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Abstract

Pointed arches are important architectural elements of both western and eastern his-

torical built heritage. In this paper, the effects that different geometrical (slenderness

and sharpness) and mechanical (friction and cohesion) parameters have on the in-plane

structural response of masonry pointed arches are investigated. Two load scenarios are

studied: vertical self-weight plus a proportional horizontal live load and vertical self-

weight plus a vertical concentrated live load applied to individual voussoir. Results,

in terms of collapse multipliers and collapse mechanisms, are presented and analysed

following a systematic statistical approach.

Keywords: Non-standard Limit Analysis, Friction/Dilatancy,

No-tension contacts, Pointed arches, Cohesion

1. Introduction

Pointed arches are well known as representative elements of the Gothic style in

western architecture. However, according to certain authors, pointed arches first ap-

peared in Persian architecture, during the Sassanid Empire (third to seventh century

AD) and then were adopted by muslim architecture at the begining of the eighth cen-5

tury. According to Viollet-le-duc, pointed arches were found both in Persia and Egypt
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as early as the sixth century and this architectural element was not introduced in Eu-

rope until the twelfth century [1]. Figure 1 presents an example of pointed arches used

in western architecture (Figure 1a) and in muslim architecture (Figure 1b).

(a) (b)

Figure 1: Examples of pointed arches in: (a) western architecture, Brussels cathedral windows, Belgium and

(b) muslim architecture, El Badi palace at Marrakech, Morocco.

Despite the fact that it has been well known for a long time that pointed arches have10

a different structural behaviour in comparison to circular arches, i.e. classic geometric

rules prescribed thinner abutments for pointed arches than for circular arches [1], rel-

atively little attention has been paid to the formal structural study of the former. Aita

et. al [2] studied the equilibrium of circular, pointed and elliptical arches subjected

to their own self-weight plus the superimposed weight of a masonry wall. They ap-15

plied the Durand-Claye’s method and a nonlinear one-dimensional elastic analysis and

found that pointed and elliptical arches had a better behavior in comparison to circu-

lar ones in terms of wall height that can be carried by the arch. Cavalagli et. al [3]

and Brandonisio et. al [4] consider the effect of the uncertain dimension of the blocks

and the effect of the buttresses on the seismic capacity of arches, respectively. Misseri20

and Rovero [5] adopted the Heyman’s hypothesis and analysed the seismic vulnerabil-

ity of pointed arches through a parametric analysis that explored arch slenderness and

sharpness. Based on their results, it is now known that the pattern of hinges at collapse

for pointed arches differs considerably from the one of circular arches, that a slender-

ness*sharpness interaction effect is significant on collapse accelerations and that the25

acceleration to start motion is directly proportional to arch rise in pointed arches, con-

trary to the case of circular ones. Also by adopting Heyman’s hypothesis, Cavalagli
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et. al [6] studied the limit equilibrium condition and the minimum thickness of cir-

cular and pointed masonry arches subjected to vertical self-weight plus a horizontal

proportional live load. They provided a series of surface plots from which the collapse30

multiplier of either type of arch could be determined based on their geometry param-

eter values. Misseri et. al [7] performed an experimental campaign in which they

studied the response of pointed arches subjected to vertical self-weight and a propor-

tional horizontal live load for different values of slenderness and sharpness by means

of a tilting table. They identified two types of collapse mechanism: pure rotation and35

rotation/sliding combination (their experimental set-up prevented the formation of pure

sliding collapse mechanisms). Moreover, a significant effect on the response caused by

the sharpness*slenderness parameter combination was observed, in other words, load

multipliers recorded for the thicker profiles increase slower than thinner profiles. In a

recent application of Durand-Claye’s method, Aita et. al [8] presented the character-40

istic mechanical behaviour and collapse of symetric circular, low-pointed, equilateral-

pointed and lancet-pointed arches subjected to self-weight for which friction coefficient

and compressive strength was taken into account. Later on they extended their work

to the analysis of the same arches typologies supported on piers [9]. Recently, Misseri

et. al [10] studied the vulnerability of masonry pointed arches subjected to support45

displacements through a novel numerical approach that uses combinatorial laws and

adopts Heyman’s assumptions. According to the observations made by Romano and

Ochsendorf [11] it could be said from the structural behaviour of pointed arches that:

• Pointed arches have lower horizontal thrust than circular arches.

• Under symmetrical conditions, the thrust line of a circular arch touches the extra-50

dos at only one location, whereas that on a pointed arch, due to its geometry, the

thrust line has to touch the extrados twice and for extremely thin pointed arches

it touches twice the extrados and once the intrados.

• Pointed arches for most practical geometries can be thinner than their circular

counterparts with few uncommon exceptions for arches with low embrace an-55

gles.
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• Pointed arches subjected to horizontal support spreading are able to deform sub-

stantially more than circular ones.

• Pointed arches can support higher concentrated loads at the crown than circular

ones.60

Due to masonry heterogeneity and to effect of geometrical parameters have on its

behaviour, the simulation of masonry structural response and assessment is a compli-

cated task. Over the past decades a variety of numerical approaches have been proposed

by several authors trying to reproduce masonry structural behaviour at different scales

and levels of detail. Among the more suitable strategies to capture masonry structural65

response are the so called block-based models (BBM). They are discrete models in

which every masonry block is modelled along with a suitable formulation to represent

the inter-block interactions. In this context, Limit Analysis permits the evaluation of

the ultimate load capacity of the structure and its corresponding failure mechanism, re-

quiring a limited number of material parameters, overcoming the common difficulties70

of obtaining reliable experimental data for historical masonry structures. Furthermore,

Limit Analysis is largely recognized as a very effective tool to estimate collapse load

and collapse mechanisms for masonry structures [12, 13, 14, 15, 16, 17, 18, 19] or

masonry structures in presence of settlements [20, 21, 22].

Starting from the work of [13], a new version of the ALMA code (Analisi Lim-75

ite Murature Attritive) has been developed based on the Limit Analysis [23, 24, 25]

namely ALMA 2.0. The new version of ALMA by the adoption of the recent coding

language PythonTM and the advantages of the novel optimization subroutine, such as

MOSEK library (www.mosek.com), overcomes the limit in terms of number of blocks

with respect to the original version [13] and it has been improved in order to take80

into account foundation settlement [21], cohesion between the joints and retrofitting

tie [23]. The capabilities of ALMA 2.0 to reproduce the structural response of in-plane

masonry pointed arches has already been validated [26] using as benchmark the exper-

imental results and numerical simulations performed by Misseri et al. [7].

In this paper the effect of different geometrical and mechanical parameters in the85

in-plane structural response of masonry pointed arches using a non-standard analysis
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approach is presented. In particular the adopted approach is based on the one provided

in [12, 13], in which authors demonstrated that a non associative problem with friction

can be approximated by a standard, associative, approach where friction has been re-

placed by dilatancy. In this way, the peculiar effect of the sliding mechanism, which90

can occur also in the arches with high value of thickness, may be taken into account in

the analysis performed.

The main difference of this work with respect to parametric analysis performed by

other authors, is the fact that a systematic statistical approach has been implemented

which has enabled the authors not only to identify, but also to quantify, the effect on95

the response of the different factors studied. First the formulation of the non-standard

limit analysis implemented is described in Section 2, followed by the description of the

systematic parametric analysis used in Section 3. Then, the results obtained in terms

of collapse multipliers and collapse mechanisms are shown and discussed in Section 4.

Finally, in Section 5, the main conclusions drawn from the analysis and discussion of100

the results are summarized.

2. Adopted Model

We consider Limit Analysis of systems of rigid blocks interacting through non-

tension and frictional interfaces. In this case the normality rule does not hold and

the problem is non-associative and can be solved using non-linear programming pro-105

cedures [12, 13]. It is known differently, that, when normality rule holds the static

and kinematic theorems of Limit Analysis lead to two dual problems of linear pro-

gramming, with a unique solution. We decided to focus on the linear programming

optimization problem (firstly developed in the seminal paper by [27] following a lower

bound approach). In particular, to overcome problem related to the solution of the110

non associative problem we refer to the approach in [13], where friction is replaced by

dilatancy obtaining a linearized programming problem, which provides collapse mech-

anisms and collapse load of analysed structures.

Following this idea, linear programming has been performed taking into account

both rotation and sliding mechanisms at the interfaces between blocks. The adopted115
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kinematic upper bound problem is defined as:

αc = min
{
λT

[
c− (A0N1)

T
f0

]}
(1)

subjected to:

(AN1 −N2)λ = 0 , compatibility condition

λT (A0N1)
T
fL − 1 = 0 , normalized positive work of live loads

λ ≥ 0 bounds on the unknowns.

In the above equations the unknown of the problem remains αc, a scalar, as the

collapse multiplier with λ as the plastic multiplier vector that contains the nonnegative

coefficients. A0 is the inverse matrix of the compatibility kinematical submatrix of

maximum rank while the rest of the kinematical matrixB2 is stored in theAmatrix as120

A = B2B
−1
1 . N1 and N2 are the submatrices of the block-diagonal gradient matrix

N and correspond to the submatrix of independent and linearly dependent kinematical

variables, respectively. f0 and fL are the vectors of the generalized actions on the

centres of the blocks for the dead and live loads, respectively. Additional details on the

derivations and formulation of the LP problem can be consulted in [28, 12]. Different125

cohesion values can be assigned to every joint of the masonry assemblage. These

values are stored in the form of a vector c. A Mohr-Coulomb classical yield domain is

considered with the inclusion of cohesion, thus indirectly involving tensile strength of

the joints as σt = c/ tanφ, for σt as the tensile strength and φ as the friction angle.

After some algebraic operations the c vector is stored in the objective function to be130

minimized through LP.

3. Design of experiments (DOE)

A systematic methodology has been followed in order to objectively determine the

influence of several mechanical and geometrical parameters in the response of pointed

arches. Thus, general full factorial designs were used to identify both the main and the135

two-way interaction effects of the studied parameters on the pointed arches response.

Two load scenarios were considered, the first one in which the pointed arches were
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subjected to their own self-weight plus a horizontal live load proportional to the self-

weight, henceforth referred as scenario A, and a second load scenario in which the

pointed arches were subjected to their own self-weight plus a vertical concentrated140

live load applied to one of their voussoirs proportional to its self-weight, from now on

referred as scenario B. The factors considered for each scenario and their correspondent

levels (in this context, a level refers to a particular value adopted by a parameter or

factor) are presented in Table 1.

Table 1: Studied factors and their respective levels for a pointed arch subjected to load scenario A and B.

Scenario A Scenario B

Factor Level Value Factor Level Value

A. Cohesion (MPa) 1. Low 0.00 A. Cohesion (MPa) 1. Low 0.00

2. Medium 0.01 2. Medium 0.01

3. High 0.10 3. High 0.10

B. Friction (-) 1. Lowest 0.47 B. Friction (-) 1. Lowest 0.47

2. Low 0.60 2. Low 0.60

3. High 0.84 3. High 0.84

4. Highest 1.00 4. Highest 1.00

C. Sharpness (-) 1. Low 0.20 C. Slenderness (-) 1. Lowest 0.10

2. Medium 0.60 2. Low 0.15

3. High 1.00 3. High 0.20

4. Highest 0.25

D. Slenderness (-) 1. Lowest 0.10 D. Live load (-) 1. Lowest 8

2. Low 0.15 2. Low 10

3. High 0.20 3. High 12

4. Highest 0.25 4. Highest 14

Mathematically speaking the values that could be adopted for the friction angle φ145

(in degrees) could lay within the interval 0 < φ < 90. Moreover, masonry friction

angles have been experimentally determined by several researchers in the past and

the values reported oscillate between the 17 and the 63 degrees [29]. However, most

commonly friction angle values for historical masonry vary between 15 and 45 degrees
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and more specifically for arches between 25 and 45 degrees. Therefore, the different150

levels for friction, tanφ, studied were 0.47, 0.60, 0.84 and 1.00 which correspond to 25,

30, 40 and 45 degrees respectively. The low friction values adopted would represent

a situation in which the units surface were relatively smooth, whereas that a rough

surface would be better represented by the high friction values assumed.

The geometrical parameters, sharpness and slenderness, are better understood hav-155

ing as reference Figure 2. In this figure, the center of the arch is indicated by O. The

arch has a diameter Rp and it is drawn with two circles that have their corresponding

center points at points C1 and C2 which are located at an eccentricity distance e from

the arch center O. t indicates the thickness of the arch and Ri and Re represent the

internal and the external radius of the arch measured from the corresponding excentric160

centers C1 and C2. Finally, Rc is the distance from O to the center of the arch at its

base.

Slenderness is defined as the ratio between the thickness of the arch and its radius,

Sd = t/Rc. Sharpness is equal to the division of the arch excentricity by the distance

from O to the center of the arch at its base, Sh = e/Rc. The numerical values for165

Slenderness and Sharpness adopted in this work correspond with those experimentally

reported by [7] and numerically validated by [26]. Therefore, the combination of three

sharpness values and four slenderness values resulted in the twelve arches shown in

Figure 3.

The live load location parameter makes reference to the voussoir to which the con-170

centrated live load is applied (see the values of the live load factor in Table 1). All

pointed arches modeled in this study have been formed by 17 blocks, 16 voussoirs and

a key block. The numbers assigned to each block are shown in Figure 4.

To the extend of the knowledge of the authors of this paper, there are not cohesion

values reported in the literature for the specific case of pointed arches. In a compara-175

tive experimental work, Jafari et al. [30] reported a series of cohesion values obtained

through testing of different masonry typology cores and triplets. The cohesion values

obtained from the shear tests on cores ranged from 0.13 up to 0.49 MPa, whereas that

the values obtained from the triplets ranged from 0.08 up to 0.54 MPa. Through the

implementation of a static penetrometer, Liberatore et al. [31] determined the cohe-180
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Figure 2: Schematic geometry of the pointed arches simulated.

sion values of several decayed historical masonry walls mortar. The cohesion values

reported by these authors ranged from 0.02 up to 0.03 MPa. On Bejarano-Urrego et

al. [32] a table with values for different masonry joints properties is presented. The

values for cohesion, based on the information reported by several authors, vary from

0.1 to 1.8 MPa. By testing a series of triplets created with different masonry units and185

mortar, Milosevic et al. [33] determined cohesion values in the range of 0.2 - 1.6 MPa.

These authors also tested a series of stone masonry wallettes through the diagonal com-

pression test for which they obtained cohesion values in the range of 0.017 and 0.313

MPa. Furthermore, they compared the values they obtained through their experimental

campaign with the ones reported in the literature which ranged between the 0.02 and190

the 0.16 MPa.

The cohesion values that are adopted to perform numerical analysis depend sig-

nificantly in the numerial approach followed. Rafiee and Vinches [34] simulated the

structural response of stone masonry arches with the use of a non-smooth contact dy-

namics method. For their simulations, these authors adopted for their models cohesion195

values of 0.010 and 0.007 for the normal and tangential cohesion thresholds parame-

ters respectively. Masi et al. [35] adopted cohesion values ranging from 0.0 to 3.0 MPa

to perform a sensitivity analysis of arched masonry structures under blast loads using
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Figure 3: Geometries of the simulated arches.

a discrete element method based-approach. Weed et al. [36] adopted cohesion val-

ues of 0.67 and 0.116 MPa to simulate the interface cohesion of cement stabilized soil200

block masonry walls subjected to four-point out-of-plane bending using a finite element

method based-approach. On recent numerical calibrations of irregular stone masonry

walls, Zhang and Beyer [37] implemented a cohesion value of 0.3 MPa to describe

the properties of their finite element model. In this work, a null cohesion value has

been adopted to simulate the structural response of dry stone masonry pointed arches.205

Moreover, relatively low values of cohesion (0.01 and 0.10 MPa) have been adopted to

better represent the condition of historical stone masonry pointed arches with decayed
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Figure 4: Numbers assigned to every block of the modeled pointed arches.

or damaged mortar.

Other important simulation parameters adopted in this work correspond to the

thickness of the blocks, which was assumed to be fixed for all arches at a value of210

50 mm as well as a constant specific weight of 1800 kg/m3. As this was a numerical

experiment, the basic principles of randomization, replication and blocking resulted

trivial (as these were numerical simulations, regardless of the order in which they are

run, the number of times they are run or the way in which they are grouped, the answer

obtained is always the same. This is usually not the case when real life experiments are215

performed since the response may be affected by non-controlled factors).

After all simulations were successfully run, the responses (collapse multipliers)

obtained were visually analysed by the means of main effects and two-way interaction

effects plots. The main effect plots enable the observation of the actual effect that

every single parameter has in the response. By computing the mean values at every220

level of each parameter it is assumed that the response is independent of the other

parameters. On the other hand, two-way (or higher order) interaction plots allow to

study the possible interaction between two or more parameters and how this affects

the response. The points of a two-way interaction plot are computed by averaging the

values of αc obtained for a certain combination of two parameters’ levels.225

Furthermore, the collapse multipliers obtained were formally analysed through an

analysis of variance (ANOVA). The ANOVA, sometimes referred to as significance of

regression test, determines whether there is a relationship between the parameters of the

statistical model (also known as regressor variables) and the response. The hypotheses
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of the ANOVA test are:230

H0 : β1 = β2 = ...βk = 0 ,

H1 : βj 6= 0 for at least one j .
(2)

Where H0 and H1 are the null and the alternative hypothesis respectively, and βj

represents every linear and two-way interaction term of the statistical model adopted.

The rejection of H0 implies that at least one of the terms contributes significantly to

the statistical model. The statistical model adopted for the pointed arches under load

scenario A is composed by four linear terms (cohesion, friction ratio, sharpness and235

slenderness), six two-way interaction terms (combinations of the four linear terms pre-

viously mentioned) and an error term. Similarly, the statistical model for the load

scenario B is composed by four linear terms (cohesion, friction ratio, slenderness and

live load location), six two-way interaction terms and an error term. Linear terms

correspond to the effect that individual parameters have in the response whereas that240

two-way interaction terms depict how the response is affected by a certain parameter

in combination with the different levels of a second one. The error term is related to

the inherent variation of the model and is assumed to be normally and independently

distributed.

Additionally, the magnitude and importance of each one of the main factors and245

factor interaction effects were obtained. Those results are presented as Pareto charts

of standardized effect. The Pareto chart of standardized effects is used to compare the

relative magnitude and the statistical significance of the main parameters and of the

two-way interaction terms in the response. Moreover, a reference line is also plotted

in the Pareto chart in order to simplify the identification of the significant terms (every250

term with a standardized effect value higher than the reference line is considered to be

statistically significant).

The suitability of the adopted statistical models to describe the response, was mea-

sured as the values of the coefficient of determination, R2 (equal to the regression sum

of squares divided by the total sum of squares), and of the predicted coefficient of deter-255

mination, R2
pred. Finally, the assumptions that the data was independent and normally
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distributed, in other words, that the analysed data was not affected by non-controlled

parameters and that it roughly presents the shape of the Gauss curve, were visually val-

idated by analysing the standardized residual plots of the response, αc, its histogram

and its normal probability plot.260

4. Results and discussion

4.1. Collapse mechanisms

4.1.1. Collapse mechanisms under load scenario A

Regarding the collapse mechanisms of the pointed arches under load scenario A

and for the specific case of null cohesion (dry stone masonry), it could be said that265

three different outcomes were observed: pure rotation, pure sliding and rotation-sliding

collapse modes. The pure rotation collapse mode appeared mainly on slender pointed

arches and in medium-slender pointed arches with high friction ratio values such as the

example arches shown in Figure 5. The pure sliding collapse mode only developed for

the pointed arch with a sharpness value of 0.10, a slender value of 0.25 and a friction270

ratio of 0.47 (see Figure 6). Finally, the combination of rotation/sliding collapse mode

was the most common one developed by the pointed arches studied as can be seen in

the arches of Figure 7.

(a) Friction 0.47, Slenderness 0.10,

Sharpness 0.20 andαc = 0.08529.

(b) Friction 0.84, Slenderness 0.10,

Sharpness 0.60 andαc = 0.16921.

(c) Friction 1.00, Slenderness 0.25,

Sharpness 0.20 andαc = 0.46179.

Figure 5: Rotation collapse mechanisms of dry masonry (null cohesion values) slender pointed arches or

with relatively high friction values under load scenario A.
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Figure 6: Sliding collapse mechanisms of pointed arch with Friction 0.47, null cohesion, Slenderness 0.25

and Sharpness 1.00 under load scenario A, αc = 0.30370.

The collapse mechanisms observed for the no-cohesion cases were clearly modified

by the inclusion of cohesion. For cohesion values of 0.01 MPa only pure rotation and275

rotation-sliding mechanisms developed, whereas that only rotation mechanisms were

obtained for the pointed arches with a cohesion value of 0.10 MPa. The most clear

example of the role that cohesion plays in the collapse mechanism of the pointed arches

studied can be observed for an arch with a slenderness value of 0.10 and a sharpness

value of 0.25. Figure 8 presents the collapse mechanisms obtained for this arch for280

cohesion values of 0.00 MPa (a), 0.01 MPa (b) and 0.10 MPa (c) (and a friction ratio

value of 0.47). The collapse mechanism obtained for the dry stone masonry arch (no-

cohesion) was of pure sliding, the one for the arch with an intermediate cohesion value

(0.01 MPa) was of the combined rotation-sliding type whereas that a pure rotation

collapse mechanism was obtained for the arch with a relatively high cohesion value285

(0.10 MPa).

4.1.2. Collapse mechanisms under load scenario B

The effect that cohesion, friction ratio and slenderness have in the collapse mecha-

nism of pointed arches has already been discussed in a previous section for the case of

pointed arches under load scenario B. Similar observation could be made about these290

parameters for the case of pointed arches under load scenario B. On the other hand,

the effect that the location of the live load has in the response of pointed arches is
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(a) Friction ratio 0.47, Slenderness 0.20, Sharpness 0.60

and αc = 0.22857.

(b) Friction ratio 0.60, Slenderness 0.20, Sharpness 0.60

and αc = 0.25819.

(c) Friction ratio 0.84, Slenderness 0.20, Sharpness 0.60

and αc = 0.31495.

(d) Friction ratio 1.00, Slenderness 0.20, Sharpness 0.60

and α = 0.34739.

Figure 7: Combined collapse mechanisms for dry masonry pointed arches under load scenario A.

presented now. The collapse mechanisms obtained for pointed arches with a medium

value of cohesion (0.01 MPa), a low slenderness value (0.15), a low friction ratio (0.60)

and the live load applied at blocks 8, 10, 12 and 14 is presented in Figure 9 (a), (b), (c)295

and (d) respectively. As it can be observed, the effect of placing the live load in either

blocks 8 or 10 will lead to a pure rotation mechanism, whereas that if the live load is

applied in either blocks 12 or 14, the collapse mechanism generated is of the combined

rotation-sliding type.
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(a) Friction ratio 0.47, Slenderness

0.25, Sharpness 1.00, cohesion 0.00

MPa and αc = 0.30370.

(b) Friction ratio 0.47, Slender-

ness 0.25, Sharpness 1.00, cohesion

0.01MPa and αc = 0.61368.

(c) Friction ratio 0.47, Slenderness

0.25, Sharpness 1.00, cohesion 0.10

MPa and αc = 2.71721.

Figure 8: Effects of cohesion in the collapse mechanisms of pointed arches under load scenario A.

4.2. Collapse multipliers300

4.2.1. Collapse multipliers under load scenario A

After running the limit analysis numerical simulations of all the pointed arches

subjected to their own self weight plus a horizontal live load proportional to their self-

weight (load scenario A) as described in Section 3, the corresponding collapse mul-

tipliers were obtained. These values were used to determine if any of the analyzed305

parameters had a statistically significant influence in the response. To do so, the mean

value of αc was computed at every level for all individual factors and combination of

two factors. The main effect plots are shown in Figure 10 and the two-way interaction

plots are presented in Figure 11.

From Figure 10 it can be observed that all factors present a positive relation with the310

response (the higher is the value of the factor, the higher is the collapse multiplier ob-

tained). Both friction ratio and sharpness have a relatively weak effect on the response

whereas that cohesion and slenderness present a strong relation.

From the first row of the curves shown in Figure 11 it can be observed that there

is no statistically significant interaction between cohesion*friction interactions, as the315

average αc values at the different levels of the combined parameters are practically

identical as well as the variability of results obtained at the different levels combina-

tions. Although the slenderness-sharpness curves (observed in the lower right part of
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Figure 11) present higher values of average collapse multipliers for higher values of

slenderness, it can be observed that the variability of the response is quite identical at320

the three levels of sharpness, thus showing that this two-way interaction term does not

cause significant effects on the response. On the other hand, a clear two-way interac-

tion effect is detected for the two-way parameter interaction of cohesion-slenderness.

At a null cohesion value (dry stone masonry) the response varies slightly for the differ-

ent levels of slenderness. As the cohesion value increases, so does the variability of the325

response for the higher values of slenderness, a significantly higher collapse multiplier

is obtained in comparison with the lower values of slenderness. There is a similar effect

in the response caused by the two-way parameter interactions of friction*slenderness,

friction*sharpness and cohesion*sharpness. Although the variability of the response

(relatively higher collapse multipliers for the higher values of the mentioned parame-330

ters combinations) is not as vissually obvious as for the cohesion*slenderness combi-

nation, it could be considered that these three two-way terms affect the response in a

significant way as well.

To verify the assumptions adopted after the visual examination of Figures 10 and

11, the collapse multipliers obtained were analysed through an analysis of variance335

(ANOVA). Table 2 presents the ANOVA results performed using the software Minitab R©

(https://www.minitab.com/en-us/). In the first column of Table 2 the sta-

tistical model terms are identified by their names, in the second column the degrees

of freedom (DoF) of every term are presented, in the third column the adjusted sum

of squares (Adj SS) corresponding to every term are shown and in column four the340

adjusted mean squares (Adj MS) are listed. In the fifth column of the ANOVA table we

can see the value corresponding to the F statistical test and finally, in the last column of

Table 2, the corresponding P-Values to each term are presented. At a confidence level

of 95%, the terms with a P − V alue < 0.05 are considered to be statistically signifi-

cant. Thus, besides from the cohesion*friction and the sharpness*slenderness two-way345

interaction terms, the rest of the terms in the statistic model adopted are considered to

have a significant effect in the response of the pointed arches studied.

Moreover, the magnitude and importance of each one of the main factors and fac-

tor interaction effects were obtained. In Figure 12 it can be seen that besides from
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Table 2: ANOVA table of the pointed arches under load scenario A.

Source DoF Adj SS Adj MS F-Value P-Value

Model 47 104.754 2.2288 979.62 0.000

Linear 10 96.165 9.6165 4226.73 0.000

Cohesion 2 83.457 41.7287 18340.95 0.000

Friction 3 0.182 0.0607 26.66 0.000

Sharpness 2 0.186 0.0929 40.85 0.000

Slenderness 3 12.340 4.1133 1807.91 0.000

Two-Way Interactions 37 8.588 0.2321 102.02 0.000

Cohesion*Friction 6 0.024 0.0040 1.76 0.115

Cohesion*Sharpness 4 0.115 0.0289 12.68 0.000

Cohesion*Slenderness 6 8.238 1.3729 603.45 0.000

Friction*Sharpness 6 0.133 0.0222 9.76 0.000

Friction*Slenderness 9 0.061 0.0068 2.98 0.004

Sharpness*Slenderness 6 0.017 0.0028 1.24 0.295

Error 96 0.218 0.0023

Total 143 104.972

DoF=Degrees of freedom, Adj SS= Adjusted sum of squares, Adj MS = Adjusted mean of

squares.

the cohesion*friction and the sharpness*slenderness, all other terms on the statistical350

model resulted to have a significant effect in the response (as they all have a standard-

ized effect value greater than the significance threshold of 1.985). All single parameter

terms along with the two-way cohesion*slenderness interaction term were the terms

of the model with a higher influence in the collapse multiplier value of the simulated

values. These terms are followed in order of importance by the friction*sharpness and355

cohesion*sharpness terms, and finally by the friction*slendernes two-way interaction

effect.

Regarding the suitability of the adopted statistical model to describe the response,

the values of the coefficient of determination, R2 and of the predicted coefficient of

determination, R2
pred, obtained were of 99.79% and 99.53% respectively. This proves360

18



the good fit and the high prediction capabilities of the model adopted and allows to

maintain the cohesion term of the statistical model as linear.

The data independence and data normality assumptions were visually validated

by analyzing the standardized residual plots of the response, αc, its histogram and its

normal probability plot. In the normal probability plot of Figure 13 (upper right plot) it365

could be observed that most of the points were relatively close to the diagonal line and

only a few outliers were present (one observation with a standardized residual value

smaller than three and three observation with a value greater than three), which did not

affect significantly the validity of the statistical model adopted. Furthermore, it could

be observed that the histogram on Figure 13 resembles to a Gauss distribution and that370

no clear structure is present on the Versus Fits nor on the Versus order plots of the

standardized residuals in Figure 13.

4.2.2. Collapse multipliers under load scenario B

As per the pointed arches subjected to a load scenario A, similar data was ob-

tained and analyzed per the pointed arches under load scenario B. The main effect375

plots are shown in Figure 14 and the two-way interaction plots are presented in Figure

15. Table 2 presents the ANOVA results and Figure 16 the Pareto chart of standardized

effects.

From Figure 14 it can be observed that both cohesion and slenderness have a strong

positive relationship with the response, namely the higher the cohesion or the slen-380

derness, the higher would be the value of αc. The friction ratio parameter presents

a relatively weak positive relation with the response. Finally, the live load location

parameter plays an important role in the collapse multiplier value obtained from the

pointed arches simulated under load scenario B. It can be observed that the closer the

live load is applied to the key stone (see Figure 4), the lower will be the collapse mul-385

tiplier obtained. From the curves of Figure 14 it can be seen that there is a non-linear

relation between slenderness and live load location with the response of the pointed

arch under load scenario B. Unfortunately, the terms for the individual parameters in

the statistical model adopted are linear and this has cause some low values for the suit-

ability, R2 = 83.57%, and the prediction,R2
pred = 66.77%, capabilities of the adopted390
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Table 3: ANOVA table of the pointed arches under load scenario B.

Source DoF Adj SS Adj MS F-Value P-Value

Model 56 7609438 135883 12.26 0.000

Linear 11 3825111 347737 31.38 0.000

Cohesion 2 1282242 641121 57.86 0.000

Friction 3 27056 9019 0.81 0.488

Slenderness 3 1297822 432607 39.04 0.000

Live load 3 1217991 405997 36.64 0.000

Two-Way Interactions 45 3784327 84096 7.59 0.000

Cohesion*Friction 6 5094 849 0.08 0.998

Cohesion*Slenderness 6 890816 148469 13.40 0.000

Cohesion*Live load 6 753611 125602 11.34 0.000

Friction*Slenderness 9 47035 5226 0.47 0.892

Friction*Live load 9 33687 3743 0.34 0.961

Slenderness*Live load 9 2054084 228232 20.60 0.000

Error 135 1495795 11080

Total 191 9105233

DoF=Degrees of freedom, Adj SS= Adjusted sum of squares, Adj MS = Adjusted mean of

squares.

statistical model. The statistical model could be further improved through a parameter

transformation (adopting quadratic or exponential terms for the mentioned parameters)

but that is outside the scope of this paper.

From the two-way interaction curves of Figure 15 it can be observed that cohe-

sion*slenderness, cohesion*live load and slenderness*live load parameter interactions395

have a statistically significant effect of the response of pointed arches under load sce-

nario B. The values obtained for the response changes significantly for the different

parameter combinations mentioned (similar < α > values for the lower values of

cohesion and slenderness regardless of the value of the second parameter, whereas rel-

atively significant variation on the 〈αc〉 values for the higher values of cohesion and400

slenderness). The response values obtained for the two-way cohesion*friction term are
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practically identical for all different parameter combinations and although clear higher

response values are obtained for the two-way friction*slenderness and friction*live

load interaction for the cases of slenderness equal to 0.25 and live load applied at

voussoir 8 respectively, this wouldn’t be enough to consider that this interaction terms405

had a significant effect on the response. Moreover, these visual assumptions are rein-

forced by the results obtained from the ANOVA analysis of the 〈αc〉 values obtained.

It can be seen in Table 3 that not only the cohesion*friction two-way interaction term

is not statistically significant, but the friction*slenderness and the friction*live load

are as well considered as not statistically significant. Finally, in Figure 16 it can be410

seen that cohesion, slenderness and live load location parameters along with the co-

hesion*slenderness, slenderness*live load location and cohesion*live load location are

the terms of the statistical model adopted which have a significant effect in the value of

the collapse multiplier obtained for pointed arches under load scenario B.

The data independence and data normality assumptions were unfortunately not sat-415

isfied by the statistical model adopted. From the histogram presented in Figure 17, a

certain degree of skewness is clearly observed. This observation, along with the pres-

ence of several outlier points in the standardized residual plots of Figure 17, reinforce

the evidence observed regarding the non-linear relation between the parameters studied

and the response of pointed arches under load scenario B and suggests that a parameter420

transformation (adoption of quadratic or exponential terms for the cohesion, slender-

ness and live load location terms) may be necessary in order to improve the quality of

the statistical assessment of the results obtained for pointed arches under load scenario

B.

5. Conclusions425

The parametric analysis presented in this paper allowed to objectively identify the

effect that slenderness, sharpness, friction ratio, cohesion and live load location param-

eters have in the collapse multiplier value and in the collapse mechanism of a masonry

pointed arch using a non-standard limit analysis approach. The main findings drawn

from this work are:430
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• Three different collapse mechanisms were observed for the studied pointed arched

subjected to load scenario A: pure rotation, pure shearing and combined rotation-

shearing mechanisms. On the other hand, only pure rotation and combined

rotation-shearing mechanisms were obtained for the pointed arches subjected

to load scenario B.435

• Contrary to what has been previously pointed out by several authors, no statisti-

cally significant effect was found for the two-way sharpness*slenderness param-

eter on the response of pointed arches.

• The mechanical parameters studied play an important role in the value of col-

lapse multipliers computed for the case of pointed arches subjected to load sce-440

nario A, whereas that only cohesion resulted to be statistically significant for the

case of pointed arches subjected to load scenario B.

• Pointed arches can sustain larger concentrated loads if they are applied closer to

the arch aunches than to its keystone.
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(a) Live load applied to block 8, αc = 32.25203. (b) Live load applied to block 10, αc = 19.74183.

(c) Live load applied to block 12, αc = 13.30609. (d) Live load applied to block 14, αc = 9.20905.

Figure 9: Effect of the live load location parameter on the collapse mechanisms under load scenario B.
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Figure 10: Main effect plots for load scenario A.
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Figure 11: Interaction effect plots for load scenario A.
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Figure 12: Pareto chart of the standardized effects: magnitude and importance of the different main factors

and factor interactions effects for load scenario A.
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Figure 13: Normal probability, histogram and standardized residual plots for the pointed arches under load

scenario A.
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Figure 14: Main effect plots for load scenario B.
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Figure 15: Interaction effect plots for load scenario B.
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Figure 16: Pareto chart of the standardized effects: magnitude and importance of the different main factors

and factor interactions effects for load scenario B.
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Figure 17: Normal probability, histogram and standardized residual plots for the pointed arches under load

scenario B.
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