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abstract 7 

The effects of blast loading on structures can be very dangerous: damages and failures are expected 8 

with serious threats to structural safety and human life. Materials stresses and strains are often 9 

pushed to the limit and the modelling of these phenomena can be very complex. In order to design 10 

blast-resistant structures it is very important to determine what are the key parameters of this 11 

problem. 12 

This paper presents a reliability and parametric analysis of the response of Reinforced Concrete 13 

(RC) beams under blast loads. The main aim is to highlight the key parameters of the problem in 14 

order to produce information useful for the design of reliable blast-resistant RC structures. 15 

The beam has been idealised as an equivalent SDOF system, in which strain-rate effects are 16 

accounted for. This approach is convenient from a computational point of view and it has been 17 

validated by a direct comparison with a more sophisticated finite element model and with 18 

experimental results found in literature. Then a sensitivity analysis of the parameters involved in 19 

beam response under blast load has been developed. Slenderness (which has a direct effect on 20 

stiffness) and peak load prove to be the most important parameters, but span length (which has an 21 

important influence on the mass) is also a key parameter. Other variables such as concrete strength 22 

and reinforcement ratio do not seem to have a strong correlation with the beam response. 23 

keywords 24 

Structural failures, Explosion, Reliability analysis, Strain rate, Breaking load. 25 

 26 

1 Introduction 27 

 28 

Nowadays, the issue of structural safety under blast loading has become a dramatic problem. The 29 

tragic news of the terrorist attacks of recent years (9/11/2001, New York; 7/7/2005, London; 30 

7/23/2005, Sharm El Sheik; 20/09/2008, Islamabad 1/24/2011, Moscow; etc), raise important, 31 

urgent questions regarding the real safety and reliability of our buildings. Extreme loads such as 32 

impacts, explosions, etc., can occur in everyday life with unexpectedly high frequency. Actually, 33 

the problem of terrorist attacks, so important for strategic and military building design, has been 34 

linked to residential and industrial building explosion accidents.  35 

The effects of blast loading on structures can be very dangerous, damages and failures are expected 36 

with serious treats to structural safety and human life. Materials stresses and strains are often 37 

pushed to the limit and the modelling of these phenomena can be very complex. The peculiarities of 38 

damages induced by blast load can be treated as “fingerprints” and allow to estimate the load 39 

characteristics in a back analysis process. This issue is well presented in the review paper [ 1 ] 40 

where the explosion aftermath analysis can be synthetized by two main questions: what damage is 41 
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seen? What does the damage mean? In this way, important lessons can be learned also by real case 1 

studies: for example in [ 2 ] the real blast-induced collapse of bridge is investigated. Its failure was 2 

due to a firework explosion and important information about the explosive charge and its real 3 

location were assessed looking at the damages. 4 

As said before the structural response under blast load is not trivial. In the scientific literature 5 

several papers were devoted to the study of simple structural elements like beams and columns. The 6 

most elementary dynamic model consists of schematizing the beam with a Single Degree of 7 

Freedom (SDOF) system. This approach simplifies the theoretical formulation of the problem and 8 

its solution. It has a quite low computational cost but it usually requires the introduction of 9 

empirical formulas and, in addition, it does not provide full information on beam response.  10 

A first example of this approach is reported in the pioneering work by Frankland [ 3 ] which 11 

presents an early, simple model: purely undamped elastic SDOF. In a quite recent paper, [ 4 ], 12 

Morison distinguishes two main SDOF approaches: 13 

- Modal Method. 14 

- Equivalent SDOF Method 15 

The modal method was first presented in 1946 in the US Manual EM 1110-345-405, and, in 1965, 16 

re-issued as TM5-855-1 [ 5 ]. This method assumes that the elastic forced response of the real 17 

element is approximated by its first mode of free vibration. In case of elastic-pure plastic resistance 18 

function, the equation of motion can be solved in a closed-form, and referring to an idealised blast 19 

load, with triangular/rectangular time-history, maximum deflection can be easily calculated. 20 

In the fifties, knowledge in this field increased, and the elastic-plastic model was considered. In an 21 

early work, Seiler et al. [ 6 ] modelled, by means of SDOF, a simply-supported beam under 22 

impulsive loading. They assumed that the initial velocity was a half sine wave. In this case, a simple 23 

mass-spring system can model the behaviour of elastic-plastic and rigid-plastic beams in order to 24 

develop a comparison between the two approaches. Then, Brooks and Newmark, in [ 7 ], 25 

investigated numerous dynamic structural problems. In particular, Newmark [ 8 - 9 ] was an 26 

influential proponent of the modal method, having calculated several modal period formulas and 27 

corresponding stiffness and strength expressions. 28 

The equivalent SDOF method appeared in 1957 in the US Army Corps of Engineers manual: see     29 

[10 – 11]. This method relies on the calculation of SDOF parameters based on the equivalence of 30 

energy: the equivalent mass must have equal kinetic energy, the equivalent resistance must have 31 

equal internal strain energy and the equivalent loading must have equal external work to the real 32 

distributed element. These equivalent factors can be calculated for different structures with different 33 

boundary and loading conditions. A thorough presentation of this method is proposed in the well 34 

known Biggs book [ 12 ], which is a milestone for this kind of problems. 35 

Most of recent SDOF models (see [ 13 – 17 ]) are based on the latter approach, their reduced 36 

computational time is a key characteristics that makes them very convenient, in comparison with 37 

more advanced numeric and analytic models, when it is necessary to develop an high number of 38 

dynamic analyses. However when it necessary to have more information on the beam response (e.g. 39 

time history of the distribution of displacements and curvature along the span) Multi Degree Of 40 

Freedom (MDOF) and continuous beam models are more effective: see [ 18 – 23  ] for Timoshenko 41 

beam theory, and [ 24 ] for Euler-Bernoulli beam theory.  42 

Actually the development of numeric methods and in particular of Finite Element Analysis (FEA) 43 

has improved the reliability of this approach. In case of blast and impulsive loading a very efficient 44 

code is LS-Dyna which is considered as a standard for both concrete structures (e.g. [ 25 – 27 ]) and 45 
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steel structures (e.g. [ 28 ]). Furthermore some very interesting papers dealing with blast effects on 1 

glass structures and their design have been recently published by Amadio and Bedon: [ 29 – 31 ]. 2 

Experimental test of reinforced concrete elements subjected to blast load are of paramount 3 

relevance to set benchmark data necessary to validate the numerical model, however they are costly 4 

and difficult to carry out. In addition the spread of these results is often limited for defence 5 

purposes. Thus field results published in the international scientific literature are very important. 6 

Magnusson et al. ([ 32 – 36 ]) subjected many reinforced concrete beams, with or without steel 7 

fibres, to air blast loading using a shock tube. One of the main important results is that the beams 8 

with a high reinforcement ratio and without steel fibres failed in shear, while those with a low 9 

reinforcement ratio failed in flexure. In addition, an explicit non-linear numerical model is 10 

developed in [ 37 ] with the aim of interpreting and describing the above mentioned experimental 11 

results. The effects of explosion on reinforced concrete beams strengthened by carbon fibres 12 

polymers was studied also in [ 38 ] by Hudson and Darwin.  13 

It is important to mention also the experimental works by Remennikov et al [ 39 ], Fujikake et al     14 

[ 40 ], Zhan et al [ 41 ] and Tachibana et al [ 42 ], in which reinforced concrete beams under impact 15 

loads were investigated. In [ 43 ], Giovino et al subjected a set of RC panels to open-field blast in 16 

order to study the response of RC cladding under impulsive load due to external bomb. One way 17 

RC slab under blast load are also tested and modelled by FEA in [ 44 ]. 18 

An interesting study is presented in [ 45 ] were different strategies to strengthen RC elements are 19 

developed and tested with field experiment in order to prevent blast-induced failure, but very 20 

important results for close-in blast load are presented also in [ 46 ]. Indeed, in the latter work, an 21 

empirical scale law is proposed and it can be suitable for design purpose. 22 

Blast load due to accidents or terroristic attacks cannot be forecasted in a deterministic way. Thus 23 

design procedures that consider explosion load must take into account the randomness of the 24 

threatening and of the load scenario. In addition, also the mechanical characteristics of materials 25 

cannot be assessed in a deterministic way and this is particularly important in case of RC structures. 26 

Therefore, when the randomness of these parameters is accounted for, the structural response 27 

assumes a probabilistic nature, making it necessary to look at reliability analysis. The probabilistic 28 

approach to structural reliability in the case of a blast load is a current topic in structural 29 

engineering. Due to the important computational effort to develop such kind of analysis the SDOF 30 

model becomes very convenient. For example in quite an early work [ 47 ], Low and Hao presented 31 

results from a parametric investigation of the reliability of reinforced concrete slabs under blast 32 

load. The authors considered an equivalent non-linear SDOF system, also taking into account the 33 

strain-rate effect. In [ 48 ], Rong and B. Li developed a probabilistic analysis of maximum 34 

displacement and ductility factors for a reinforced concrete flexural member under explosion load, 35 

using a non-linear dynamic analysis of its equivalent SDOF system. The Monte Carlo simulation 36 

method (see also [ 49 ]) was used in this paper, and the authors obtained two non-dimensional 37 

indices quantifying differences between real response and the one obtained by means of the SDOF 38 

model. An interesting sensitivity analysis was obtained by Borenstein and Benaroya in [ 50 ] in 39 

order to determine which parameter uncertainties have the greatest effect on the maximum 40 

deflection of a clamped aluminium plate subjected to a blast load. The Monte Carlo simulation was 41 

also used in this case. The authors took into account some blast-wave parameters such as loading 42 

duration time. Actually, they state that the response of the plate is most sensitive to the latter 43 

variable.  44 

More recently in [ 51 ], Olmati et al. developed an interesting probabilistic analysis of precast RC 45 

panels under blast load developing fragility curves for different limit states. Fragility curves (see 46 

also [ 52 – 53 ])  are a powerful tool for non-deterministic studies. In this framework they represents 47 
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the probability of exceeding a given damage state (or performance) as a function of an engineering 1 

demand parameter that represents the blast load. 2 

In this paper a reliability analysis of simple supported RC beams under blast load is developed with 3 

a non-linear equivalent SDOF model that is validated by comparison with experimental findings 4 

present in literature. The model, described in Section 2, takes into account materials constitutive 5 

laws sensitive to the strain rate and allows to analyse the effects of various parameters defining the 6 

load and the mechanical and geometrical characteristics of the beams. Thus a sensitivity analysis, 7 

based on least squares regression, is shown in Section 3. Its results, reported in Section 4, include 8 

some polynomial relationships that relate structural response in terms of maximum velocity and 9 

displacements to the characteristics of the load scenario. Some concluding remarks and prospective 10 

developments are stated in Section 5.  11 

 12 

2. SDOF model 13 

 14 

In the following paragraphs a synthetic presentation of the structural model used for the numerical 15 

analysis is given.  16 

 17 

2.1 Materials models 18 

 19 

The constitutive properties of concrete and steel, considered in the model, are defined in the 20 

following. Referring to fib Bulletin n. 55 [ 54 ], the uniaxial behaviour of reinforcing steel (both in 21 

tension and in compression) is approximated by an elastic-perfect plastic diagram, as shown in 22 

Fig. 1a ([ 54 ]§ 5.2.9). In this figure, Es is the label for Young’s steel modulus, fyk denotes its yield 23 

strength and εsy represents its yield strain.  24 

The uniaxial stress-strain relation of concrete is expressed by a rational function ([ 54 ],§ 5.1.8.1): 25 

𝜎𝑐 = 𝑓𝑐𝑚

𝑘∙
𝜀𝑐

𝜀𝑐1
−(

𝜀𝑐
𝜀𝑐1

)
2

1+(𝑘−2)∙
𝜀𝑐

𝜀𝑐1

  𝑓𝑜𝑟|𝜀𝑐| < |𝜀𝑐,𝑙𝑖𝑚| , ( 1 ) 

where εc (<0) is concrete compressive strain, σc (<0) is concrete compressive stress, while fcm, εc1, 26 

εc,lim and k are a set of parameters which defines the concrete constitutive law (see  Fig. 1b) 27 

depending on its grade ([ 54 ],Table 5.1-8). It is important to highlight that the tensile strength of 28 

concrete is disregarded. 29 
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 1 

Fig.  1: Stress-strain diagrams for reinforcing steel (a) and concrete (b) assumed in this model. 2 

 3 

2.2 Cross section model 4 

 5 

In this model the yield state of the beam is identified by the tensile reinforcement yielding 6 

condition. The neutral axis depth at the yield state, denoted by xy, can be obtained by imposing 7 

translational equilibrium (see Eq. ( 2 )) while the corresponding bending moment My is defined by 8 

the rotational equilibrium expressed in Eq. ( 3 ).  9 

𝑏 ∫ 𝜎𝑐 𝑑𝑦

𝑥𝑦

0

+ 𝜎𝑠𝑠𝐴𝑠𝑠 = 𝑓𝑦𝑘𝐴𝑠, 

  

 

( 2 ) 

𝑀𝑦 = 𝑏 ∫ 𝜎𝑐(𝑑 − 𝑦) 𝑑𝑦

𝑥𝑦

0

+ 𝜎𝑠𝑠𝐴𝑠𝑠(𝑑 − 𝑑′).

 
( 3 ) 

 10 

Here the subscripts “s” and “ss” are appended to quantities respectively corresponding to tensile and 11 

compressive reinforcements, while the subscript “c” refers to concrete. The meanings of all 12 

geometric quantities relative to the beam cross-section can be inferred from Fig.  2.  13 

 14 

 15 

σc (<0) 

 

c1 

 

c (<0) 

 c,lim 

fcm 

 

fcu 

 

(b) 
 

s 

s 

fyk 

 

sy 

 

Es 

 

(a) 
 

http://dx.doi.org/10.1016/j.engfailanal.2016.05.003


 

Please cite this document as: STOCHINO F. “RC beams under blast load: Reliability and sensitivity analysis”, 

Engineering Failure Analysis, (2016) 66, 544-565. http://dx.doi.org/10.1016/j.engfailanal.2016.05.003 - © 2016. this 

manuscript version is made available under the CC-BY-NC-ND 4.0 license 

 

- 6 - 

 1 
Fig.  2: (a) Sketch of the cross-section of a doubly-reinforced concrete beam; (b) stress diagram at 2 

the yield state; (c) stress diagram at the ultimate state. 3 

 4 

The ultimate limit state is reached when concrete attains its maximum strain εc,lim. Stress 5 

distribution corresponding to this case is reported in Fig.  2c. Neutral axis depth at the ultimate state 6 

(xu) can be calculated again from the translational equilibrium condition: 7 

 8 

𝑏 ∫ 𝜎𝑐 𝑑𝑦

𝑥𝑢

0

+ 𝜎𝑠𝑠𝐴𝑠𝑠 = 𝑓𝑦𝑘𝐴𝑠,

 

( 4 ) 

 9 

The resistant bending moment at the ultimate state (Mu) can be expressed by rotational equilibrium 10 

around the tensile reinforcement: 11 

 12 

𝑀𝑢 = 𝑏 ∫ 𝜎𝑐(𝑑 − 𝑦) 𝑑𝑦

𝑥𝑢

0

+ 𝜎𝑠𝑠𝐴𝑠𝑠(𝑑 − 𝑑′). 
( 5 ) 

The bilinear bending moment-curvature diagram of the RC beam, illustrated in Fig. 3a can be 13 

obtained given the values of xy, My, xu and Mu. In the following, θy and θu represent curvatures at 14 

the yield and ultimate states, they are defined by: 15 

 16 

𝜃𝑦 =
𝜀𝑠𝑦

𝑑 − 𝑥𝑦
, 

( 6 ) 

and 17 

𝜃𝑢 =
𝜀𝑐,𝑙𝑖𝑚

𝑥𝑢
, 

( 7 ) 

respectively. 18 

The nonlinear behaviour of a RC cross section, for an under-reinforced element, is often modelled 19 

by a bilinear relationship between bending moment and curvature. It is defined by the previously-20 

b 

h d 

d′ 

As 

Ass 
xy 

y 

σc 

σss 

 

σs = fyk 

 

(a) 

 

(b) 
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xu 
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fcu 

 
ss 

 

s = fyk 
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established characteristic points (yielding, ultimate). This approach is quite convenient from a 1 

computational point of view, but it hardly mimics the real behaviour of the RC cross section. Indeed 2 

it rarely exhibits a clear-cut transition between the elastic and plastic deformation fields. Thus, in 3 

this work, a smoother relationship between the bending moment M and curvature θ is assumed, 4 

which reads: 5 

𝑀 = �̅�tanh (
𝐾

�̅�
𝜃) = −�̅� tanh (

𝐾

�̅�

𝜕2𝑢

𝜕𝑥2
). 

( 8 ) 

Eq.( 8 ) introduce an hyperbolic tangent function because it presents no slope discontinuity and it is 6 

capable of fitting well also a bilinear function. The parameters M  and K , appearing in Eq.( 8 ), 7 

depend on the sectional and constitutive properties of the beam. They respectively represent the 8 

equivalent ultimate bending moment and the initial flexural stiffness of the beam. For the sake of 9 

clarity, it should be highlighted that the right-hand term of Eq.( 8 ) is obtained by assuming small 10 

deformation and rotation in the beam. 11 

The parameter K , which represents the slope of the diagram plotted in Fig. 3b at θ = 0, can be 12 

expressed by this ratio: 13 

𝐾 =
𝑀𝑦

𝜃𝑦
. 

( 9 ) 

The equivalent ultimate bending moment M , can be obtained by equating areas A1 and A2 under the 14 

curves shown respectively in Fig. 3a and in Fig. 3b. This equivalence yields: 15 

 16 

�̅�2

𝐾
ln [cosh (

𝐾

�̅�
𝜃𝑢)] =

𝑀𝑢(𝜃𝑢 − 𝜃𝑦) + 𝑀𝑦𝜃𝑢

2
, 

 
( 10 ) 

where the left-hand term was obtained by integrating Eq.( 8 ).  17 

With this approach, the bilinear bending moment-curvature relationship can be substituted by a 18 

smoother diagram, which better approximates the actual behaviour of the beam.  19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

Fig.  3: (a) Bilinear bending moment-curvature relation; (b) smoother bending moment-curvature 27 

diagram adopted in this work. 28 
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2.3 Strain rate effects 1 

 2 

Considering that concrete and steel are strain-rate sensitive materials and blast loading produces 3 

quite high strain rates the above-mentioned constitutive relationships, valid in quasi-static load case, 4 

must be modified in order to take into account strain rate effects. Thus the relationships provided by 5 

the CEB Information Bulletin n.187 [ 55 ] are enforced in the model. 6 

As a first step, the strain rates of concrete and steel reinforcements are determined by knowing the 7 

curvature rate and the value of the neutral axis depth. In the next step, the dynamic properties of 8 

concrete and steel reinforcements are evaluated. Concerning concrete ([ 55 ],§ 3.3.1), its dynamic 9 

strength is expressed by: 10 

𝑓𝑐𝑚,𝑑𝑦𝑛 = 𝑓𝑐𝑚 (
𝜀�̇�

30∙10−6)
1.02𝛼

   𝑖𝑓 𝜀�̇� ≤ 30 𝑠−1  a); 

( 11 ) 

𝑓𝑐𝑚,𝑑𝑦𝑛 = 𝑓𝑐𝑚𝛾𝜀�̇�
1/3                    𝑖𝑓 𝜀�̇� > 30 𝑠−1   

b).
 

In Eqs. ( 11 ),  is the strain rate of concrete, while α = 1/(5+3∙fcm/4) and γ = 10^(6.156∙ α -0.492). 11 

Concrete strains εc1 and εc,lim are augmented by the following expressions: 12 

𝜀𝑐1,𝑑𝑦𝑛 = 𝜀𝑐1 (
𝜀�̇�

30∙10−6)
0.02

; 
( 12 ) 

𝜀𝑐,𝑙𝑖𝑚,𝑑𝑦𝑛 = 𝜀𝑐,𝑙𝑖𝑚 (
𝜀�̇�

30∙10−6)
0.02

. 
( 13 ) 

Concerning steel ([ 55 ],§ 3.4.2), its dynamic strength is calculated as: 13 

𝑓𝑦𝑘,𝑑𝑦𝑛 = 𝑓𝑦𝑘 [1 +
6

𝑓𝑦𝑘
ln (

𝜀�̇�

5 ∙ 10−5
)]  𝑖𝑓 𝜀�̇� ≤ 10 𝑠−1  , ( 14 ) 

where 𝜀�̇� is the strain rate of either tensile or compressive reinforcement. If 𝜀�̇� > 10 s-1, the limit 14 

value 10 s-1 is assigned to 𝜀�̇� in Eq. ( 14 ). Instead, the longitudinal module of elasticity Es is 15 

considered constant ([ 55 ], §3.4.3). 16 

 17 

2.4 SDOF parameters 18 

 19 

If the stand-off distance between the charge and the beam target is large enough the pressure wave 20 

due to the explosion can be considered uniform along the structural element  surface. Fig. 4a, a 21 

simply supported beam subjected to a uniformly-distributed load is presented, while its equivalent 22 

SDOF system is sketched in Fig. 4b. It should be highlighted that damping is disregarded, since 23 

successive loading cycles are not considered; indeed, the first peak displacement is the most severe 24 

condition because it is unlikely the structure will collapse after unloading [ 56 ]. 25 

 26 

 27 

 28 

 29 

 30 

 31 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Fig.  4: (a)  Real beam; (b) equivalent SDOF model of the real beam. 9 

The elastic-plastic behaviour of the SDOF system can be represented by a bilinear load-10 

displacement diagram, as shown in Fig. 5. The latter can be derived from the bending moment-11 

curvature diagram of the beam (plotted in Fig. 3b), as described in the following: 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

Fig.  5: bilinear load-displacement diagram of the equivalent SDOF model. 20 

 21 

The rotational equilibrium equation defines the yield load Py as a function of the yield bending 22 

moment My: 23 

𝑀𝑦 =
𝑞𝑦 ∙ 𝑙2

8
   ⇒   𝑃𝑦 = 𝑞𝑦 ∙ 𝑙 =

8 ∙ 𝑀𝑦

𝑙
, ( 15 ) 

where qy is the uniformly-distributed load acting on the beam in the yield state. Yield displacement 24 

vEy is defined by means of the linear elastic theory of beams: 25 

 26 

𝑢𝐸𝑦 =
5 ∙ 𝑞𝑦 ∙ 𝑙4

384 ∙ 𝐾
=

5 ∙ 𝑃𝑦 ∙ 𝑙3

384 ∙ 𝐾
, ( 16 ) 

 27 

where 𝐾 = 𝑀𝑦/𝜃𝑦 is the elastic bending rigidity of the beam (see Fig. 3). Thus, the elastic stiffness 28 

of the SDOF system is given by: 29 

Pu 

P 

Py 

KE,pl 

KE,el 

uE uEu 
uEpu 

uEy 

(b) 

 

PE(t) 

ME(t) 

vE(t) 

KE(t) 

u(x,t) 

x 

l 

q(t) 

(a) 
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 1 

𝐾𝐸,𝑒𝑙 =
𝑃𝑦

𝑣𝐸𝑦
=

384 ∙ 𝐾

5 ∙ 𝑙3
. ( 17 ) 

 2 

Equilibrium conditions can be enforced to obtain the ultimate load Pu: 3 

𝑀𝑢 =
𝑞𝑢 ∙ 𝑙2

8
   ⇒   𝑃𝑢 = 𝑞𝑢 ∙ 𝑙 =

8 ∙ 𝑀𝑢

𝑙
, ( 18 ) 

where qu is the uniformly-distributed load on the beam at the ultimate state. The ultimate 4 

displacement, denoted by uEu, is evaluated by assuming a purely flexural failure: a concentrated 5 

plastic hinge is formed at the mid-span section of the beam, as depicted Fig. 6a. The plastic rotation 6 

after the generation of the plastic hinge is represented by p, while uEp denotes the corresponding 7 

plastic displacement at the mid-span section. At the ultimate state p = pu, hence total plastic 8 

displacement, uEp = uEpu can be calculated as: 9 

 10 

𝑢𝐸𝑝𝑢 =
𝜑𝑝𝑢

2
∙

𝑙

2
  . ( 19 ) 

 11 

The ultimate displacement uEu can be obtained by introducing plastic hinge length lp (Fig. 6b) and 12 

by denoting total plastic curvature by θp (θp= θu - θy), assumed to be constant over lp: 13 

𝑢𝐸𝑢 = 𝑢𝐸𝑦 + 𝑢𝐸𝑝𝑢 = 𝑢𝐸𝑦 +
𝜑𝑝𝑢

2
∙

𝑙

2
= 𝑢𝐸𝑦 +

𝜃𝑝𝑙𝑝

2
∙

𝑙

2
=  𝑢𝐸𝑦 +

1

4
(𝜃𝑢 − 𝜃𝑦)𝑙𝑝𝑙 . 

( 20 ) 

Thus, plastic stiffness of the SDOF system is given by: 14 

𝐾𝐸,𝑝𝑙 =
𝑃𝑢 − 𝑃𝑦

𝑢𝐸𝑢 − 𝑢𝐸𝑦
. 

( 21 ) 

Unfortunately the plastic hinge length lp cannot be determined a priori, but many approximate 15 

expressions for lp are available in the literature. Here, the simple formula provided by Mattock (see 16 

[ 57 ]), is adopted: 17 

𝑙𝑝 = 𝑑 + 0.05 ∙ 𝑙. 
( 22 ) 

For the sake of clarity it is important to point out that the effective height d is defined in the 18 

previous Fig.  2 and l  is the beam span. 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Fig.  6: (a) Plastic deflections of the beam with a concentrated plastic hinge at the mid-span section; 9 

(b) schematic representation of the plastic hinge. 10 

 11 

 12 

2.5 SDOF motion equations 13 

 14 

The non linear dynamic behaviour of the SDOF model under an external dynamic force PE is 15 

described by the following set of ordinary differential equations (refer to Fig. 4 and Fig. 5): 16 

 17 

 18 

𝑀𝐸,𝑒𝑙

𝑑2𝑢𝐸(𝑡)

𝑑𝑡2
+ 𝐾𝐸,𝑒𝑙(𝑡)𝑢𝐸(𝑡) = 𝑃𝐸(𝑡)                                                     𝑓𝑜𝑟 0 ≤ 𝑢𝐸 ≤ 𝑢𝐸𝑦         𝑎); 

( 23 ) 

 
𝑀𝐸,𝑝𝑙

𝑑2𝑢𝐸(𝑡)

𝑑𝑡2 + 𝐾𝐸,𝑝𝑙(𝑡)𝑢𝐸(𝑡) + (𝐾𝐸,𝑒𝑙(𝑡) − 𝐾𝐸,𝑝𝑙(𝑡)) 𝑢𝐸𝑦 = 𝑃𝐸(𝑡)     𝑓𝑜𝑟 𝑢𝐸𝑦 < 𝑢𝐸 ≤ 𝑢𝐸𝑢     𝑏). 

It is important to highlight that elastic and plastic stiffness (KE,el and KE,pl) depends on time t, since 19 

the materials mechanical characteristics must be updated at each step of the calculation due to strain 20 

rate effects, as denoted in Section 2.3. 21 

The equivalent load PE is simply given by PE = q∙l. A “load-mass factor” is necessary to define the 22 

elastic and plastic equivalent masses (ME,el and ME,pl), it depends both on the type of regime (either 23 

elastic or plastic) and on the beam supports and loads. Thus the equivalent masses are obtained by 24 

multiplying the total mass of the beam (Mb) by the above mentioned factor; in particular, for a 25 

simply-supported beam with a uniformly distributed load, ME,el = 0.78∙Mb and ME,pl = 0.66∙Mb (see   26 

[ 12 ], Table 5.1). 27 

 28 

2.6 Strain rate effects for the SDOF system 29 

 30 

Since the dynamic properties of the materials are given in terms of their strain rates (see Eqs. ( 11 )-31 

( 14 )), it is necessary to relate the SDOF characteristics to material strain time history. 32 

vEp 

l / 2 

(a) 

 

p/2 

l / 2 

p/2 

plastic hinge 

p/2 

p 

p/2 

lp 

h 

(b) 
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By solving Eq. ( 23 ) it is possible to evaluate the equivalent displacement uE and equivalent 1 

velocity �̇�𝐸 = 𝑑𝑢𝐸/𝑑𝑡 at each time step. Then the curvature θE and the curvature rate �̇�𝐸 = 𝑑𝜃𝐸/𝑑𝑡 2 

at the mid-span section of the associated beam must be calculated. In the elastic regime, θE and  3 

are obtained from linear elastic theory; in particular, for a simply-supported beam with a uniformly 4 

distributed load, they are given by: 5 

 6 

𝜃𝐸 =
48 ∙ 𝑢𝐸

5 ∙ 𝑙2
      𝑓𝑜𝑟  0 ≤ 𝑢𝐸 ≤ 𝑢𝐸𝑦     𝑎); 

( 24 ) 

 
�̇�𝐸 =

48 ∙ �̇�𝐸

5 ∙ 𝑙2
      𝑓𝑜𝑟  0 ≤ 𝑢𝐸 ≤ 𝑢𝐸𝑦    𝑏). 

 7 

Instead, in the plastic regime it is supposed that a concentrated plastic hinge is formed at the mid-8 

span section of the beam, as shown Fig. 6a. Thus, in this case θE and  can be evaluated by means 9 

of the following equations: 10 

𝜃𝐸 = 𝜃𝑦 +
𝜑𝑝

𝑙𝑝
= 𝜃𝑦 + 2 ∙

𝑢𝐸𝑝

𝑙
2

 ∙
1

𝑙𝑝
= 𝜃𝑦 + 2 ∙

𝑢𝐸 − 𝑢𝐸𝑦

𝑙
2

 ∙
1

𝑙𝑝
      𝑓𝑜𝑟  𝑢𝐸𝑦 < 𝑢𝐸 ≤ 𝑢𝐸𝑢    𝑎); 

( 25 ) 

 
�̇�𝐸 = 2

�̇�𝐸

𝑙/2
∙

1

𝑙𝑝
                                                                                       𝑓𝑜𝑟  𝑢𝐸𝑦 < 𝑢𝐸 ≤ 𝑢𝐸𝑢     𝑏). 

At each step of the calculation, the value of θE (given by either Eq. ( 24 ) or Eq. ( 25 )) allows  to  11 

determine the value of the bending moment M from the bending moment-curvature diagram in Fig. 12 

3b. Then, the rotational equilibrium yields the neutral axis depth (here denoted as �̅�). Consequently, 13 

the strain rates of concrete and of tensile and compressive steel reinforcements are calculated using 14 

the following expressions: 15 

𝜀�̇� = �̇�𝐸 ∙ �̅�                    𝑎); 

( 26 ) 

 

𝜀�̇� = �̇�𝐸 ∙ (𝑑 − �̅�)         𝑏); 

𝜀𝑠𝑠̇ = �̇�𝐸 ∙ (�̅� − 𝑑′)      𝑐).
 

The absolute values of the strain rates given by Eqs. ( 26 ) are introduced into Eqs. ( 11 )-( 14 ) to 16 

update the properties of the materials. 17 

 18 

2.6 Model validation  19 

 20 

The numerical procedure based on finite difference used for solving Eqs. ( 23 ) is here briefly 21 

sketched.  22 

As a first step the static mechanical characteristics (bending moment and neutral axis depth at yield 23 

and ultimate states) are evaluated using Eqs. ( 2 ) - ( 5 ). Then the SDOF parameters KE,El, KE,pl , uEy, 24 

uEu are calculated using Eqs. ( 15 )-( 21 ). For each time step t a loop is developed in which the 25 

following variables are determined: vertical displacement u, obtained by solving Eqs. ( 23 ) by 26 

means of the Finite Difference Method2 (null initial conditions are imposed, because the beam is at 27 

rest before the explosive charge is detonated) ; curvature θ = -∂2u/∂x2 and the curvature 28 

 
2 The derivatives are approximated with finite differences of the 2nd order accuracy. Convergence studies have shown 

that a good choice of the time step is 10−5 s.  
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rate �̇�= ∂θ/∂t (enforcing Eq. ( 24 ) or ( 25 )); bending moment M corresponding to curvature θ from 1 

Eq. ( 8 );  neutral axis depth from rotational equilibrium under the applied bending moment M; 2 

strains of concrete and steel reinforcements using the linear deformation diagram and curvature 3 

value;  strain rates of concrete and steel reinforcements. Then the mechanical characteristics of 4 

materials are updated by means of Eqs. ( 11 )-( 14 ) and consequently the values of K and M are 5 

modified for a particular time step t. The loop is closed when the collapse criterion, which has been 6 

defined as the attainment of maximum concrete strain (ultimate state), is satisfied.  7 

A Finite Element (FE) model has been developed by means of commercial software with the aim of 8 

an accurate comparison with the SDOF model results. In particular, it is based on the fibre model 9 

consisting of dividing the cross-section of the beam into concrete fibres and steel rebars. 10 

The fibre model is developed through the flexibility method (see [ 58 ]): assuming the equilibrium 11 

condition, the forces trend in the cross section are related to nodal forces by means of specific 12 

interpolation functions. The section constitutive law represents the link between strains and stress 13 

and a simple application of the principle of virtual forces leads to the matrix of flexibility. 14 

The flexibility method has several advantages in case of nonlinear analysis: the force interpolation 15 

matrix is exact with any material constitutive behaviour and so it is not an approximation also in the 16 

plastic realm. Furthermore equilibrium considerations can easily produce additional force 17 

interpolation functions. 18 

As concerns material models, a trilinear relationship between stress and strain is used for concrete, 19 

approximating with great precision the compressive stress-strain diagram shown in Fig.  1b (the 20 

tensile strength of concrete is however disregarded, in according to the assumptions of this work); 21 

for steel rebars, an elastic–perfectly plastic stress-strain diagram is adopted see Fig.  1a.  22 

Lastly, it should be underlined that, since the software does not include a failure criterion for 23 

concrete crushing, the time-history provided by the FE solution is interrupted at the instant in time 24 

in which maximum concrete strain obtained from the SDOF model is reached. 25 

In order to validate the SDOF model its theoretical results are compared with the FE ones and with 26 

the experimental findings obtained by Magnusson and Hallgren [ 33 ], who tested several simply-27 

supported RC beams under shock waves produced in a shock tube. The explosive charge was 28 

located far enough from the beam to generate a plane wavefront, hence a uniformly-distributed 29 

load.  30 

 31 

 Beam label B40-D5 

span length 1.500 m 

width of cross-section 0.300 m 

depth of cross-section 0.160 m 

concrete cover 0.025 m 

tensile reinforcement 5 ϕ16 mm 

compressive reinforcement 2 ϕ 10 mm 

concrete compressive strength  43 MPa 

maximum concrete strain registered 3.69 ‰ 

steel yield strength 604 MPa 

steel elastic modulus 210 GPa 

mass per unit length 120 kg/m 

Table 1: Properties of the beam labelled B40-D5 (extrapolated from [ 33 ]). 32 

The beam labelled B40-D5 is examined and its characteristics are reported in Table 1, while the 33 

load time-history recorded during the experiment is reported in Fig.  7. The parameter chosen to 34 
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compare experimental data with theoretical results is midspan deflection, obviously representing 1 

maximum deflection, henceforth indicated by umax.  2 

The FE model mesh is consistent with the ones used for the SDOF finite difference integration 3 

scheme: the time step is 10-6 s and the space step is 0.05 m which corresponds to 30 beams elements 4 

for this case. The author has selected this value after a convergence study on the element lengths 5 

given the time step. 6 

 7 
Fig.  7: Load time-history for beam labelled B40-D5, (extrapolated from [ 33 ]). 8 

 9 
Fig.  8: Midspan deflection for beam labelled B40-D5, the red continuous line represents the SDOF 10 

results, the dotted blue ones corresponds to the FE model and the black one denotes the 11 

experimental finding. The circular spot highlight the failure condition. 12 

 13 

The experimental time-history of beam midspan displacement umax is plotted with a solid black line 14 

in Fig.  8. The red solid curve represents the SDOF model prediction and the dotted blue one 15 

denotes the FE results. Both models have produced quite accurate results in agreement with the 16 
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experiments. The circular spots represent the models failure condition which it is not easily 1 

detectable in the field data. Indeed, the displacements transducers keep on recording even if the 2 

beams is beyond its ultimate limit state. However, it is important to highlight that the last part of the 3 

experimental curve exhibits an abrupt change, which can be attributed either to a small damage of 4 

the experimental apparatus or, more probably, to the crushing of concrete. 5 

The results presented in Fig.  8 proves the accuracy of the SDOF model and allow to consider it as a 6 

reliable tool for the sensitivity analysis developed in the next Section. 7 

 8 

 9 

3. Sensitivity Analysis 10 

 11 

In order to design blast-resistant structures it is essential to determine the key parameters in this 12 

kind of problems. For this reason, a sensitivity analysis is developed in this paper. Numerical 13 

simulations by means of the above presented SDOF model are developed, considering different load 14 

scenarios and beam characteristics. This model was chosen because it is very convenient from a 15 

computational point of view. As it will become clear in the following paragraphs the need of short 16 

computational time is of fundamental importance in this analysis.  17 

After a first reliability assessment necessary to detect a set of beams that has withstood the blast 18 

load, a sensitivity analysis is developed considering only it. The base idea is to look for any 19 

correlations between the response of the SDOF and the different parameters defining the dynamic 20 

problem: peak load, slenderness, span length, etc. These correlations are detected looking at the 21 

least squares interpolation function that better fit the numerical data. The response of the SDOF is 22 

expressed by the maximum beam displacement (midspan deflection) and the corresponding velocity 23 

which can influence strain rates and, consequently, the mechanical characteristics of materials. 24 

 25 

3.1 Load and geometrical/strength characteristics  26 

 27 

The beams considered in the simulations are simply supported, and their geometrical/strength 28 

characteristics vary randomly within the limits reported in Table 2. In this way, it is possible to 29 

consider a wider range of solutions referring to the most common real cases. 30 

 31 

Characteristic Value 

Span   6÷12  m 

Slenderness L/h  9÷15  

Width  h/2.5  m 

𝜌𝑠 = 𝐴𝑠/𝑏𝑑 0.005÷0.01  

𝜌𝐴𝑠 = 𝐴𝑠𝑠/𝐴𝑠  0.25÷0.5  

Concrete  fck=20÷40  MPa 

Steel  fyk=450  MPa  

Table 2: Geometrical and strength characteristics of beams with their variation range. 32 

An uniform distributed dynamic load is applied to the beams. In order to represent an hemispherical 33 

detonation its time history is a triangle with a peak load varying from 100 to 800 kN and a positive 34 

phase duration within the range 2.7 – 5.0 msec. 35 

 36 

3.2 Reliability Analysis 37 
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 1 

4000 runs of the SDOF model were performed. For the sake of clarity it is important to remember 2 

that the collapse criterion is always the same considered in the previous sections and it corresponds 3 

to the attainment of the ultimate concrete strain. A summary of the ultimate state check is shown in 4 

Fig.  9, which presents the failure percentage for the various slenderness values as a function of the 5 

peak load value. Indeed, considering that for flexural models beam stiffness is strictly dependent on 6 

the slenderness (L/h), the reference to this parameter appears straightforward.  For peak loads lower 7 

than 400 kN the collapse percentage is quite low for all slenderness smaller than 13. Indeed, the 8 

largest amount of beams failed for peak loads higher than 700 kN, only thick beams (L/h=9-10) can 9 

resist without failure. Taking into account these results, in order to study the effects of several 10 

parameters in the structural response, the loading condition was divided in two different cases: high 11 

load and low load, (see Fig. 9 and Fig.  10). The former is defined by a peak load P randomly 12 

varying between 0.8-0.4∙106 N and positive phase duration between 2.7 and 5 msec, the latter by a 13 

peak pressure between 0.4 and 0.1∙106 N and positive phase duration within the same limits. 14 

15 
Fig.  9: Collapse percentage of the beams examined for different slenderness values. The solid black 16 

line distinguishes the low load from the high load case. 17 

 18 

These scenarios can roughly represent a hemispherical above ground detonation of 55 kg of TNT 19 

with a stand off distance equal to 12 m (corresponding to low load scenario) or to 9 m 20 

(corresponding to high load scenario). 21 

 22 
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 1 
Fig.  10: Time-histories of the two load conditions: low and high. 2 

The sensitivity analysis will be developed in the next paragraph considering the beams that are not 3 

collapsed in order to explore the effects of blast load on the maximum displacement and on the 4 

maximum velocity of each element.  5 

 6 

3.3 Quality of fitting indicators 7 

 8 

In the following Section 4, a thorough analysis will be developed considering various fitting models 9 

representing different relationships between variables of this problem. In order to quantitatively 10 

evaluate the quality of fitting, it is necessary to define some statistical parameters: 11 

 12 

• Sum of Squares Due to Error: it is simply the sum of the squared difference between 13 

response value 𝑦
𝑖
 and the predicted response value �̂�

𝑖
 (see Eq. ( 27 )). 14 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

 
( 27 ) 

• R-Square: it is an index representing how the fitting functions explains variation in data. It is 15 

defined in Eq. ( 30 ) as the ratio between the sum of squares regarding the mean �̅� of 16 

regression (Eq. ( 28 )) and the sum of squares regarding the mean �̅� of the response value 17 

(see Eq. ( 29 )). Due to its definition, R-Square assumes values between zero and one. A 18 

value equal to 0.72 means that fit explains 72% of the total variation in data as regards the 19 

average. For this reason, the best fits have higher R-Square values. 20 

𝑆𝑆𝑅 = ∑(�̂�𝑖 − �̅�)2

𝑛

𝑖=1

, 
( 28 ) 

𝑆𝑆𝑇 = ∑(𝑦
𝑖

− �̅�)
2

𝑛

𝑖=1

, 
( 29 ) 

𝑅_𝑆𝑄𝑈𝐴𝑅𝐸 =
𝑆𝑆𝑅

𝑆𝑆𝑇
. ( 30 ) 

High load 

Low load 

P  106N 

0.8 

0.4 

0.1 

2.7 5 

t msec 
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• Adjusted R-square: (AR-square) it is an optimal indicator of fitting validity when it is 1 

necessary to compare different models with different numbers of coefficients. If the residual 2 

degrees of freedom ν are defined as the difference between response values m and fitted 3 

coefficients h, estimated from response values (see Eq ( 31 )), the AR-square is defined by 4 

Eq. ( 32 ) and can have only a value less than or equal to one. Models with AR-square near 1 5 

are better. There is the possibility of negative values; in this case, it means that the model 6 

contains terms that do not help in predicting response. 7 

 8 

𝑣 = ℎ − 𝑚, 
( 31 ) 

𝐴𝑅_𝑆𝑄𝑈𝐴𝑅𝐸 = 1 −
𝑆𝑆𝐸(ℎ − 1)

𝑆𝑆𝑇(𝑣)
. 

( 32 ) 

 9 

• Root Mean Squared Error: it is a measure of the standard deviation of the random 10 

component in the data. It is defined by Eq. ( 33 ) and values closer to zero mean that the 11 

model fits well the SDOF results. 12 

 13 

𝑅𝑀𝑆𝐸 = √𝑆𝑆𝐸/𝑣. ( 33 ) 

4 Results 14 

 15 

4.1 Two-dimensional relationships  16 

 17 

In this paragraph, the influence of three variables is discussed: span length, slenderness and peak 18 

load. Indeed, given the slenderness the span length corresponds to the mass of the beam and, in 19 

impulsive load regime, it is crucial to determine the initial velocity3. Furthermore, the slenderness is 20 

strictly linked to the beam flexural stiffness and the peak load is a key parameter to identify the 21 

load.  22 

For each case a polynomial least square interpolation is proposed evaluating the coefficients for a 23 

linear, quadratic, cubic and quartic fitting functions, reported respectively in Eqs. ( 34 ) - ( 37 ): 24 

𝑦 = 𝑎1𝑥 + 𝑎0, 
( 34 ) 

𝑦 = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0, 
 

( 35 ) 

𝑦 = 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0, 
 

( 36 ) 

𝑦 = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0. ( 37 ) 

  25 

 
3 If I, is the impulse and M is the equivalent mass of the beam, its initial velocity is I/M.  
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 1 

Function SSE (m2) R-square AR-square RMSE (m) 

Cubic Slend 0.9550 0.2918 0.2895 0.03204 

Quadratic Slend 0.9562 0.2909 0.2893 0.03205 

Quartic Slend 0.9548 0.2919 0.2889 0.03206 

Linear Span 0.9585 0.2892 0.2884 0.03207 

Quadratic Span 0.9576 0.2898 0.2883 0.03207 

Linear Slend 0.9583 0.2893 0.2886 0.03207 

Cubic Span 0.9574 0.2900 0.2877 0.03208 

Quartic Span 0.9569 0.2903 0.2873 0.03209 

Quadratic P.Load 1.2630 0.06364 0.0616 0.03683 

Linear P.Load 1.2650 0.06206 0.0610 0.03684 

Cubic P.Load 1.2620 0.06400 0.0610 0.03684 

Quartic P.Load 1.2610 0.06504 0.0610 0.03684 

Table 3 : Fitting performances for high-load maximum deflection results. 2 

In order to discover the influence of these variables, Fig. 11-Fig. 14 have been prepared. The 3 

correlations between maximum deflection or velocity (obtained by SDOF during numerical 4 

simulations) and span length, slenderness and peak load are investigated.  5 

It is important to distinguish between high-load and low-load conditions. In the former case, the 6 

number of non-collapsed beams is greatly inferior as compared to the case of low load.  7 

Table 3 presents the fitting performance for the maximum deflection results of various polynomial 8 

functions of the above mentioned independent parameters (span length, slenderness and peak load). 9 

The general trend in these results is that the SSE index decrease as the number of model coefficients 10 

increases, while the best RMSE is obtained for the cubic function taking into account correlations 11 

between displacement and slenderness (see Fig. 11). 12 

 13 
Fig. 11: High Load, Max. Def. – Slenderness different kinds of polyn. fittings. 14 

 15 

It is important to highlight (referring to the results presented in Fig.  9) that almost all beams with 16 

slenderness greater than 12 and peak load greater than 6 105 N have failed. Hence, the influence of 17 
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these two important parameters is inferior as compared to what happens in the case of low load. In 1 

other words, only beams with a narrow range of slenderness (9-11) and peak-load variation (4-7∙105 2 

N) can be considered in the analysis. For this reason, the influence of span length is quite important 3 

in the case of high load and less significant in the other load condition. Regarding the latter 4 

correlation (maximum displacement and span length) the AR-square and RMSE best values 5 

correspond to the linear model; the adding of other coefficients to the model does not produces any 6 

improvement in fitting quality.  7 

Thus, for the maximum displacement analysis in case of high-load, slenderness is the most 8 

important parameter, while the variation of peak load (within the above mentioned limits) doesn’t 9 

produce evident effects. Also span length effects on the beams deflection is important and must not 10 

be neglected. 11 

 12 

Function SSE (m2/s2) R-square AR-square RMSE (m/s) 

Quartic P.Load 368.7 0.41280 0.41020 0.6300 

Cubic P.Load 369.5 0.41150 0.40960 0.6303 

Quadratic P.Load 370.0 0.41070 0.40950 0.6304 

Linear P.Load 371.5 0.40830 0.40770 0.6314 

Quartic Slend 527.8 0.15930 0.15570 0.7538 

Cubic Slend 528.7 0.15790 0.15520 0.7540 

Quadratic Slend 532.2 0.15240 0.15050 0.7561 

Linear Slend 542.6 0.13580 0.13490 0.7630 

Linear Span 627.8 0.00015 -0.00093 0.8207 

Quadratic Span 627.4 0.00068 -0.00147 0.8209 

Cubic Span 627.0 0.00137 -0.00185 0.8211 

Quartic Span 627.0 0.00141 -0.00289 0.8215 

Table 4 : Fitting performances for high-load maximum velocity results. 13 

 14 
Fig. 12: High Load, Max. Vel. – Peak Load: different kinds of polyn. fittings. 15 

 16 
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Table 4 reports the fitting performance of the correlation between maximum velocities obtained by 1 

the SDOF model and the above-mentioned structural parameters in the case of high load. The 2 

variation of span length is not significant in this case: AR-square values are always negative and 3 

SSE values are high. Better (but still not very significant) results are obtained for the correlation 4 

between maximum velocity and slenderness. Considering the latter parameter, SSE values are lower 5 

but still high. In Fig. 12, the correlation between maximum velocity and peak load is depicted; SSE 6 

values are quite low, and AR-square attains better values than in previous cases. Therefore, for 7 

beams under high load condition the best model concerning maximum velocity seems to be a 8 

quartic polynomial function of the peak load. 9 

 10 

Function SSE (m2) R-square AR-square RMSE (m) 

Cubic Slend 1.546 0.4629 0.4621 0.02876 

Quartic Slend 1.546 0.4630 0.4619 0.02877 

Quadratic Slend 1.549 0.4621 0.4615 0.02878 

Linear Slend 1.554 0.4601 0.4599 0.02882 

Quartic P.Load 2.279 0.2085 0.2068 0.03493 

Quadratic P.Load 2.285 0.2064 0.2056 0.03496 

Cubic P.Load 2.284 0.2069 0.2056 0.03496 

Linear P.Load 2.358 0.1811 0.1807 0.03550 

Quartic Span 2.579 0.1044 0.1025 0.03715 

Cubic Span 2.586 0.1018 0.1004 0.03720 

Linear Span 2.601 0.09676 0.09627 0.03728 

Quadratic Span 2.600 0.09688 0.09591 0.03729 

Table 5: Fitting performances for low-load maximum deflection results. 11 

 12 
Fig. 13: Low Load, Max. Def. – Slenderness: different kinds of polyn. fittings. 13 

 14 

The fitting performances of correlations between maximum deflection (reached by the SDOF 15 

during numerical simulations in the case of low load) and span length, slenderness and peak load 16 
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are presented in Table 5. From the analysis of SSE and AR-square indexes, best fits are obtained, 1 

considering slenderness as an independent variable (see Fig. 13). In particular, the cubic function 2 

produces the highest AR-square and lowest deviation expressed by quite low SSE and RMSE.  3 

Considering span length and peak load functions, SSE tends to decrease slightly as the number of 4 

model coefficients increases, but fitting is always worse than in the previous case. Thus, in 5 

accordance to what happened for the high load condition, for the maximum deflection the key 6 

parameter seems to be the slenderness. 7 

 8 

Function SSE (m2/s2) R-square AR-square RMSE (m/s) 

Quartic P.Load 368.7 0.41280 0.41020 0.6300 

Cubic P.Load 369.5 0.41150 0.40960 0.6303 

Quadratic P.Load 370.0 0.41070 0.40950 0.6304 

Linear P.Load 371.5 0.40830 0.40770 0.6314 

Quartic Slend 527.8 0.15930 0.15570 0.7538 

Cubic Slend 528.7 0.15790 0.15520 0.7540 

Quadratic Slend 532.2 0.15240 0.15050 0.7561 

Linear Slend 542.6 0.13580 0.13490 0.7630 

Linear Span 627.8 0.00015 -0.00093 0.8207 

Quadratic Span 627.4 0.00068 -0.00147 0.8209 

Cubic Span 627.0 0.00137 -0.00185 0.8211 

Quartic Span 627.0 0.00141 -0.00289 0.8215 

Table 6: Fitting performances for low-load maximum velocity results. 9 

 10 
Fig. 14: Low Load, Max. Veloc.– Peak Load: different kinds of polyn. fittings. 11 

 12 

Table 6 presents the fitting performance of the correlations between the maximum velocity, 13 

obtained in the case of low load, and slenderness, span length and peak load. Similarly to what 14 

happened in high load condition, the best correlation is obtained considering peak load (see Fig. 15 

14). Indeed, this is the case with the highest variation index (R-square and AR-square) and lowest 16 
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deviation index (SSE, RMSE). In particular, the quartic polynomial function produces the best 1 

fitting. Correlation between maximum velocity and span length seems not effective, and 2 

corresponding fittings obtained poor results. Better results are obtained considering the relationship 3 

between maximum velocity and slenderness. In this case as well, SSE decreases as the number of 4 

model coefficients increases, and the AR-square increases as the degree of the fitting polynomial 5 

increases. 6 

4.2 Three-dimensional relationships  7 

 8 

variable mean Standard Deviation 

Slenderness 10.08 0.7963 

P.Load 0.5575∙106 N 0.1109 ∙106 N 

Span 9.167 m 1.669 m 

C.Strength 30.26 MPa 2.837 MPa 

R.Ratio 0.0076 0.0014 

Table 7 : Mean and standard deviation of the parameters considered for high-load analysis. 9 

 10 

variable mean Standard Deviation 

Slenderness 11.27 1.579 

P.Load 0.2419 ∙106 N 0.0845 ∙106 N 

Span 9.071 m 1.668 m 

C.Strength 30.12 MPa 2.85 MPa 

R.Ratio 0.0075 0.0014 

Table 8 : Mean and standard deviation of the parameters considered for low-load analysis. 11 

 12 

In this paragraph, correlations between maximum displacement (deflection) or velocity and some 13 

load and structural parameters are investigated in a three-dimensional space. In this way the joint 14 

effect of two parameters can be studied. The dependent variable, z, is assumed to be the maximum 15 

deflection or the maximum velocity and the independent ones, x and y, represent the other 16 

parameters (peak load, slenderness, span, concrete strength, reinforcement ratio). In the following 17 

the notation polyij denotes a complete polynomial with i-th degree for the x and j-th degree for the y. 18 

Several least squares fitting functions have been compared in order to determine best fitting of the 19 

SDOF numerical results. In order to avoid badly conditioned equations, independent variables are 20 

normalised by their mean and standard deviation (see Table 7 and Table 8).  21 

Considering the case of high load a synthesis of the fitting performance of maximum displacement 22 

results is presented in Table 9, where the lowest SSE is obtained by a 5th degree polynomial 23 

function of span length and slenderness (see Fig. 15). This function also presents the best AR-24 

square index. This leads to the conclusion that peak load influence is less important than span 25 

length as regards maximum deflection in the case of a high load. As described in Section 4.1, this 26 

can be explained by the fact that the variation range of peak load for this analysis is very narrow 27 

(indeed only a few number of beams withstood the load) and so it does not have a strong correlation 28 

with results variations.   29 

From Table 9, it is clear that concrete strength and reinforcement ratio have not a strong correlation 30 

with maximum deflection. This can be explained considering that the SDOF model failure condition 31 

cannot allow to represent the damage propagation along the beam and the effects of this two 32 

variable on the deflection may become important beyond the ultimate limit condition considered in 33 

this work. 34 

http://dx.doi.org/10.1016/j.engfailanal.2016.05.003


 

Please cite this document as: STOCHINO F. “RC beams under blast load: Reliability and sensitivity analysis”, 

Engineering Failure Analysis, (2016) 66, 544-565. http://dx.doi.org/10.1016/j.engfailanal.2016.05.003 - © 2016. this 

manuscript version is made available under the CC-BY-NC-ND 4.0 license 

 

- 24 - 

Actually, as mentioned above, functions of span length and slenderness  present lower fitting errors 1 

and it is important to underline how it is possible to have good fit even with a simple cubic function 2 

(see Fig. 16).   3 

 4 

 5 
Fig. 15: High Load, Max Deflection,  Slenderness - Span 5th deg. polyn. fitting. 6 

 7 

 8 

x – y Fit type SSE m2 R-SQUARE AR-SQUARE RMSE m Coefficients 

Span –Slend. poly55 0.599829 0.551294 0.541454 0.025646 21 

Slend- P.Load poly55 0.601113 0.550334 0.540473 0.025673 21 

Span-Slend. poly44 0.604141 0.548069 0.541177 0.025654 15 

Slend- P.Load poly44 0.605854 0.546787 0.539876 0.025690 15 

Span-Slend. poly33 0.606089 0.546612 0.542191 0.025625 10 

Span-Slend. poly22 0.606666 0.546180 0.543733 0.025582 6 

Slend- P.Load poly33 0.60937 0.544157 0.539712 0.025694 10 

Slend- P.Load poly22 0.613641 0.540963 0.538487 0.025729 6 

Span-Slend. poly44 0.618171 0.541562 0.534578 0.025936 15 

Slend- P.Load poly11 0.629505 0.529095 0.528083 0.026017 3 

Span-Slend. poly11 0.633605 0.526028 0.525009 0.026102 3 

Slend- R.Ratio poly55 0.664026 0.507555 0.496768 0.026969 21 

Span- P.Load poly55 0.846643 0.372126 0.358372 0.030452 21 

Slend.-C.Stren. poly55 0.938409 0.304072 0.288827 0.032060 21 

Table 9 : Fitting performances for high-load maximum deflection results considering different 9 

parameters as independent variables x, y. For each case the fitting performance indicator, presented 10 

in Section 3.3, and the number of the polynomial coefficients are reported. 11 

Table 10 represents a synthesis of fitting performances in the case of high load, considering 12 

maximum velocity as dependent variable. The lowest SSE is obtained by a 5th degree polynomial 13 
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function of slenderness and peak load. The best AR-square index corresponds to a 3rd degree 1 

polynomial function of the same variables, see Fig. 17. From these results, it is clear that the most 2 

important parameters fitting maximum velocity/high load results are peak load and slenderness. 3 

Other variables functions obtained dramatically worse results. Finally, it is interesting to underline 4 

the importance of the peak load, whose functions occupy the first seven positions in Table 10. 5 

Actually, the slenderness function produces lower fitting performance. These observations confirm 6 

what was stated in the previous Section 4.1 7 

 8 

 9 
Fig. 16: High Load, Max Deflection, Slenderness - Span 3rd deg. polyn. fitting. 10 

 11 

x – y Fit type SSEm2/sec2 R-SQUARE AR-SQUARE RMSE m/sec Coefficients 

Slend.-P.Load poly55 91.67459508 0.851965086 0.848718707 0.317049506 21 

Slend.-P.Load poly44 92.23189316 0.851065169 0.848793832 0.316970774 15 

Slend.-P.Load poly33 92.49950564 0.850633032 0.849176583 0.316569343 10 

Slend.-P.Load poly22 92.92596403 0.849944393 0.849135031 0.316612947 6 

Slend.-P.Load poly11 98.40803253 0.841092021 0.840750284 0.325292313 3 

P.Load.-C.Stren. poly33 357.6543056 0.422464597 0.416833157 0.622487849 10 

P.Load – Span. poly33 362.5423019 0.414571526 0.408863122 0.626727128 10 

Slend.-Span poly55 508.139387 0.179463294 0.161469068 0.746438464 21 

Slend.-Span poly44 510.7910993 0.175181345 0.162602411 0.745933857 15 

Slend.-C.Stren. poly33 511.2570454 0.174428941 0.166378952 0.74424993 10 

Slend.-Span poly33 512.3703241 0.172631233 0.164563716 0.745059803 10 

Slend.-Span poly22 515.5991811 0.167417318 0.162926581 0.745789462 6 

Slend.-Span poly11 529.3251071 0.145252876 0.14341471 0.75443143 3 

Table 10: Fitting performance for high-load maximum velocity results, considering different 12 

parameters as independent variables x, y. For each case the fitting performance indicator, presented 13 

in Section 3.3, and the number of the polynomial coefficients are reported. 14 
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 1 

 2 
Fig. 17: High Load, Max. Velocity, Peak Load - Slenderness 5th polyn. fitting.  3 

 4 

 5 

 6 

 7 

 8 

x – y 
Fit 

type 
SSE m2 R-SQUARE 

AR-

SQUARE 
RMSE m Coefficients 

Slend.-P.Load poly55 0.58467087 0.796950663 0.794757906 0.017767865 21 

Slend.-P.Load poly44 0.591579941 0.794551224 0.793003171 0.017843657 15 

Slend.-P.Load poly33 0.59624080 0.792932562 0.791932236 0.017889756 10 

Slend.-P.Load poly22 0.601406477 0.791138583 0.790579233 0.017947828 6 

Slend.-P.Load poly11 0.75360261 0.738282651 0.738002739 0.020074761 3 

Slend.-Span poly55 1.249337712 0.566119663 0.561434130 0.02597284 21 

Slend.-Span poly44 1.255508783 0.563976523 0.560691093 0.025994832 15 

Slend.-Span poly33 1.264076134 0.561001182 0.558880415 0.026048348 10 

Slend.-Span poly22 1.265849822 0.560385201 0.559207872 0.026038678 6 

Slend.-Span poly11 1.327557523 0.53895484 0.538461744 0.026644395 3 

P.Load-

R.Ratio 
poly11 2.128770294 0.260703041 0.259912349 0.033739885 3 

C.Stren.-

P.Load 
poly11 2.351506343 0.183349423 0.182476000 0.035461106 3 

Table 11: Fitting performance for low-load maximum deflection results, considering different 9 

parameters as independent variables x, y. For each case the fitting performance indicator, presented 10 

in Section 3.3, and the number of the polynomial coefficients are reported. 11 

The case of low-load has been analysed considering as dependent variable the maximum 12 

displacement and the maximum velocity. If we consider the former case a synthesis of the analysis 13 
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is shown in Table 11: the lowest SSE is obtained by a 5th degree polynomial function of slenderness 1 

and peak load (see Fig. 18). This function also presents the best AR-square index. These results 2 

underline the importance of peak load and slenderness in the estimation of beam response under 3 

blast load.  4 

 5 

 6 
Fig. 18: Low Load, Max. Deflection, Peak Load - Slenderness 5th polyn. fitting.  7 

 8 

 9 

 10 

 11 

 12 

x – y Fit type SSE m2/sec2 R-SQUARE AR-SQUARE 
RMSE 

m/sec 
Coefficients 

Slend.-P.Load poly55 74.15608153 0.951244314 0.950717795 0.200102675 21 

Slend.-P.Load poly44 74.91211988 0.950747238 0.95037612 0.200795136 15 

Slend.-P.Load poly33 75.21087461 0.950550815 0.95031193 0.200924961 10 

Slend.-P.Load poly22 75.41919317 0.950413851 0.950281055 0.200987377 6 

Slend.-P.Load poly11 132.1395093 0.913121725 0.913028807 0.265824828 3 

Slend.-Span poly55 1026.960884 0.324800050 0.317508474 0.744657315 21 

Slend.-Span poly44 1031.492396 0.321820699 0.316710629 0.745092446 15 

Slend.-Span poly33 1038.129148 0.317457208 0.314159900 0.746481871 10 

Slend.-Span poly22 1038.440420 0.317252555 0.315424094 0.745793567 6 

R.Ratio-Slend. poly11 1054.338630 0.306799897 0.306058507 0.750877786 3 

Slend.-Span poly11 1073.179019 0.294412834 0.293658195 0.757556944 3 

C.Stren.-Slend. poly11 1076.444277 0.292266012 0.291509077 0.758708542 3 

Table 12: Fitting performance for low-load maximum velocity results, considering different 13 

parameters as independent variables x, y. For each case the fitting performance indicator, presented 14 

in Section 3.3, and the number of the polynomial coefficients are reported. 15 
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Table 12 presents a synthesis of the fitting performance in case of low load, considering velocity as 1 

a dependent variable. Also in this situation the lowest SSE is obtained by a 5th degree polynomial 2 

function of slenderness and peak load (see Fig. 19). The same function obtains the best AR-square 3 

index. From these results, it is clear that the most important parameters for fitting maximum 4 

velocity/low load results are peak load and slenderness. Other variables obtained dramatically 5 

worse results. Actually, a simple linear function of peak load and slenderness fits the numerical 6 

results better than more sophisticated functions of other variables (i.e. the 5th degree polynomial 7 

corresponding to slenderness and span length). 8 

 9 
Fig. 19: Low Load, Max. Velocity, Peak Load - Slenderness 5th polyn. fitting.  10 

 11 

 12 

 13 

5 Conclusions 14 

 15 

This paper has presented a reliability and parametric analysis of the structural response of 16 

Reinforced Concrete beams under blast loads. The main aim was to highlight the key parameters of 17 

the problem in order to produce information useful for the design of reliable blast-resistant 18 

structures. 19 

The beam has been idealised as an equivalent SDOF system, in which strain-rate effects are 20 

accounted for. This approach is convenient from a computational point of view and it has been 21 

validated by a direct comparison with experimental results found in literature and with a more 22 

sophisticated FE model.  23 

First a huge number of SDOF numerical simulation had been employed for the reliability analysis. 24 

As a result, Fig. 9 was obtained. It presents the percentage of collapsed beam as a function of peak 25 

load and slenderness. So it can give a rough measure of reliability for the given combination of peak 26 

load and slenderness. Then a sensitivity analysis of the parameters involved in beam response under 27 

blast load has been developed. Results of numerical simulations obtained by means of the SDOF 28 

model in terms of deflection and velocity have been fitted by proper polynomial least-square 29 
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interpolation. Random variations of beams and load characteristics have been considered. Among 1 

the various fitting functions of several parameters (peak load, positive phase duration, slenderness, 2 

span length, concrete strength, reinforcement ratio etc.) slenderness and peak load prove to be the 3 

most important parameters, but span is also a key parameter. Actually, given the slenderness the 4 

span length corresponds to the mass of the beam and, in impulsive load regime, it is crucial to 5 

determine the initial velocity which is equal to the ratio between impulse and the mass itself. 6 

Furthermore, the slenderness is strictly linked to the beam flexural stiffness which is the only elastic 7 

term in the Euler-Bernoulli beam equation and the peak load is a key parameter to identify the load.  8 

Other variables such as concrete strength and reinforcement ratio do not seem to have a high 9 

correlation with the beam response within the limits of the SDOF model.  10 

The latter approach can be very suitable for early analysis in the case of blast-resistant structural 11 

design. Indeed a first indication of what slenderness is necessary to withstand the load can be 12 

obtained looking at Fig.  9. In addition, the above presented fitting functions can be translated in 13 

suitable tables where it is possible to find the maximum deflection (see Table 13) or maximum 14 

velocity of a beam with a given slenderness under a given blast load characterized by a given peak 15 

value. These tables can also be calculated for different loads, boundary conditions, failure criterions 16 

and for other different significant parameters. Moreover, instead of a random variation of the 17 

variables accounted in this section, it would be interesting to consider other typical distribution 18 

functions such as the Gauss-normal or a Fuzzy representation. 19 

 20 

 21 

Slenderness\Peak Load 4∙105 N 5∙105 N 6∙105 N 7∙105 N    8∙105 N 

9 0.044 0.061 0.079 0.097 0.114 

10 0.079 0.096 0.114 0.131 0.149 

11 0.114 0.131 0.149 0.166 0.184 

12 0.149 0.166 0.184 0.201 0.219 

13 0.184 0.201 0.219 0.236 0.254 

14 0.218 0.236 0.254 0.271 0.289 

15 0.253 0.271 0.288 0.306 0.324 
 22 

Table 13: High Load – Maximum Displacement estimation (in meter) based on the poly 1-1 model 23 

Slenderness/Peak Load. The black thick line identifies the conditions in which the percentage of 24 

collapse exceeds 50%. 25 
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