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Abstract—The availability of accurate data is fundamental for
several monitoring and control applications of modern power
grids. Nevertheless, the knowledge of critical data such as
transmission line and transformer parameters is often affected by
uncertainty. This can lead to important problems in the correct
management of the power systems. In spite of a monitoring
infrastructure that is being renewed thanks to new generation
devices providing synchronized measurements, the actual values
of line parameters and tap changer ratios are still affected by
uncertainty sources that need to be properly considered. The
behaviour of all the elements involved in the measurement chain
must be duly modelled. This paper proposes an improved method
to carry out the simultaneous estimation of line parameters,
tap changer ratios, and systematic measurement errors for a
three-phase power system. The proposed method is based on the
suitable modelling of the measurement chain and on three-phase
constraint equations (voltage drop and current balance) of all
the components involved. Its effectiveness is confirmed by tests
performed on a IEEE 14 bus test system reproduced as a three-
phase system under different operative conditions.

Index Terms—phasor measurement units, power transmission
lines, tap changers, three-phase lines, measurement errors, step
voltage regulators, instrument transformers, voltage measure-
ments, current measurements.

I. INTRODUCTION

Accurate knowledge of power network parameters and
actual operating conditions is essential for several monitoring
and control applications. The transmission line parameters
are critical for any application, but they are usually obtained
from offline calculations based on assumptions concerning,
for example, the conductors geometry and length, therefore
actual values may be significantly different from those stored
in the Transmission System Operator (TSO) database [1], [2].
The tap changer is critical, for example, in voltage stability
applications [3], because the tap changer impacts on the
margins of voltage stability and has important effects on
voltage monitoring and control operations. The tap changer
ratio is inevitably affected by uncertainty [4], furthermore,
voltage regulators, often based on local measurements, can
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call for frequent changes, accelerating wear and tear. Although
malfunctioning of the equipment involved in the tap changer
is not frequent [5], the on-load tap changer is one of the
most error-prone parts in the transformer because its elements
can suffer from both electrical and mechanical stress [6],
[7]. The uncertainty on tap changer performance impacts
on fundamental analysis tools like state estimation (see, for
instance, [8] and [9]).

Voltage regulation is a critical tool for any power system,
because the increasing penetration of distributed resources
affects every level of the grids and regulation of the medium
voltage level is increasingly needed. Regulation can be ob-
tained with different systems and equipment, in primary and
secondary substations and also along the lines [10], [11].
Commonly, it is possible to find solutions with single-phase
regulators along with a transformer without load tap changer
or transformers with load tap changers. The choice is often
driven by considerations about maintenance or procedures to
be followed in case of failure.

Methodologies designed to increase the knowledge about
power grid components are therefore more and more required.
For example, in [12], an ac power standard, for high voltages
and high currents, permitting the correction of the systematic
errors of the components is presented. Several procedures have
been presented for the estimation of the line parameters both in
transmission and in distribution grids [1], [13]–[17], but none
of these considers the impact of the entire measurement chain
also addressing systematic error estimation, which is intended
for compensation purposes, and voltage regulation uncertainty
estimation.

In the context of transmission systems, several papers
consider the tap changer estimation problem in equivalent
single-phase power grids. Among them, it is possible to cite
as an example [18], where a power system state estimator
that includes tap positions and uses an iterative method for
taking into account properly zero-injections is proposed, and
[19], where the problem of the tap position identification is
addressed. In [8], the state estimation model is designed by
including the tap settings (voltage transformer turns ratios or
phase-shift transformer angles) as additional state variables by
means of a measurement model transformed to a conventional
nodal frame formulation, introducing one fictitious bus and
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one fictitious branch for each transformer.
Accurate knowledge of the value of tap changer parameters

affects also the effectiveness of network parameters estimation
tools. Considering a Supervisory Control and Data Acquisition
(SCADA) system, in [20] it is proposed the simultaneous
estimation of line and transformer parameters, exploiting the
relationships between the estimated state and the parameters
of interest to estimate linearly the single-phase values of
impedance, transverse susceptance and tap ratio.

New estimation procedures are often based on Phasor Mea-
surement Units (PMU), thanks to their everyday increasing
availability. In [21] and [22], algorithms for estimating the
parameters of lines and transformers using synchronized pha-
sor measurements at both ends of a line are presented. In both
cases, measurement errors are simulated by adding a noise
to the results obtained from load flow solutions. In [23], a
phasor-measurement-based state estimator for improving data
consistency is proposed with features such as current channel
scaling and estimation of tap position and line parameters,
which can be achieved if a current phasor measurement is
available and provided that sufficient measurement redundancy
is ensured. In [24] a phasor-only state estimator is presented,
allowing corrections for phase biases, transformer taps, and
current magnitude scaling. The method is validated on a
real system, therefore it is not possible to assess properly
the impact of the uncertainty in the measurement chain on
the estimates. In [13] a method for online identification of
positive-sequence series transmission line and power trans-
former parameters is developed. The procedure is described as
permitting also the estimation of negative- and zero-sequence
parameters. However, also in this case, the measurement errors
affecting the estimation results are taken into account applying
only random noises to PMU data.

Another point to consider is that innovative proposals in
this ambit are often validated under equivalent single-phase
simplified operative conditions. Nevertheless, after this first
validation stage, an extension to more realistic conditions is
also required. The single-phase equivalent model can only
provide the estimation of the parameters corresponding to the
positive sequence, which are different from the parameters
that should be evaluated in slightly unbalanced systems, as
modern transmission grids actually are. Indeed, three-phase
modeling allows the real parameters of physical systems to be
estimated. Moreover, it is worth noticing that the estimation
of the systematic errors introduced by ITs is directly related
to a three-phase model because measurements are obtained on
a per-phase basis: only a three-phase model would allow, for
instance, to identify specific degradation of the metrological
performance of a single IT or of the parameters in a given
phase.

In the context of three-phase power grids, this paper ad-
dresses the simultaneous estimation of line parameters and
tap changer ratios and the compensation of the systematic
errors introduced by the measurement chain, which includes
ITs affecting voltage and current synchronized phasor mea-
surements. To the knowledge of the authors, in the literature

this kind of estimation problem has not yet been addressed
considering the whole measurement chain and its different
uncertainty sources.

The procedure is performed considering some of the most
used Step Voltage Regulator (SVR) configurations in three-
phase systems and can be applied from the single branch to
the entire network. The paper is based on the method proposed
in [25], where the estimation problem was faced in the ambit
of equivalent single-phase networks. Now a three-phase model
of each component of the network is developed, focusing,
in particular, on the proper modelling of three-phase SVR
for wye and closed delta connections [26]. The problem is
formulated considering also prior knowledge and is addressed
in the Weighted Least Squares (WLS) sense. Validation tests,
also using experimental PMU errors, are carried out consider-
ing both single-branch and multiple-branches approaches on a
three-phase version of the IEEE 14-bus grid. The presented
results prove that the proposed three-phase approach can
be successfully applied with two of the most used SVR
configurations, significantly improving the estimation accuracy
in the presence of a realistic measurement chain.

The paper is organized as follows. In Section II, the adopted
models and the proposed method are discussed. Section III
method’s performance is extensively assessed. Finally, Section
IV provides some closing remarks and future research ideas.

II. PROPOSED METHOD

A. Transmission Line and Measurement Model

The three-phase line model shown in Fig. 1, corresponding
to the generic branch (i, j) of a transmission line, is consid-
ered. The line model can be represented by means of two 3×3
matrices Zij and Ysh,ij , i.e. the impedance matrix and shunt
admittance matrix, respectively, that can be written as:

Fig. 1. Three-phase scheme for a transmission network branch and available
measurements.

Zij =

zij,aa zij,ab zij,ac
zij,ab zij,bb zij,bc
zij,ac zij,bc zij,cc

 (1)

Ysh,ij =

ysh,ij,aa ysh,ij,ab ysh,ij,ac
ysh,ij,ab ysh,ij,bb ysh,ij,bc
ysh,ij,ac ysh,ij,bc ysh,ij,cc

 (2)

In the entries of both matrices, the subscripts ij indicate
the end nodes of the (i, j) branch, while the subscripts pq
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with p, q ∈ {a, b, c} indicate the corresponding phases pair.
Thus zij,pq is the line impedance (or the mutual impedance
when p ̸= q) and bsh,ij,pq is the shunt admittance between
phase p and q. The shunt admittance is assumed to be equally
divided into the two sides of the three-phase π-line model of
each branch, and it is assumed to be a pure susceptance, thus
giving ysh,ij,pq = jBsh,ij,pq and Ysh,ij = jBsh,ij .

In this paper, the availability of PMUs installed on both
sides of each branch is assumed. The synchronized mea-
surements provided by the PMUs are the 3 phase voltage
synchrophasor measurements vh,p, with p = {a, b, c}, for
each node h ∈ {i, j}, that is at the start and end nodes.
The 6 current synchrophasor measurements iij,p and iji,p are
also measured. The synchronized measurements can be time-
aligned (labelled with an UTC timestamp t) and thus represent
a coordinated set of measurements referred to the same time
instant t.

The line model defines a measurement model that links the
set of measured values to the line parameters, which are not
perfectly known, and to the errors that affect every measured
value. Each measured synchrophasor can be expressed as
a function of reference values (indicated in the following
equations by superscript R) and of measurement errors as
follows:

vh,p = Vh,pe
jφh,p = V rh,p + jV xh,p

= (1 + ξsysh,p + ξrndh,p )V
R
h,pe

j(φR
h,p+α

sys
h,p+α

rnd
h,p )

iij,p = Iij,pe
jθij,p = Irh,p + jIxh,p

= (1 + ηsysij,p + ηrndij,p )I
R
ij,pe

j(θRij,p+ψ
sys
ij,p+ψ

rnd
ij,p)

(3)

where Vh,p and φh,p are the magnitude and phase-angle
measurements of node h voltage at phase p. Analogously,
Iij,p and θij,p are the measured magnitude and phase angle
of the p-phase branch current flowing from node i towards
node j. Measured current phasor iji,p (see Fig. 1) can be
expressed in a similar way. Superscripts r and x are used for
the real and imaginary parts of the corresponding phasors.
Finally, superscripts sys and rnd refer to the systematic and
random errors, respectively. The main difference between these
errors is that systematic errors are the same across repeated
measurements, while random errors vary from one observation
to another. To model the uncertainty contributions, in the
following, the systematic measurement errors are attributed
mainly to ITs and the random errors to PMUs. The errors,
as indicated in (3), affect both magnitudes and phase angles
of each synchrophasor measurements. In particular, quantities
ξsysh,p and ηsysij,p (or ηsysji,p) refer to the systematic ratio errors of
the voltage and current phasors at node h and phase p, respec-
tively. Moreover, αsysh,p and ψsysij,p (or ψsysji,p) are the systematic
phase displacement errors for the above defined measurements.
These quantities can be assumed as the unknowns in the
measurement model. Analogously, replacing sys with rnd, the
corresponding random ratio and phase displacement errors can
be defined.

It is realistic to assume that all the absolute values of these
errors are much lower than one (i.e. |err| ≪ 1, with err ∈

{ξ, α, η, ψ}), as in [25], and thus it is possible, adopting a first
order approximation, to rewrite (3) to express each reference
synchrophasor as function of the measured values and of the
above defined errors (h and p have same meaning as before):

vRh,p ≃
(
V rh,p + jV xh,p

) (
1− ξsysh,p− ξrndh,p − jαsysh,p− jαrndh,p

)
iRij,p ≃

(
Irij,p + jIxij,p

) (
1− ηsysij,p− ηrndij,p − jψsysij,p− jψrndij,p

)
(4)

Current phasor iRji,p can be similarly defined.
Considering (1) and (2), it is possible to rewrite the generic

line parameter, that is the generic element (p, q) in the matrices
Zij and Bsh,ij , as:

zij,pq = Rij,pq + jXij,pq

= R0
ij,pq(1 + γij,pq) + jX0

ij,pq(1 + βij,pq)

Bsh,ij,pq = B0
sh,ij,pq (1 + ρij,pq)

(5)

where γij,pq , βij,pq and ρij,pq (p and q ∈ {a, b, c}) are the
relative deviations of resistance, reactance and transversal sus-
ceptance values, respectively, from R0

ij,pq , X
0
ij,pq and B0

sh,ij,pq
available in TSO database (superscript 0 indicates nominal
values).

As in [25], the procedure aims at estimating all the sys-
tematic measurement errors and all the parameters’ deviations.
The estimation algorithm can thus rely on the constraints given
by Kirchhoff’s laws, which correspond to the following three-
phase line voltage drop constraints and three-phase current
balance equations:

(
vRi − vRj

)
= Zij

(
iRij − j

Bsh,ij

2
vRi

)
(6)(

iRij + iRji
)
= j

Bsh,ij

2

(
vRi + vRj

)
(7)

where vRh =
[
vRh,a v

R
h,b v

R
h,c

]⊺
is the voltage phasors vector

of the h node, while iRij =
[
iRija i

R
ijb

iRijc
]⊺

and iRji =[
iRjia i

R
jib

iRjic
]⊺

are the three-phase branch-current phasor vec-
tors leaving nodes i and j, respectively1. The Kirkhhoff’s
laws link reference phasors with actual line parameters. Then,
by substituting the expressions (4) of reference phasors as
function of measured values and errors and the actual line
parameters from (5) into (6) and (7), it is possible to write
a system of complex equations involving measurements and
measurement errors. Applying a first order approximation as
in [25] and finally splitting each complex equation into its real
and imaginary part, a system of 12 real-valued linear equations
can be obtained from the constraints. For these equations,
the systematic errors and the parameter deviations can be
considered as the unknowns, while random errors represent
the model errors.

1⊺ is the transpose operator.
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B. Step Voltage Regulator and Measurement Model

In this paper, the three-phase SVR is modelled aiming at
the simultaneous estimation of line parameters, systematic
measurement errors and tap-changer ratios. More specifically,
a comprehensive formulation of wye and closed delta con-
nections is developed, showing the proposed method for both
configurations (see, for example, [27] for details about these
connections). The SVR is a device installed along the feeder or
at the substation to keep the voltages within acceptable limits.
It is a connection of an auto-transformer with a variable turn
ratio [28], which is dependent on the position of the tap and is
determined through a control circuit that uses the approximate
voltage drop to command the displacement of the tap.

In this paper, the SVR is modelled as installed in a
generic branch (l, k) with the same assumptions made for
the transmission line branch. PMUs are available at both
ends of the branch, providing the synchrophasor measurements
vh,p, ilk,p and ikl,p (with h ∈ {l, k} and p ∈ {a, b, c}).
The corresponding reference synchrophasors are indicated by
vRh,p, iRlk,p and iRkl,p, respectively. In the following, the pair of
symbols (l, k) will be used to distinguish a branch with SVR
from a generic line branch (i, j). Thus, (3) and (4) are still
valid models for measured and reference synchrophasors of
the SVR branch when h ∈ (l, k) and ij is replaced with lk.

The relationship between voltage and current phasors at the
primary and secondary of the SVR associated with branch
(l, k) are obtained by means of the matrices Av,lk, Ai,lk and
ZSVR,lk, which are the voltage gain, the current gain and the
impedance matrix of the SVR, respectively [26]. For all the
SVR connection typologies, the following relationship among
the matrices Av,lk and Ai,lk holds true:

A−1
v,lk = A⊺

i,lk (8)

The entries of the above-mentioned matrices are determined
by the specific connection configuration, e.g. wye or closed
delta. The models adopted by the proposed algorithm for these
connections are presented in detail in the following.

For a wye-connected SVR the voltage gain matrix has the
following structure:

Av,lk =

alk,aa 0 0
0 alk,bb 0
0 0 alk,cc

 (9)

while, for a closed delta connected SVR the matrix is:

Av,lk =

 alk,ab 1− alk,ab 0
0 alk,bc 1− alk,bc

1− alk,ac 0 alk,ac

 (10)

The following expression is used to define the nonzero entries
of Av,lk for both wye and closed delta configurations:

alk,pq = a0lk,pq (1 + τlk,pq) (11)

where p, q ∈ {a, b, c} (the permitted combinations depend on
the connection type), a0lk,pq is the nominal or assumed value
of the tap changer ratio, and τlk,pq is the relative deviation of

actual value from nominal one. In the following, tap changer
ratio variations are assumed to be occurring with a longer
timescale than PMU reporting rates, therefore τlk,pq can be
considered as an additional unknown of the estimation process.

The impedance matrix ZSVR,lk is considered diagonal and,
similarly to the first equation in (5), its entries can be expressed
as a function of the corresponding reactance value available
from the TSO database and of the relative deviation from it. In
particular, following the notation in [26], for wye connection
zlk,pp is:

zlk,pp = jX0
lk,pp (1 + βlk,pp) (12)

with p ∈ {a, b, c}. For closed delta configuration, the diagonal
nonzero parameters are zlk,ab, zlk,bc and zlk,ac and depend on
the associated βlk,ab, βlk,bc and βlk,ac variables and on the
corresponding reactances.

With the node admittance matrix Ylk of branch (l, k), and
considering the three-phase model of the SVR, it is possible
to define the following constraints:[

iRlk
iRkl

]
= Ylk

[
vRl
vRk

]
(13)

where, analogously to the symbols used in Section II-A,
vRh =

[
vRh,a v

R
h,b v

R
h,c

]⊺
is the vector of reference voltage

phasors at node h (h ∈ {l, k}), while iRlk =
[
iRlk,a i

R
lk,b i

R
lk,c

]⊺
and iRkl =

[
iRkl,a i

R
kl,b i

R
kl,c

]⊺
are the reference branch-current

phasor vectors departing from node l and k, respectively. Ylk

is the 6× 6 matrix defined by:

Ylk =

Ai,lkZ
−1
SVR,lkA

⊺
i,lk −Ai,lkZ

−1
SVR,lk

−Z−1
SVR,lkA

⊺
i,lk Z−1

SVR,lk

 (14)

Equation (13) and (14) can be used to define the constraints
deriving by Kirchhoff’s laws for the case of SVR. Choosing
the SVR configuration and the corresponding matrix Av,lk
from (9) or (10). Exploiting also the relationship (8) and
making explicit the voltages with respect to the currents,
the voltage drop equations and the current balance equations
associated with the SVR can be obtained as follows:

vRl −Av,lkv
R
k = Av,lkZSVR,lkA

⊺
v,lki

R
lk (15)

iRkl = −A⊺
v,lki

R
lk (16)

With the same assumptions on the errors adopted in Section
II-A, (15) and (16) can be written with a first order approx-
imation, thus defining 6 complex-valued equations and thus
a system of 12 real-valued equations for each SVR in the
network. Such equations are reported in detail in the Appendix
and link the measurements to all the unknown parameters to
be estimated, including tap changer ratios.

C. Estimation Method for a Single Branch

The systems of linear equations described in Section II-A
for the generic line (i, j) and in Section II-B for the SVR
branch (l, k) are referred to a given set of synchronized
measurements associated with a specific time instant t (the
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timestamp of PMU measurements). It is thus possible to
rewrite the system associated with a single branch with a
matrix notation, separating the random errors from the sys-
tematic ones. Focusing only on the SVR case for the sake of
brevity (similar expressions are valid also for a transmission
line, which are the generalization of those reported in [25]),
the following expression can be written:

blk,t = Hlk,t



ξsysl

αsysl

ξsysk

αsysk

ηsyslk

ψsyslk

ηsyskl

ψsyskl

βlk
τlk


+ Elk,t



ξrndl,t

αrndl,t

ξrndk,t

αrndk,t

ηrndlk,t

ψrndlk,t

ηrndkl,t

ψrndkl,t


= Hlk,txlk + Elk,telk,t = Hlk,txlk + ϵlk,t

(17)

where subscript t denotes the timestamp, blk,t is the vector
of all known terms associated with the equations for branch
(l, k) (the left side values in the equations of the Appendix)
and Hlk,t is the matrix that gives the linear relationship
between the equivalent measurements in blk,t and the vector
of systematic errors and deviations. Vector xlk includes all
the unknowns of branch (l, k). As an example, it includes
ξsysh =

[
ξsysh,a ξ

sys
h,b ξ

sys
h,c

]⊺
(h ∈ {l, k}) that is the 3 × 1

vector including the systematic ratio errors for measured
voltage synchrophasors at node h. Similar definitions hold for
αsysh , ηsyslk , ψsyslk , ηsyskl , ψsyskl , βlk and τlk. In particular,
βlk = [βlk,aa βlk,bb βlk,cc]

⊺ and τlk = [τlk,aa τlk,bb τlk,cc]
⊺

for wye configuration, whereas βlk = [βlk,ab βlk,bc βlk,ac]
⊺

τlk = [τlk,ab τlk,bc τlk,ac]
⊺ for closed delta configuration.

Replacing sys with rnd, similar vectors can be defined
also for random errors and they are grouped in elk,t. Matrix
Elk,t transforms the measurement random errors in elk,t into
the random error vector ϵlk,t associated with the equivalent
measurements in blk,t.

When considering instead the system for the transmission
line of branch (i, j), a vector of unknowns xij can be defined,
which includes systematic errors for voltages and currents
and deviations γij,pq , βij,pq and ρij,pq , depending on the
parameters present in the model. Analogously to the SVR case,
matrices Hij,t, Eij,t and vectors eij,t and ϵij,t can be used
to define the corresponding system.

To estimate xlk, similarly to [25], multiple time instants
t1, · · · , tNt (and their corresponding three-phase measurement
sets) are used altogether to define a multi-timestamp system
as follows:

blk=

 blk,t1
...

blk,tNt

=
 Hlk,t1

...
Hlk,tNt

xlk+
Elk,t1 0
0

. . .
Elk,tNt


 elk,t1

...
elk,tNt


= Hlkxlk +Elkelk = Hlkxlk + ϵlk

(18)

where xlk is the same across different time instants and Elk
is block diagonal because the random errors of equivalent
measurements at each instant t depend only on the random
errors at the same instant.

Like in [25] and [29], without loss of generality, multiple
PMU measurements are assumed to be available for each load
condition and different load conditions (cases) are taken into
account. Measurements obtained within a small time interval
(repeated measurements for the same case) can be averaged
and used to define a problem like (17) that represents a specific
case. On this basis, the problem (18) can be considered as
composed only of different cases, thus limiting the size of the
system. If some measurements or timestamps are missing, it
is easy to adapt the method according to available data.

In addition to the above mentioned equations, every source
of prior information about the unknowns is also used and thus
it is possible to rewrite the problem as:

blk,+ =

[
blk
0r×1

]
=

[
Hlk

Ir

]
xlk +

[
ϵlk

eprior

]
= Hlk,+xlk + ϵlk,+

(19)

where 0r×1 is a r-size vector of zeros (r is the number
of unknowns in xlk, which depends on the exact model
and on the SVR connection type) that defines the pseudo-
measurements associated with prior information (i.e. no de-
viations is assumed) and Ir is the identity matrix of size r,
representing the measurement matrix of prior values. Vector
ϵlk,+ includes both the equivalent random errors ϵlk and the
random variables eprior associated with prior errors.

The problem (19) can be solved via WLS estimation, where
the weight matrix Wlk,+ = Σ−1

ϵlk,+
with:

Σϵlk,+
=

[
Σϵlk

0
0 Σeprior

]
(20)

the covariance matrix of equivalent measurements and priors.
The covariance matrix of ϵlk is obtained through the Law of
Propagation of Uncertainty as:

Σϵlk
= ElkΣelk

E⊺
lk (21)

where Σelk
is considered in the following, without loss of

generality, diagonal and includes the uncertainty description
of PMU measurements (here assumed decorrelated) or of
averaged repeated measurements.

The covariance matrix of the prior Σeprior
is the diagonal

matrix including all the prior variances of the unknowns. If
additional information on the correlations is available, it can
be included too.

Finally, x̂lk is the estimated unknowns vector and is ob-
tained through the solution of the WLS problem:

(HT
lk,+Wlk,+Hlk,+)x̂lk =

(
H⊺
lk,+Wlk,+

)
blk,+ (22)

D. Estimation Method for a Set of Branches

In Section II-C, the estimation method for a single branch,
either a transmission line (i, j) or a voltage regulator branch
(l, k), has been presented. The approach can be extended to
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a set of branches or even to the entire network, considering a
multiple instant problem like (18) for all the branches included
in the portion of interest. The obtained systems can be merged
so that all the voltage drop equations (6) and (15) and all
the current-related equations (7) and (16) of all the involved
branches are managed. A new overall system can thus be
written as:

b+=



bl1k1
...

blNSVRkNSVR

bi1j1
...

biNbr jNbr

0rtot×1


=

[
H
Irtot

]
x+

[
ϵ

eprior

]
= H+x+ ϵ+

(23)
where NSVR and Nbr are the number of involved SVRs and
lines, respectively, and H is the measurement matrix merging
all the constraints given by all the considered equations. Vector
x is the vector of all the unknowns and rtot is its length.
Considering different branches, systematic measurement er-
rors can belong to multiple constraints, thus improving the
measurement/constraint ratio and improving the estimation
process. The solution of (23) can be obtained through WLS
as in the single-branch approach and leads to a simultaneous
estimation of the systematic deviations of all the involved
measurements, the line parameters and the tap ratios, defining
a three-phase formulation of the multi-branch approach used
in [25].

III. TESTS AND RESULTS

The proposal has been validated by means of different types
of tests carried out in a controlled environment in order to
highlight properly the impact of different modelling on the
estimation results. The tests have been performed on a three-
phase version of the IEEE 14 bus test system (the equivalent
diagram is shown in Fig. 2) simulated in MATLAB. The three-
phase test system has been obtained by considering the data of
the IEEE 14-bus test system as positive sequence parameters
and then deriving negative and zero sequence values according
to [15].

All the tests have been carried out simulating different
realistic load conditions on the grid; each of them represents a
case (see Section II), and repeated measurements are acquired
for each case. To validate statistically the results, Monte Carlo
(MC) simulations have been performed. In particular, P = 10
cases and M = 10 measurements for every case and each
MC trial, and NMC = 10000 trials have been considered.
For each case, the reference values are obtained by means
of a three phase powerflow, therefore the voltage and current
measurements and actual tap ratio conditions are established.
For each measurement instant and for each voltage and current
measurement, systematic and random errors are then added to
the reference values.

In the following, random errors are assumed to be mainly
associated with PMUs and systematic errors are associated

Fig. 2. Unifilar diagram of the IEEE 14-bus system.

with ITs. Thus, random contributions depend on the accuracy
intervals given by PMU specifications, while systematic con-
tributions basically depend on the accuracy class of ITs.

The setup is prepared according to the following assump-
tions:

1) As for the line parameters, maximum deviations of
Rij,pq , Xij,pq and Bsh,ij,pq are equal to ±10%.

2) As for the ITs (assumed of class 0.5 [30], [31]), a
maximum error of 0.5% for voltage and current ratios,
a maximum CT phase-angle displacement of 0.9 crad
(10−2 rad) and a maximum VT phase-angle displace-
ment of 0.6 crad are considered, while for alk,pq the
maximum deviation is ±1% [4].

3) As for the PMUs, a maximum amplitude error of 0.1%
and a maximum phase-angle error of 0.1 crad are used,
corresponding to accurate but realistic values for real
PMUs in steady-state conditions.

4) As for the operating conditions, a variability of ±10%
with respect to nominal values for load/generator values
(for both active and reactive powers) is considered
among different load conditions. For each node, a max-
imum variability of ±1% of the nominal power has
also been imposed among the phases, thus keeping the
voltage asymmetry always compatible with that found
by Italian TSO (see, e.g., [32] and [33]).

5) For every test, the errors and the deviations of all the
parameters involved are extracted from uniform distri-
butions.

The above assumptions (default scenario) are intended to
describe in a meaningful way the variability in the network
and the main uncertainty sources of the monitoring system.

To assess the performance of the proposal, the root mean
square error (RMSE) is used:

RMSE =

√√√√NMC∑
i=1

(ν̂ − ν)2

NMC
(24)

whereˆ indicates the estimated quantity. In (24) ν is a place-
holder for each unknown of the state vector x or xhd (with
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(h, d) = (i, j) or (l, k) indicating the generic branch). For
phase p, ν can thus be equal to ξh,p, αh,p, ξd,p, αd,p, ηhd,p,
ψhd,p, ηdh,p, ψdh,p, γhd,pq , βhd,pq , ρhd,pq and τhd,pq , where
q ∈ {a, b, c} depending on the configurations and the models.

A. Single-Branch Approach

The first series of tests has been carried out using the single-
branch approach to assess the performance of the proposed
method on all three phase branches equipped with a step
voltage regulator (branches (4, 7), (4, 9) and (5, 6)). Both SVR
configurations presented in Section II-B have been adopted
in different tests. For space reasons, in the following, the
results are mainly reported for the closed delta configuration
exploring all the estimated quantities, since it is much fur-
ther from the single-phase model. All the RMSE results are
compared with the corresponding standard deviations of the
extracted errors or deviations in all NMC trials. These standard
deviations represent also the prior RMSE errors. In particular,
standard deviation is ∆γ/

√
3 = ∆β/

√
3 = ∆ρ/

√
3 ≃ 5.77%

(∆ indicates the maximum deviation) for network parameters
and ∆τ/

√
3 ≃ 0.57% for tap ratios, according to the assumed

ranges. For systematic ratio error of voltage and current
measurements the prior standard deviation is ∆ξ/

√
3 =

∆η/
√
3 ≃ 0.29%, while it becomes ∆α/

√
3 ≃ 0.35 crad and

∆ψ/
√
3 ≃ 0.52 crad for phase displacement error of voltage

and current measurements, respectively. The estimation results
of the proposal (referred to as “Tap estimation”) are compared
with those obtained with the method when tap ratios are
considered as if they were perfectly known at run time
(“No Tap estimation”). In the latter case, the deviations from
assumed values, which actually occur, are neither included in
the model nor estimated, since voltage regulation uncertainty
is indeed neglected.

Table I reports the estimation results of phase displacement
and voltage amplitude systematic errors for phase a (similar
results can be found for the other system phases). When the
tap changer is modelled, an RMSE reduction up to 50%
and 30% for ratio errors and phase displacement errors,
respectively, is achieved with respect to No Tap estimation. No
Tap estimation indeed suffers from the lack of modeling and
from the simplistic assumption of perfectly known tap ratios.
Reductions of the same order are obtained for the current
amplitude and phase displacement systematic errors. Similar
results can also be obtained with wye configuration, with a
30% RMSE reduction in the voltage ratio error. Nevertheless,
as in [25], the advantages for phase displacement are instead
negligible. It is important to highlight that, with Not Tap
estimation the values of RMSE for ξ are beyond the prior
(0.29%), thus showing a critical degradation introduced by
the estimator.

Table II shows the results for βlk,pq , that is for the reactance
estimation in SVR branches. Both estimation algorithms show
RMSE values much lower than prior (5.77%), but it is possible
to observe a further reduction of estimation error (up to 37%
for branch 10) when the tap changer ratio is modelled and
estimated.

TABLE I
RMSE OF SYSTEMATIC VOLTAGE ERRORS ESTIMATION -

SINGLE-BRANCH ESTIMATION, CLOSED DELTA CONFIGURATION

Branch Method RMSE
ξl,a αl,a ξk,a αk,a

Index (l, k) [%] [crad] [%] [crad]

8 (4, 7) Tap estimation 0.25 0.26 0.24 0.26

8 (4, 7) No Tap estimation 0.48 0.35 0.48 0.36

9 (4, 9) Tap estimation 0.24 0.26 0.24 0.26

9 (4, 9) No Tap estimation 0.47 0.33 0.47 0.35

10 (5, 6) Tap estimation 0.24 0.28 0.25 0.28

10 (5, 6) No Tap estimation 0.44 0.31 0.43 0.33

TABLE II
βlk,pq ESTIMATION - SINGLE-BRANCH ESTIMATION, CLOSED DELTA

CONFIGURATION

Branch Method RMSE [%]
Index (l, k) βlk,ab βlk,bc βlk,ac

8 (4, 7) Tap estimation 2.76 2.76 2.72

8 (4, 7) No Tap estimation 3.01 3.02 2.97

9 (4, 9) Tap estimation 2.03 2.10 2.08

9 (4, 9) No Tap estimation 2.75 2.81 2.81

10 (5, 6) Tap estimation 2.31 2.33 2.33

10 (5, 6) No Tap estimation 3.65 3.64 3.69

B. Multiple Branches Approach

Further analyses has been carried out with a multiple
branches (multi-branch) approach. In particular, the entire
three-phase network has been used in the estimation process
thus including the constraints of all the branches. As a first
result, Table III compares the RMSEs that can be obtained with
multi-branch and single-branch approaches for tap changer
ratio estimation (τpq parameters) considering closed delta
connection. It is possible to see that the proposed method
allows a remarkable reduction of the RMSE from prior value
0.57% to less than 0.2% with single-branch and less than
0.1% with the multi-branch. With wye configuration, and the
same loading conditions, the errors are higher, but single-
branch approach still more than halves (−54%) the RMSE
with respect to prior and multi-branch solution, in turn, halves
the estimation results obtained with the single-branch method,
achieving reductions respect to prior errors of more than 77%.

Fig. 3 gives further insight into the estimation results, show-
ing, for phase a as an example, the RMSEs for the estimation
of the amplitude voltage systematic errors (ξh,a) as a function
of the node index and obtained when the entire network is
considered with the multi-branch approach. When the method
is applied assuming the tap changer ratio as known, (blue
squares) the estimation is jeopardized because the method
suffers again from the lack of modelling. Indeed RMSEs are
much higher than prior (black plus sign) and all the nodes are
affected, even far away from the SVRs, thus preventing the

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2022.3165247

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



TABLE III
TAP RATIO ERROR τlk,pq ESTIMATION - MULTI-BRANCH VS

SINGLE-BRANCH, CLOSED DELTA CONFIGURATION

Branch Approach RMSE [%]
Index (l, k) τlk,aa τlk,bb τlk,cc

8 (4, 7) Single-branch 0.18 0.18 0.18

8 (4, 7) Multi-branch 0.08 0.08 0.08

9 (4, 9) Single-branch 0.18 0.19 0.19

9 (4, 9) Multi-branch 0.08 0.08 0.08

10 (5, 6) Single-branch 0.19 0.19 0.19

10 (5, 6) Multi-branch 0.09 0.09 0.09

Fig. 3. Estimation of voltage amplitude systematic errors - results obtained
with and without tap estimation.

application of the method. Estimating the tap ratios and using
the entire network (asterisks) brings a remarkable reduction
of the errors with respect to the prior. This is confirmed also
when looking at the estimation of systematic errors in voltage
phase-angle displacement (Fig. 4, where the same methods,
markers and colors as in Fig. 3 are used). It is also important
to highlight that the No Tap estimation method, which does
not consider deviations in the tap ratio, can be still applied
to the the branches that do not include tap changers (purple
dots). On this reduced set of branches, the proposed multi-
branch three-phase method is much more accurate than prior,
but the RMSEs are larger than the Tap estimation on all the
nodes (up to about 24% for voltage magnitude and 47% for
phase angle). The lowest RMSEs are thus obtained with the
proposed method and the fully detailed model, resulting in an
average improvement of about 68% with respect to the prior
for phase angle errors. This type of results suggest also that
a preliminary study on the network to monitor can help in
designing the most appropriate estimation method to apply.

As an example, Fig. 5 reports the RMSE results for the
parameters estimation of branch (4, 5), which is the branch
next to the branches equipped with SVRs. In particular, the
RMSE obtained for reactance deviations, with or without
estimating the tap changer ratios, are shown (in the latter

Fig. 4. Estimation of voltage phase-angle systematic errors - results obtained
with and without tap estimation.

Fig. 5. RMSE results for the estimation of reactance parameters of branch
(4, 5).

case the reduced set of branches is considered as above for
a fair comparison). When the tap ratios are estimated, the
uncertainty in the estimation of self reactances is lowered to
almost one third of the prior uncertainty, while for mutual
parameters RMSEs are reduced of about 30%, thus confirming
the advantages of the proposed algorithm also in three-phase
line estimation. A clear improvement is also brought by the
complete model, leading to an RMSE reduction of more than
32% and 19% for self and mutual parameters, respectively,
compared to the reduced set case. Similar results can be found
also with SVRs in wye connection.

To investigate the impact of IT and PMU uncertainty on the
estimation performance, tests have been performed considering
different values for the IT class and the maximum PMU errors.
IT with accuracy class 0.2 (0.2% as maximum ratio error and
0.3 crad as maximum phase displacement) is now considered.
This implies prior standard deviations for ξ and α lower
than in previous tests (0.12% and 0.17 crad, respectively).
Table IV reports the RMSE results for both line parameters
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and VT systematic errors, focusing on branch (2, 3). Similar
results can be found also for other branches. As expected,
the estimation accuracy degrades with higher uncertainties. In
particular, since systematic errors are included in the model
and estimated, the main impact is due to PMU errors, leading
to an RMSE increase of more than 20% for all the estimated
line parameters when maximum PMU errors double.

TABLE IV
ESTIMATION PERFORMANCE UNDER DIFFERENT UNCERTAINTY

SCENARIOS

IT PMU RMSE
class accuracy γ23,aa γ23,ab β23,aa β23,ab ξ2,a α2,a ξ3,a α3,a

| · |[%],∠[crad] [%] [%] [%] [%] [%] [crad] [%] [crad]

0.2 0.1, 0.1 2.11 2.81 1.39 2.81 0.07 0.08 0.06 0.07
0.2, 0.2 2.63 3.37 1.67 3.47 0.08 0.11 0.07 0.09

0.5 0.1, 0.1 2.21 2.83 1.44 2.84 0.13 0.13 0.12 0.12
0.2, 0.2 2.74 3.39 1.77 3.51 0.15 0.17 0.14 0.14

To investigate the impact on the estimation accuracy of
the number of branches involved in the algorithm, tests have
been performed considering the default scenario on a net-
work size increasing progressively from a single branch to
the entire network. Table V reports the RMSE results2 for
selected quantities focusing on branch (2, 3). As expected, the
results improve with the size. The largest and most significant
improvement for line-related parameters is achieved when
two additional branches are included (error reduction up to
about 26% on an overall reduction with the whole network
of about 34%), thus confirming the immediate advantage of a
multi-branch approach. For systematic errors the effect is even
more pronounced when the number of branches increases.
For instance, the RMSE of α2,a is almost halved on the
entire network with respect to single-branch case. It is inter-
esting to highlight that the improvements depend also on the
network topology. Meshes, for instance, introduce additional
constraints on the unknowns because each node is shared at
least among two branches, thus helping the estimation process.

TABLE V
ESTIMATION PERFORMANCE ON INCREASING NETWORK PORTION -

BRANCH (2, 3)

Network
Portion

RMSE
γ23,aa γ23,ab β23,aa β23,ab ξ2,a α2,a ξ3,a α3,a

[%] [%] [%] [%] [%] [crad] [%] [crad]

Single-branch 3.24 4.06 2.20 4.29 0.22 0.26 0.22 0.26
3 branches 2.48 3.16 1.63 3.16 0.19 0.22 0.18 0.21
6 branches 2.43 3.09 1.56 3.12 0.14 0.17 0.15 0.18

All branches 2.21 2.83 1.44 2.84 0.13 0.13 0.12 0.12

Finally, even though an all-encompassing comparison with
other methods from the literature is not possible, an example
of the RMSE results (on branch (2, 3)) achievable for line

2In Table V, “3 branches” corresponds to the set of branches with indexes
3, 4 and 6, while “6 branches” corresponds to branch indexes from 1 to 6.

parameters with different approaches using the same measure-
ments is reported in Table VI. The proposed algorithm, which
is used also in its single-branch version, is compared with two
methods designed to estimate three-phase line parameters from
PMU measurements. The first algorithm (Method A) is based
on a two-step estimation of shunt admittance and impedance
matrices of a branch [14], while the second algorithm (Method
B) uses a robust estimator for the shunt and line admittance
parameters starting from current equations at both ends [15].
The first method has been generalized to consider also non-
transposed lines as the proposed one. These two methods rely
on a significant level of unbalance to improve their accuracy.
For this reason and to perform a fairer comparison with them,
the maximum variations of the load power among the phases
at a given node have been considered with two different levels
(column ‘Load Unb.’): ±1% and ±5% of the nominal power.
In addition, following also the sensitivity study reported above,
two classes of transducers and two PMU accuracy levels have
been used. In the in Table VI, symbol ‘>’ is used to indicate
results far beyond (at least twice) the prior standard deviation
of the parameters. It is clear that the proposed method shows
lower RMSEs for all the parameters, whereas Methods A
and B suffer low unbalance levels. In particular, the proposed
method in its multi-branch configuration reaches the lowest
RMSE and it clearly benefits from a higher unbalance level.

As a final comment, it is important to highlight that the
three-phase formulation, besides allowing the estimation of
three-phase parameters and the systematic errors that are
intrinsically referred to the per-phase collected measurements,
permits a better estimation also of positive sequence quantities
when a realistic unbalance is present. To prove this, the
positive sequence resistance and reactance of each line has
been computed from the three-phase parameters estimated
with the proposed method and directly with the single-phase
version of [25]. The wye configuration has been used because
an exact equivalence is possible with [25] in this case. The
average estimation RMSEs across all the branches are reported
in Table VII, where γ+ and β+ represent the relative devia-
tions of positive sequence values from nominal ones for line
resistance and reactance, respectively. The results confirm the
advantages of the three-phase formulation when symmetry is
no guaranteed in practice.

C. Experimental Results

To assess the performance of the proposed method with
an even more realistic uncertainty description, additional tests
have been performed using real measurement errors obtained
through experimental laboratory characterization of commer-
cial PMUs. As an example, Table VIII reports the RMSE
results for system phase a and branches (2, 3), (4, 5) and
(9, 14) when the experimental PMU errors are used. In partic-
ular, the amplitude and phase-angle errors recorded during the
experiments have been added to the simulated quantities (after
introducing IT systematic errors according to the assumed
class 0.5) and the estimation has been performed with the pro-
posed method (multi-branch). The RMSE results are similar
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TABLE VI
COMPARISON AMONG DIFFERENT METHODS IN DIFFERENT

UNCERTAINTY SCENARIOS - BRANCH (2, 3)

Method ITs PMU Load RMSE
class accuracy Unb. γ23,aa γ23,ab β23,aa β23,ab

| · |[%],∠[crad] [%] [%] [%] [%] [%]

Proposed
Method

(All branches)

0.2 0.1, 0.1
1 2.11 2.81 1.39 2.81
5 0.93 1.02 0.59 1.25

0.5
0.1, 0.1

1 2.21 2.83 1.44 2.84
5 1.08 1.07 0.67 1.33

0.2, 0.2
1 2.74 3.39 1.77 3.51
5 1.63 1.72 1.04 1.94

Proposed
Method

(Single branch)

0.2 0.1, 0.1
1 3.14 4.06 2.13 4.23
5 1.47 1.64 0.97 2.07

0.5
0.1, 0.1

1 3.22 4.07 2.19 4.29
5 1.71 1.72 1.08 2.22

0.2, 0.2
1 3.55 4.54 2.52 4.63
5 2.56 2.81 1.72 3.35

Method A
[14]

0.2 0.1, 0.1
1 > > > >
5 2.36 2.38 1.50 3.20

0.5
0.1, 0.1

1 > > > >
5 3.30 3.42 2.09 4.62

0.2, 0.2
1 > > > >
5 4.99 4.96 3.11 6.77

Method B
[15]

0.2 0.1, 0.1
1 10.48 10.08 6.50 >
5 2.14 2.22 1.40 2.92

0.5
0.1, 0.1

1 > > 8.40 >
5 2.99 3.16 1.96 4.15

0.2, 0.2
1 > > > >
5 4.45 4.55 2.86 6.05

TABLE VII
COMPARISON OF POSITIVE SEQUENCE PARAMETERS ESTIMATION WITH

SINGLE-PHASE AND THREE-PHASE APPROACHES

Method Average RMSE [%]
γ+ β+

Single-phase 2.47 1.23
Three-phase 1.59 0.76

to those obtained with simulated PMU errors and even better
since the used commercial PMUs have lower uncertainty than
that assumed for previous tests. The RMSEs are much lower
than prior standard deviations, thus confirming the validity of
the presented approach in reducing the uncertainty of both
network parameters and IT errors.

TABLE VIII
ESTIMATION PERFORMANCE WITH EXPERIMENTAL PMU ERRORS

Branch
Index (i,j)

RMSE
γij,aa γij,ab βij,aa βij,ab ξi,a αi,a ξj,a αj,a

[%] [%] [%] [%] [%] [crad] [%] [crad]

3 (2, 3) 1.81 2.36 1.10 2.29 0.11 0.11 0.11 0.11
7 (4, 5) 2.19 2.62 1.53 3.41 0.11 0.10 0.11 0.11

17 (9, 14) 1.62 1.91 1.39 3.27 0.09 0.10 0.09 0.10

IV. CONCLUSIONS

A novel method based on PMU measurements for the
simultaneous estimation of systematic measurements errors,
line parameters and tap changer ratios in a three-phase power
systems has been presented in this paper. The method provides
a framework to deal with different models of lines and
regulators and can be adapted to different operator needs.
It allows modelling the uncertainty introduced by the mea-
surement chain together with the lack of knowledge in the
network parameters. The estimation results obtained with the
proposed method in a simulated environment under different
uncertainty conditions and considering also experimental PMU
errors show a remarkable improvement in the knowledge of
the grid, thus fostering its extension to further models and
instruments for a more accurate and complete monitoring of
the power systems. The paper has also illustrated the risk of
an incomplete description of the uncertainty, thus suggesting
new research activities on measurement systems more aware
of the available information quality.

APPENDIX

Equations A.25-A.28 (full width, top of next page) report
the real and imaginary parts of the voltage drop and of the
current balance equations for the wye connected SVR at
branch (l, k) for all phases p ∈ {a, b, c}. Equations A.29-A.32
(full width, top of the last page) report the real and imaginary
parts of the voltage drop and of the current balance equations
for the closed delta connected SVR at branch (l, k) for phase
a. Similar equations can be written for the other system phases.
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