad, M. Noaeen, D. Zowghi, B. H. Far e K. Barker, «Two sides of the

same coin: Software developers’ perceptions of task switching and task

interruption,» in 22nd International Conference on Evaluation and Assessment in

Software Engineering (EASE18), New York, NY, USA, 2018.

[128] A. Tregubov, B. Boehm, N. Rodchenko e J. A. Lane, «Impact of task switching

and work interruptions on software development processes,» in International

196

Conference on Software and System Process (ICSSP 2017), New York, NY, USA,

2017.

[129] G. Concas, M. I. Lunesu, M. Marchesi e H. Zhang, «Simulation of software

maintenance process, with and without a work-in-process limit,» Journal of

Software: Evolution and Process, vol. 25, n. 12, pp. 1225-1248, 2013.

[130] W. R. Shadish, T. D. Cook e D. T. Campbell, «Experimental and Quasi-

Experimental Designs for Generalized Causal Inference,» Cengage Learning, 2001.

[131] L. Marchesi, K. Mannaro and R. Porcu, "Automatic Generation of Blockchain

Agri-food Traceability Systems," in IEEE/ACM 4th International Workshop on

Emerging Trends in Software Engineering for Blockchain (WETSEB 2021), 2021.

[132] P. Serra, G. Fancello, R. Tonelli e L. Marchesi, «Can the Blockchain Facilitate

the Development of an Interport Community?,» in International Conference on

Computational Science and Its Applications, 2021.

[133] M. E. Peck, «Blockchain world - do you need a blockchain? this chart will tell

you if the technology can solve your problem,» IEEE Spectrum , vol. 54, n. 10, pp.

38-60, 2017.

[134] K. Wust e A. Gervais, «Do you need a blockchain?,» in Crypto Valley

Conference on Blockchain Technology (CVCBT 2018), 2018.

[135] V. Hassija, S. Zeadally, I. Jain, A. Tahiliani, V. Chamola e S. Gupta, «Framework

for determining the suitability of blockchain: Criteria and issues to consider,»

Transactions on Emerging Telecommunications Technologies , 2021.

[136] B. Koteska, E. Karafiloski e A. Mishev, «Blockchain implementation quality

challenges: A literature review,» in 6th Workshop of Software Quality, Analysis,

Monitoring, Improvement, and Applications (SQAMIA 2017), 2017.

[137] S. Maranhao, J. M. Seigneur e R. Hu, «Towards a standard to assess

blockchain & other dlt platforms,» ITU, 2019.

[138] S. N. G. Gourisetti, M. Mylrea e H. Patangia, «Evaluation and demonstration

of blockchain applicability framework,» IEEE Transactions on Engineering

Management , vol. 67, n. 4, p. 1142–1156, 2020.

[139] M. Garriga, S. D. Palma, M. Arias, A. D. Renzis, R. Pareschi e D. A. Tamburri,

«Blockchain and cryptocurrencies: A classification and comparison of architecture

drivers,» Concurrency and Computation: Practice and Experience , vol. 33, n. 8,

2021.

197

[140] M. Woehrer e U. Zdun, «Architectural design decisions for blockchain-based

applications,» in 3rd IEEE International Conference on Blockchain and

Cryptocurrency (ICBC 2021), 2021.

[141] S. S. Panda, B. K. Mohanta, U. Satapathy, D. Jena, D. Gountia e T. K. Patra,

«Study of blockchain based decentralized consensus algorithms,» in IEEE Region 10

Conference (TENCON 2019), 2019.

[142] M. Castro e B. Liskov, «Practical byzantine fault tolerance,» in 3rd Symposium

on Operating systems design and implementation, 1999.

[143] L. Gerrits, C. N. Samuel, R. Kromes, F. Verdier, S. Glock e P. Guitton-Ouhamou,

«Experimental scalability study of consortium blockchains with bft consensus for

iot automotive use case,» in 19th ACM Conference on Embedded Networked

Sensor Systems, Association for Computing Machinery, New York, NY, USA, 2021.

[144] G. Shapiro, C. Natoli e V. Gramoli, «The performance of byzantine fault

tolerant blockchains,» in IEEE 19th International Symposium on Network

Computing and Applications (NCA 2020), 2020.

[145] A. Ahmad, M. Saad, J. Kim, D. Nyang e D. Mohaisen, «Performance evaluation

of consensus protocols in blockchain-based audit systems,» in International

Conference on Information Networking (ICOIN 2021), 2021.

[146] C. N. Samuel, S. Glock, F. Verdier e P. Guitton-Ouhamou, «Choice of ethereum

clients for private blockchain: Assessment from proof of authority perspective,» in

IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2021), 2021.

[147] Y. Wang, J. H. Han e P. Beynon-Davies, «Understanding blockchain technology

for future supply chains: a systematic literature review and research agenda,»

Supply Chain Management: An International Journal, 2019.

[148] Q. Lu e X. Xu, «Adaptable blockchain-based systems: A case study for product

traceability,» IEEE Software 34, pp. 21-27, 2017.

[149] D. D. F. Maesa e P. Mori, «Blockchain 3.0 applications survey,» Journal of

Parallel and Distributed Computing , vol. 138, pp. 99-114, 2020.

[150] S. V. Akram, P. K. Malik, R. Singh, G. Anita e S. Tanwar, «Adoption of

blockchain technology in various realms: Opportunities and challenges,» Security

and Privacy, vol. 3, n. 5, 2020.

[151] E. J. D. Aguiar, B. S. Faical, B. Krishnamachari e J. Ueyama, «A survey of

blockchain-based strategies for healthcare,» ACM Computing Surveys, vol. 53, n. 2,

pp. 1-27, 2021.

198

[152] R. Colomo-Palacios, M. Sanchez-Gordon e D. Arias-Aranda, «A critical review

on blockchain assessment initiatives: A technology evolution view point,» Journal

of Software: Evolution and Process , vol. 32, n. 11, 2020.

[153] J. Polge, J. Robert e Y. L. Traon, «Permissioned blockchain frameworks in the

industry: A comparison,» ICT Express, vol. 7, n. 2, pp. 229-233, 2021.

[154] "Ethereum 2.0 website," 2021. [Online]. Available:

https://ethereum.org/en/eth2/. [Accessed January 2022].

[155] "Hyperledger fabric," 2021. [Online]. Available:

https://www.hyperledger.org/use/fabric. [Accessed January 2022].

[156] D. Li, W. E. Wong e J. Guo, «A survey on blockchain for enterprise using

hyperledger fabric and composer,» in 6th International Conference on Dependable

Systems and Their Applications (DSA), 2019.

[157] J. Sun, X. Yao, S. Wang e Y. Wu, «Blockchain-based secure storage and access

scheme for electronic medical records in ipfs,» IEEE Access , vol. 8, p. 59389–

59401, 2020.

[158] "Regulation (eu) no 910/2014 of the european parliament and of the council,"

2014.

[159] H. Huang, J. Lin, B. Zheng, Z. Zheng e J. Bian, «When blockchain meets

distributed file systems: An overview, challenges, and open issues,» IEEE Access,

vol. 8, p. 50574–50586, 2020.

[160] D. C. Nguyen, P. N. Pathirana, M. Ding e A. Seneviratne, «Integration of

blockchain and cloud of things: Architecture, applications and challenges,» IEEE

Communications Surveys Tutorials, vol. 22, n. 4, pp. 2521-2549, 2020.

[161] "Etherna blochain as a service," 2021. [Online]. Available:

https://www.netservice.eu/en/productsand-solutions/etherna. [Accessed January

2022].

[162] T. Adisorn, L. Tholen e T. Gotz, «Towards a digital product passport fit for

contributing to a circular economy,» Energies, vol. 14, n. 8, 2021.

[163] K. Demestichas, N. Peppes, T. Alexakis e E. Adamopoulou, «Blockchain in

agriculture traceability systems: A review,» Applied Sciences (Switzerland), vol. 10,

n. 12, pp. 1-22, 2020.

[164] C. Costa, F. Antonucci, F. Pallottino, J. Aguzzi, D. S. á e P. Menesatti, «A review

on agri-food supply chain traceability by means of rfid technology,» Food and

bioprocess technology, vol. 6, n. 2, pp. 353-366, 2013.

199

[165] F. Tian, «An agri-food supply chain traceability system for china based on rfid

& blockchain technology,» in 13th international conference on service systems and

service management, 2016.

[166] F. Antonucci, S. Figorilli, C. Costa, F. Pallottino, L. Raso e P. Menesatti, «A

review on blockchain applications in the agri-food sector,» Journal of the Science of

Food and Agriculture, vol. 99, n. 14, p. 6129–6138, 2019.

[167] P. Bottoni, N. Gessa, G. Massa, R. Pareschi, H. Selim e E. Arcuri, «Intelligent

smart contracts for innovative supply chain management,» Frontiers in Blockchain,

vol. 3, p. 52, 2020.

[168] L. Cocco e K. Mannaro, «Blockchain in agri-food traceability systems: a model

proposal for a typical italian food product,» in IEEE International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2021.

[169] L. Cocco, K. Mannaro, R. Tonelli, L. Mariani, M. B. Lodi, A. Melis, M. Simone e

A. Fanti, «A blockchain-based traceability system inagri-food sme: Case study of a

traditional bakery,» IEEE Access, vol. 9, p. 62899–62915, 2021.

[170] M. Alharby e A. V. Moorsel, «Blockchain-based smart contracts: A systematic

mapping study,» arXiv preprint:1710.06372, 2017.

[171] W. Zou e e. al., «Smart Contract Development: Challenges and

Opportunities,» IEEE Transactions on Software Engineering , vol. 99, pp. 1-1, 2019.

[172] H. Rocha e S. Ducasse, «Preliminary steps towards modeling blockchain

oriented software,» in IEEE/ACM 1st International Workshop on Emerging Trends

in Software Engineering for Blockchain (WETSEB 2018), 2018.

[173] A. B. Tran, Q. Lu e I. Weber, «Lorikeet: A model-driven engineering tool for

blockchain-based business process execution and asset management,» in BPM

(Dissertation/Demos/Industry), 2018.

[174] Q. Lu, A. B. Tran, I. Weber, H. O’Connor, P. Rimba, X. Xu, M. Staples, L. Zhu e

R. Jeffery, «Integrated model-driven engineering of blockchain applications for

business processes and asset management,» Software: Practice and Experience,

2020.

[175] C. K. Frantz e M. Nowostawski, «From institutions to code: Towards

automated generation of smart contracts,» in IEEE 1st International Workshops on

Foundations and Applications of Self* Systems , 2016.

[176] V. A. d. Sousa, C. Burnay e M. Snoeck, «B-merode: A model-driven

engineering and artifact-centric approach to generate smart contracts,» in

Conference on Advanced Information Systems Engineering, 2020.

200

[177] A. Mavridou e A. Laszka, «Designing secure ethereum smart contracts: A

finite state machine based approach,» in International Conference on Financial

Cryptography and Data Security, 2018.

[178] M. Tripoli e J. Schmidhuber, «Emerging opportunities for the application of

blockchain in the agri-food industry,» FAO and ICTSD: Rome and Geneva, vol. 3,

2018.

[179] Y. Tribis, A. E. Bouchti e H. Bouayad, «Supply chain management based on

blockchain: A systematic mapping study,» in MATEC Web of Conferences, 2018.

[180] M. S. Farooq, S. Riaz, A. Abid, T. Umer e Y. B. Zikria, «Role of iot technology in

agriculture: A systematic literature review,» Electronics, vol. 9, n. 2, 2020.

[181] F. Tian, «A supply chain traceability system for food safety based on haccp,

blockchain & internet of things,» in International conference on service systems

and service management, 2017.

[182] J. Li e X. Wang, «Research on the application of blockchain in the traceability

system of agricultural products,» in 2nd IEEE Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IMCEC), 2018.

[183] A. Iftekhar, X. Cui, M. Hassan e W. Afzal, «Application of blockchain and

internet of things to ensure tamper-proof data availability for food safety,» Journal

of Food Quality, vol. 2020, pp. 1-14, 2020.

[184] S. S. Kamble, A. Gunasekaran e R. Sharma, «Modeling the blockchain enabled

traceability in agriculture supply chain,» International Journal of Information

Management, vol. 52, p. 101967, 2020.

[185] Y. Chang, E. Iakovou e W. Shi, «Blockchain in global supply chains and cross

border trade: a critical synthesis of the state-of-the-art, challenges and

opportunities,» International Journal of Production Research, vol. 58, n. 7, pp.

2082-2099, 2020.

[186] "Agridigital website," 2015. [Online]. Available: https://www.agridigital.io/.

[Accessed January 2022].

[187] M. P. Caro, M. S. Ali, M. Vecchio e R. Giaffreda, «Blockchain-based traceability

in agri-food supply chain management: A practical implementation,» in IoT Vertical

and Topical Summit on Agriculture-Tuscany (IOT Tuscany), 2018.

[188] S. Wang, D. Li, Y. Zhang e J. Chen, «Smart contract-based product traceability

system in the supply chain scenario,» IEEE Access, vol. 7, p. 115 122–115 133,

2019.

201

[189] B. Yu, P. Zhan, M. Lei, F. Zhou e P. Wang, «Food Quality Monitoring System

Based on Smart Contracts and Evaluation Models,» IEEE Access, vol. 8, p. 12 479–

12 490, 2020.

[190] T. H. Pranto, A. A. Noman, A. Mahmud e A. B. Haque, «Blockchain and smart

contract for iot enabled smart agriculture,» PeerJ Computer Science, vol. 7, 2021.

[191] B. Haque, R. Hasan e O. M. Zihad, «Smartoil: Blockchain and smart contract-

based oil supply chain management,» IET Blockchain, 2021.

[192] V. Andiappan e Y. K. Wan, «Distinguishing approach, methodology, method,

procedure and technique in process systems engineering,» Clean Technologies and

Environmental Policy, pp. 1-9, 2020.

[193] OpenZeppelin, "Openzeppelin: Contracts," 2020. [Online]. Available:

https://github.com/OpenZeppelin/openzeppelin-contracts. [Accessed January

2022].

[194] P. Serra e G. Fancello, «Use of ICT for More Efficient Port Operations: The

Experience of the EasyLog Project,» in International Conference on Computational

Science and Its Applications, 2020.

[195] M. Jović, N. Kavran, S. Aksentijević and E. Tijan, "The transition of Croatian

seaports into smart ports," in 42nd International Convention on Information and

Communication Technology, Electronics and Microelectronics, 2019.

[196] M. Stopford, Maritime Economics, 3rd ed., London, UK: Routledge, 2017.

[197] L. Heilig, S. S. e V. S., «An analysis of digital transformation in the history and

future of modern ports,» in 50th Hawaii International Conference on System

Sciences, 2017.

[198] M. O. Weernink, W. v. d. Engh, M. Francisconi and F. Thorborg, "The

Blockchain potential for port logistics," 2017.

[199] M. Jović, M. Filipović, E. Tijan e M. Jardas, «A Review of Blockchain

Technology Implementation in Shipping Industry,» Pomorstvo, vol. 33, n. 2, pp.

140-148, 2019.

[200] E. Tijan, S. Aksentijević, K. Ivanić e M. Jardas, «Blockchain technology

implementation in logistics,» Sustainability, vol. 11, n. 4, p. 1185, 2019.

[201] K. Jabbar and P. Bjørn, "Infrastructural grind: Introducing Blockchain

technology in the shipping domain," in ACM Conference on Supporting Groupwork,

2018.

202

[202] H. A. Gausdal, V. K. Czachorowski and Z. M. Solesvik, "Applying Blockchain

technology: Evidence from Norwegian companies," Sustainability, vol. 10, no. 6, p.

1985, 2018.

[203] J. Lindman, K. T. V. e M. Rossi, «Opportunities and risks of Blockchain

Technologies–a research agenda,» in 50th Hawaii International Conference on

System Sciences, 2017.

[204] P. Dutta, M. C. T., S. Somani and R. Butala, "Blockchain technology in supply

chain operations: Applications, challenges and research opportunities,"

Transportation Research Part E: Logistics and Transportation Review, vol. 142,

2020.

[205] G. Bavassano, C. Ferrari and A. Tei, "Blockchain: How shipping industry is

dealing with the ultimate technological leap," Research in Transportation Business

& Management, 2020.

[206] IBM, "TradeLens: How IBM and Maersk Are Sharing Blockchain to Build a

Global Trade Platform," 2018. [Online]. Available:

https://www.ibm.com/blogs/think/2018/11/tradelens-how-ibm-and-maersk-are-

sharing-Blockchain-to-build-a-global-trade-platform/. [Accessed January 2022].

[207] R. Ahmad, H. Hasan, R. Jayaraman, K. Salah e M. Omar, «Blockchain

applications and architectures for port operations and logistics management,»

Research in Trasportation Business & Management, 2021.

[208] E. Irannezhad, «The Architectural Design Requirements of a Blockchain-Based

Port Community System,» Logistics , vol. 4, n. 30, 2020.

[209] M. Laurent, N. Kaaniche, C. Le e M. V. Plaetse, «A blockchain-based access

control scheme,» in 15th International Conference on Security and Cryptography

(SECRYPT 2018), Porto, Portugal, 2018.

[210] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda e V. Santamaria,

«Blockchain and Smart Contracts for Insurance: Is the Technology Mature

Enough?,» MDPI: Future Internet, vol. 10, n. 6, pp. 8-13, 2019.

[211] N. Uras, L. Marchesi, M. Marchesi e R. Tonelli, «Forecasting Bitcoin closing

price series using linear regression and neural networks models,» PeerJ Computer

Science, vol. 6, 2020.

[212] M. Briere, K. Oosterlinck e A. Szafarz, «Virtual currency, tangible return:

Portfolio diversification with bitcoins,» SSRN Electronic Journal, vol. 16, n. 6, 2013.

[213] K. H. McIntyre e K. Harjes, «Order flow and the bitcoin spot rate,» Applied

Economics and Finance, p. 42908–42920, 2014.

203

[214] L. Cocco, R. Tonelli e M. Marchesi, «An agent-based artificial market model

for studying the bitcoin trading.,» IEEE Access, vol. 7, 2019.

[215] L. Cocco, R. Tonelli e M. Marchesi, «An agent based model to analyze the

bitcoin mining activity and a comparison with the gold mining industry,» Future

Internet, vol. 11, n. 1, 2019.

[216] "Coinmarketcap website," [Online]. Available:

http://www.coinmarketcap.com. [Accessed January 2022].

[217] D. Mallqui e R. Fernandes, «Predicting the direction, maximum, minimum and

closing prices of daily bitcoin exchange rate using machine learning techniques,»

Applied Soft Computing, 2018.

[218] A. Kazem, E. Sharifi, F. K. Hussain, S. Morteza e O. K. Hussain, «Support vector

regression with chaos-based firefly algorithm for stock market price forecasting,»

Applied soft computing, vol. 13, n. 2, pp. 947-958, 2013.

[219] J. Patel, S. Shah, P. Thakkar e K. Kotecha, «Predicting stock market index using

fusion of machine learning techniques,» Expert Systems with Applications, vol. 42,

p. 2162–2172, 2015.

[220] J. Agrawal, V. Chourasia e A. Mittra, «State-of-the-art in stock prediction

techniques,» International Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering, vol. 2, n. 4, pp. 1360-1366, 2013.

[221] G. Armano, M. Marchesi e A. Murru, «A hybrid genetic-neural architecture for

stock indexes forecasting,» Information Sciences, vol. 170, n. 1, pp. 3-33, 2015.

[222] D. Enke e N. Mehdiyev, «Stock market prediction using a combination of

stepwise regression analysis, differential evolution-based fuzzy clustering, and a

fuzzy inference neural network,» Intelligent Automation and Soft Computing, vol.

19, n. 4, pp. 636-648, 2013.

[223] S. McNally, J. Roche e S. Caton, «Predicting the price of bitcoin using machine

learning,» in 26th Euromicro International Conference on Parallel and Network-

Based Processing, 2018.

[224] V. Y. Naimy e M. R. Hayek, «Modelling and predicting the bitcoin volatility

using garch models,» International Journal of Mathematical Modelling and

Numerical Optimisation, vol. 8, pp. 197-215, 2018.

[225] D. U. Sutiksno, A. S. Ahmar, N. Kurniasih, E. Susanto e A. Leiwakabessy,

«Forecasting historical data of bitcoin using arima and α-sutte indicator,» Journal

of Physics: Conference Series, vol. 1028, n. 1, 2018.

204

[226] M. Stocchi e M. Marchesi, «Fast wavelet transform assisted predictors of

streaming time series,» Digital Signal Processing, vol. 77, pp. 5-12, 2018.

[227] S. Y. Yang e J. Kim, «Bitcoin market return and volatility forecasting using

transaction network flow properties,» in IEEE Symposium Series on Computational

Intelligence, 2016.

[228] N. Bakar e S. Rosbi, «Autoregressive integrated moving average (arima)

model for forecasting cryptocurrency exchange rate in high volatility environment:

A new insight of bitcoin transaction,» International Journal of Advanced

Engineering Research and Science, vol. 4, n. 11, 2017.

[229] L. Catania, S. Grassi e F. Ravazzolo, «Forecasting cryptocurrencies financial

time series,» BI Norwegian Business School, Centre for Applied Macro- and

Petroleum Economics, 2018.

[230] N. Vo e G. Xu, «The volatility of bitcoin returns and its correlation to financial

markets,» in International Conference on Behavioral, Economic, Socio-cultural

Computing (BESC), 2017.

[231] C. Akcora, A. K. Dey, Y. R. Gel e M. Kantarcioglu, «Forecasting bitcoin price

with graph chainlets,» in Pacific-Asia Conference on Knowledge Discovery and Data

Mining, 2018.

[232] A. Greave e B. Au, «Using the bitcoin transaction graph to predict the price of

bitcoin,» Computer Science, 2015.

[233] R. Hyndman e G. Athanasopoulos, «Chapter 6,» in Forecasting: principles and

practice, 2014, pp. 157-182.

[234] "Yahoo Finance," [Online]. Available: http://www.finance.yahoo.com.

[Accessed January 2022].

[235] A. Banerjee, J. Dolado, J. Galbraith e D. Hendry, «Chapter 4,» in Cointegration,

error correction, and the econometric analysis of non-stationary data, Oxford:

Oxford University Press, 1993.

[236] G. E. P. Box e G. Jenkins, Time series analysis: Forecasting and control,

Holden-Day, 1976.

[237] W. Mckinney, «pandas: a foundational python library for data analysis and

statistics,» Python High Performance Science Computer, 2011.

[238] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, A. Muller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J.

Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay,

205

"Scikit-learn: Machine learning in python," Journal of Machine Learning Research,

vol. 12, 2012.

[239] F. Chollet, "Keras," 2015. [Online]. Available: https://keras.io. [Accessed

January 2022].

[240] S. Hochreiter e J. Schmidhuber, «Long short-term memory,» Neural

Computation, vol. 9, n. 8, pp. 1735-1780, 1997.

[241] S. Skipper e Perktold, «Statsmodels: Econometric and statistical modeling

with python,» in 9th Python in Science Conference, 2010.

[242] E. Jones, T. Oliphant e P. Peterson, «Scipy: Open source scientific tools for

python,» 2001. [Online]. Available: http://www.scipy.org/.

[243] P. Praitheeshan, L. Pan, J. Yu, J. Liu e R. Doss, «Security analysis methods on

ethereum smart contract vulnerabilities: A survey,» arXiv preprint:1908.08605.

