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In this article, we review previous work on biometric security 
under a recent framework proposed in the field of adversarial 
machine learning. This allows us to highlight novel insights on 
the security of biometric systems when operating in the pres-
ence of intelligent and adaptive attackers that manipulate data 

to compromise normal system operation. We show how this frame-
work enables the categorization of known and novel vulnerabilities 
of biometric recognition systems, along with the corresponding 

attacks, countermeasures, and defense mechanisms. We report two 
application examples, respectively showing how to fabricate a more 
effective face spoofing attack, and how to counter an attack that 
exploits an unknown vulnerability of an adaptive face-recognition 
system to compromise its face templates. 

INTRODUCTION
Adversarial machine learning is a novel research field that was born 
in response to the increasing use of pattern recognition and 
machine-learning techniques, including signal processing ones, in 
security-related applications such as biometric identity recognition, 
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spam, and malware detection. In these applications, intelligent and 
adaptive adversaries are interested in subverting system operation; 
e.g., nonauthorized users may aim to gain access to a resource 
secured by a biometric identity recognition system. Despite the fact 
that pattern recognition and machine-learning algorithms have 
enabled the development of more effective recognition systems, they 
have not been originally designed to operate in adversarial settings. 
In particular, their underlying assumption of data stationarity (i.e., 
that training and testing data follow the same distribution) is likely to 
be violated in adversarial environments. As a consequence, these 
algorithms can introduce additional, specific vulnerabilities that can 
be exploited by carefully crafted attacks to cause different security 
violations, including denial of service and missed detection of intru-
sive attempts. This may eventually compromise the whole system 
security. Even if countermeasures and novel algorithms have been 
proposed to improve security against these sophisticated attacks, 
they will not stop adversaries from developing novel ways of mislead-
ing such defense systems, engendering a long-lasting arms race. 

To date, research efforts in adversarial machine learning have 
focused on identifying different kinds of potential attacks against 
machine-learning and pattern recognition algorithms, and devel-
oping the corresponding countermeasures to improve robustness 
in adversarial settings [1]–[4]. According to the security-by-design 
paradigm, ongoing work is also addressing the issue of extending 
learning theory and methods to explicitly account for the presence 
of malicious adversaries that can undermine algorithm operation; 
e.g., in [2] and [3], traditional performance evaluation methods 
have been extended to allow for a systematic evaluation of the secu-
rity of pattern classifiers in adversarial settings, providing a better 
understanding of the system performance both in the absence and 
in the presence of well-crafted attacks. The relevance of these issues 
is also witnessed by an increasing number of publications and 
events, e.g., the Neural Information Processing Systems Workshop 
on Machine Learning in Adversarial Environments for Computer 
Security [5] and the more recent Dagstuhl Perspectives Workshop 
on Machine-Learning Methods for Computer Security [6]. 

Biometric identity recognition is a clear example of a wide-
spread and still growing application field in which security is a key 
issue and pattern recognition techniques play a major role. Differ-
ent vulnerabilities of biometric systems, specific attacks that can 
exploit them, and corresponding countermeasures have been ana-
lyzed in the literature [7], [8] and in research projects. For 
instance, the recent EU FP7 Tabula Rasa project has carried out an 
extensive analysis on spoofing attacks (i.e., attacks involving the 
submission of a fake biometric trait, like a gummy finger, to imper-
sonate an authorized user), and on the development of possible 
countermeasures, like liveness detection techniques. Moreover, 
several approaches for the analysis and assessment of biometric 
systems security have been proposed; see, e.g., the ISO/IEC 
19792:2009 implementation specifics for the security evaluation of 
biometrics, and the National Institute of Standards and Technology 
Common Criteria for Information Technology Security Evaluation. 
However, all existing efforts disregarded the potential, specific vul-
nerabilities introduced by pattern recognition algorithms used in 
biometric systems, and thus the investigation of the corresponding 

attacks and countermeasures. We argue that looking at biometric 
system security from the perspective of adversarial machine learn-
ing not only provides an original categorization of existing attacks 
against such systems, but it also allows us to consider more sophis-
ticated attacks targeting vulnerabilities of the learning algorithms 
used in these systems, along with the countermeasures already 
proposed in the field of adversarial machine learning. 

Based on the above motivations, in the following we first provide  
a concise overview of adversarial machine learning, to introduce 
kindly the readers to this recent research field; we use popular 
attacks against biometric systems, such as spoofing attacks, as run-
ning examples to make our explanation clearer. We then review the 
security of biometric identity recognition systems by showing how 
recent theoretical results and systematization efforts from this field 
enable: 1) the definition of a more complete taxonomy of attacks 
against biometric systems, based on a formal attacker’s model explic-
itly accounting for her knowledge and capability, which allows one to 
identify novel attack scenarios associated to specific vulnerabilities of 
machine-learning and pattern recognition algorithms, besides 
encompassing known attacks; and 2) the design of the corresponding 
countermeasures, building on solutions proposed in adversarial 
machine learning, which can give rise to the design of novel, secure-
by-design algorithms capable of improving adversarial biometric 
identity recognition. We finally discuss two application examples of 
the possible aforementioned achievements. We first show how a 
skilled attacker may fabricate more effective face-spoofing attacks, 
and then highlight a new vulnerability of adaptive biometric systems, 
devising the corresponding attack and a possible countermeasure. 

The main goal of this article is to provide the readers of this 
magazine, and researchers in biometrics, a gentle introduction to 
adversarial machine learning, and a well-structured review of the 
state of the art on biometric security in light of the most recent 
findings in the area of adversarial machine learning. 

ADVERSARIAL MACHINE LEARNING: AN OVERVIEW
During the last several decades, the increasing variability and 
sophistication of attack threats, in response to the growing com-
plexity and amount of vulnerable attack points in security systems, 
has favored the adoption of machine-learning and pattern recogni-
tion techniques to timely detect variants of known and never-
before-seen attacks. These techniques can, however, exhibit 
intrinsic vulnerabilities that can be exploited by skilled attackers, 
perpetuating their arms race against system designers. Adversarial 
machine learning aims at countering this phenomenon by focus-
ing on vulnerabilities of learning algorithms. It attempts to antici-
pate the adversary’s strategy by identifying novel threats and 
devising the corresponding countermeasures before system deploy-
ment. In practice, it follows a proactive rather than a reactive 
approach. The first step toward the aforementioned goal has been 
the proposal of a taxonomy categorizing attacks against learning 
algorithms along three axes [1], [2]: 1) the attack influence, which 
can be exploratory, if the adversary can only manipulate the testing 
data, or causative, if she can modify also the training data; 2) the 
attack specificity, which ranges from targeted to indiscriminate, 
depending on whether the classification of a set of specific samples 
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or any of them is affected by the attack; 3) the security violation, 
which can be an integrity violation, if the adversary is allowed to 
access a restricted service or resource (e.g., an impostor gaining 
access to a genuine client’s account [3], [9]); an availability viola-
tion, if legitimate users are denied access or normal system opera-
tion is compromised (e.g., misclassifying legitimate e-mails as 
spam); and a privacy violation, if the adversary is able to exploit 
confidential information about the system (e.g., the clients’ tem-
plates in a biometric recognition system [10]–[12]). 

To date, several vulnerabilities and attacks against different learn-
ing algorithms (e.g., support vector machines and neural networks) 
have been investigated, along with the proposal of possible counter-
measures [13]–[15]. We will summarize the main existing counter-
measures in the remainder of this article, discussing how they can be 
exploited to improve the security of machine-learning algorithms 
used in biometric systems. In particular, to anticipate the adversary’s 
strategy, the existing work in adversarial learning simulates attacks, 
based on more or less explicit models of the adversary. We recently 
formalized this approach within a general framework, proposing a 
formal model to characterize the adversary’s behavior [3], [4]. We 
summarize our model next and exploit it in the remainder of this 
article to characterize and understand security of biometric systems 
under an adversarial machine-learning perspective. 

Our model generalizes and encompasses other models pro-
posed in the area of adversarial machine learning [1], [2], making 
explicit assumptions on the attacker’s goal, knowledge of the tar-
geted system, and capabilities of manipulating the input data or 
the system’s components. 

The goal has to be defined according to the desired security 
violation and attack specificity. Knowledge of system components 
(e.g., the kind of decision function and its parameters, or how a 
component operates) can be perfect or limited, and feedback on 
the classifier’s decisions can also be exploited [13], [16], [17]. The 
capability is defined as the attack influence, based on how the 
adversary can affect training and testing data (e.g., which features 
can be manipulated and how, according to application-specific 

constraints). An attack strategy can be then defined based on the 
previous elements, to implement the attack. In formal terms, we 
assume the attacker’s goal to be quantified by a function ( , )g a i  
measuring the extent to which an attack strategy a  from a feasible 
strategy set A  fulfills the attacker’s goal. The feasible set A  has 
to be defined according to the attacker’s capability of manipulating 
the input data and system components, while the attacker’s 
knowledge is encoded by the parameter vector .di H  Under this 
setting, the optimal attack strategy corresponds to the solution of 
the following optimization problem: 

 ( ; ) .max
a g aAd i  (1)

Although this formulation may seem rather abstract at this 
stage, it enables us to consider trivial and sophisticated attacks 
under a consistent view, as shown in the remainder of this article. 

BIOMETRIC RECOGNITION SYSTEMS UNDER ATTACK
Biometric recognition systems operate either in enrollment or in 
recognition mode [8]. During enrollment, each client provides his 
biometric traits and identity, in the presence of a human supervi-
sor. A set of reference templates for each client is then stored in 
the template database along with the corresponding identity. Dur-
ing recognition, the biometric system is expected to recognize a 
previously enrolled client by comparing the submitted traits with 
those stored in the template database. Biometric systems may 
operate either in a verification or in an identification setting. In 
verification settings, biometric systems are often used to control 
access to protected resources, including confidential information 
or services. A user aiming to access them has to provide his/her 
biometric trait and claim an identity. The system then verifies 
whether the claim is genuine (i.e., the user’s identity is the 
claimed one) or not (i.e., the user is an impostor trying to imper-
sonate another client), and allows access only in the former case. 
This procedure is illustrated in Figure 1, which is general enough 
to also account for multibiometric systems; in this case, the fusion 

[FIG1] The architecture of a biometric verification system and corresponding attack points, highlighted with red-circled numbers. During 
verification, the image z Z!  (e.g., a face image) acquired by the sensor is processed by a feature extractor :Z X7z  to obtain a 
compact representation x X!  (e.g., a graph). The templates { }xck k

m
1=  of the claimed identity c  are retrieved from the template database, 

and compared to x  using a matching algorithm : .s RX X 7#  The resulting scores { ( , )}x xs c
k

k
m

1=  are combined by a fusion rule, producing 
an aggregated score ( )xsc  that expresses the degree to which x  is likely to belong to .c  The score ( )xsc  is then compared with a 
decision threshold tc  to decide whether the claim is genuine or impostor. If a template self-update is implemented, and ( )xsc  is not 
lower than a self-update threshold ,ci  one of the templates in { }xck k
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rule sc  should aggregate the matching scores coming from all 
biometric traits. In identification settings, instead, no identity 
claim is made: a user provides only the requested biometric trait 

,x  and the system is expected to correctly recognize the corre-
sponding identity among those in the template database, by 
matching x  against all the known clients’ templates; the corre-
sponding scores ( )xsc  are then sorted in descending order to pro-
vide a list of the most likely candidate identities. 

To account for natural changes of biometric traits over time 
(i.e., biometric aging), and changes in the environmental or acqui-
sition conditions during verification, adaptive biometric systems 
have been proposed. They enable an update of the stored templates 
automatically during verification [18], [19]. A popular technique is 
template self-update: if the submitted trait is sufficiently similar to 
the reference templates of the claimed identity, one of such tem-
plates is updated by exploiting information coming from the sub-
mitted trait, according to a given policy. A simple update policy is 
called nearest-out self-update, as it replaces the most similar tem-
plate to the submitted trait with the latter [20], [21]. 

THE ATTACK SURFACE
Previous work has identified the main attack points and vulnerabili-
ties of biometric recognition systems, along with the corresponding 
attacks [7], [8]. First, any system is subject to intrinsic failures not 
produced by adversarial attempts, i.e., rejected genuine claims and 
accepted zero-effort impostors (i.e., impostors that do not exert any 
special effort to intrude). Besides this, a number of adversarial attacks 
have been also considered in early work, leading to the identification 
of eight potentially vulnerable attack points highlighted by the red-
circled numbers 1–8 in Figure 1 [7]. Additionally, we consider points 
9–11: they correspond to vulnerabilities of adaptive biometric sys-
tems that update clients’ templates during operation, which we 
recently exploited to implement a template poisoning attack [20], 
[21]. The set of all attack points defines the attack surface of a bio-
metric recognition system. The corresponding attacks can be catego-
rized into four main groups according to the targeted system 
component [8]: 1) attacks to the sensor (point 1), 2) to interfaces and 
channels connecting different modules (points 2, 4, and 7), 3) to pro-
cessing modules and algorithms (points 3, 5, and 8–11), and 4) to the 
template database (point 6). We discuss them below, along with the 
corresponding countermeasures proposed so far, which are also 
summarized in Table 1. It is also worth mentioning here a special 
category of attacks, known as insider attacks, where the attacker is 

colluded with a system administrator or exercises coercion to esca-
late privileges [8]. 

Spoofing attacks consist of fabricating a fake biometric trait to 
impersonate an enrolled client. They target the sensor (point 1), so 
they are also referred to as direct attacks. Current defenses are 
based on liveness detection methods, which aim to verify whether 
the submitted trait is “alive” or “fake” by looking at specific pat-
terns (e.g., perspiration patterns during fingerprint acquisition, or 
eye blinking during face verification). Multibiometric systems 
have been also proposed as a defense; however, to avoid spoofing 
them by only using a single fake trait, the matching scores coming 
from the different traits should be properly combined, using a 
secure score-level fusion rule [9], [22]. 

Replay attacks can be staged at interfaces between modules by 
replaying a stolen image of the biometric trait of the targeted client 
to the feature extractor (point 2), or directly the corresponding fea-
ture values to the matcher (point 4). An attacker may even replay a 
signal to replace the features of a given template of the claimed iden-
tity (point 7). This attack can be clearly staged if the corresponding 
communication channels are insecure, but also over encrypted chan-
nels, as the encrypted signal can be stolen and replayed into the 
channel directly. This can be avoided by encrypting a time stamp into 
the signal, or using challenge-response mechanisms. Another possi-
ble countermeasure is physical isolation, to avoid sending data over 
insecure channels (e.g., the Internet) subject to man-in-the-middle 
attacks. A popular example of physical isolation is the use of smart 
cards performing match-on-card operations. However, this tech-
nique has its own disadvantages, including limitations in terms of 
computational resources and memory, and the fact that the user 
should always use the smart card to be authenticated [8]. 

Hill-climbing attacks, similarly to replay ones, affect insecure 
communication channels between modules, and, in particular, 
points 2 and 4 in Figure 1. Their goal is to reconstruct a template 
image by iteratively sending a bunch of slightly perturbed images to 
the feature extractor (point 2), or their features to the matcher 
(point 4), and retaining the one that maximizes the matching score 
( ),xsc  where x  is the current image (or set of features) submitted by 

the attacker. In practice, it is a gradient-ascent technique that 
approximates the gradient of ( )xsc  numerically. In this case, the 
attacker is assumed to be able to observe ( )xsc  for any queried 
image, which may only be feasible if the system provides (or leaks) 
such information. Besides the aforementioned channel protection 
schemes, an additional defense mechanism consists of quantizing 

[TABLE 1] THE CATEGORIZATION OF ATTACKS AND COUNTERMEASURES FOR BIOMETRIC SYSTEMS. FOR EACH ATTACK TECHNIQUE, 
WE ALSO REPORT THE TARGETED COMPONENT (ATTACK LOCATION) AND THE ATTACK POINT(S), ACCORDING TO FIGURE 1.

ATTACK TECHNIQUE ATTACK LOCATION ATTACK POINT(S) DEFENSE 
SPOOFING SENSOR 1 LIVENESS DETECTION, MULTIBIOMETRICS (SECURE FUSION) 
REPLAY INTERFACES/CHANNELS 2, 4, 7 ENCRYPTED CHANNEL, TIME STAMP, CHALLENGE-RESPONSE, 

PHYSICAL ISOLATION 
HILL CLIMBING INTERFACES/CHANNELS 2, 4 ENCRYPTED CHANNEL, TIME STAMP, CHALLENGE-RESPONSE, 

PHYSICAL ISOLATION, SCORE QUANTIZATION 
MALWARE INFECTION MODULES/ALGORITHMS 3, 5, 8–11 SECURE CODE, SPECIALIZED HARDWARE, ALGORITHMIC INTEGRITY 
TEMPLATE THEFT, SUBSTITUTION, 
AND DELETION 

TEMPLATE DATABASE 6 TEMPLATE ENCRYPTION, CANCELABLE/REVOKABLE TEMPLATES 
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the matching score to provide less accurate information to the 
attacker. However, attacks based on more sophisticated black-box 
optimization techniques, suited to quantized objective functions, can 
also be considered to make these countermeasures ineffective [10]. 

The algorithmic implementations of the software modules 
(points 3, 5, and 8–11) may exhibit vulnerabilities that can be 
exploited by a skilled attacker through well-known hacking tech-
niques (e.g., buffer overflow), to install malicious software, i.e., mal-
ware, including worms, trojan horses, etc. This threat can be 
avoided or mitigated by exploiting well-known programming prac-
tices, like secure code programming, or using specialized hardware 
to perform some critical operations [8]. A secure programming 
practice is to check algorithmic integrity, i.e., that each algorithm 
and function correctly handles any input parameter and never 
shows any unexpected behavior. For instance, if the matching 
algorithm expects a vector x Rd!  as input, and instead receives 
an input with a different format, is it going to crash or provide an 
output anyway? In the latter case, how is such an output handled 
by the subsequent modules? Does it lead to accepting by error the 
given claim as genuine or not? 

Template theft, substitution, and deletion attacks target the 
template database (point 6). If templates are not protected properly, 
one may be able to steal them, and use them to create a spoof (i.e., 
a fake template), to perform a replay attack, or to impersonate the 
targeted client on a different system and perform other operations, 
e.g., searching on protected databases (function creep) [8]. Another 
possibility is to replace a template to impersonate a client without 
requiring any sophisticated attack as spoofing or replay; e.g., an 
attacker may add his own fingerprint template to the set of tem-
plates belonging to another client. Additionally, templates of a 
given client can be deleted to cause a denial of service, i.e., to avoid 
the targeted client to be recognized successfully. Countermeasures 
include template encryption, and also the use of cancelable/revoka-
ble templates, which can be used only on a specific system and reis-
sued if stolen. The idea is to encode the templates using a key or 
pin code that can be changed to re-enroll the user and create a 
novel, different encrypted template [8]. 

ADVERSARIAL BIOMETRIC RECOGNITION
Here we analyze biometric system security in terms of our previ-
ously discussed framework by making assumptions on the adver-
sary’s goal, knowledge, capability, and attack strategy that are 
suited to biometric applications. Our aim is threefold: 1) to pro-
vide a well-structured categorization of the vulnerabilities of bio-
metric systems and of the corresponding attacks, also through the 
definition of different, pertinent attack scenarios; 2) to provide a 
formal characterization of existing attacks within our framework 
and envision more sophisticated and effective attack strategies; 
and 3) to identify suitable countermeasures and defenses inspired 
by previous work on adversarial machine learning. 

 ■ Adversary’s goal: It is defined in terms of security violation 
and attack specificity. Biometric system security can be vio-
lated by an attacker that aims at impersonating a genuine user 
(integrity violation); at compromising the template galleries of 
genuine users to deny them access to the system, causing a 

denial of service (availability violation); or at violating the pri-
vacy of genuine users, e.g., by inferring their templates 
through a hill-climbing attack (privacy violation). The attack 
specificity can be targeted, if the attack targets a specific set of 
clients, or indiscriminate, if any client may be affected. 

 ■ Adversary’s knowledge: It is defined by leveraging on the defi-
nition of the attack surface of biometric systems given in the pre-
vious section by making specific assumptions on what the 
attacker knows of the system components and how they work. 
According to Figure 1 and Table 1, the attacker may know 1) the 
kind of sensor used (point 1), e.g., an optical or capacitive finger-
print sensor; 2) which interfaces/channels are used to implement 
connections (points 2, 4, and 7), e.g., if an insecure channel over 
the Internet is used to send the acquired images to the feature 
extractor (point 2); 3) how the modules/algorithms work, and 
whether they are vulnerable or not (points 3, 5, and 8–11), in par-
ticular, the feature mapping z  (point 3), the matching algorithm 
s  (point 5), the decision threshold tc  (point 8), the fusion rule sc  
(point 9), and, if the template update is implemented, the self-
update threshold ci  (point 10) and the template update policy 
(point 11); and 4) some of the templates stored in the template 
database (point 6). The attacker may also be able to collect images 
of the same biometric traits using other techniques; e.g., acquir-
ing latent fingerprints, or collecting face images of the targeted 
clients from social networks. From a machine-learning perspec-
tive, this amounts to having different levels of knowledge of the 
classifier’s training data. In practice, it is worth noting that 
attackers  typically have limited knowledge of the sensors and 
algorithms used, of the users’ templates, and of any other system 
components (e.g., communication channels, template encryption 
schemes, etc.). Several previous works have, however, considered 
vulnerabilities of biometric systems without clearly pointing out 
the underlying assumptions on the adversary’s knowledge 
required to perform the corresponding attack. Under our frame-
work, such assumptions become clearly explicit. 

 ■ Adversary’s capability: This can also be defined in terms of 
the attack location: 1) the sensor (point 1); 2) interfaces/chan-
nels (points 2, 4, and 7); 3) the internals or even the output of 
modules and algorithms (points 3, 5, and 8–11), e.g., through 
malware infection attacks; and 4) the template database (point 
6). In addition, one has to define the attack influence, i.e., the 
capability of manipulating the input data (e.g., using fake bio-
metric traits), and how such data may be used to update the 
system (e.g., in adaptive biometric systems the attacker can pro-
duce spoofing attacks that can subsequently poison the clients’ 
templates [20], [21]). Accordingly, the attack can influence only 
verification, or also enrollment/update. 

 ■ Attack strategy: According to the adversary’s goal [generally 
expressed in terms of an objective function ( ; ) ,]g a i  knowledge 
(given in terms of the parameter vector )di H  and capability 
(which defines the feasible set of attack strategies ),a A!  an 
optimal attack strategy can be defined to implement the attack, 
as explained before; see (1). For instance, assume that the 
attacker aims to impersonate an enrolled client (integrity tar-
geted attack), and she is only able to acquire a latent fingerprint 



 IEEE SIGNAL PROCESSING MAGAZINE [36] SEPTEMBER 2015

of the client, without having any other knowledge of the system 
components and algorithms. Then, the corresponding optimal 
attack strategy amounts to fabricating a fake fingerprint that is 
as similar as possible to the latent one, and using it to perform a 
spoofing attack. In this case, ( ; )g a i  can be regarded as a mea-
sure of the similarity between the fake and the latent finger-
print, as i  only contains information related to the latent 
fingerprint, and a  corresponds to the fake fingerprint. A more 
skilled attacker may, however, also know the matching algo-
rithm s  and the fusion rule sc  used by the system, and may be 
able to collect more than a single fingerprint image of the tar-
geted client. As an application example of our framework, we 
will show that, under this setting, more sophisticated and effec-
tive spoofing attacks can be fabricated. As another application 
example, we will also consider a poisoning attack against an 
adaptive face verification system and propose a novel counter-
measure based on the sanitization of the client’s templates. 
In the following, we define a set of representative attack 

scenarios to categorize known attacks according to our frame-
work. The framework and the considered attack scenarios are 
also represented in Figure 2. 

CATEGORIZATION OF BIOMETRIC ATTACK SCENARIOS
Previous work has categorized attacks to biometric systems and 
countermeasures simply in terms of the attack points of Figure 1 
(e.g., spoofing attacks to the sensor, countered by liveness detection 

techniques, and attacks to a compromised channel, countered by 
channel encryption). Instead, looking at them from the broader 
perspective opened by our framework allows us to identify three 
main attack scenarios, described in the following, in which the 
attacks and countermeasures discussed in the previous sections 
play different roles. A few examples of known attack and defenses 
are categorized in Table 2 in terms of these attack scenarios. This 
also clears the way both to identify novel, more sophisticated 
attacks against biometric systems, and to adapt the corresponding 
countermeasures from the adversarial learning field. 

EVASION
The goal of this attack scenario is to impersonate a client (integrity, 
targeted/indiscriminate attack). To this end, knowledge of the client’s 
biometric trait is required, e.g., to create a fake trait or to carry out a 
replay attack. Attacks exploiting perfect knowledge of the targeted cli-
ent’s biometric trait include the so-called consensual method (in 
which the targeted client voluntarily provides the required biometric 
trait to the attacker), and template stealing. Conversely, exploiting a 
latent fingerprint is an example of limited knowledge, since the 
attacker may only partially know or observe the required biometric 
trait. A limited knowledge about the rest of the biometric system can 
also be sufficient. In this scenario, the capability of the attacker con-
sists of manipulating data during the verification step, whereas no 
influence on the enrollment/update step is assumed (in particular, 
she can not access the template database). Most frequently, the attack 
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[FIG2] A conceptual representation of the adversary model and of the main attack scenarios (given in terms of the corresponding 
security violation and attack specificity) according to our framework.

[TABLE 2] EXAMPLES OF CATEGORIZATION OF PREVIOUS WORK ON BIOMETRIC SECURITY ACCORDING TO THE THREE MAIN 
ATTACK SCENARIOS DEFINED IN ADVERSARIAL MACHINE LEARNING: EVASION, POISONING, AND PRIVACY ATTACKS.

GOAL KNOWLEDGE CAPABILITY ATTACK 
 STRATEGY

VIOLATION SPECIFICITY INFLUENCE LOCATION 

EVASION ATTACKS
MATSUMOTO et al. [23], 
RODRIGUES et al. [9], 
JOHNSON et al. [24] 

INTEGRITY TARGETED, 
 INDISCRIMINATE 

PERFECT  
(CONSENSUAL FAKE) 

VERIFICATION SENSOR SPOOFING 

POISONING ATTACKS
BIGGIO et al. [21, 20] INTEGRITY,  

AVAILABILITY 
TARGETED, 
 INDISCRIMINATE 

PERFECT, LIMITED 
(UNKNOWN TEMPLATES) 

ENROLLMENT/
UPDATE 

SENSOR SPOOFING (FACE) 

PRIVACY ATTACKS
ADLER [10], GALBALLY  
et al. [11], MARTINEZ  
et al. [12] 

PRIVACY TARGETED, 
 INDISCRIMINATE 

LIMITED  
(UNKNOWN TEMPLATES) 

VERIFICATION MATCHER HILL CLIMBING 
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strategy corresponding to an evasion attack consists of submitting a 
fake trait (spoof) to the sensor (point 1), or of replaying the acquired 
image (point 2) into the system. In rarer cases (disregarded here), the 
biometric system can be infected by malware, potentially allowing 
the attacker to arbitrarily manipulate the functionality or the output 
of any system component. 

POISONING
This nontrivial attack scenario has been originally defined in the con-
text of adaptive biometric systems in our previous work [20], [21], 
inspired by our adversarial learning framework, and by work on poi-
soning learning algorithms [1]–[4]. The goal of poisoning attacks can 
be either an integrity or availability security violation; it can be either 
targeted to a specific client, or indiscriminate (see the section “Poi-
soning Biometric Systems that Learn from Examples”). The adver-
sary’s knowledge can be perfect or limited, depending on whether 
each of the system’s components is exactly known to the attacker. 
More precisely, the attacker may have perfect (or limited) knowledge 
of each of the components discussed in Figure 1, including the tar-
geted clients’ templates, the matching algorithm, the template 
update algorithm, and the decision and update thresholds. The 
attacker’s capability consists of modifying the template database, 
either by directly manipulating it (e.g., through malware infection), 
or, more realistically, by submitting fake traits that are erroneously 
used to update the template gallery of a given client. In terms of 
security violation, an integrity violation thus amounts to replacing a 
victim’s template with an attacker’s template or to adding an attack-
er’s template in the victim’s gallery. This indeed allows the attacker to 
impersonate the victim without using any further spoofing or replay 
attack, but directly using her own biometric trait. The goal of an 
availability violation is to cause a denial of service, instead, by replac-
ing or compromising the majority of templates in the victim’s gal-
lery. This will indeed deny the victim access to the system. Under this 
setting, the attack strategy amounts to compromising the template 
gallery either by introducing an attacker’s template in the victim’s 
gallery (i.e., integrity violation), or by compromising the maximum 
number of victim’s templates (i.e., availability violation). If the tem-
plate database can not be compromised directly, the attacker can pro-
duce a well-crafted sequence of fake traits to gradually drift the 
victim’s template gallery toward the desired set of templates, while 
minimizing the number of fake traits required to complete the 
attack. An example of such an attack is given next. 

PRIVACY
In this case, the goal is to retrieve confidential information (i.e., 
one or more templates) about either a given set of clients (targeted 
attack) or about any client (indiscriminate attack). This is typically 
a preliminary step before performing another kind of attack (eva-
sion or poisoning), when no simpler way to retrieve information on 
the victims’ templates exists (e.g., acquiring a face image through a 
social network, or a latent fingerprint). To this end, the attacker can 
gain knowledge from the system’s feedback, e.g., the outcome of 
the verification decision (either accept or reject), or the score value 
( )xsc  (as in hill-climbing attacks). In common settings (i.e., disre-

garding cases like malware infection), the capability consists of 

sending a number of query images through a remote channel and 
observing the available feedback; e.g., if the sensor and the matcher 
are remotely operating, and interconnected through the Internet, 
an attacker may perform a man-in-the-middle attack and send 
replayed images through the channel. It is clear that the attack 
strategy in this case corresponds to an hill-climbing attack. 

SECURE-BY-DESIGN BIOMETRIC SYSTEMS
The considered adversary model can be exploited not only to pro-
vide a different categorization of known defense mechanisms for 
biometric recognition systems but also to identify novel counter-
measures among those proposed in adversarial learning, which can 
help countering attacks against machine-learning and pattern rec-
ognition algorithms used in biometric systems. We discuss them 
below, with reference to the three aforementioned attack scenarios. 

COUNTERING EVASION
In this scenario, the main attack strategies involve spoofing and 
replay. As reported in Table 1, the pertinent defenses are: liveness 
detection, multibiometric systems with secure score-level fusion 
rules, encrypted channels and time-stamp/challenge-response 
schemes, and physical isolation (e.g., match-on-smart-cards). Novel 
defense mechanisms can also be devised, inspired by the adversarial 
machine-learning field. In particular, to counter evasion attacks, 
one can consider secure learning techniques. They consist of modi-
fying existing learning algorithms (and developing novel ones) that 
explicitly take into account a specific kind of adversarial data 
manipulation. They follow the paradigm of security by design, 
which advocates that a system should be designed from the ground 
up to be secure. In the context of biometric systems, secure learn-
ing techniques can be exploited to design trainable score-level 
fusion rules, such as those based on game theory, or on the frame-
work of learning with invariances [14], [25]–[27]. Investigating this 
issue would be an interesting research direction for future work. 

COUNTERING POISONING
Spoofing and replay are the main attack strategies that are also under 
this scenario and, thus, the same defenses listed in Table 1 can be also 
exploited in this case. In addition, other countermeasures can be con-
sidered, among those proposed in adversarial learning, to improve the 
security of the training phase in the presence of poisoning, which may 
occur when the system is retrained on data collected during operation 
[15], [28]. These include secure learning (similar to countermeasures 
to evasion) and data sanitization. In a biometric system, the latter 
consists of detecting outlying template updates that may compromise 
the template gallery of a given client, e.g., by adding an impostor’s 
template to the targeted client’s gallery, or by replacing some of the 
client’s templates. We will give a concrete example of a novel defense 
based on template sanitization in the next section. We point out that 
these additional defenses can be considered complementary to those 
listed in Table 1, like liveness detection and channel encryption. 

PRESERVING PRIVACY
Known defenses that can be exploited against attacks targeting 
the template database are mainly based on template encryption 
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schemes [8] (Table 1). Score quantization has been also pro-
posed to counter hill-climbing attacks, but it has already been 
shown to be ineffective [10]. Moreover, attacks proposed in adver-
sarial learning have already been capable of reverse engineering 
the classifier by only exploiting only feedback on its decisions [16], 
[17]; thus, even by only looking at genuine or impostor classifica-
tions, an attacker may be able to successfully perform a hill-climb-
ing attack. Among the proposed countermeasures that have not 
yet been considered for biometric systems, it would be worth 
investigating in future work the ones based on randomization and 
disinformation. They follow the paradigm of security by obscurity, 
aiming to improve system security by hiding information to the 
attacker. They have been suggested in adversarial learning to counter 
reverse-engineering attacks. This can be achieved by denying access 
to the actual classifier or training data, and randomizing the classifi-
er’s output to give imperfect feedback to the attacker [1]–[4], [29]. 

APPLICATION EXAMPLES
Here we consider two application examples of our framework 
related to the development of sophisticated spoofing and poison-
ing attacks against face-verification systems, respectively. 

IMPROVED FACE SPOOFING FROM MULTIPLE FACES
Let us assume we are given a face verification system that authenti-
cates clients by matching the acquired face image against the tem-
plate gallery of the claimed identity (consisting of n  images 
acquired during enrollment), and then thresholding the corre-
sponding average score. According to the architecture depicted in 
Figure 1, we assume that our system maps the submitted face image 
z Z!  onto a reduced vector space X  using principal component 
analysis (PCA), and computes the matching score for client c  as 
( ) / ( , ),x x xns s1c ii

n
1=
=

^ h/  where ( , ) { },expx x x xs i i= - -  
and xi  is the ith  template of the claimed identity. We further 
assume the attack scenario detailed below. 

 ■ Adversary’s goal: The attacker aims to impersonate a tar-
geted client (integrity, targeted attack). 

 ■ Adversary’s knowledge: She is assumed to know 1) the fea-
ture extraction algorithm, 2) the matching algorithm ,s  
3) the fusion rule ,sc  and 4) a set of n  face images { }x j j

n
1=V  of 

the targeted client, different from those in the client’s template 
gallery (e.g., potentially collected from a social network). 

 ■ Adversary’s capability: She can only submit printed photos 
of faces to the sensor during verification. 

 ■ Adversary’s strategy: Under these assumptions, the attacker 
can approximate the score ( )xsc  computed by the targeted sys-
tem for the claimed identity c  using the collected face images 
of the victim, i.e., she can compute an estimate 
( ) / ( , ) .x x xns s1c jj

n
1=
=

t ^ h V/  Accordingly, the optimal attack 
strategy is given by: 

 ( ) ( , ),argmax x x xx s n s1*

x
c

j

n

j
1

= =
=

VU /  (2)

where scU  is the attacker’s goal function ( , )g a i  (1), and x*  is 
the attack sample that maximizes the objective in the PCA-
induced feature space. The above problem can be solved by a 
simple gradient-ascent algorithm, and the resulting attack sam-
ple x*  can then be projected back onto the space of face images 
Z  (where each feature corresponds to the gray-level value of a 
pixel) by inverting the PCA-induced mapping. This is also possi-
ble if more sophisticated matching algorithms and feature rep-
resentations are used, using well-crafted heuristics. Please refer 
to [21] for further details. 

An example of this improved spoofing technique on a simple 
case involving n 3=  templates is shown in Figure 3, where we 
also report the values of sc  for each of the client’s face images 
{ } .x j j

n
1=V  It can be seen that the final attack face x*  yields a higher 

probability (i.e., sc  value) of successfully impersonating the victim 
than any of the available images { } .x j j 1

3
=V  

POISONING BIOMETRIC SYSTEMS  
THAT LEARN FROM EXAMPLES
We now report a different application example focusing on a poi-
soning attack against an adaptive face recognition system, and on 
the development of a corresponding defense. In recent work [20], 
[21], we have shown that an attacker may exploit the system’s 
adaptation mechanism to compromise the templates of a given 
client by presenting a well-crafted sequence of fake faces to the 
camera, with the goal of denying him access to the system. At the 
same time, if the attacker replaces the targeted client’s templates 
with her templates, she may also impersonate the client without 
presenting any fake traits to the sensor. 

The face verification system considered in this example, as in [20] 
and [21], authenticates clients based on matching the acquired face 
image with a stored average template, referred to as centroid. For 
each client, the centroid is updated using the self-update algorithm: 
if the submitted face image is similar enough to the centroid, the 

sc (x1) = 0.52 sc (x2) = 0.46 sc (x2) = 0.56 sc (x ∗) = 0.63

x1 x1 x2 x3x2 x3 x ∗

Template Gallery Spoofed Faces Attack Face

[FIG3] Face spoofing from multiple images. The client’s templates { } ,xi i 1
3
=  the spoofed faces { } ,x j j 1

3
=

W  and the final attack face x*  
[obtained from solving (2)] are shown, along with the corresponding sc  values.
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latter is updated incorporating the new image into the computation 
of the average face image. As in the previous case, we consider a PCA-
based mapping to map face images from Z  onto a reduced vector 
space .X  The matching score for client c  is computed here as 
( ) { },expx x xsc c

2= - -  where xc  is the client’s centroid. The 
centroid xc  is initially computed as the average of n  templates and, 
when ( ) ,xsc c$ i  updated as / ,x x x xn1c c c= + -l ^ ^h h  i.e., slightly 
drifted toward .x  Accordingly, in the PCA-based feature space, xc  is 
updated if the acquired image x  is within a hypersphere centered on 

,xc  with radius dc  dependent on the update threshold .ci  The com-
plete attack scenario is given next. 

 ■ Adversary’s goal: It is that of replacing the centroid xc  of a 
given client with an attacker’s template ,xa  both to deny 
access to client ,c  and to allow the attacker to impersonate c  
using her own face (i.e., a targeted attack violating both sys-
tem availability and integrity). 

 ■ Adversary’s knowledge: The attacker is assumed to know 
1) the feature extraction algorithm; 2) the matching algo-
rithm; 3) the template update algorithm; and 4) the decision 
and self-update threshold. In the case of perfect knowledge, 

she also knows the centroid xc  of the targeted client ,c  while 
when limited knowledge is considered, only a good estimate 
of xc  is available to the attacker, e.g., a frontal face image of 
the victim collected from a social network. 

 ■ Adversary’s capability: The attacker can modify the tem-
plate database by presenting fake faces at the sensor that 
enable template self-update. The attack influence is thus over 
the enrollment/update phase. 

 ■ Attack strategy: Under these assumptions, the shortest 
sequence of fake traits required to replace the victim’s centroid 
xc  with that of the attacker xa  can be found by solving the fol-
lowing optimization problem, for each sample x  in the attack 
sequence: ,min x xx a

2-  subject to the update condition 
x x dc c#-  [see Figure 4(a)]. At each iteration, this amounts 

to finding the closest attack sample to xa  that enables an update 
of .xc  The solution is simply given as ,x x d ac c= + v  where 

/x x x xa a c a c= - -v ^ h is the so-called attack direction. In 
practice, each attack sample x  is found at the intersection 
between the hypersphere corresponding to the update condition, 
and the line connecting xa  and .xc  As in the previous example, 
the face images for the attack sequence can be obtained by pro-
jecting the attack samples from the PCA-induced space X  onto 
the space of face images .Z  Then, the attacker can fabricate the 
corresponding fake faces (e.g., by printing them on paper), and 
present them in the right order to the sensor. An example of how 
the victim’s centroid is gradually updated by the corresponding 
sequence of attack faces, under the assumption of perfect 
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outside the sanitization hypersphere (dark gray area), as for the 
poisoning attack sequence (solid line), the centroid x( )

c
i k-  is 

restored; otherwise, as for the hypothesized genuine update 
sequence (dashed line), the center of the sanitization hypersphere 
is updated to x( )

c
i k 1- +  (red circled point). (b) GAR and FAR values 
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template sanitization, after different centroid updates, including 
genuine (“g”) and impostor (“i”) attempts, and poisoning attacks 
(“p”) with perfect knowledge.
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knowledge, and for ,n 5=  is given in Figure 4(b). In (c), we 
show how the GAR and FAR vary as the attack proceeds, under 
perfect and limited knowledge of the victim’s template. Note how 
the probability of authenticating the attacker (without presenting 
any fake face) as the victim (i.e., the FAR) increases, while the 
probability of correctly authenticating the victim as a genuine 
user (i.e., the GAR) decreases, since the victim’s template is grad-
ually morphed toward the attacker’s face while the attack is in 
progress. Results for the perfect and limited knowledge attacks 
are similar, despite the latter case requires more iterations (i.e., 
submitting more fake faces) to compensate the lack of knowledge 
of the victim’s template. The exact number of iterations required 
to complete both attacks can also be analytically computed [21]. 

 ■ Template sanitization: Here we present a novel counter-
measure based on the idea of sanitizing the template gallery 
(i.e., identifying anomalous template updates), inspired by 
the countermeasures proposed in adversarial machine learn-
ing against poisoning attacks [1]–[4], [28]. 
 The underlying idea is to analyze whether the sequence of the 
most recent k  updated centroids , ,x x( ) ( )

c
i k

c
if-  (where i  denotes 

the current iteration) falls within a given region of the feature 
space, called sanitization hypersphere [see Figure 5(a)]. If the cur-
rent centroid x( )

c
i  falls within the sanitization hypersphere, i.e., if 

,x x d( ) ( )
c
i

c
i k

s#- -  then the center of the sanitization hyper-
sphere is updated to the next centroid in the sequence, i.e., 

;x( )
c
i k 1- +  otherwise, the current center of the sanitization hyper-

sphere x( )
c
i k-  is restored as the current centroid. In this case, an 

alert may be also (or alternatively) raised to the system adminis-
trator to report the anomalous update. The rationale of this 
approach is to identity sequences of centroid updates that consis-
tently drift the centroid toward a given, biased direction, within a 
small number of iterations (as it happens in the presence of a poi-
soning attack), assuming that genuine updates exhibit a different 
(i.e., less biased and more random) behavior. The parameter k  
and the hypersphere radius ds  of the proposed approach should 
thus be chosen such that ( / ),d k d ns c#  otherwise poisoning 
attacks will not be detected, as they drift the centroid of an 
amount equal to /d nc^ h at each iteration. 
 In Figure 5(b), we report an example using the same 
attacker and victim pair considered in the previous case. Ini-
tially, we simulate a number of random accesses to the sys-
tem, including genuine and impostor attempts, which do not 
significantly affect GAR and FAR. Then, the attacker launches 
a poisoning attack, and, as in the previous case, the GAR 
decreases and the FAR increases. If template sanitization is 
not implemented, the attack succeeds, and system integrity 
and availability are compromised. Conversely, in the presence 
of template sanitization, the attack is detected after four itera-
tions, and a previous centroid is restored. This avoids the 
attack to succeed, preserving normal system operation and 
security. Although this simple countermeasure can be misled 
by a poisoning attack in which the attack samples are closer to 
the current centroid (instead of lying exactly at the boundary 
of the feasible domain), this would require the attacker to per-
form a significantly higher number of iterations to complete 

the attack. We can thus conclude that the proposed sanitiza-
tion technique helps improving system security. 

SUMMARY AND OPEN PROBLEMS
In the last decade, the use of electronic devices in our daily lives has 
become increasingly pervasive, providing several advantages in man-
aging our tasks and communicating with other people. However, 
with such a huge number of powerful devices connected to the so-
called Internet of Things (e.g., smartphones, smart TVs, etc.), the 
number of potential attack points and vulnerabilities has significantly 
increased, as well as chances for attackers to compromise the corre-
sponding devices and systems. In addition, the level of sophistication 
of attacks has become increasingly higher over the years, witnessing 
the presence of very skilled attackers and strong economic incentives 
behind these activities. Biometrics can be considered a potential tool 
for improving the security of such systems in the digital era. How-
ever, besides having a strong deterrent effect, they should really be 
designed to be intrinsically secure, to successfully resist the very 
sophisticated attacks that may be incurred during operation. 

In this article, we have provided an overview of the current state 
of the art on biometric system security from a perspective inspired 
by the field of adversarial machine learning. We have discussed how 
this novel perspective may not only inspire the simulation of more 
sophisticated attack scenarios, but also how, based on such scenar-
ios, more effective countermeasures can be proactively developed. 
As concrete application examples, we have considered a sophisti-
cated spoofing attack and a poisoning attack against an adaptive 
face verification system in which the attacker gradually compro-
mises the template gallery of a given client by presenting a well-
crafted sequence of fake faces. We have also proposed a novel 
countermeasure based on template sanitization. Another example 
of how the proposed perspective based on adversarial machine 
learning may depict novel attack scenarios and inspire potential 
countermeasures is related to recent work in adversarial learning, 
which has shown that clustering algorithms may be significantly 
vulnerable to well-planned attacks [30]. In the biometric setting, 
similar attacks may target systems that perform template selection 
and update exploiting clustering algorithms. Although investigat-
ing and developing secure clustering algorithms against adaptive 
and intelligent attackers is still an open issue in the adversarial 
machine-learning field, the corresponding results may also inspire 
countermeasures that can be adapted to improve the security of 
template selection and update procedures in biometric systems. 
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