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Chapter 1.

Introduction

Until the first years of the 70s there was the common belief that, in hard scattering
processes, the effects due to the transverse polarization of the particles involved
were negligible. Precisely in those years the results of several measurements,
totally unexpected, opened a new way to study transverse spin effects in hadron
physics. During the mid 70s, indeed, significant Single Spin Asymmetries (SSAs)
in pion inclusive production in proton-proton collisions, at center of mass en-
ergy of few GeV, were observed at the Argonne Laboratory synchrotron [1–3].
Moreover, during the same period at the Fermilab, Λ-hyperons produced in
unpolarized pN collisions, at

√
s ≃ 24 GeV and moderate transverse momen-

tum PT (below 1.5 GeV), showed high values of their transverse polarization
with respect to the production plane [4]. In general, the transverse Single Spin
Asymmetry for an inclusive process like A↑B → C + X is defined as:

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓ =
dσ↑ − dσ↓

2dσunpol , (1.1)

where dσ↑(↓) is the differential cross section for the production of a hadron C
in the scattering of a upwards, dσ↑, or downwards, dσ↓, transversely polarized
hadron A off an unpolarized hadron B. This asymmetry is also called "left-right
asymmetry". Analogously to AN, it is also possible to define the transverse

1



2 Introduction

polarization for the process AB → C↑ + X, where C is a spin-1/2 hadron, as:

PC =
dσ↑ − dσ↓

dσ↑ + dσ↓ =
dσ↑ − dσ↓

dσunpol , (1.2)

where now the arrows in dσ↑(↓) represent the direction of the final-state hadron
transverse polarization with respect to the production plane. Experimentally, for
the Λ polarization, it is usually measured by observing the angular distribution
of the Λ weak decay (see below).

Given the great importance of the study of the SSAs, the discoveries made
during the 70s stimulated a large number of both theorical and experimental
analyses. Among the first and most important experimental works we cite those,
around the 90s, of the E704 Collaboration at the Fermilab, that gathered data on
the SSAs for the production of several particles (photons, pions, Λ, η) in pp and
pp̄ collisions, employing polarized beams for the first time. They significantly
contributed to the studies of such asymmetries, reaching a center of mass energy
of

√
s = 20 GeV and improving the separation between the xF (xF = 2PL/

√
s,

where PL is the final hadron longitudinal momentum) and PT dependences of
the SSAs [5–8]. Surprisingly, pion asymmetries reached values as large as 30-40%
in size.

These results were then confirmed, lately, by the STAR, PHENIX and BRAHMS
Collaborations at the Relativistic Heavy Ion Collider (RHIC), at center of mass
energies up to

√
s = 500 GeV and covering a wider kinematical range in xF and

PT [9–13]. The most surprising aspect is that the main features characterizing
such SSAs kept on manifesting even at these energies. Similarly, the experi-
mental data, that were gradually collected on the transverse polarization of
the Λ-hyperons produced in unpolarized hadronic collisions, confirmed the ex-
traordinarity of this kind of measurements. Even nowadays, for what concerns
AN , while the available measurements are increasingly more accurate and cover
wider kinematic regions, their phenomenological interpretation is still under
examination and debate.
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On the theory side, indeed, we know that large values of the transverse
polarization PC (and similarly for AN) cannot be explained within the framework
of collinear QCD factorization, at leading twist, that in fact predicts negligible
values [14]. Hyperon polarization, observed in unpolarized collisions, necessarily
has to originate from non-perturbative effects, presumably in the hadronization
process. For this reason, a study of the Λ polarization enables us to obtain
important information on this non-perturbative mechanism.

The study of SSAs, in addition, is strongly related to our comprehension of
the inner structure of the hadrons and their spin content, in terms of the orbital
angular momentum and the partons spin. In such a context an important role,
within the framework of pQCD, is played by the spin and transverse momen-
tum dependent parton distribution functions (TMD-PDFs) and fragmentation
functions (TMD-FFs), collectively referred to as TMDs.

For what concerns the theoretical development, the first approaches were
based on a natural extension of the collinear parton model in pQCD, by general-
izing the PDFs and the FFs with the inclusion of a dependence on the intrinsic
transverse momentum of the partons with respect to their parent nucleon di-
rection, or of the hadrons with respect to their fragmenting quark direction.
Phenomenologically, the first and most studied TMD-PDFs are the unpolarized
distribution and the Sivers function. This last function, introduced in [15, 16],
correlates the azimuthal distribution of unpolarized quarks with the spin of their
parent nucleon. Indeed, we can define a non-zero asymmetry of the following
form:

∆ f̂a/A↑(x, k⊥) = f̂a/A↑(x, k⊥)− f̂a/A↓(x, k⊥), (1.3)

where the arrows ↑ (↓) represent the transverse spin direction, upwards and
downwards, of the hadron A with respect to its direction of motion. We can also
notice that the function ∆ f̂a/A↑ should be, by parity conservation, proportional
to (p̂A × k⊥) · SA, where pA and SA are the hadron A momentum and spin, and
k⊥ the parton transverse momentum.
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It is worth noting that the this asymmetry enters in the expression of the
unpolarized parton number density inside a transversely polarized hadron

f̂a/A↑(x, k⊥) = fa/A(x, k⊥) +
1
2

∆N fa/A↑(x, k⊥)(p̂A × k̂⊥) · SA , (1.4)

where ∆N fa/A↑ , is the so-called Sivers function [17].

In the fragmenting sector, the most studied TMD functions are the unpolar-
ized and the Collins fragmentation functions, where the latter gives the asymmet-
ric azimuthal distribution of unpolarized hadrons produced in the fragmentation
of a transversely polarized quark. Analogously to the Sivers function, we can
write the fragmentation function of a polarized quark as follows:

D̂C/c↑(z, k⊥) = DC/c(z, k⊥) +
1
2

∆NDC/c↑(z, k⊥)(p̂q × k̂⊥) · sq , (1.5)

where pq and sq are the quark momentum and spin, and ∆NDC/c↑ is the so called
Collins function [17], that can be also written as:

∆D̂C/c↑(z, k⊥) = D̂C/c↑(z, k⊥)− D̂C/c↓(z, k⊥) , (1.6)

where ↑ (↓) represents the transverse spin direction, upwards or downwards, of
the fragmenting quark.

Subsequently, a systematic classification of the TMD-PDFs and TMD-FFs
was carried out, leading to a total of eight different spin and transverse momen-
tum dependent parton distribution and fragmentation functions (for spin-1/2
hadrons) [18, 19]. Among them, in the quark case we can also cite, besides
the aforementioned Sivers [15, 16] and Collins functions [20], the Boer-Mulders
distribution function, that was proposed initially as a usefull tool to explain
the azimuthal asymmetries observed in the dilepton angular distribution in
unpolarized Drell-Yan processes [21]. Similar functions can also be defined in
the gluon sector, where, instead of transverse polarization, we refer to linearly
polarized states.
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In recent years, we have witnessed significant progress in the formulation of
factorization theorems in terms of TMDs for a well defined class of processes [22–
25], all characterized by the presence of two strongly ordered energy scales:
namely, semi-inclusive deep inelastic scattering (SIDIS), Drell-Yan (DY) and e+e−

annihilation processes, where the two scales are the virtuality of the exchanged
boson (the larger one) and the transverse momentum of the final hadron (SIDIS),
of the lepton-pair (DY) or of the hadron-pair in e+e− collisions (the smaller one).

Moreover, it has been proven that, unlike the collinear distributions and
all TMD-FFs, the TMD-PDFs are not all strictly universal. The universality,
indeed, is an important issue within TMD factorization theorems: it enables us
to predict observables in any of the three abovementioned processes, once one of
the functions is extracted from a phenomenological analysis. Another important
aspect, strongly related to the factorization, is the scale dependence of the TMDs,
that can be encoded in well-defined evolution equations. These eventually allow
to give estimates of TMD observables in different kinematical situations.

Among the TMD-PDFs there are two, already mentioned, T-odd functions,
the Sivers, f⊥1T, and the Boer-Mulders, h⊥1 , functions that are process dependent
or, in other words, manifest a modified universality. For what concerns the
Sivers asymmetry, this emerges in SIDIS processes from the interactions between
the quark in the final state and the proton remnants, while in DY processes we
have an initial-state interaction between the spectator and the incoming quarks.
This difference leads to the following relation between the Sivers function when
probed in SIDIS and DY [26, 27]:

f⊥1T(x, k⊥)SIDIS = − f⊥1T(x, k⊥)DY . (1.7)

A similar relation holds also for the Boer-Mulder function.

The complete structure of azimuthal dependences for particle production in
(un)polarized collisions, within a TMD approach, specifically for SIDIS [18,19,28],
DY [29] processes and hadron-pair production in e+e− collisions [30] has been
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formulated in full detail. In particular, in Ref. [28] the full decomposition in terms
of the eight independent TMD-PDFs was obtained for the process ℓp→ ℓ′h X
adopting the helicity formalism. This, indeed, allows for a direct probabilistic
interpretation within a more intuitive picture, which splits the physical process
in three phases, each of them described by the corresponding helicity amplitude:
the inclusive emission of a parton by the initial hadron p→ q X, the perturba-
tively calculable hard interaction ℓq→ ℓ′q′, and the emission of the final hadron
by the outgoing quark, q′ → h X. We recall that in this study only spinless or
unpolarized hadrons were considered. A somehow pioneering work in this
direction, even if in the context of a process for which TMD factorization is as-
sumed as a phenomenological ansatz, was presented in Ref. [31]. There, the focus
was on transverse SSAs for inclusive particle production in pp collisions, and,
within the helicity formalism, all leading-twist TMD-PDFs, for quark and gluons,
were considered together with the two TMD-FFs for spinless (or unpolarized)
hadrons.

A striking feature of SIDIS processes, which have played and still play a
leading role in accessing TMDs, is the strong correlation between the transverse
momentum dependence arising from the TMD-PDFs and TMD-FFs in the re-
sulting and measurable transverse momentum of the final hadron [32]. In this
respect DY and e+e− processes are of fundamental importance, being sensitive
separately to TMD-PDFs and TMD-FFs, respectively. In a similar way to what
was done for the TMD-PDFs, we will see that within the helicity formalism it is
also possible to define eight TMD-FFs, with analogous properties, for a spin-1/2
hadron.

In this thesis, these TMD-FFs will directly appear in the azimuthal depen-
dences for double-hadron prodution in unpolarized e+e− annihilation processes,
for which we have a factorization theorem. In particular, the Belle Collabo-
ration [33] has collected data for the transverse polarization of Λ-hyperons
produced together with light mesons in an almost back-to-back configuration as
well as for Lambda’s inclusively produced, where the Λ transverse momentum
is measured with respect to the thrust axis.
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It is worth recalling that the Λ polarization is self-analyzing and therefore
easily measurable. Its proton-pion weak decay enables, through its angular
distribution measurement, to identify directly the Λ polarization in its reference
frame. The angular distribution can be written as follows:

Ŵ(1/2)(θ, ϕ) =
1

4π
(1 + αPΛ

Y sin θ cos ϕ) , (1.8)

where PΛ
Y is the transverse polarization, α is the decay constant for the Λ weak

decay, while θ and ϕ are the angles that identify the proton direction in the Λ
reference frame.

To try to describe the Λ transverse polarization, we will see that we can use a
still less explored, but not less important, fragmentation function. This TMD-FF,
called polarizing FF (pFF), gives the distribution of a transversely polarized spin-
1/2 hadron coming from the fragmentation of an unpolarized quark. It can be
written as :

∆D̂C↑/c(z, k⊥) = D̂C↑/c(z, k⊥)− D̂C↓/c(z, k⊥) = D̂C↑/c(z, k⊥)− D̂C↑/c(z,−k⊥) ,

(1.9)

that is the difference between the FFs, D̂C↑/c and D̂C↓/c, for an unpolarized quark
fragmenting into a spin-1/2 hadron with an upward or downward transverse
polarization. Among its main properties, we recall that this pFF is T-odd, but
chiral even, and this allows to access it directly without any unknown, chiral-odd,
counterpart. Last but not least, like the Collins function, it is universal, implying
that it should be the same when probed in e+e− or SIDIS processes [34].

The polarizing FF was introduced in Ref. [18] and it was studied phenomeno-
logically in Ref. [35], where the longstanding puzzle of the transverse polariza-
tion data for the inclusive production of Λ hyperons in unpolarized hadron-
hadron collisions [4, 36] was considered. Within a simplified TMD model, some
of its interesting features were tentatively extracted and a good description of
data was achieved. Notice that for such processes, TMD factorization is not
proven and other competing contributions could be at work.



8 Introduction

After these pioneering works, the lack of additional experimental information
prevented any further theory development. This until the new available data
from the Belle Collaboration at KEK [33] on transverse Λ/Λ̄ hyperon polarization
in e+e− processes have triggered a renewed interest. In fact, we will see how this
intriguing TMD-FF can be directly extracted, within different approaches, from
Belle experimental data.
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1.1. This Thesis

This thesis is partly based on the following pubblications:

1. U. D’Alesio, F. Murgia and M. Zaccheddu
First extraction of the Λ polarizing fragmentation function from Belle e+e− data
Phys.Rev.D 102 (2020) 5, 054001

2. U. D’Alesio, F. Murgia and M. Zaccheddu
General helicity formalism for two-hadron production in e+e− annihilation within
a TMD approach
JHEP 10 (2021) 078

3. U. D’Alesio, L. Gamberg , F. Murgia and M. Zaccheddu
Reanalysis of Belle e+e− data on transverse Λ polarization within the CSS frame-
work
in preparation

To give the thesis a more logical organization, we will not present the results of
the papers following their chronological order. Rather, we will start giving an
overview of the double-hadron production case in e+e− annihilation process,
within the helicity formalism, presenting the results of the second paper. We
will then discuss the phenomenological extraction of the polarizing FF from Belle
e+e− data, and show how it can be used to give estimates for the transverse Λ
polarization in SIDIS processes.

The thesis is organized as follows:

• in Chapter 2 we present the complete expressions for all leading-twist
azimuthal dependences and polarization observables at "leading order"
for double-hadron production in e+e− annihilation processes within the
helicity formalism. Moreover, by adopting a factorized transverse momen-
tum dependence in terms of Gaussian-like TMD-FFs we derive simplified
expressions for all single- and double-polarized observables, useful in phe-
nomenological analyses;
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• in Chapter 3 we present the phenomenological analysis of Belle data, for
the transverse Λ/Λ̄ hyperon polarization in e+e− annihilation processes,
leading to the first extraction of the Λ Polarizing Fragmentation Function;

• in Chapter 4 we present the kinematics and the expression for the produc-
tion of a transversely polarized hadron in a Semi-inclusive Deep Inelastic
Scattering. Moreover, we will give the Λ/Λ̄ polarization estimates for
typical energies reachable at the future Electron-Ion Collider (EIC);

• in Chapter 5 we discuss, by employing the CSS evolution equations, the
formulation in terms of convolutions in bT-space for double and single-
inclusive hadron production in e+e− annihilation processes. These results
will be used to re-analyze the Belle data within a proper TMD framework.

• Finally, conclusions will be drawn in Chapter 6.

A number of more technical derivations and results used in the thesis are
presented in several appendices.



Chapter 2.

General helicity formalism for
two-hadron production in e+e−

annihilation within a TMD approach

2.1. Introduction

In this Chapter we apply the TMD approach, adopting the helicity formalism,
to e+e− → h1h2 X processes and derive the complete expressions for all leading-
twist azimuthal dependences and polarization observables at leading order,
adopting two commonly used reference frames. The case of single-hadron pro-
duction within a jet, as pointed out in a series of recent papers [37–40], requires a
more dedicated study and it will be partially addressed in the following Chap-
ters.

We will present the complete set of all leading-twist TMD-FFs for spinless (or
unpolarized) and spin-1/2 hadrons both for quarks and gluons, discussing their
main properties and their physical meaning. Moreover, by adopting a factorized
transverse momentum dependence in terms of Gaussian-like TMD-FFs we derive
simplified expressions for all single- and double-polarized observables, useful in
phenomenological analyses. The results are in perfect agreement with those of
Ref. [30].

11
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General helicity formalism for two-hadron production in e+e− annihilation

within a TMD approach

The motivations behind this study are several: from the theory point of
view, it represents the extension of the helicity formalism to spin-1/2 hadron
production in e+e− annihilations, providing the classification of all leading-twist
quark and gluon TMD-FFs, and focusing, for the quark case, on their role in
polarized hadron production; on the phenomenology side, it timely matches
the renewed interest, triggered by recent data from the Belle Collaboration on
the transverse Λ polarization [33], in the associated hadron production in e+e−

annihilation processes. In this context, the first phenomenological analysis, as
we will discuss in the following Chapter, within a TMD framework has been
carried out in Ref. [41].

The Chapter is organized as follows: in Section 2.2 we present the main
formulae for the computation, within the helicity formalism, of the azimuthal
dependences for the production of (un)polarized hadron-pairs in e+e− collisions.
In Section 2.3 we give the complete set of quark TMD-FFs for spin-1/2 hadrons
at leading twist, while in Sec. 2.4 we collect the explicit expressions for unpolar-
ized, single- and double-polarized hadron production. In Sec. 2.5 we present all
convolutions in terms of the TMD-FFs for a specific kinematical configuration;
in particular, in Sec. 2.5.4 we give the corresponding explicit analytical formulae
assuming a factorized Gaussian dependence for the TMD-FFs. Our conclusions
are gathered in Sec. 2.6. Several useful detailed results are derived and collected
in the Appendices; in particular, in Appendix A we give the main properties of
the helicity fragmentation amplitudes, in Appendix B we present the complete
set of gluon TMD-FFs for spin-1/2 hadrons and in Appendix C the relation with
other common notations is worked out. In Appendix D we discuss the tenso-
rial analysis adopted to extract the observed azimuthal dependences. Useful
relations and definitions on the helicity frames are given in Appendix E.

2.2. Production of two hadrons in e+e− annihilation

We consider the production of two almost back-to-back hadrons in the e+e− →
h1(S1) h2(S2) + X process, where S1,2 are the hadron spins, within a TMD ap-
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proach and adopting the helicity formalism. Since we will be also interested in
heavy baryon, like Λ’s, production, we will pay special attention to hadron mass
effects. Two reference frames are usually adopted for such a study: the “thrust
frame”, where one identifies the direction of the two opposite jets and measure
the corresponding azimuthal distributions of the two hadrons within the jets;
the “hadron frame”, where one measures only the momenta of the two hadrons
and the azimuthal distribution of one hadron with respect to the other.

More precisely, the thrust frame is chosen so that the e+e− → q q̄ scattering
occurs in the x̂z plane, with the back-to-back quark and antiquark moving along
the ẑ-axis. This choice requires, experimentally, the reconstruction of the jet
thrust axis, but it involves a very simple kinematics. In the configuration of
Fig. 2.1, the four-momenta of the e+, e− leptons (respectively k+, k−) and of the
q, q̄ pair (q1, q2 respectively) are, neglecting all masses,

q1 =

√
s

2
(1, 0, 0, 1) q2 =

√
s

2
(1, 0, 0,−1) (2.1)

k− =

√
s

2
(1,− sin θ, 0, cos θ) k+ =

√
s

2
(1, sin θ, 0,− cos θ) , (2.2)

where s is the center-of-mass energy squared. These define the leptonic plane.
We will use the generic notation x̂L, ŷL, ẑL for the axes in this frame. The final
hadrons h1 and h2 carry light-cone momentum fractions z1 and z2 and have
intrinsic transverse momenta p⊥1 and p⊥2 with respect to the direction of the
corresponding fragmenting quarks,

p⊥1 = p⊥1(cos φ1, sin φ1, 0) p⊥2 = p⊥2(cos φ2, sin φ2, 0) , (2.3)

with p⊥ = |p⊥|, so that their four-momenta can be expressed as

Ph1
=

(
z1

√
s

2

(
1 +

a2
h1

z2
1

)
, p⊥1 cos φ1, p⊥1 sin φ1, z1

√
s

2

(
1 −

a2
h1

z2
1

))
(2.4)

Ph2
=

(
z2

√
s

2

(
1 +

a2
h2

z2
2

)
, p⊥2 cos φ2, p⊥2 sin φ2,−z2

√
s

2

(
1 −

a2
h2

z2
2

))
, (2.5)
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Figure 2.1.: Kinematics for the thrust-frame configuration.

where

a2
h1,2

=
p2
⊥1,2 + M2

h1,2

s
= η2

⊥1,2 +
M2

h1,2

s
. (2.6)

At large center of mass energies and not too small values of z, one can keep only
the lowest-order contribution in η⊥, with the whole mass dependence, and work
with the much simpler kinematics:

Ph1
≃
(

z1

√
s

2

(
1 +

M2
h1

z2
1s

)
, p⊥1 cos φ1, p⊥1 sin φ1, z1

√
s

2

(
1 −

M2
h1

z2
1s

))
(2.7)

Ph2
≃
(

z2

√
s

2

(
1 +

M2
h2

z2
2s

)
, p⊥2 cos φ2, p⊥2 sin φ2,−z2

√
s

2

(
1 −

M2
h2

z2
2s

))
. (2.8)

It is important to stress that we will keep terms in p⊥/
√

s only when this is
essential to give a non zero result. For massive hadrons, two further scaling
variables are usually introduced: the energy fraction (often adopted in the
experimental analyses)

zh = 2Eh/
√

s (2.9)
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and the momentum fraction

zp = 2|Ph|/
√

s . (2.10)

These are related to the light-cone momentum fractions as follows:

zh = z
(

1 +
a2

h

z2

)
≃ z

(
1 +

M2
h

z2s

)
(2.11)

zp = z
[(

1 − a2
h

z2

)2
+ 4

η2
⊥

z2

]1/2
≃ z

(
1 − M2

h

z2s

)
(2.12)

zp = zh

(
1 − 4

M2
h

z2
hs

)1/2
. (2.13)

For later use we also define the following quantity:

β2
1,2 = 1 − 4

η2
⊥1,2

z2
p1,2

. (2.14)

Notice that, adopting the above variables, one can express the two hadron three-
momenta as

Ph1
= |Ph1

|
(

p⊥1
|Ph1

| cos φ1,
p⊥1
|Ph1

| sin φ1,

√√√√1 − p2
⊥1

|Ph1
|2

)

= |Ph1
|
(

2η⊥1
zp1

cos φ1,
2η⊥1
zp1

sin φ1, β1

)
(2.15)

Ph2
= |Ph2

|
(

p⊥2
|Ph2

| cos φ2,
p⊥2
|Ph2

| sin φ2,−

√√√√1 − p2
⊥2

|Ph2
|2

)

= |Ph2
|
(

2η⊥2
zp2

cos φ2,
2η⊥2
zp2

sin φ2,−β2

)
. (2.16)

Moving to the hadron frame, here one can fix the ẑ-axis in the opposite direction
with respect to the observed hadron h2 and the x̂z letonic plane as determined
by the lepton and the h2 directions (with the e+e− axis at angle θ)1. There is

1We use the same angle as in the thrust frame for the sake of simplicity.
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Figure 2.2.: Kinematics for the the hadron-frame configuration.

another relevant plane, the production one, determined by ẑ and the direction
of the other observed hadron h1, at an angle ϕ1 with respect to the x̂z plane.
This kinematical configuration is shown in Fig. 2.2: it has the advantage of not
requiring the reconstruction of the thrust axis. Also in this case we will use the
notation x̂L, ŷL, ẑL for the axes in this frame, to which we refer generically to as
the laboratory frame. Notice that the incoming particles entering the partonic
process e+e− → qq̄ are still in a c.m. frame with k1 = −k2 and q1 = −q2 and lie
on a plane, even if not coinciding with the lepton plane and depending on the
intrinsic transverse momenta. In order to give it in a compact form we will use
the relations among the three scaling variables defined above, as follows:

Ph2
= (E2, 0, 0, − |Ph2

|) =
√

s
2

zh2

(
1, 0, 0,−

√√√√1 − 4
M2

h2

z2
h2

s

)
=

√
s

2
(zh2

, 0, 0,−zp2
)

(2.17)

q2 = (

√
s

2
,− p⊥2

zp2

cos φ2,− p⊥2
zp2

sin φ2,−
√

s
2

β2)

≃ (

√
s

2
,− p⊥2

zp2

cos φ2,− p⊥2
zp2

sin φ2,−
√

s
2
) (2.18)
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q1 =

(√
s

2
,

p⊥2
zp2

cos φ2,
p⊥2
zp2

sin φ2,
√

s
2

β2

)
≃
(√

s
2

,
p⊥2
zp2

cos φ2,
p⊥2
zp2

sin φ2,
√

s
2

)
(2.19)

Ph1
=

P1T cos ϕ1, P1T sin ϕ1, zp1

√
s

2

√√√√1 − 4
η2

1T

z2
p1

 ≃
(

P1T cos ϕ1, P1T sin ϕ1, zp1

√
s

2

)
(2.20)

p⊥1 =Ph1
− zp1

β1 q1

=

(
P1T cos ϕ1 −

zp1

zp2

p⊥2 β1 cos φ2, P1T sin ϕ1 −
zp1

zp2

p⊥2 β1 sin φ2,

zp1

√
s

2

√√√√1 − 4
η2

1T

z2
p1

− β1β2


≃
(

P1T cos ϕ1 −
zp1

zp2

p⊥2 cos φ2, P1T sin ϕ1 −
zp1

zp2

p⊥2 sin φ2, 0

)
, (2.21)

with η1T = P1T√
s and where in the leading-order approximation in η⊥ one con-

sistently neglects second order corrections in η1T as well. Notice that the ap-
proximate expressions in Eqs. (2.18) and (2.19) are valid for all scaling variables
defined in Eqs. (2.11)-(2.13). In both configurations the master formula allowing
to calculate, at leading order (LO), the most general spin configuration in the
helicity formalism is given by

ρ
h1,S1
λh1

,λ′
h1

ρ
h2,S2
λh2

,λ′
h2

dσe+e−→h1h2X

d cos θdz1d2p⊥1dz2d2p⊥2

=∑
q

∑
{λ}

1
32πs

1
4

M̂λqλq̄,λ+λ−
M̂∗

λ′
qλ′

q̄,λ+λ−
D̂

λh1
,λ′

h1
λq,λ′

q
(z1, p⊥1)D̂

λh2
,λ′

h2
λq̄,λ′

q̄
(z2, p⊥2) .

(2.22)

Let us clarify the physical meaning of Eq. (2.22) – our starting point – by making
detailed comments on its notation and contents. The formula is written according
to the TMD factorization theorem, separating the soft, long distance, from the
hard, short distance, contributions. The hard part is computable in perturbative
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QED, while information on the soft one has to be extracted from experiments
and/or parameterized. More explicitly:

1. ρ
h,Sh
λh,λ′

h
is the helicity density matrix of the hadron h with spin Sh. It describes

the spin orientation of the particle in its helicity frame; e.g. for a spin-1/2
particle, Tr(σiρ) = Pi is the i-th component of the polarization vector P in
the helicity frame of the particle;

2. the notation {λ} implies a sum over all repeated helicity indices;

3. the M̂λqλq̄,λ+λ−
’s are the helicity scattering amplitudes for the elementary

process e+(λ+) + e−(λ−) → q(λq) + q̄(λq̄), q = u, d, s, ū, d̄, s̄ (neglecting
heavy flavours). They represent the hard contribution to the cross section
and can be calculated perturbatively within QED.

4. D̂λh,λ′
h

λq,λ′
q
(z, p⊥) is a product of two helicity fragmentation amplitudes for

the q → h + X process, and is directly related to the leading-twist TMD
fragmentation functions for the hadron h. It represents the non-perturbative
component of the cross section, as it will be discussed in detail in the next
section. Here we recall only, referring now to a generic parton c, a quark or
a gluon, that it is defined as

D̂λh,λ′
h

λc,λ′
c
(z, p⊥) =∑

∫
X,λX

D̂λh,λX ;λc
(z, p⊥)D̂

∗
λ′

h,λX ;λ′
c
(z, p⊥) , (2.23)

where the ∑
∫

X,λX

stands for a spin sum and phase space integration over

all undetected particles, considered as a system X. The usual unpolarized
fragmentation function Dh/c(z), i.e. the number density of hadrons h re-
sulting from the fragmentation of an unpolarized parton c and carrying a
light-cone momentum fraction z, at tree level is given by

Dh/c(z) =
1
2 ∑

λc,λh

∫
d2p⊥D̂λh,λh

λc,λc
(z, p⊥) . (2.24)
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The expression in Eq. (2.22) has to be suitably integrated over the unobserved
variables according to the chosen kinematical set-up. In the thrust frame, as
discussed for instance in the context of spin-zero meson production for the
study of the Collins effect [42], one changes the angular variables from (φ1, φ2)

to (φ1, φ1 + φ2), integrates over the azimuthal angle φ1 and, eventually, over
the moduli of the intrinsic transverse momenta. In the hadron-frame config-
uration, where the parton momenta are not measurable, one has to integrate
over them. For the most general case, i.e. the unpolarized, single-polarized,
double-polarized hadron production, we will have

dσe+e− → h1(S1)h2(S2) X

d cos θdz1dz2d2P1T
=
∫

d2p⊥1 d2p⊥2 δ(2)(p⊥1 − Ph1
+ zp1

β1 q1)

× dσe+e− → h1(S1)h2(S2) X

d cos θdz1d2p⊥1dz2d2p⊥2
,

(2.25)

where q1 is given in terms of p⊥2, see Eq. (2.19). At the lowest order in the
transverse momentum dependence, p⊥/

√
s, the above equation reads

dσe+e− → h1(S1)h2(S2) X

d cos θdz1dz2d2P1T
=
∫

d2p⊥1 d2p⊥2 δ(2)(p⊥1 − P1T + p⊥2 zp1
/zp2

)

× dσe+e− → h1(S1)h2(S2) X

d cos θdz1d2p⊥1dz2d2p⊥2
.

(2.26)

In the next section we will discuss in details the soft contributions to the master
formula.

2.3. Soft physics in the fragmentation process

The way the parton spin is transferred to the hadrons can be formally described,
in general, by bilinear combinations of the helicity fragmentation amplitudes
for the process c→ h + X. The hadron polarizations are, indeed, related to their
parent parton polarizations. In this sense, one could equally well interpret
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Eq. (2.22) either in terms of hadron polarizations or in terms of the fragmentation
amplitudes.

We present here our results starting from the former approach, which is
somewhat more direct and allows us to give a complete classification of the
TMD fragmentation functions at leading twist. However, the latter approach
offers a deeper understanding of some of the basic properties of our factorized
scheme (e.g. the parity properties) and allows for a direct comparison with other
formalisms adopted to describe the same spin effects.

For these reasons and for their relevance in the present study we will discuss
the quark case in full detail here below. The corresponding gluon TMD-FFs can
be found in Appendix B. The derivation of the explicit relations between our
formalism and the one of the Amsterdam group is given in Appendix C.

2.3.1. Quark TMD fragmentation functions for spin-1/2 hadrons

at leading twist

We start by introducing the TMD fragmentation function for a polarized quark,
q, with spin sq and polarization vector Pq, fragmenting into an unpolarized
hadron h: D̂h/q,sq

(z, p⊥). This, together with the helicity density matrices of the
quark and the hadron and the generalized fragmentation amplitudes defined in
Eq. (2.23), allows us to give the complete set of leading-twist quark TMD-FFs.
The quark and hadron helicity density matrices can be related as follows:

ρ
h,Sh
λh,λ′

h
D̂h/q,sq

(z, p⊥) = ∑
λq,λ′

q

ρ
q
λq,λ′

q
D̂λh,λ′

h
λq,λ′

q
(z, p⊥) . (2.27)

The hadron helicity density matrix for a spin-1/2 hadron can be expressed in
terms of the components of its polarization vector

Ph = (Ph
X, Ph

Y, Ph
Z) = (Ph

T cos ϕSh
, Ph

T sin ϕSh
, Ph

L) (2.28)
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as [31]

ρ
h,Sh
λh,λ′

h
=

1
2

ρh
++ ρh

+−

ρh
−+ ρh

−−


=

1
2

 1 + Ph
Z Ph

X − iPh
Y

Ph
X + iPh

Y 1 − Ph
Z


=

1
2

1 + Ph
L Ph

Te−iϕSh

Ph
TeiϕSh 1 − Ph

L

 ,

(2.29)

where X, Y, Z are the axes directions in the hadron helicity reference frame. The
above matrix elements have the following properties

ρh
++ + ρh

−− = 1 (2.30)

ρh
++ − ρh

−− = Ph
Z = Ph

L (2.31)

2Reρh
−+ = 2Reρh

+− = Ph
X = Ph

T cos ϕSh
(2.32)

2Imρh
−+ = −2Imρh

+− = Ph
Y = Ph

T sin ϕSh
. (2.33)

By using the above relations, we can write quantities of the form

Ph
J D̂h/q,sq

= D̂h/q
SJ/sq

− D̂h/q
−SJ/sq

≡ ∆D̂h/q
SJ/sq

, (2.34)

where J = X, Y, Z. We will use the notations:

Ph
J D̂h/q,sT

= D̂h/q
SJ/sT

− D̂h/q
−SJ/sT

≡ ∆D̂h/q
SJ/sT

(z, p⊥) (2.35)

Ph
J D̂h/q,sz

= D̂h/q
SJ/+ − D̂h/q

−SJ/+ ≡ ∆D̂h/q
SJ/+(z, p⊥) = ∆D̂h/q

SJ/sz
(2.36)

D̂h/q,sT
= Dh/q(z, p⊥) +

1
2

∆D̂h/sT
(z, p⊥) , (2.37)

where sT (sz) stands for the quark transverse (longitudinal) spin component in
its helicity frame.
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These amount to eight independent quantities, which represent the p⊥-
unintegrated fragmentation functions of hadron h with polarization Ph (defined
in the hadron helicity frame) coming from a quark q with spin sq (specified in
the parton helicity frame).

All these functions have a simple and direct physical meaning: for instance,
the X component of Eq. (2.35), (Ph

X D̂h/q,sT
) represents the amount of polarization

along the X axis (in the hadron helicity frame) carried by hadrons h coming from
the fragmentation of a transversely polarized quark q; (Ph

Y D̂h/q,sT
) is related to

the p⊥-dependent transversity fragmentation function, which survives upon
integration over d2p⊥. Similarly, the Z component of Eq. (2.36) (Ph

Z D̂h/q,sz
) is

the unintegrated helicity fragmentation function, which, once integrated over
the transverse momentum, gives the TMD quark helicity fragmentation function
∆Dh/q

SZ/sz
.

Notice that two independent fragmentation functions appear in the definition
of D̂h/q,sT

, Eq. (2.37), which is the only term in the sum over λh, λ′
h which corre-

sponds to hadron h being unpolarized: Dh/q(z, p⊥), the unintegrated number
density of unpolarized hadrons coming from the fragmentation of an unpolar-
ized quark q, and ∆D̂h/sT

(z, p⊥), the Collins function [20]. The latter permits the
distribution of unpolarized hadrons h to depend upon the transverse polariza-
tion of the parent quark q. In general, for a quark in a pure transverse spin state
sT and corresponding unit polarization vector, Pq, we can also rewrite it as

D̂h/q,sT
= Dh/q(z, p⊥) +

1
2

∆NDh/q↑(p̂q × p̂⊥) · Pq , (2.38)

where we have explicitly extracted the angular dependence, according to the
so-called “Trento conventions” [17], and where p̂q is the unit vector along the
quark three-momentum.

To deepen our understanding of the above eight TMD-FFs we can exploit
Eq. (2.27) with the help of the helicity density matrix for quarks. In close analogy
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to the hadron case we have

ρ
q

λq,λ
′
q

=
1
2

ρ
q
++ ρ

q
+−

ρ
q
−+ ρ

q
−−


=

1
2

 1 + Pq
z Pq

x − iPq
y

Pq
x + iPq

y 1 − Pq
z


=

1
2

1 + Pq
L Pq

Te
−iϕsq

Pq
Te

iϕsq 1 − Pq
L

 ,

(2.39)

where x, y, z are the axes of the helicity reference frame of the quark and ϕsq
is

the azimuthal angle of the quark spin.

By summing over the quark helicity indices on the right-hand side of Eq. (2.27)
and keeping fixed those of the hadron density matrix on the left-hand side, we
obtain:

ρ
h,Sh
++ D̂h/q,sq

=
1
2
(1 + Ph

Z)D̂h/q,sq

=
1
2
(D++

++ + D++
−−) +

1
2

Pq
L(D++

++ − D++
−−)

+ Pq
T[ReD++

+− cos (ϕsq
− ϕh) + ImD++

+− sin (ϕsq
− ϕh)] (2.40)

ρ
h,Sh
−− D̂h/q,sq

=
1
2
(1 − Ph

Z)D̂h/q,sq

=
1
2
(D++

++ + D++
−−)−

1
2

Pq
L(D++

++ − D++
−−)

− Pq
T[ReD++

+− cos (ϕsq
− ϕh)− ImD++

+− sin (ϕsq
− ϕh)] (2.41)

ρ
h,Sh
+− D̂h/q,sq

=
1
2
(Ph

X − iPh
Y)D̂h/q,sq

= iImD+−
++ + Pq

LReD+−
++

+
1
2

Pq
T[(D+−

+− + D+−
−+) cos (ϕsq

− ϕh)− i(D+−
+− − D+−

−+) sin (ϕsq
− ϕh)] ,

(2.42)
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where ϕh is the azimuthal angle of the hadron h in the helicity reference frame

of its fragmenting parton, and we have used the properties of D̂λh,λ′
h

λq,λ′
q
(z, p⊥)

collected in Appendix A.

To better clarify the above as well as the following expressions, we recall that
according to our “hat-convention” the quantities like D̂ (or ∆D̂) depend on p⊥,
including its phase, while quantities like D (or ∆D) do not depend on phases
anymore, as such dependence has been explicitly factored out.

By combining these expressions we are able to find the eight fragmentation
functions discussed above. For instance, by summing and subtracting Eqs. (2.40)
and (2.41) we have respectively

D̂h/q,sq
= (D++

++ + D++
−−) + 2Pq

TImD++
+− sin (ϕsq

− ϕh) (2.43)

Ph
ZD̂h/q,sq

= Pq
L(D++

++ − D++
−−) + 2Pq

TReD++
+− cos (ϕsq

− ϕh) . (2.44)

Meanwhile from the real and imaginary part Eq. (2.42), we find respectively the
fragmentation function for a hadron polarized along its X and Y helicity axes

Ph
XD̂h/q,sq

= 2Pq
LReD+−

++ + Pq
T(D+−

+− + D+−
−+) cos (ϕsq

− ϕh) (2.45)

Ph
YD̂h/q,sq

= −2ImD+−
++ + Pq

T(D+−
+− − D+−

−+) sin (ϕsq
− ϕh) . (2.46)

The two above relations can be expressed in a more compact form in terms of
the transverse polarization of the final hadron

Ph
X = Ph

T cos ϕSh
Ph

Y = Ph
T sin ϕSh

. (2.47)

By multiplying Eq. (2.45) by cos ϕSh
and Eq. (2.46) by sin ϕSh

and summing them
up, we get

Ph
TD̂h/q,sq

= −2 ImD+−
++ sin ϕSh

+ 2Pq
L ReD+−

++ cos ϕSh

+ Pq
T

[
D+−

+− cos(ϕSh
− ϕsq

+ ϕh) + D−+
+− cos(ϕSh

+ ϕsq
− ϕh)

]
. (2.48)



General helicity formalism for two-hadron production in e+e− annihilation
within a TMD approach 25

Moreover, it is easy to show that the azimuthal angle of Ph in the hadron helicity
frame, ϕSh

, and the same angle measured in the quark helicity frame, ϕ′
Sh

, are
related as follows

ϕSh
= ϕ′

Sh
− ϕh +O(p2

⊥/s) , (2.49)

so that Eq. (2.48) can be recast as

Ph
TD̂h/q,sq

= −2 ImD+−
++ sin(ϕ′

Sh
− ϕh) + 2 Pq

LReD+−
++ cos(ϕ′

Sh
− ϕh)

+ Pq
T

[
D+−

+− cos(ϕ′
Sh
− ϕsq

) + D−+
+− cos(ϕ′

Sh
+ ϕsq

− 2ϕh)
]

. (2.50)

From the above equations, giving the hadron polarization in terms of the frag-
mentation amplitudes and the quark polarization, we can define the eight TMD-
FFs as follows. Through Eq. (2.43) we have

D̂h/q = D̂h/q,sL
= (D++

++ + D++
−−) ≡ Dh/q (2.51)

D̂h/q,sT
= (D++

++ + D++
−−) + 2 ImD++

+− sin (ϕsq
− ϕh) . (2.52)

The first expression gives the fragmentation function for an unpolarized hadron
generated by an unpolarized quark. This equals by parity the fragmentation
function of a longitudinally polarized quark into an unpolarized hadron. In the
second expression we have the TMD-FF of an unpolarized hadron generated by
a transversely polarized quark. By using the following identity

sin (ϕsq
− ϕh) = (p̂q × p̂⊥) · Pq, (2.53)

we recover the expression in Eq. (2.38) and, at the same time, we find the relation
between ImD++

+− and ∆NDh/q↑ . From Eq. (2.44) we have

Ph
ZD̂h/q,sL

= (D++
++ − D++

−−) = ∆Dh/q
SZ/sL

(2.54)

Ph
ZD̂h/q,sT

= 2 ReD++
+− cos (ϕsq

− ϕh) = ∆Dh/q
SZ/sT

cos (ϕsq
− ϕh) , (2.55)
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giving the FF for a longitudinally polarized hadron produced, respectively, by a
longitudinally and a transversely polarized quark. Analogously, from Eq. (2.45)
we get

Ph
XD̂h/q,sL

= 2 ReD+−
++ = ∆Dh/q

SX/sL
(2.56)

Ph
XD̂h/q,sT

= (D+−
+− + D+−

−+) cos (ϕsq
− ϕh) = ∆Dh/q

SX/sT
cos (ϕsq

− ϕh) , (2.57)

where we have the FF for a hadron transversely polarized along the X axis pro-
duced, respectively, longitudinally and a transversely polarized quark. Finally,
from Eq. (2.46) we have

Ph
YD̂h/q,sL

= Ph
YD̂h/q = −2ImD+−

++ = ∆Dh
SY/q (2.58)

Ph
YD̂h/q,sT

= −2ImD+−
++ + (D+−

+− − D+−
−+) sin (ϕsq

− ϕh)

= ∆Dh
SY/q + ∆−D̂h/q

SY/sT
= ∆Dh

SY/q + ∆−Dh/q
SY/sT

sin (ϕsq
− ϕh) , (2.59)

giving the TMD-FF for an unpolarized quark and for a transversely polarized
quark fragmenting into a hadron transversely polarized along the Y axis. The
first expression gives the so-called polarizing fragmentation function, introduced
in Refs. [21, 30] and considered in a phenomenological study of transverse
Λ polarization in inclusive hadron collisions [35] and in semi-inclusive deep
inelastic processes [43]. It is also worth mentioning that the function ∆D̂h/q

SY/sT
≡

Ph
YD̂h/q,sT

entering the second equation can be decomposed into two terms, the
polarizing FF term which is independent of the quark transverse polarization,
and a term which changes sign when the quark polarization direction is reversed:

∆−D̂h/q
SY/sT

=
1
2
[∆D̂h/q

SY/sT
− ∆D̂h/q

SY/−sT
] = −∆−D̂h/q

SY/−sT
. (2.60)

Before concluding this section, we notice that the azimuthal dependence of the
term involving the polarizing FF in Eq. (2.50) can be expressed as

sin (ϕ′
Sh
− ϕh) = (p̂q × p̂⊥) · Ph . (2.61)
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Therefore, we can define, in close analogy to the Collins FF,

Ph
TD̂h/q = ∆D̂h

ST/q = ∆NDh↑/q (p̂q × p̂⊥) · Ph , (2.62)

for the fragmentation of an unpolarized quark into a transversely polarized
hadron. All the above results can be collected as follows:

D̂h/q(z, p⊥) = Dh/q = (D++
++ + D++

−−)

∆D̂h/q,sT
(z, p⊥) = ∆NDh/q↑ sin (ϕsq

− ϕh) = 4ImD++
+− sin (ϕsq

− ϕh) [Collins FF]

∆D̂h/q
SZ/sL

(z, p⊥) = ∆Dh/q
SZ/sL

= (D++
++ − D++

−−)

∆D̂h/q
SZ/sT

(z, p⊥) = ∆Dh/q
SZ/sT

cos (ϕsq
− ϕh) = 2ReD++

+− cos (ϕsq
− ϕh)

∆D̂h/q
SX/sL

(z, p⊥) = ∆Dh/q
SX/sL

= 2ReD+−
++

∆D̂h/q
SX/sT

(z, p⊥) = ∆Dh/q
SX/sT

cos (ϕsq
− ϕh) = (D+−

+− + D+−
−+) cos (ϕsq

− ϕh)

∆D̂h
SY/q(z, p⊥) = ∆Dh

SY/q = ∆NDh↑/q = −2ImD+−
++ [Polarizing FF]

∆−D̂h/q
SY/sT

(z, p⊥) = ∆−Dh/q
SY/sT

sin (ϕsq
− ϕh) = (D+−

+− − D+−
−+) sin (ϕsq

− ϕh) .

(2.63)

2.4. Azimuthal dependences and polarization

observables in e+e−→ h1h2 + X

We present here all possible azimuthal dependences and polarization observables
for the case of unpolarized, single-polarized and double-polarized hadron pro-
duction in e+e− → h1h2 +X. To start with, we give the partonic helicity scattering
amplitudes appearing in Eq. (2.22). From helicity conservation (with massless
leptons and quarks), the only nonzero amplitudes for the process ab→ cd, are:

M̂λcλd,λaλb
:
{

M̂+−,+−; M̂−+,−+; M̂+−,−+; M̂−+,+−

}
, (2.64)



28
General helicity formalism for two-hadron production in e+e− annihilation

within a TMD approach

where, by parity conservation, only two of them are independent, since

M̂+−,+− = M̂∗
−+,−+ ≡ M̂2 M̂−+,+− = M̂∗

+−,−+ ≡ M̂3 . (2.65)

Once again the two kinematical configurations have to be treated differently. In
the thrust frame, the partonic scattering process occurs on the xz plane of the
center of mass frame and the helicity scattering amplitudes are the canonical
ones. These are given as

M̂+−,+− = M̂0
+−,+− = e2eq

√
3 (1 + cos θ)

M̂−+,+− = M̂0
−+,+− = e2eq

√
3 (1 − cos θ) ,

(2.66)

where we have included the color factor. The corresponding helicity amplitudes
for the hadron frame configuration are more complicated, since, even if still in the
c.m. frame, the partonic scattering process occurs out of the x̂z plane (containing
the lepton and the hadron h2 momenta). One could relate these to the canonical
ones by following the procedure described in Ref. [31] (somehow simplified here
since only rotations are involved). Instead, we prefer to give them as obtained
by an explicit calculation in terms of the helicity spinors, using the kinematics as
given in Eqs. (2.18) and (2.19) (with the help of Eq. (2.2), where now θ refers to
the relative angle between the lepton-axis and the direction of the hadron h2):

M̂+−,+− = e2eq
√

3
[

cos φ2(1 + β2 cos θ)− 2
η⊥2
zp2

sin θ + i sin φ2(β2 + cos θ)
]

M̂−+,+− = e2eq
√

3
[

cos φ2(1 − β2 cos θ) + 2
η⊥2
zp2

sin θ − i sin φ2(β2 − cos θ)
]

.

(2.67)

At the lowest order in p⊥/
√

s, in which η⊥2 = 0 and β2 = 1, they simplify as

M̂+−,+− ≃ e2eq
√

3 (1 + cos θ) eiφ2 = M̂0
+−,+− eiφ2

M̂−+,+− ≃ e2eq
√

3 (1 − cos θ) e−iφ2 = M̂0
−+,+− e−iφ2 .

(2.68)

where φ2 is the azimuthal angle of the two quarks (see Eqs. (2.19) and (2.18)).
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2.4.1. Unpolarized hadron production

By summing over the diagonal indices of the helicity density matrices appearing
on the left hand side of Eq. (2.22) we get the unpolarized cross section:

dσe+e−→h1h2X

d cos θdPS12
=

1
128πs ∑

q

{
2
(
|M̂2|

2 + |M̂3|
2
)

Dh1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
[
Re[M̂2M̂∗

3 ] cos ∆ϕ − Im[M̂2M̂∗
3 ] sin ∆ϕ

]
∆NDh1/q↑(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2)
}

,

(2.69)

where we have introduced the shorthand notation

dPS12 = dz1d2p⊥1dz2d2p⊥2 (2.70)

and where ∆ϕ = ϕh1
− ϕh2

, with ϕh1,2
the azimuthal angles of the two hadrons in

the corresponding helicity frames of their parent quarks. In the thrust frame we
directly get

dσe+e−→h1h2X

d cos θdPS12
=

3πα2

2s ∑
q

e2
q

{
(1 + cos2 θ)Dh1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
1
4

sin2 θ∆NDh1/q↑(z1, p⊥1)∆
NDh2/q̄↑(z2, p⊥2) cos(φ1 + φ2)

}
,

(2.71)

where we have used the relations in Eq. (2.66) and the fact that ϕh1
= φ1 and

ϕh2
= 2π − φ2 (see Appendix E). For the hadron-frame configuration, by using

the expressions of the helicity amplitudes in Eq. (2.68) and the fact that ϕh2
= 0

(see Appendix E), we obtain

dσe+e−→h1h2X

d cos θdPS12
=

3πα2

2s ∑
q

e2
q

{
(1 + cos2 θ)Dh1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
1
4

sin2 θ∆NDh1/q↑(z1, p⊥1)∆
NDh2/q̄↑(z2, p⊥2) cos(2φ2 + ϕh1

)
}

.

(2.72)
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This has then to be integrated according to Eq. (2.25). In such a case the angle
ϕh1

can be expressed in terms of the integration variables as (see Eqs. (E.28) and
(E.29) and their derivation)

cos ϕh1
=

P1T
p⊥1

β2 cos(ϕ1 − φ2)−
zp1

zp2

p⊥2
p⊥1

√√√√1 − 4
η2

1T

z2
p1

≃ P1T
p⊥1

cos(ϕ1 − φ2)−
zp1

zp2

p⊥2
p⊥1

(2.73)

sin ϕh1
=

P1T
p⊥1

sin(ϕ1 − φ2) , (2.74)

where we have also given the lowest-order expressions in η⊥,1T/zp. Notice that
ϕ1, not to be confused with ϕh1

, is the observed azimuthal angle of the hadron
momentum, P1, in the hadron frame. In the expression of the unpolarized
cross section, in agreement with Ref. [42], we recognize, beside the ordinary
contribution from the unpolarized TMD FFs, the azimuthal dependence coming
from the Collins effect.

2.4.2. Single-polarized hadron production

In order to compute the polarization state for a single hadron, let us refer to h1,
one has to consider the diagonal part of the helicity density matrix for the second
hadron, h2, and take the proper combination of the matrix elements of hadron
h1, see Eq. (2.22). By a calculation analogous to the previous one :

Ph1
X

dσe+e−→h1h2X

d cos θdPS12
=

1
64πs ∑

q

[
Im[M̂2M̂∗

3 ] cos ∆ϕ + Re[M̂2M̂∗
3 ] sin ∆ϕ

]
×∆Dh1/q

SX/sT
(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2) (2.75)
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Ph1
Y

dσe+e−→h1h2X

d cos θdPS12
=

1
64πs ∑

q

{(
|M̂2|

2 + |M̂3|
2
)

∆NDh↑1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
[
Re[M̂2M̂∗

3 ] cos ∆ϕ − Im[M̂2M̂∗
3 ] sin ∆ϕ

]
∆−Dh1/q

SY/sT
(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2)
}

(2.76)

Ph1
Z

dσe+e−→h1h2X

d cos θdPS12
=

1
64πs ∑

q

[
Im[M̂2M̂∗

3 ] cos ∆ϕ + Re[M̂2M̂∗
3 ] sin ∆ϕ

]
×∆Dh1/q

SZ/sT
(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2), (2.77)

where we can recognize the contributions coming from a transversely polarized
quark-antiquark pair, i.e. the coupling of the Collins function with ∆Dh1/q

SX/sT
,

Eq. (2.75), ∆−Dh1/q
SY/sT

, Eq. (2.76) (second line), and ∆Dh1/q
SZ/sT

, Eq. (2.77), as well as
from an unpolarized quark-antiquark pair, first line of Eq. (2.76), involving the
polarizing FF. To get the expressions in the two adopted frames it is enough to
replace (as already done in the previous Section)

Re[M̂2M̂∗
3 ] cos ∆ϕ − Im[M̂2M̂∗

3 ] sin ∆ϕ = 3e2
q(4πα)2 sin2 θ cos(φ1 + φ2) (2.78)

Im[M̂2M̂∗
3 ] cos ∆ϕ + Re[M̂2M̂∗

3 ] sin ∆ϕ = 3e2
q(4πα)2 sin2 θ sin(φ1 + φ2) (2.79)

for the thrust frame, and

Re[M̂2M̂∗
3 ] cos ∆ϕ − Im[M̂2M̂∗

3 ] sin ∆ϕ = 3e2
q(4πα)2 sin2 θ cos(2φ2 + ϕh1

)

(2.80)

Im[M̂2M̂∗
3 ] cos ∆ϕ + Re[M̂2M̂∗

3 ] sin ∆ϕ = 3e2
q(4πα)2 sin2 θ sin(2φ2 + ϕh1

)

(2.81)

for the hadron frame. In both cases

|M̂2|
2 + |M̂3|

2 = 6e2
q (4πα)2 (1 + cos2 θ) . (2.82)

Once again one has to properly integrate over the unobserved kinematical quan-
tities, with ϕh1

given in Eqs. (2.73) and (2.74). For completeness we give also the
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explicit expressions of the polarizations, both for the thrust-frame configuration,

Ph1
X

dσe+e−→h1h2X

d cos θdPS12

=
3πα2

4s ∑
q

e2
q sin2 θ∆Dh1/q

SX/sT
(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2) sin(φ1 + φ2) (2.83)

Ph1
Y

dσe+e−→h1h2X

d cos θdPS12
=

3πα2

2s ∑
q

e2
q

{
(1 + cos2 θ)∆NDh↑1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
1
2

sin2 θ∆−Dh1/q
SY/sT

(z1, p⊥1)∆
NDh2/q̄↑(z2, p⊥2) cos(φ1 + φ2)

}
(2.84)

Ph1
Z

dσe+e−→h1h2X

d cos θdPS12

=
3πα2

4s ∑
q

e2
q sin2 θ∆Dh1/q

SZ/sT
(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2) sin(φ1 + φ2) , (2.85)

and for the hadron-frame case

Ph1
X

dσe+e−→h1h2X

d cos θdPS12

=
3πα2

4s ∑
q

e2
q sin2 θ∆Dh1/q

SX/sT
(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2) sin(2φ2 + ϕh1
) (2.86)

Ph1
Y

dσe+e−→h1h2X

d cos θdPS12
=

3πα2

2s ∑
q

e2
q

{
(1 + cos2 θ)∆NDh↑1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2)

+
1
2

sin2 θ∆−Dh1
SY/sT

(z1, p⊥1)∆
NDh2/q̄↑(z2, p⊥2) cos(2φ2 + ϕh1

)
}

(2.87)

Ph1
Z

dσe+e−→h1h2X

d cos θdPS12

=
3πα2

4s ∑
q

e2
q sin2 θ∆Dh1/q

SZ/sT
(z1, p⊥1)∆

NDh2/q̄↑(z2, p⊥2) sin(2φ2 + ϕh1
) . (2.88)
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2.4.3. Double-polarized hadron production

In a very similar way, we can compute all possible double spin configurations for
the production of two spin-1/2 hadrons. The following expressions are simply
obtained by considering proper combinations of the helicity density matrices of
the two hadrons and then exploiting the sum over the helicity indices of quarks
and antiquarks in Eq. (2.22). The general formulas so obtained are:

Ph1
X Ph2

X
dσe+e−→h1h2X

d cos θdPS12

=
1

64πs ∑
q

{
−
(
|M̂2|

2 + |M̂3|
2
)

∆Dh1/q
SX/sL

(z1, p⊥1)∆Dh2/q̄
SX/sL

(z2, p⊥2)

+ 2
[
Re[M̂2M̂∗

3 ] cos ∆ϕ − Im[M̂2M̂∗
3 ] sin ∆ϕ

]
∆Dh1/q

SX/sT
(z1, p⊥1)∆Dh2/q̄

SX/sT
(z2, p⊥2)

}
(2.89)

Ph1
X Ph2

Y
dσe+e−→h1h2X

d cos θdPS12
=

1
32πs ∑

q

{[
Im[M̂2M̂∗

3 ] cos ∆ϕ + Re[M̂2M̂∗
3 ] sin ∆ϕ

]
×∆Dh1/q

SX/sT
(z1, p⊥1)∆

−Dh2/q̄
SY/sT

(z2, p⊥2)
}

(2.90)

Ph1
X Ph2

Z
dσe+e−→h1h2X

d cos θdPS12

=
1

64πs ∑
q

{
−
(
|M̂2|

2 + |M̂3|
2
)

∆Dh1/q
SX/sL

(z1, p⊥1)∆Dh2/q̄
SZ/sL

(z2, p⊥2)

+ 2
[
Re[M̂2M̂∗

3 ] cos ∆ϕ − Im[M̂2M̂∗
3 ] sin ∆ϕ

]
∆Dh1/q

SX/sT
(z1, p⊥1)∆Dh2/q̄

SZ/sT
(z2, p⊥2)

}
(2.91)
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Ph1
Y Ph2

X
dσe+e−→h1h2X

d cos θdPS12
=

1
32πs ∑

q

{
−
[
Im[M̂2M̂∗

3 ] cos ∆ϕ + Re[M̂2M̂∗
3 ] sin ∆ϕ

]
×∆−Dh1/q

SY/sT
(z1, p⊥1)∆Dh2/q̄

SX/sT
(z2, p⊥2)

}
(2.92)

Ph1
Y Ph2

Y
dσe+e−→h1h2X

d cos θdPS12

=
1

64πs ∑
q

{(
|M̂2|

2 + |M̂3|
2
)

∆NDh↑1/q(z1, p⊥1)∆
NDh↑2/q̄(z2, p⊥2)

+ 2
[
Re[M̂2M̂∗

3 ] cos ∆ϕ − Im[M̂2M̂∗
3 ] sin ∆ϕ

]
∆−Dh1/q

SY/sT
(z1, p⊥1)∆

−Dh2/q̄
SY/sT

(z2, p⊥2)
}

(2.93)

Ph1
Y Ph2

Z
dσe+e−→h1h2X

d cos θdPS12
=

1
32πs ∑

q

{
−
[
Im[M̂2M̂∗

3 ] cos ∆ϕ + Re[M̂2M̂∗
3 ] sin ∆ϕ

]
×∆−Dh1/q

SY/sT
(z1, p⊥1)∆Dh2/q̄

SZ/sT
(z2, p⊥2)

}
(2.94)

Ph1
Z Ph2

X
dσe+e−→h1h2X

d cos θdPS12

=
1

64πs ∑
q

{
−
(
|M̂2|

2 + |M̂3|
2
)

∆Dh1/q
SZ/sL

(z1, p⊥1)∆Dh2/q̄
SX/sL

(z2, p⊥2)

+ 2
[
Re[M̂2M̂∗

3 ] cos ∆ϕ − Im[M̂2M̂∗
3 ] sin ∆ϕ

]
∆Dh1/q

SZ/sT
(z1, p⊥1)∆Dh2/q̄

SX/sT
(z2, p⊥2)

}
(2.95)

Ph1
Z Ph2

Y
dσe+e−→h1h2X

d cos θdPS12
=

1
32πs ∑

q

{[
Im[M̂2M̂∗

3 ] cos ∆ϕ + Re[M̂2M̂∗
3 ] sin ∆ϕ

]
×∆Dh1/q

SZ/sT
(z1, p⊥1)∆

−Dh2/q̄
SY/sT

(z2, p⊥2)
}

(2.96)

Ph1
Z Ph2

Z
dσe+e−→h1h2X

d cos θdPS12

=
1

64πs ∑
q

{
−
(
|M̂2|

2 + |M̂3|
2
)

∆Dh1/q
SZ/sL

(z1, p⊥1)∆Dh2/q̄
SZ/sL

(z2, p⊥2)

+ 2
[
Re[M̂2M̂∗

3 ] cos ∆ϕ − Im[M̂2M̂∗
3 ] sin ∆ϕ

]
∆Dh1/q

SZ/sT
(z1, p⊥1)∆Dh2/q̄

SZ/sT
(z2, p⊥2)

}
.

(2.97)
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By using the expressions in Eqs. (2.78)-(2.82) one can directly obtain the results
for the two kinematical configurations considered here.

2.5. Hadron frame: complete results

As already pointed out, while in the thrust frame at least in principle one can
directly measure the azimuthal dependences on φ1,2 entering the formulas of the
previous section, in the hadron frame the partonic variables are not accessible and
one has to properly extract the azimuthal dependences on ϕ1. This can be done
by employing proper projection techniques thanks to a simple tensorial analysis,
as described in Appendix D, without formulating any particular assumption on
the p⊥ dependence of the fragmentation functions. This will also allow for a
more direct comparison with the results of Ref. [30]. As discussed in Section 2.2
we will have to compute the following expression

dσe+e− → h1(S1)h2(S2) X

d cos θdz1dz2d2P1T
=
∫

d2p⊥1 d2p⊥2 δ(2)(p⊥1 − P1T + p⊥2 zp1
/zp2

)

× dσe+e− → h1(S1)h2(S2) X

d cos θdz1d2p⊥1dz2d2p⊥2
. (2.98)

To this aim, we define, for a generic couple of (un)polarized TMD-FFs, one
referring to hadron h1 (∆Dh1) and the other to hadron h2 (∆Dh2), the following
convolution over the intrinsic transverse momenta

C[w∆Dh1∆Dh2 ] = ∑
q

e2
q

∫
d2p⊥1d2p⊥2 δ(2)

(
p⊥1 − P1T + p⊥2 zp1

/zp2

)
×w(p⊥2, P1T)∆Dh1/q(z1, p⊥1)∆Dh2/q̄(z2, p⊥2) , (2.99)

where the TMD-FFs depend only on the moduli of the intrinsic transverse mo-
menta and the weight w(p⊥2, P1T) depends on the specific azimuthal structure
considered, as illustrated below. Notice that this expression differs from the
corresponding one in Ref. [30] by a factor 1/z2

2, and by the definition of the
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parton momenta, that we recall here below:

(−z kT)Amsterdam = p⊥ (2.100)

(ĥ)Amsterdam =
P1T
P1T

= P̂1T . (2.101)

By means of this procedure one obtains the following hadron-frame azimuthal
dependences for the (un)polarized cross sections.

2.5.1. Unpolarized case

dσe+e−→h1h2X

d cos θdz1dz2d2P1T
=

3πα2

2s

{(
1 + cos2 θ

)
FUU + sin2 θ cos(2ϕ1)Fcos(2ϕ1)

UU

}
,

(2.102)

with

FUU = ∑
q

e2
q

∫
d2p⊥2 Dh1/q(z1, p⊥1)Dh2/q̄(z2, p⊥2) = C[D1D̄1] (2.103)

cos(2ϕ1) Fcos(2ϕ1)
UU

= ∑
q

e2
q

∫
d2p⊥2

1
4

[ P1T
p⊥1

cos(ϕ1 + φ2)−
zp1

zp2

p⊥2
p⊥1

cos(2φ2)
]
∆NDh1/q↑∆NDh2/q̄↑

= cos(2ϕ1) C
[

1
4

{
P1T
p⊥1

p̂⊥2 · P̂1T −
zp1

zp2

p⊥2
p⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]}
∆NDh1/q↑∆NDh2/q̄↑

]
= cos(2ϕ1) C

[{
p⊥2 · P1T

z1z2
−
[

2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

]}
H⊥

1 H̄⊥
1

Mh1
Mh2

]
, (2.104)

where the second line is obtained by using Eqs. (E.28) and (E.29), and in the third
line, neglecting terms in Mh/

√
s, we have switched to the Amsterdam notation

(see Appendix C) for a more direct comparison with Ref. [30].
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2.5.2. Single-polarized case

Let us start with the longitudinal polarization

Ph1
Z

dσe+e−→h1h2X

d cos θdz1dz2d2P1T
=

3πα2

2s
sin2 θ sin(2ϕ1)Fsin(2ϕ1)

LU (2.105)

sin(2ϕ1) Fsin(2ϕ1)
LU

= ∑
q

e2
q

∫
d2p⊥2

1
2

[ P1T
p⊥1

sin(ϕ1 + φ2)−
zp1

zp2

p⊥2
p⊥1

sin(2φ2)
]
∆Dh1/q

SZ/sT
∆NDh2/q̄↑

= sin(2ϕ1) C
[

1
2

{
P1T
p⊥1

p̂⊥2 · P̂1T −
zp1

zp2

p⊥2
p⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]}
∆Dh1/q

SZ/sT
∆NDh2/q̄↑

]
= − sin(2ϕ1) C

[{
p⊥2 · P1T

z1z2
−
[

2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

]}
H⊥

1LH̄⊥
1

Mh1
Mh2

]
, (2.106)

where once again the last equality is valid in the Amsterdam notation and
neglecting hadron mass effects. For the transverse polarization, firstly we have
to express it in the hadron frame, the laboratory (L) frame:

Ph1
T = Ph1

X X̂h1
+ Ph1

Y Ŷh1
= Ph1

xL
x̂L + Ph1

yL
ŷL = Ph1

T (cos ϕL
S1

x̂L + sin ϕL
S1

ŷL)

(2.107)

adopting Eqs. (E.31) and (E.32). By combining the transverse polarization com-
ponents in the lab frame as

Ph1
T = Ph1

xL
cos ϕL

S1
+ Ph1

yL
sin ϕL

S1
, (2.108)

where ϕL
S1

is the azimuthal angle of the hadron spin in the laboratory frame, we
then get
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Ph1
T

dσe+e−→h1h2X

d cos θdz1dz2d2P1T
=

3πα2

2s

{(
1 + cos2 θ

)
sin(ϕ1 − ϕL

S1
)F

sin(ϕ1−ϕL
S1
)

TU

+ sin2 θ

(
sin(ϕ1 + ϕL

S1
)F

sin(ϕ1+ϕL
S1
)

TU + sin(3ϕ1 − ϕL
S1
)F

sin(3ϕ1−ϕL
S1
)

TU

)}
,

(2.109)

where

sin(ϕ1 − ϕL
S1
) F

sin(ϕ1−ϕL
S1
)

TU

= ∑
q

e2
q

∫
d2p⊥2

[zp1

zp2

p⊥2
p⊥1

sin (φ2 − ϕL
S1
)− P1T

p⊥1
sin(ϕ1 − ϕL

S1
)
]
∆NDh↑1/qDh2/q̄

= sin(ϕ1 − ϕL
S1
) C
[(zp1

zp2

p⊥2
p⊥1

p̂⊥2 · P̂1T − P1T
p⊥1

)
∆NDh↑1/qDh2/q̄

]
= sin(ϕ1 − ϕL

S1
) C
[(

p⊥2 · P̂1T
z2

− P1T
z1

)
D⊥

1TD̄1
Mh1

]
(2.110)

2 sin(ϕ1 + ϕL
S1
) F

sin(ϕ1+ϕL
S1
)

TU

= ∑
q

e2
q

∫
d2p⊥2 sin(φ2 + ϕL

S1
)

1
2
(
∆Dh1/q

SX/sT
+ ∆−Dh1/q

SY/sT

)
∆NDh2/q̄↑

= sin(ϕ1 + ϕL
S1
) C
[(

p̂⊥2 · P̂1T
)1

2
(
∆Dh1/q

SX/sT
+ ∆−Dh1/q

SY/sT

)
∆NDh2/q̄↑

]
= 2 sin(ϕ1 + ϕL

S1
) C
[(

p⊥2 · P̂1T
z2

)
H1H̄⊥

1
Mh2

]
(2.111)
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2 sin(3ϕ1 − ϕL
S1
) F

sin(3ϕ1−ϕL
S1
)

TU

= ∑
q

e2
q

∫
d2p⊥2

{
P2

1T

p2
⊥1

sin(φ2 + 2ϕ1 − ϕL
S1
)− 2

zp1

zp2

P1T p⊥2

p2
⊥1

sin(2φ2 + ϕ1 − ϕL
S1
)

+
z2

p1

z2
p2

p2
⊥2

p2
⊥1

sin(3φ2 − ϕL
S1
)

}
1
2

(
∆Dh1/q

SX/sT
− ∆−Dh1/q

SY/sT

)
∆NDh2/q̄↑

= sin(3ϕ1 − ϕL
S1
) C
[{z2

p1

z2
p2

p2
⊥2

p2
⊥1

[
4
(

p̂⊥2 · P̂1T
)3 − 3

(
p̂⊥2 · P̂1T

)]
+

P2
1T

p2
⊥1

(
p̂⊥2 · P̂1T

)
− 2

zp1

zp2

p⊥2P1T

p2
⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]}
1
2

(
∆Dh1/q

SX/sT
− ∆−Dh1/q

SY/sT

)
∆NDh2/q̄↑

]

= 2 sin(3ϕ1 − ϕL
S1
) C
[{[

4
(

p⊥2 · P̂1T
z2

)3

− 3
p2
⊥2

z2
2

(
p⊥2 · P̂1T

z2

)]

+

(
p⊥2 · P1T

z1z2

)
P1T
z1

− 2
[

2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

]
P1T
z1

}
H⊥

1T H̄⊥
1

2M2
h1

Mh2

]
. (2.112)

A relevant projection, often adopted in experimental analyses, is the polarization
orthogonal to the hadron plane, that is along

n̂ ≡ (cos ϕn, sin ϕn, 0) =
−P2 ×P1
|P2 ×P1|

= − sin ϕ1x̂L + cos ϕ1ŷL , (2.113)

implying

ϕn = ϕ1 +
π

2
. (2.114)

The polarization along n̂ can be directly obtained by identifying ϕL
S1

= ϕn in
Eq. (2.109) as follows

Ph1
n

dσe+e−→h1h2X

d cos θdz1dz2d2P1T
≡ Ph1

T (ϕL
S1

= ϕn)
dσe+e−→h1h2X

d cos θdz1dz2d2P1T

=
3πα2

2s

{
−
(
1 + cos2 θ

)
F

sin(ϕ1−ϕL
S1
)

TU + sin2 θ cos(2ϕ1)

(
F

sin(ϕ1+ϕL
S1
)

TU − F
sin(3ϕ1−ϕL

S1
)

TU

)}
.

(2.115)
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In such a case, by integrating over P1T, and therefore over the azimuthal angle

ϕ1, one is sensitive only to the structure function F
sin(ϕ1−ϕL

S1
)

TU , Eq. (2.110), that
is given as a convolution of the polarizing TMD-FF for hadron h1 with the
unpolarized TMD-FF for hadron h2. Notice that also in the unpolarized cross
section, Eq. (2.102), only the term FUU, Eq. (2.103), survives. The final expression,
simplifying a common factor (1 + cos2 θ), reads

Ph1
n (z1, z2) = −

F
sin(ϕ1−ϕL

S1
)

TU
FUU

. (2.116)

This is indeed the strategy adopted in the recent phenomenological analysis
performed in Ref. [41] that will be presented in the next Chapter 3.

2.5.3. Double-polarized case

In the following cases we give directly the expressions in terms of convolutions.

Ph1
Z Ph2

Z
dσe+e−→h1h2X

d cos θdz1dz2d2P1T
=

3πα2

2s

{
−
(

1 + cos2 θ
)

FLL + sin2 θ cos(2ϕ1)Fcos(2ϕ1)
LL

}
,

(2.117)

where

FLL = C
[
G1LḠ1L

]
(2.118)

Fcos(2ϕ1)
LL = C

[{
P1T
p⊥1

p̂⊥2 · P̂1T −
zp1

zp2

p⊥2
p⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]}
∆Dh1/q

SZ/sT
∆Dh2/q̄

SZ/sT

]

= C
[{

p⊥2 · P1T
z1z2

−
[

2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

]}
H⊥

1LH̄⊥
1L

Mh1
Mh2

]
. (2.119)
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For the case of a transversely-longitudinally polarized hadron pair we have

Ph1
T Ph2

Z
dσe+e−→h1h2X

d cos θdz1dz2d2P1T
=

3πα2

2s

{(
1 + cos2 θ

)
cos(ϕ1 − ϕL

S1
)F

cos(ϕ1−ϕL
S1
)

TL

+ sin2 θ

[
cos(ϕ1 + ϕL

S1
)F

cos(ϕ1+ϕL
S1
)

TL + cos(3ϕ1 − ϕL
S1
)F

cos(3ϕ1−ϕL
S1
)

TL

]}
, (2.120)

where

F
cos(ϕ1−ϕL

S1
)

TL = C
[(zp1

zp2

p⊥2
p⊥1

p̂⊥2 · P̂1T − P1T
p⊥1

)
∆Dh1/q

SX/sL
∆Dh2/q̄

SZ/sL

]

= −C
[(

p⊥2 · P̂1T
z2

− P1T
z1

)
G1TḠ1L

Mh1

]
(2.121)

F
cos(ϕ1+ϕL

S1
)

TL = C
[(

p̂⊥2 · P̂1T
)1

2

(
∆Dh1/q

SX/sT
+ ∆−Dh1/q

SY/sT

)
∆Dh2/q̄

SZ/sT

]

= −C
[(

p⊥2 · P̂1T
z2

)
H1H̄⊥

1L
Mh2

]
(2.122)

2 F
cos(3ϕ1−ϕL

S1
)

TL

= C
[{z2

p1

z2
p2

p2
⊥2

p2
⊥1

[
4
(

p̂⊥2 · P̂1T
)3 − 3

(
p̂⊥2 · P̂1T

)]
+

P2
1T

p2
⊥1

(
p̂⊥2 · P̂1T

)
− 2

zp1

zp2

p⊥2P1T

p2
⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]}(
∆Dh1/q

SX/sT
− ∆−Dh1/q

SY/sT

)
∆Dh2/q̄

SZ/sT

]

= −C
[{[

4
(

p⊥2 · P̂1T
z2

)3

− 3
p2
⊥2

z2
2

(
p⊥2 · P̂1T

z2

)]
+

(
p⊥2 · P1T

z1z2

)
P1T
z1

− 2
[

2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

]
P1T
z1

}
H⊥

1T H̄⊥
1L

M2
h1

Mh2

]
, (2.123)
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where the minus signs appearing when switching to the Amsterdam notation
come from the relative signs between the definition of the corresponding TMD-
FFs. Finally, when both hadrons are transversely polarized we have

Ph1
T Ph2

T
dσe+e−→h1h2X

d cos θdz1dz2d2P1T
=

3πα2

2s

×
{(

1 + cos2 θ
)1

2

[
cos(2ϕ1 − ϕL

S1
− ϕL

S2
)F

cos(2ϕ1−ϕL
S1
−ϕL

S2
)

TT − cos(ϕL
S1
− ϕL

S2
)F

cos(ϕL
S1
−ϕL

S2
)

TT

]
+ sin2 θ

[
cos(ϕL

S1
+ ϕL

S2
)F

cos(ϕL
S1
+ϕL

S2
)

TT + cos(2ϕ1 + ϕL
S1
− ϕL

S2
)F

cos(2ϕ1+ϕL
S1
−ϕL

S2
)

TT

+ cos(2ϕ1 − ϕL
S1
+ ϕL

S2
)F

cos(2ϕ1−ϕL
S1
+ϕL

S2
)

TT + cos(4ϕ1 − ϕL
S1
− ϕL

S2
)F

cos(4ϕ1−ϕL
S1
−ϕL

S2
)

TT

]}
,

(2.124)

where

F
cos(ϕL

S1
+ϕL

S2
)

TT = C
[

1
2
(
∆Dh1/q

SX/sT
+ ∆−Dh1/q

SY/sT

)1
2
(
∆Dh2/q̄

SX/sT
+ ∆−Dh2/q̄

SY/sT

)]
= C

[
H1H̄1

]
(2.125)

F
cos(2ϕ1−ϕL

S1
−ϕL

S2
)

TT = C
[{

P1T
p⊥1

p̂⊥2 · P̂1T −
zp1

zp2

p⊥2
p⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]}

×
(

∆NDh↑1/q∆NDh↑2/q̄ − ∆Dh1/q
SX/sL

∆Dh2/q̄
SX/sL

)]

= C
[{

p⊥2 · P1T
z1z2

−
[

2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

]}
D⊥

1TD̄⊥
1T − G1TḠ1T

Mh1
Mh2

]
(2.126)
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F
cos(ϕL

S1
−ϕL

S2
)

TT

= C
[{

P1T
p⊥1

p̂⊥2 · P̂1T −
zp1

zp2

p⊥2
p⊥1

}(
∆NDh↑1/q∆NDh↑2/q̄ + ∆Dh1/q

SX/sL
∆Dh2/q̄

SX/sL

)]

= C
[{

p⊥2 · P1T
z1z2

− p2
⊥2

z2
2

}
D⊥

1TD̄⊥
1T + G1TḠ1T

Mh1
Mh2

]
(2.127)

F
cos(2ϕ1+ϕL

S1
−ϕL

S2
)

TT = C
[{

2
(

p̂⊥2 · P̂1T
)2 − 1

}
1
2

(
∆Dh1/q

SX/sT
+ ∆−Dh1/q

SY/sT

)

× 1
2

(
∆Dh2/q̄

SX/sT
− ∆−Dh2/q̄

SY/sT

)]

= C
[{

2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

}
H1H̄⊥

1T

2M2
h2

]
(2.128)

F
cos(2ϕ1−ϕL

S1
+ϕL

S2
)

TT = C
[{

P2
1T

p2
⊥1

+
z2

p1

z2
p2

p2
⊥2

p2
⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]
− 2

zp1

zp2

p⊥2P1T

p2
⊥1

(
p̂⊥2 · P̂1T

)}

× 1
2

(
∆Dh1/q

SX/sT
− ∆−Dh1/q

SY/sT

)
1
2

(
∆Dh2/q̄

SX/sT
+ ∆−Dh2/q̄

SY/sT

)]

= C
[{

P2
1T

z2
1
+

[
2
(

p⊥2 · P̂1T
z2

)2

− p2
⊥2

z2
2

]
− 2
(

p⊥2 · P1T
z1z2

)}
H⊥

1T H̄1

2M2
h1

]
(2.129)
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F
cos(4ϕ1−ϕL

S1
−ϕL

S2
)

TT

= C
[{

8
z2

p1

z2
p2

p2
⊥2

p2
⊥1

[(
p̂⊥2 · P̂1T

)4 −
(

p̂⊥2 · P̂1T
)2

+
1
8

]
− 8

zp1

zp2

p⊥2P1T

p2
⊥1

(
p̂⊥2 · P̂1T

)3

+
P2

1T

p2
⊥1

[
2
(

p̂⊥2 · P̂1T
)2 − 1

]
+ 6

zp1

zp2

P1T p⊥2

p2
⊥1

(
p̂⊥2 · P̂1T

)}

× 1
2

(
∆Dh1/q

SX/sT
− ∆−Dh1/q

SY/sT

)
1
2

(
∆Dh2/q̄

SX/sT
− ∆−Dh2/q̄

SY/sT

)]

= C
[{

8
[(

p⊥2 · P̂1T
z2

)4

− p2
⊥2

z2
2

(
p⊥2 · P̂1T

z2

)2

+
p4
⊥2

8z4
2

]
− 8

P1T
z1

(
p⊥2 · P̂1T

z2

)3

+
P2

1T

z2
1z2

2

[
2
(

p⊥2 · P̂1T
)2 − p2

⊥2
]
+ 6

P1T p2
⊥2

z1z2
2

(
p⊥2 · P̂1T

z2

)}
H⊥

1T H̄⊥
1T

4M2
h1

M2
h2

]
. (2.130)

2.5.4. A Gaussian model

The above results can be cast in a more explicit and simplified form by adopting
a suitable functional p⊥ dependence for the TMD-FFs involved. We focus for its
relevance and complexity on the hadron-frame configuration, since for the thrust-
frame case the intrinsic transverse momentum dependence of the two hadrons
is completely factorized. In this respect the use of a Gaussian-like dependence
together with the leading-order approximation in p⊥/

√
s (for not too small z

values), allow us to carry out, analytically, all the integrations over the intrinsic
transverse momenta, leading to simplified expressions.

We consider explicitly three cases that represent the TMD-FFs appearing in
the present study. For a generic fragmentation function of a quark into a hadron
h, that is the unpolarized and any of the single- or double-polarized FF we will
therefore assume respectively the following form

Dunp
h (z, p⊥) = Dunp

h (z) g(p⊥) (2.131)

∆Dh(z, p⊥) = ∆Dh(z) g(i)(p⊥) , (2.132)
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with i = 0, 1, 2. Our parameterizations are required to respect angular momen-
tum conservation in the forward direction, therefore we define

g(i)(p⊥) =
( p⊥

M

)i
h(i)(p⊥) . (2.133)

In particular, g(p⊥) is a simple Gaussian normalized to unity:

g(p⊥) =
1

π⟨ p2
⊥ ⟩

e−p2
⊥/⟨p2

⊥⟩ , (2.134)

while

g(i)(p⊥) =
( p⊥

M

)i
h(i)(p⊥) = Ki

( p⊥
M

)i
e−p2

⊥/⟨p2
⊥⟩∆ , i = 0, 1, 2 , (2.135)

where ⟨p2
⊥⟩∆

is the p⊥ width of the corresponding ∆D. Notice that g(0)(p⊥) is
still a simple Gaussian, parametrizing the transverse momentum dependence of
double polarized TMD-FFs surviving in the collinear limit.

The normalization constants, Ki, can be chosen to properly fulfill the positivity
bounds, that can be expressed as:

|D↑ − D↓|
D↑ + D↓ ≤ 1 (2.136)

where ↑ / ↓ represent opposite transverse/longitudinal polarization states of
the polarized particle, either the hadron or the fragmenting quark. A simple way
is to impose the bound separately on the p⊥- and the z-dependent components
of the FFs. The first is trivial since we can use the explicit functional form. For
instance, for the unpolarized and the single-polarized TMD-FF, like the Collins
(C) and the polarizing (p) FF, we have

Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥/⟨p2
⊥⟩

π⟨p2
⊥⟩

(2.137)

∆DC,p
h/q(z, p⊥) = ∆DC,p

h/q(z)
√

2e
p⊥

M
C,p

e
−p2

⊥/⟨p2
⊥⟩C,p

π⟨p2
⊥⟩

, (2.138)



46
General helicity formalism for two-hadron production in e+e− annihilation

within a TMD approach

where

⟨p2
⊥⟩C,p

=
⟨p2

⊥⟩M2
C,p

⟨p2
⊥⟩+ M2

C,p

. (2.139)

These expressions fulfill the positivity bounds of the TMD-FFs by simply impos-
ing the corresponding bound on the z-dependent parts.

Here below we present the results for the azimuthal dependences and polar-
ization observables in the hadron frame entering Eq. (2.25) and the convolutions
defined in Sec. 2.5, limiting ourselves to the unpolarized and single-polarized
cases. These indeed are at present the most interesting from the phenomenologi-
cal point of view. We list here all expressions:

FUU = Dh1/q(z1)Dh2/q̄(z2)
e−P2

1T/⟨p2
⊥⟩12

π⟨p2
⊥⟩12

(2.140)

Fcos(2ϕ1)
UU =

1
4

∆NDh1/q↑(z1)∆
NDh2/q̄↑(z2)

× 2e
M

C1
M

C2

e
−P2

1T/⟨p2
⊥⟩C1,C2

π⟨p2
⊥⟩C1,C2

zp1

zp2

P2
1T

⟨p2
⊥⟩

2
C1,C2

⟨p2
⊥⟩

2
C1
⟨p2

⊥⟩
2
C2

⟨p2
⊥⟩1

⟨p2
⊥⟩2

,
(2.141)

where

⟨p2
⊥⟩12

=
z2

p2
⟨p2

⊥⟩1
+ z2

p1
⟨p2

⊥⟩2

z2
p2

(2.142)

⟨p2
⊥⟩C1,C2

=
z2

p2
⟨p2

⊥⟩C1
+ z2

p1
⟨p2

⊥⟩C2

z2
p2

, (2.143)

and

∆NDh1/q↑(z) ≡ ∆DC
h1/q(z) . (2.144)
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Notice that for Gaussian widths independent of the scaling variables and for
hadrons of the same kind, the above formulae simplify and coincide with the
results of Ref. [42]. For its later use, we define

⟨p2
⊥⟩∆1,∆2

=
z2

p2
⟨p2

⊥⟩∆1
+ z2

p1
⟨p2

⊥⟩∆2

z2
p2

, (2.145)

and, in order to have more compact expressions,

G(∆1, ∆2) ≡
1

π⟨p2
⊥⟩∆1,∆2

exp
[
− P2

1T

⟨p2
⊥⟩∆1,∆2

]
. (2.146)

Moving to the single-polarized hadron production we have

Fsin(2ϕ1)
LU =

1
2

∆Dh1/q
SZ/sT

(z1)∆
NDh2/q̄↑(z2)

2e G(LT1, C2)

M
LT1

M
C2

P2
1T

⟨p2
⊥⟩

2
LT1,C2

zp1

zp2

⟨p2
⊥⟩

2
LT1

⟨p2
⊥⟩

2
C2

⟨p2
⊥⟩1

⟨p2
⊥⟩2

,
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where we have adopted the following parametrization

∆Dh/q
SZ/sT

(z, p⊥) = ∆Dh/q
SZ/sT

(z)
√

2e
p⊥

M
LT

e−p2
⊥/⟨p2

⊥⟩LT

π⟨p2
⊥⟩

. (2.148)

Notice that at the lowest order in η1T this is also the longitudinal polarization
in the laboratory frame. For the computation of the transverse polarization it is
more convenient to parametrize the transversely polarized TMD-FFs as follows

D+−
+−(z, p⊥) ≡ H1(z, p⊥) = H1(z)

e−p2
⊥/⟨p2

⊥⟩T

π⟨p2
⊥⟩T

(2.149)

D+−
−+(z, p⊥) ≡

p2
⊥

2z2M2
h

H⊥
1T(z, p⊥) = H⊥

1T(z) e
p2
⊥

M2
TT

e−p2
⊥/⟨p2

⊥⟩TT

π⟨p2
⊥⟩

, (2.150)

where in the second equation we have kept distinct the mass parameter entering
the relation between the two standard notations and the one related to the p⊥
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dependence to be extracted from data. This leads to the following results

F
sin(ϕ1−ϕL

S1
)

TU = −∆NDh↑1/q(z1)Dh2/q̄(z2)

√
2e G(p1, 2)

M
p1

P1T

⟨p2
⊥⟩p1,2

⟨p2
⊥⟩

2
p1

⟨p2
⊥⟩1

(2.151)

F
sin(ϕ1+ϕL

S1
)

TU =
1
2

H1(z1)∆
NDh2/q̄↑(z2)

√
2eG(T1, C2)

M
C2

P1T

⟨p2
⊥⟩T1,C2
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2
C2

⟨p2
⊥⟩2
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(2.152)

F
sin(3ϕ1−ϕL

S1
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TU =
1
2

H⊥
1T(z1)∆

NDh2/q̄↑(z2)

√
2e e G(TT1, C2)

M2
TT1

M
C2

P3
1T

⟨p2
⊥⟩
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TT1,C2

zp1

zp2

⟨p2
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2
C2
⟨p2

⊥⟩
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TT1

⟨p2
⊥⟩2⟨p2

⊥⟩1

,
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where we have restored the standard notation also for the polarizing FF

∆NDh↑1/q(z1) ≡ ∆Dp
h1/q(z1) . (2.154)

For its relevance we give here the result for the transverse polarization along
n̂, integrated over P1T, Eq. (4.17), adopting the Gaussian parametrizations (see
Eqs. (2.151) and (2.140)):

Ph1
n (z1, z2) =

√
eπ

2
1

Mp

⟨p2
⊥⟩

2
p1

⟨p2
⊥⟩1

z2{
[z1(1 − M2

h1
/(z2

1s))]2⟨p2
⊥⟩2 + z2

2⟨p2
⊥⟩p1

}1/2

×
∑q e2

q ∆NDh↑1/q(z1)Dh2/q̄(z2)

∑q e2
q Dh1/q(z1)Dh2/q̄(z2)

. (2.155)

2.6. Conclusions

The study of hadron production in e+e− annihilations is definitely the most
powerful tool to access the parton-to-hadron fragmentation mechanism in a
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direct and clear way. When azimuthal modulations are considered, together
with the polarization states in the case of spin-1/2 hadrons, the information
we can extract is extremely rich and, within a TMD approach, could allow to
disentangle important spin-momentum correlations and shed light on interesting
effects.

We have presented, within a TMD approach and adopting the helicity for-
malism, the complete structure of all leading-twist azimuthal and polarization
observables for almost back-to-back hadron-pair production in e+e− annihilation
processes. This approach, extremely intuitive, gives indeed a more direct proba-
bilistic picture and allows one to follow the underlying processes at the partonic
level. It is important to stress how our helicity amplitudes for the different
factorized steps lead to final results perfectly equivalent to those obtained within
the TMD factorization at leading order [30].

We have considered both spinless and spin-1/2 hadrons, discussing in detail
the classification and properties of the full set of leading-twist TMD fragmenta-
tion functions for quarks and gluons. For completeness we have also shown the
connection with the Amsterdam notation, widely adopted in the literature.

We have presented our results adopting two reference frames: the thrust
frame, which requires the reconstruction of the jet thrust axis and allows for
the analysis of the azimuthal dependences of the hadron pair around this di-
rection; the hadron frame, defined only in terms of the two hadron momenta.
For the latter case we have shown as, by means of a simple tensorial analysis,
one can extract the measurable azimuthal dependences. All expressions for
single- and double-polarized hadron production have been presented, adopting
a conventional form in terms of structure functions.

Special attention has been devoted to the proper expressions of all quantities
when moving from the particle helicity frames to the configurations accessible in
the measurements.

Moreover, by employing a Gaussian ansatz for the transverse momentum
dependence of the TMD-FFs, we have obtained simple expressions for the struc-
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ture functions, useful in phenomenological analyses. In particular, we have
re-derived the explicit formula for the single transverse polarization of spin-1/2
hadron production in e+e− → h↑1h2 + X processes, which has allowed for the first
ever extraction of the polarizing FF for Λ hyperons from Belle data [41], and that
will be used in the next Chapter. Among the features of the Gaussian model, as
shown also in previous phenomenological analyses, we have that it is able to
describe fairly well the p⊥-dependence of the TMDs, and it is extremely effective
in their extraction from experimental data at a fixed hard scale Q. Since Belle
data are at a single hard scale Q, the effects due to the TMD evolution have a
small impact on the TMDs extraction, and so, as we will see, the Gaussian turns
out to be good enough to extract the polarizing fragmentation function.

This study follows analogous studies already developed for the SIDIS pro-
cesses [28], where once again the presence of two ordered energy scales guaran-
tees the validity of a TMD factorization scheme. There the complete expressions
for all the SIDIS spin asymmetries and the cross section azimuthal dependences
were presented. In this respect the present work represents a sort of comple-
mentary study in the fragmentation sector, leading to an overall and complete
picture within the helicity formalism of the realm of leading-twist TMDs and the
ways to access them.



Chapter 3.

Extraction of the Λ polarizing
fragmentation function from e+e−

data

3.1. Introduction

As we will show in this Chapter, Belle data allow for the first ever extraction
of the pFF in a clear way. Since no other contribution from the initial state
could play a role, this is the best process to access this TMD-FF. A preliminary
phenomenological study, even though in a simplified scheme, has been discussed
in Ref. [44]. Here we present a detailed analysis1 of Belle data at a level of
accuracy very close to that of current studies on other relevant TMDs.

We will start by fitting the associated production (Λ h) data set alone, for
which TMD factorization holds. For completeness, in a separate full-data fit
we include also the Λ-jet data. Even if this configuration presents some dif-
ficulties experimentally and could imply a more complex TMD factorization
structure [38–40, 46, 47], it represents a unique source of information on the ex-
plicit p⊥ dependence of the TMD pFF. For this reason, and in order to verify the
possibility to have a simultaneous extraction within a parton model approach,

1See also Ref. [45] for a similar study.

51
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we will study it adopting a simplified and phenomenological TMD scheme. This
approach will be revised in Chapter 5 where we will discuss the CSS formalism.

The Chapter is organized as follows: in Section 3.2 we summarize the theoret-
ical formalism already presented in detail in Chapter 2, while in Section 3.3 we
show the results of the fits to Belle data, discussing in detail our main findings.
Finally, in Section 3.4 we gather our concluding remarks.

3.2. Formalism

We consider the processes e+e− → h1h2 + X and e+e− → h1(jet) + X, where h1

is a spin-1/2 hadron and the second (light and unpolarized) hadron, h2, is
produced almost back-to-back with respect to h1. Here we focus only on the very
intriguing case of the transverse hyperon polarization. This quantity is defined
as

PT =
dσ↑ − dσ↓

dσ↑ + dσ↓ =
dσ↑ − dσ↓

dσunp , (3.1)

where dσ↑(↓) is the differential cross section for the production of a hadron
transversely polarized along the up(down) direction w.r.t. the production plane
and dσunp is the corresponding unpolarized cross section.

For inclusive production (within a jet), the polarization is measured orthogo-
nally to the thrust plane, containing the jet (more precisely the thrust axis, T̂) and
the spin-1/2 hadron momentum, Ph1

, that is along T̂ ×Ph1
. For the associated

production with a light hadron, h2, one considers the hadron plane, containing the
two hadrons, and the transverse polarization is measured along (−Ph2

×Ph1
).

For the first case, in a leading order approach, we choose a frame so that
the e+e− → qq̄ scattering occurs in the x̂z plane, with θ being the angle between
the back-to-back quark-antiquark (identifying the z axis) and e+e− directions.
The three-momentum of the hadron h1, with mass Mh1

, light-cone momentum
fraction z1, and intrinsic transverse momentum p⊥1, w.r.t. the direction of the
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fragmenting quark, is given as

Ph1
=
(

p⊥1 cos φ1, p⊥1 sin φ1, z1

√
s

2
(1 − a2

h1
/z2

1)
)

, (3.2)

with p⊥1 = |p⊥1| and a2
h1

= (p2
⊥1 + M2

h1
)/s. For such a configuration, dσ↑ in

Eq. (3.1) stands for dσe+e− → h↑1(jet)+X/dcos θdz1d2p⊥1.

The transverse polarization, simplifying a common factor (1 + cos2 θ) in the
numerator and the denominator, can be given then within a phenomenological
parton model approach as

PT(z1, p⊥1) =
∑q e2

q ∆Dh↑1/q(z1, p⊥1)

∑q e2
q Dh1/q(z1, p⊥1)

, (3.3)

where the sum runs over quark and antiquarks, and ∆Dh↑1/q is the pFF, also

denoted as D⊥q
1T . These are related as follows [17]:

∆Dh↑/q(z, p⊥) =
p⊥

zMh
D⊥q

1T (z, p⊥) . (3.4)

We recall that, for a hadron with polarization vector P̂ ≡↑, coming from the
fragmentation of a quark with momentum pq, the pFF is defined as (see Eq. (1.9)):

∆D̂h↑/q(z, p⊥) ≡ D̂h↑/q(z, p⊥)− D̂h↓/q(z, p⊥) = ∆Dh↑/q(z, p⊥) P̂ · (p̂q × p̂⊥) .

(3.5)

Eq. (3.3) is obtained by integrating the numerator and the denominator in Eq. (3.1)
over φ1 and refers to the transverse polarization in the hadron helicity frame
(i.e. transverse w.r.t. the plane containing the fragmenting quark and the hadron
h1). At leading order, this coincides with the thrust-plane frame defined above.

For massive hadrons, we use properly the two scaling variables presented
in Chapter 2: the energy fraction zh, Eq. (2.9), adopted in Belle analysis, and the



54 Extraction of the Λ polarizing fragmentation function from e+e− data

momentum fraction zp, Eq. (2.10). We recall that, these are related as follows (see
Eqs. (2.11, 2.12, 2.13)):

zh,p ≃ z
(

1± M2
h

z2s

)
(3.6)

zp = zh

(
1 − 4

M2
h

z2
hs

)1/2
. (3.7)

We will use for Λ hyperons, the full dependence on Mh. For the associated
production we adopt the configuration represented in Fig. 2.2: the produced
unpolarized hadron, h2, identifies the ẑL direction

Ph2
= −|Ph2

| ẑL , (3.8)

and the x̂z plane is determined by the lepton and the h2 directions (with the
e+e− axis at angle θ). The other plane is determined by ẑL and the direction of
the spin-1/2 hadron, h1,

Ph1
= (P1T cos ϕ1, P1T sin ϕ1, P1L) . (3.9)

For such a case, dσ↑ in Eq. (3.1) stands for

dσe+e− → h↑1h2+X

dcos θ2dz1dz2d2P1T
. (3.10)

More details on the kinematics for the almost back-to-back double-hadron pro-
duction can be found in Chapter 2 and in Refs. [42, 48].

In this case, the transverse polarization of h1, in its helicity frame, as reached
from the helicity frame of the fragmenting quark, is not directed along n̂ ∝
(−Ph2

×Ph1
) and has therefore to be projected out along this direction. Moreover,

two independent contributions appear: one driven by the pFF for h1, convoluted
with the unpolarized TMD-FF for the hadron h2, and another one driven by the
Collins FF for the hadron h2. The last manifests specific modulations in ϕ1 and
vanishes upon integrating over it, like in the present analysis and as presented
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in Chapter 2. Here we give directly the final expression for the transverse
polarization along n̂, integrated over P1T and adopting a Gaussian Ansatz for
the TMD-FFs. This choice, largely adopted in TMD phenomenology, allows to
carry out the integrations over intrinsic transverse momenta analytically and,
at the same time, is good enough to describe the low-p⊥ dependence. As it
will be shown below, this is indeed the region where the observed transverse Λ
polarization is sizeable. In particular we use:

Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥/⟨p2
⊥⟩

π⟨p2
⊥⟩

, (3.11)

∆Dh↑/q(z, p⊥) = ∆Dh↑/q(z)
√

2e p⊥
Mp

e−p2
⊥/⟨p2

⊥⟩p

π⟨p2
⊥⟩

, (3.12)

with ⟨p2
⊥⟩p =

M2
p

M2
p+⟨p2

⊥⟩
⟨p2

⊥⟩. By imposing |∆D(z)| ≤ D(z) the positivity bound

for the pFF, Eq. (3.5), is automatically fulfilled. As shown in Chapter 2, the
transverse polarization, simplifying again a common factor (1 + cos2 θ2), is then
given as

Pn(z1, z2) =

√
eπ

2
1

Mp

⟨p2
⊥⟩

2
p

⟨p2
⊥1⟩

z2{
[z1(1 − M2

h1
/(z2

1s))]2⟨p2
⊥2⟩+ z2

2⟨p2
⊥⟩p

}1/2

×
∑q e2

q ∆Dh↑1/q(z1)Dh2/q̄(z2)

∑q e2
q Dh1/q(z1)Dh2/q̄(z2)

. (3.13)

For its importance we also give the first p⊥-moment of the pFF:

∆D(1)
h↑/q

(z) =
∫

d2p⊥
p⊥

2zMh
∆Dh↑/q(z, p⊥) = D⊥(1)

1T (z)

=

√
e
2

1
zMh

1
Mp

⟨p2
⊥⟩

2
p

⟨p2
⊥⟩

∆Dh↑/q(z) , (3.14)

where the last expression is obtained by using Eq. (3.12). Notice that Pn, Eq. (3.13),
is directly sensitive to this quantity.
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3.3. Fit and results

We can now proceed, using Eqs. (3.3) and (3.13), with the analysis of Belle
polarization data for Λ and Λ̄ production, measured at

√
s = 10.58 GeV [33]. As

already said, two data sets are available: one for the associated production with
light hadrons (π and K), as a function of zΛ and zπ(zK) (128 data points) and one
for the inclusive production as a function of p⊥ (the Λ transverse momentum
w.r.t. the thrust axis), for different energy fractions, zΛ (32 data points). Notice
that here we consider the transverse polarization for inclusive Λ particles, namely
those directly produced from qq̄ fragmentation and those indirectly produced
from strong decays. We parameterize the z-dependent part of the polarizing
Fragmentation Function as

∆DΛ↑/q(z) = Nqzaq(1 − z)bq
(aq + bq)

(aq+bq)

a
aq
q b

bq
q

DΛ/q(z) , (3.15)

where |Nq| ≤ 1 and q = u, d, s, sea. This guaranties that |∆D(z)| ≤ D(z).

For the unpolarized FFs we adopt the DSS07 set [49], for pions and kaons,
and the AKK08 set [50] for Λ’s. Since all data are at fixed energy scale no
evolution is implied in this extraction. For the unpolarized Gaussian widths
we use ⟨p2

⊥⟩ = 0.2 GeV2 [51], both for light and heavy hadrons (varying this
value has little effect in the final results). Concerning the Λ FF set, all available
parameterizations are given for Λ + Λ̄, including the AKK08 set, which adopts
zp as scaling variable. We then separate the two contributions assuming

DΛ̄/q(zp) = DΛ/q̄(zp) = (1 − zp) DΛ/q(zp) . (3.16)

This is a common way to take into account the expected difference between the
quark and antiquark FF with a suppressed Λ sea at large zp w.r.t. the valence
component. Other similar choices have a very little impact on the fit. Notice
that all transformations among the different scaling variables (z, zh, zp) involved,
Eqs. (2.11), (2.12) and (2.13), are properly taken into account.
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In order to access the p⊥ dependence of the pFF, data in the thrust-plane frame
would be ideal. On the other hand, the experimental accuracy in extracting them,
requiring the reconstruction of the thrust axis, is more problematic. Moreover, as
already pointed out, the use of a TMD approach is technically more subtle [38–
40, 46, 47]. This problem will be properly addressed in Chapter 5, where we
will consider the recent theoretical devolopments devised within the full TMD
framework.

The analysis of associated production data, extremely powerful in accessing
flavor separation, experimentally easier and on a more firm theoretical ground,
is however phenomenologically more complex. We have therefore performed
first a fit of the associated production data alone and then attempted a full fit
of both data sets, paying special attention to large-zh data. In particular, for
the associated production we exclude data where the energy fractions for both
hadrons are too large, while for the inclusive production we cut out the largest
zΛ bin (0.5-0.9). We have then imposed the following cuts: zπ,K ≤ 0.5 for the
associated production and zΛ ≤ 0.5 for the Λ-jet data set. This leaves us with
96+24 = 120 data points, still allowing to probe, at least in the Λh data set, large
values of zΛ. Notice that the cut on zπ has no impact on the quality of the fit.

Concerning the z-dependent part of the Λ pFF, Eq. (3.15), the best fit is
obtained adopting the following parameter set:

Nu, Nd, Ns, Nsea, as, bu, bsea , (3.17)

with all other a and b parameters set to zero. This means that, with ⟨p2
⊥⟩p

(Eq. (3.12)), we have 8 free parameters. We have indeed tried many different
combinations of parameter sets and this choice represents a sort of balance
between the number of parameters and the statistical significance of the fit.
Notice that simpler fits with only two pFFs, for u = d and s quarks, or without any
sea contribution, give much higher χ2

dof’s. The same happens if no appropriate
modulation in z is included. See comments below.



58 Extraction of the Λ polarizing fragmentation function from e+e− data

Nu = 0.47+0.32
−0.20 Nd = −0.32+0.13

−0.13

Ns = −0.57+0.29
−0.43 Nsea = −0.27+0.12

−0.20

as = 2.30+1.08
−0.91

bu = 3.50+2.33
−1.82 bsea = 2.60+2.60

−1.74

⟨p2
⊥⟩p = 0.10+0.02

−0.02 GeV2

Table 3.1.: Best values of the 8 free parameters fixing the pFF (Eqs. (3.12), (3.15)) for
u, d, s and sea quarks, as obtained by fitting the full set of Belle data [33]. The
statistical errors correspond to the shaded uncertainty areas in Figs. 3.1, 3.4
and 3.2, as explained in the text.

Table 3.1 reports the values of the best-fit parameters for the full-data anal-
ysis. The corresponding estimates, compared to Belle data [33], are shown in
Figs. 3.1 and 3.4, respectively for the inclusive and associated Λ hadron (π ± ,
K ± ) production. Considering this preliminary stage, the quality of the fit is
reasonable, with a χ2

dof = 1.94 and with χ2
points = 2.75, 1.55, 1.61 for jet, pion

and kaon data subsets. Notice that a fit of associated production data alone
gives a χ2

dof = 1.26 with χ2
points = 0.8, 1.5 for pion and kaon data subsets. The
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Figure 3.1.: Best-fit estimates of the transverse polarization for inclusive Λ and Λ̄ pro-

duction in e+e− →Λ(jet) + X (thrust-plane frame) as a function of p⊥ for
different zΛ bins, compared against Belle data [33]. The statistical uncer-
tainty bands, at 2σ level, are also shown. Notice that curves for Λ and Λ̄
coincide and data in the rightmost panel are not included in the fit.
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shaded areas, corresponding to a 2σ uncertainty, are computed according to the
procedure explained in the Appendix of Ref. [52] and result in the statistical
errors quoted in Table 3.1. More precisely, we have allowed the set of best fit
parameters to vary, in order to generate around five hundred thousand new
parameter sets, and we selected only those sets such that their corresponding
χ2 ≤ χ2

min + ∆χ2. All the curves associated to these sets (around two hundred
thousand), lie inside the shaded area. The chosen value of ∆χ2 = 15.79, for our
eight-parameter fit, is such that the probability to find the “true” result inside
the shaded band is 95.45%.
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Figure 3.2.: First moments of the pFFs, see Eq. (3.14), for the up (a), down (b), strange
(c) and sea (d) quarks, as obtained from the full-data fit (red solid lines)
and the Λ-hadron fit (blue dot-dashed lines). The corresponding statistical
uncertainty bands (at 2σ level), as well as the positivity bounds (black
dashed lines), are shown.
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As mentioned above, a fit restricted only to associated production data gives
a much better result. Even though the resulting best-fit parameters are a bit
different, the corresponding first moment, Eq. (3.14), is quite stable and the two
extractions lead to consistent results. This is shown in Fig. 3.2, where we present
the first moments of the Λ pFF as obtained in the full-data fit (red solid lines) and
by fitting only the associated production data (blue dot-dashed lines), together
with their positivity bounds (black dotted lines). As one can see, they are well
consistent within their uncertainty bands, and in two cases (down and strange
quarks) almost indistinguishable. In Fig. 3.3, we show, for the full-data fit, the
ratios of the absolute value of the first moments w.r.t. their positivity bounds.

Some comments are in order. For the inclusive production case, the descrip-
tion is clearly less good. On the other hand, one would expect PT = 0 at p⊥ = 0,
as well as PT(Λ̄) = PT(Λ), a feature not clearly visible in the data (Fig. 3.1).
This increases the tension with the other data set, reducing the quality of the full-
data fit. Moving to the associated production data set, we observe that charge
conjugation symmetry implies Pn(Λh+) = Pn(Λ̄h−); in this respect data are
quite consistent (Fig. 3.4). Focusing on medium zπ,K values, where the valence
unpolarized FFs dominate, the Fig 3.5 ( for Λπ−(a), ΛK−(b), Λπ+(c) and ΛK+(d)
data) gives direct information on the pFFs respectively for u (red solid line),
d (blue dashed line), s (purple dot-dashed) and sea (green dotted line) quarks
(We represented best-fit estimates for Λ transverse polarization with a light-blue
solid line, that coincide with those in Fig. 3.4). In fact, in this region Pn(Λπ−) is
positive (see Fig. 3.4a and Fig. 3.5a) and dominated by the contribution from the
up quark pFF, while Pn(Λπ+) is negative and dominated by the down quark
pFF, at small-medium zπ, and by the pFFs of the down and the strange quarks,
at large zπ (Figs. 3.2a, 3.2b and 3.5c). Moreover, the strong reduction in size of
Pn(Λπ−) with increasing zΛ implies a large suppression of the up pFF for such
values, see Figs. 3.3, 3.5a (red solid line), in contrast to the down quark pFF. At
small zΛ, sea quark FFs (green dotted line) start playing some role, becoming
important around zΛ ≤ 0.3. For instance, for Pn(Λπ+), where the up and down
pFF contributions almost cancel each other for these zΛ values, it is the negative
sea polarizing FF that leads to large, and negative, values of the transverse polar-



Extraction of the Λ polarizing fragmentation function from e+e− data 61

0.2 0.3 0.4 0.5 0.6 0.7
z

0.0

0.1

0.2
up
down
strange
sea

Figure 3.3.: Ratios of the absolute values of the first moments of the pFFs w.r.t. their
positivity bounds for the u (red solid line), d (blue dashed line), s (purple
dot-dashed line) and sea (green dotted line) quarks, as obtained from the
full-data fit.

ization. Similarly, in Pn(Λπ−), still for zΛ ≤ 0.3, this pFF is responsible for the
partial reduction of the very large piece driven by the up polarizing FF, coupled
to the favoured unpolarized π− FF and weighted by a large relative charge
factor. We can then understand the emerging of a negative sea polarizing FF
(Fig. 3.2d) and its strong suppression at large z (Fig. 3.3, green dotted line). The
description of Λ-kaon data follows a similar pattern. We can easily understand
the negative values of Pn(ΛK+) at medium zΛ, being driven by a sizeable and
negative ∆DΛ↑/s (Figs. 3.2c and 3.5d, purple dot-dashed line), coupled to the
leading FF DK+/s̄. When moving to smaller zΛ, this contribution is suppressed
(see Figs. 3.3 and 3.5d) and once again it is the negative sea quark polarizing FF,
∆DΛ↑/ū , which leads to large and negative Pn(ΛK+) values. For Pn(ΛK−) (see
Fig. 3.5b) at medium-large zΛ all contributions are almost negligible, mainly for
two reasons: i) the large-z suppression of the up and sea quark polarizing FFs
coupled to the leading unpolarized kaon FFs; ii) the coupling of the other pFFs
to sub-leading sea unpolarized K− FFs. On the other hand, at small zΛ the up
quark pFF dominates, leading to large and positive Pn, slightly reduced by the
negative sea polarizing FF, ∆DΛ↑/s̄, coupled to the leading unpolarized FF DK−/s.
Similar reasonings apply to the Λ̄h data set. These quantitative findings are in
perfect agreement with the qualitative expectations discussed in Ref. [33], with
extra information on the size of the down pFF.
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Figure 3.4.: Best-fit estimates, based on the full-data set, of the transverse polarization
for Λ and Λ̄ production in e+e− →Λ(Λ̄)h+ X, for Λπ ± (a), Λ̄π ± (b), ΛK ±

(c), Λ̄K ± (d), as a function of zh (of the associated hadron) for different zΛ
bins. Data are from Belle [33]. The statistical uncertainty bands, at 2σ level,
are also shown. Data for zπ,K > 0.5 are not included in the fit.
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Figure 3.5.: Partial contributions of quark flavors, based on the full-data set, to the
transverse polarization for Λ production in e+e− →Λ h + X, for Λπ+ (a),
ΛK+ (b), Λπ− (c) and ΛK− (d): u (red solid line), d (blue dashed line), s
(purple dot-dashed line) and sea (green dotted line). Best-fit estimates of the
Λ transverse polarization are also represented (light-blue solid line), that
coincide with those in Fig. 3.4.
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3.4. Conclusions

The recent data from Belle Collaboration for the transverse Λ/Λ̄ polarization
have been used, within a TMD approach, to extract, for the first time, the po-
larizing fragmentation function of Λ hyperons. A clear separation in flavors
has been achieved, supporting the need for three different valence pFFs, with
their relative sign and size determined quite accurately. The need of a sea-quark
pFF is well supported. By employing a phenomenological Gaussian Ansatz we
obtained a first indication on their p⊥ dependence have been extracted. New
data with higher statistics, as well as complementary studies in other processes,
will certainly help towards a deeper understanding of this important TMD-FF,
and eventually, in solving the longstanding puzzle of the observed spontaneous
transverse hyperon polarization.



Chapter 4.

Transversely polarized hadron
production in Semi-inclusive DIS

4.1. Introduction

Semi-inclusive Deep Inelastic Scattering is one of the processes for which TMD
factorization is proven that have played and still play a leading role in accessing
TMDs. Thanks to the strong entanglements between the transverse momentum
dependence of both the TMD-PDFs and FFs, SIDIS allows to extract simultane-
ously information about the inner structure of hadrons and the hadronization
mechanism of partons.

It has been widely studied over the years [18, 19, 28], and the complete struc-
ture of azimuthal dependences for hadron production in (un)polarized collisions
has been formulated in full detail. In particular, in Ref. [28] the authors presented
the full decomposition of all azimuthal dependences, in terms of the eight TMD-
PDFs, for unpolarized hadron production in lp→ l′h + X processes, adopting
the helicity formalism.

In this Chapter, following Ref. [28], we present the analogous expressions
within the helicity formalism for the transverse polarization of a spin-1/2 hadron
produced in unpolarized SIDIS processes. These results will be used, by exploit-

65
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ing the previoulsy extracted Λ polarizing FF, to give estimates for the Λ/Λ̄
transverse polarization.

The Chapter is organized as follows: in Section 4.2 we present the kinematics
for the SIDIS process and the expression, within the helicity formalism, of the
transverse polarization for the final state spin-1/2 hadron, following what was
done in Ref. [28] for the unpolarized hadron production in case. In Section
4.3 we will give estimates for the transverse polarization of Λ/Λ̄ hyperons,
for kinematic configurations and energies reachable at the future Electron-Ion
Collider (EIC).

4.2. Kinematics

We start considering the kinematics of Deep Inelastic Scattering processes (see
Ref. [51]) in the γ∗P c.m. frame, as shown in Fig. 4.1. We consider the photon and
the proton colliding along the z axis with momenta q (along +z) and P (along
−z) respectively; the lepton plane coincides with the x-z plane (following the so
called “Trento conventions” [17]). We adopt the usual DIS variables (neglecting
the lepton mass):

s = (P + l)2 Q2 = −q2 (P + q)2 = W2 =
1 − xB

xB
Q2 + m2

p

xB =
Q2

2P · q
=

Q2

W2 + Q2 − m2
p

.
(4.1)

If we neglect also the proton mass mp the four-momenta involved can be written
as:
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Figure 4.1.: Three dimensional kinematics of the SIDIS process.

q =
1
2

(
W − Q2

W
, 0, 0, W +

Q2

W

)
,

P = P0(1, 0, 0,−1) ,

P0 =
1
2

(
W +

Q2

W

)
.

(4.2)

At leading order in QCD the lepton scatters off a quark and, taking intrinsic
motion into account, the initial and final quark four-momenta are given by:

k =

(
xP0 +

k2
⊥

4xP0
, k⊥,−xP0 +

k2
⊥

4xP0

)
, k′ = k + q , (4.3)
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Figure 4.2.: Kinematics of photon-proton collision and of the fragmentation process.

where x = k−/P− is the light-cone fraction of the proton momentum carried by
the parton, k⊥ = k⊥(cos φ, sin φ, 0) is the parton transverse momentum, with
k⊥ ≡ |k⊥| and k′ is the four-momentum of the final-state quark fragmenting into
the final-state hadron. It can also be proved [51] that the on-shell condition for
the final quark, k′2 = 0, implies

x =
1
2

xB

(
1 +

√
1 +

4k2
⊥

Q2

)
≃ xB +O

(
k2
⊥

Q2

)
. (4.4)

Notice that when terms O(k2
⊥/Q2) are neglected in the above equations one

recovers the usual relations x = xB and k = xBP + k⊥, moreover, the transverse
momentum k′

⊥ of the final quark in the laboratory frame is equal to the one of
the initial quark, k′

⊥ = k⊥ (see Fig. 4.2).

In order to compute the polarization of the final-state hadron, we proceed
with the definition of the the final-state quark and hadron momenta. The four-
momenta of the final-state quark is:



Transversely polarized hadron production in Semi-inclusive DIS 69

k′ = (k′0, k⊥, k′3) ,

k′0 =
W
2

(
x − 2xB + 1

1 − xB
+

xB
x

k2
⊥

Q2

)
,

k′3 =
W
2

(
1 − x

1 − xB
+

xB
x

k2
⊥

Q2

)
.

(4.5)

Moreover, we can define the three-momentum of the final hadron in the labora-
tory frame as:

Ph = (PT cos ϕh, PT sin ϕh, PL)

= Eh

(
PT cos ϕh, PT sin ϕh,

√√√√1 − M2
h + P2

T

E2
h

)
,

(4.6)

where Eh is the energy of the final-state hadron, PT is the transverse momentum
with respect to the initial-state hadron direction and p⊥ the transverse momen-
tum with respect to its parent quark k′, as shown in Fig. 4.1. As in the case of
the initial particles, we can define the light-cone momentum fraction z = P+/k′+

and another variable commonly used in SIDIS processes, zh = (P · Ph)/(P · q).
One finds [51] that the two scaling variables are related as follows:

z ≃ zh +O
(

k2
⊥

Q2

)
. (4.7)

For massive hadrons, two further scaling variables can be introduced: the energy
fraction

ξE =
Eh

k̂′0
, (4.8)
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and the momentum fraction

ξp =
Ph · k̂′

k′0
. (4.9)

These are related to the light-cone momentum fractions as follows:

zh =
1
2
(ξp + ξE) ,

ξp = ξE

√√√√1 − M2
h + p2

⊥
ξ2

E|k
′0|2

≃ ξE

√√√√1 − M2
h

ξ2
E|k

′0|2
,

ξp ≃ zh

(
1 − M2

h

4z2
h|k

′0|2

)
≃ zh

(
1 − M2

h

z2
hQ2

xB
1 − xB

)
.

(4.10)

Adopting the above variables, one can express the hadron and quark three-
momenta as

Ph = |k′0|2ξp

(
ηT
ξp

cos ϕh,
ηT
ξp

sin ϕh,

√√√√1 − η2
T

ξ2
p

)
,

k′ = k′0(η⊥ cos φ, η⊥ sin φ, k′3/k′0) ,

p⊥ = Ph − ξpk′ ≃ PT − ξpk⊥

≃
(

PT cos ϕh − ξpk⊥ cos φ, PT sin ϕh − ξpk⊥ sin φ, 0

)
,

(4.11)

We have also defined the quantities η⊥,T as:

η⊥ =
k⊥
k′0

, ηT =
PT

k′0
, (4.12)

with PT ≡ |PT|. Now we can proceed to give the expression of the unit vectors
identifying the axes of the final hadron helicity frame, as reached from the parent
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quark helicity frame, in the laboratory frame adopted here. They are usually
defined as follows:

X̂h = Ŷh × Ẑh

Ŷh =
k̂′ × P̂h

|k̂′ × P̂h|

Ẑh =
Ph
|Ph|

,

(4.13)

and in our particular case we can write them, in the laboratory frame, in terms
of the variables defined above:

X̂h ≃
(

ηT
η⊥h

cos ϕh − ξp
η⊥
η⊥h

cos φ,
ηT

η⊥h
sin ϕh − ξp

η⊥
η⊥h

sin φ, 0
)

Ŷh ≃
(

ξp
η⊥
η⊥h

sin φ − ηT
η⊥h

sin ϕh,
ηT

η⊥h
cos ϕh − ξp

η⊥
η⊥h

cos φ, 0
)

Ẑh =

(
ηT
ξp

cos ϕh,
ηT
ξp

sin ϕh,

√√√√1 − η2
T

ξ2
p

)
,

(4.14)

where η⊥h = p⊥/k′0 and p⊥ ≡ |p⊥|. For the transverse polarization of the final
hadron, firstly we have to express it in the hadron frame, the laboratory (L)
frame:

Ph
T = Ph

X X̂h + Ph
Y Ŷh = Ph

xL
x̂L + Ph

yL
ŷL = Ph

T(cos ϕL
Sh

x̂L + sin ϕL
Sh

ŷL) , (4.15)

where (x̂L, ŷL, ẑL) are the unit vectors of the laboratory frame. By combining the
transverse polarization components in the laboratory frame as

Ph
T = Ph

xL
cos ϕL

Sh
+ Ph

yL
sin ϕL

Sh
. (4.16)
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By adopting the previous relations, also for this process, one can express the
transverse polarization for the final hadron as a ratio of two convolutions

Ph1
n (z1, z2) =

∫
d2PTF

sin(ϕ1−ϕL
Sh
)

TU∫
d2PTFUU

, (4.17)

with

FUU = ∑
q

e2
q

∫
d2k⊥d2p⊥δ(2)(PT − ξpk⊥ − p⊥) fq/p(x, k⊥)Dh/q(z, p⊥)

= C
[

f1D1
] (4.18)

F
sin(ϕ1−ϕL

Sh
)

TU =∑
q

e2
q

∫
d2k⊥d2p⊥δ(2)(PT − ξpk⊥ − p⊥)

×
[

ξp
k⊥ · P̂T

p⊥
− PT

p⊥

]
fq/p(x, k⊥)∆

NDh↑/q(z, p⊥)

=C
[(

ξp
k⊥ · P̂T

p⊥
− PT

p⊥

)
fq/p∆NDh↑/q

]

=C
[(

k⊥ · P̂T − PT
zh

)
f1D⊥

1T
Mh

]
,

(4.19)

where we used the notation used in Ref. [28] for a generic convolution on trans-
verse momenta of a TMD-PDF with a TMD-FF:

C[w f D] = ∑
q

e2
q

∫
d2k⊥d2p⊥δ(2)(PT − ξpk⊥ − p⊥)

×w(k⊥, PT) f (x, k⊥)D(z, p⊥) .
(4.20)

In Eqs. (4.18) and (4.19), fq/p and Dh/q are respectively the unpolarized TMD
parton distribution and fragmentation function, and ∆NDh↑/q is the polarizing

fragmentation function. We also switched, in the last line of the F
sin(ϕ1−ϕL

Sh
)

TU
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convolution, to the Amsterdam notation, neglecting terms in Mh/Q, for a more
direct comparison with Ref. [53]. Assuming the same Gaussian parameterization
as in Chapter 2, and considering the projection of the polarization along the n̂
direction (that is perpendicular to the production plane), defined as

n̂ ≡ (cos ϕn, sin ϕn, 0) =
−P ×Ph
|P ×Ph|

= − sin ϕh x̂L + cos ϕhŷL , (4.21)

we find, for the polarization of the final-state hadron, the following expression:

Ph
n(xB, zh) =

√
2eπ

2Mp

⟨p2
⊥⟩

2
p

⟨p2
⊥⟩h

1√
⟨p2

⊥⟩p + ξ2
p⟨k

2
⊥⟩

×
∑q e2

q fq/p(xB)∆
NDh↑/q(zh)

∑q e2
q fq/p(xB)Dh/q(zh)

,

(4.22)

where ⟨p2
⊥⟩h and ⟨k2

⊥⟩ are the Gaussian widths of, respectively, the unpolarized
fragmentation function and the unpolarized parton distribution function, and
⟨p2

⊥⟩p is the width of the polarizing fragmentation function. After integration
over all the transverse momenta, the polarization depends only on the fractions
xB and zh, also via the variable

ξp ≃ zh

(
1 − M2

h

z2
hQ2

xB
1 − xB

)
. (4.23)

4.3. Transversely polarized Λ/Λ̄ production in

Semi-inclusive Deep Inelastic Scattering

Employing Eq. (4.22) and the Λ/Λ̄ polarizing fragmentation function for, ex-
tracted in [41] and presented in Chapter 3, we can give estimates of the polariza-
tion of Λ/Λ̄, produced in e− p→Λ/Λ̄ e− + X, as a function of zh at fixed values
of xB = (0.1, 0.3) and Q = 10 GeV, which are consistent with the kinematics
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reachable at the future Electron Ion Collider. This choice allows us to use the
extracted polarizing FF without any evolution effect.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

Q = 10 GeV  xB = 0.1 Λ

P
T

zh

Global
Assoc.
Full Data

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

Q = 10 GeV  xB = 0.3 Λ

P
T

zh

Global
Assoc.
Full Data

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

Q = 10 GeV  xB = 0.1 Λbar

P
T

zh

Global
Assoc.

Full Data

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

Q = 10 GeV  xB = 0.3 Λbar

P
T

zh

Global
Assoc.
Full Data

Figure 4.3.: Estimates of the transverse polarization for Λ and Λ̄ production in
e− p→Λ/Λ̄ e− + X, as a function of zh for different values of xB and at
Q = 10 GeV. In red the estimates obtained adopting the Λ polarizing frag-
mentation functions extracted from the full data fit and in blue the ones
from the associated production data fit.

In Fig. 4.3 we show the Λ/Λ̄ transverse polarization estimates. We have
adopted the CTEQ6 set [54] for the unpolarized collinear proton PDFs, the AKK
set [50] for the unpolarized Λ/Λ̄ FFs, and the polarizing FF extracted from Belle
data, presented in [41] and in the previous Chapter 3.

The polarization reaches values around 10% in size for both particles and
is of the same magnitude as the one measured by the Belle Collaboration in
e+e− annihilation processes. This could mean that it should be measurable at the
future EIC. The estimates related to the full data fit and the associated production
fit are consistent, leading to estimates of almost the same size.
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The Λ polarization is positive for a small range of zh and decreases until it
reaches negative values. Notice that the range of zh, for which it is positive,
increases for larger values of xB. On the other hand for the Λ̄ polarization is
always negative, keeping almost a constant value as zh increases.

4.4. Conclusions

We have presented the kinematic configuration and the expressions of the cross
section, within the helicity formalism, for the production of a transversely po-
larized spin-1/2 hadron in SIDIS processes, following the approach already
discussed in [28]. By adopting the Λ/Λ̄ polarizing FFs extracted in [41], we have
given estimates for the Λ/Λ̄ transverse polarization for different values of zh

and xB compatible with those reachable at the future EIC. This kind of estimates
will enable us to test, in future measurements, one of the main features of TMD
factorization: the universality of the polarizing FF.
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Chapter 5.

Transverse Λ polarization within the
CSS framework and TMD evolution
of the polarizing fragmentation
function

5.1. Introduction

One of the critical issues on the analysis of Belle data discussed in Chapter 3
is that we have not used the proper factorization theorems and the evolution
equations for both the double and the single-inclusive hadron production cross
sections. Indeed, the extraction of the Λ polarizing FF has been made at fixed
scale (Q = 10.58 GeV) and this, if from one side does not need any evolution
effects, from the other side does not enables us to make predictions at different
energy scales.

Moreover, and more relevant, in the analysis we used a simplified and phe-
nomenological model to study the transversely polarized Λ, produced in a
single-inclusive processes, due to the lack of a formalism, at that time, that could
describe this kind of processes. In fact, unlike the cross section for double-hadron
production in e+e− annihilation processes, only recently new advancements in

77
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the TMD factorization of the cross section for single-inclusive production pro-
cesses have appeared. Among them, we can mention the works of Refs. [38, 47],
where the factorization has been formulated within an effective theory con-
text, and the ones in Refs. [39, 40, 55], where the Collins-Soper-Sterman (CSS)
formalims has been adopted.

The purpose of this Chapter is therefore to present a renewed analys of Belle
data by exploiting the TMD framework in its full glory, paying special attention
to scale evolution effects.

The Chapter is organised as follows: in Section 5.2 we present the main con-
volutions and the cross section for the production of a transversely polarized
spin-1/2 hadron, in association with a light hadron, in e+e− annihilation pro-
cesses, and how they can be expressed in the impact parameter space. Then in
Section 5.3 we show how these convolutions can be treated within TMD factor-
ization, by employing the CSS evolution equations. In Section 5.4 we summarize
the results already presented in Ref. [38], giving expressions for the cross sections
for single-inclusive hadron production and for the transverse polarization. All
these results will be exploited to re-analyze the Belle data in Section 5.5, where
we show the outcomes of the fits for the double-hadron production data alone
and the combined fit of both data set, discussing our main findings. Lastly, in
Section 5.6, we collect our concluding remarks.

5.2. Double hadron production

5.2.1. Kinematics and cross section

We start illustrating here the kinematics and the expression for the cross sec-
tion for the process e+e− → h1(S1)h2(S2) + X where h1 and h2 are two spin-1/2
hadrons and S1,2 are the spins of the hadrons. We consider the two hadrons as
produced almost back-to-back, where the second hadron, h2, moves along ẑL, in
the laboratory frame, and the first one, h1, moves in the opposite direction, with
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a small transverse momentum P1T with respect to the second hadron direction.
This kinematical configuration is shown in Fig. 5.1, where (x̂L, ŷL, ẑL) are the unit
vectors in the laboratory frame and Ph1

and Ph2
are the momenta of, respectively,

the first and second hadron.

The kinematic configuration, in Fig. 5.1, has the unit vectors (x̂L, ŷL, ẑL) in the
Laboratory frame inverted with respect to those of the hadron frame adopted
in [56] and in Chapter 2. This choice is made for the sake of semplicity, because
we will employ directly the convolutions adopted in Ref. [18]. These ones, as we
will see, have a straighter connection with the convolutions in bT-space.

Moreover, we define two planes: the Lepton Plane, determined by the leptons
and the hadron h2, and the Production Plane, determined by the momenta of the
two observed hadron, h1,2, at an angle ϕ1 with respect to the Lepton Plane. In this

Figure 5.1.: Kinematics for the the hadron-frame configuration.

configuration, called "hadron frame", where one measures only the momenta
of the two hadrons and the azimuthal distribution of the hadron h1, the cross
section
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dσe+e− → h1(S1)h2(S2) X

d cos θdz1dz2d2qT
(5.1)

depends on the transverse momentum of the virtual photon qT, and on the
light-cone momentum fractions z1,2 of the final-state hadrons. We recall that the
transverse momentum of the photon, qT, is related to the transverse momentum
of the first hadron, see Appendix F, as

P1T = −z1qT . (5.2)

These two scaling variables, z1,2, are defined as

z1 =
P−

h1

k−
, z2 =

P+
h2

p+
, (5.3)

where k and p are the four-momenta of the first and second quark1. We can
also introduce two further scaling variables that can be related to the light-cone
momentum fraction: the energy fraction

zhi
=

P0
i

l0 = zi

(
1 +

M2
hi

2z2
i Q2

)
, (5.4)

often adopted in the experimental analyses, and the longitudinal momentum
fraction

zpi
=

P3
i

l3 = zi

(
1 −

M2
hi

2z2
i Q2

)
, (5.5)

1For a generic four-vector a, we have a± = (a0 ± a3)/
√

2
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where l is the four-momenta of the quark fragmenting into the hadron hi, Mhi

is the mass of the hadron and Q is the center-of-mass energy of the process. It
is such that Q2 = q2, with q the four momentum of the virtual photon. In both
scaling variables we are keeping a kinematic power correction factor M2/Q2,
usefull for the study of massive hadron production.

In general, the cross sections can be written as convolutions of two generic
TMD fragmentation functions [18, 56], as follows

F [ωDD̄] = ∑
q

e2
q

∫
d2kTd2pT δ(2)(kT + pT − qT)ω(kT, pT)D(z1, k⊥)D̄(z2, p⊥) ,

(5.6)

where D and D̄ are the fragmentation functions of the first and second hadron,
kT and pT are the transverse momenta of the quark/antiquark with respect to
the hadron h1 and h2. The two fragmentation functions depend explicitly on k⊥
and p⊥ that are the transverse momenta of the hadrons with respect to their own
parent quarks. These two couples of transverse momenta are related, as shown
in Appendix F, through the following relations:

kT = −k⊥
zp1

; pT = − p⊥
zp2

, (5.7)

where zp is the longitudinal momentum fractions of the hadron with respect to
its fragmenting quark.

5.2.2. Transversely polarized hadron production

We now consider the associated production of a transversely polarized spin-1/2
hadron, h1, with an unpolarized hadron, or meson, h2. If the polarization is
measured only as a function of the energy fractions of the two final state hadrons,
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with the proper use of Eqs. (5.4) and (5.5) to relate the scaling variables, we can
give it as the ratio of two qT-integrated convolutions

Ph
T(z1, z2) = − sin(ϕ1 − ϕS1

)

∫
d2qT F

sin(ϕ1−ϕS1
)

TU∫
d2qT FUU

, (5.8)

that are defined as follows:

FUU =F [D1D̄1]

F
sin(ϕ1−ϕS1

)

TU =F
[

ĥ · kT
Mh1

D⊥
1TD̄1

]
, (5.9)

where D1(z, k⊥) is the unpolarized fragmentation function, D⊥
1T(z, k⊥) is the

polarizing fragmentation function, Mh1
is the mass of the first hadron and ĥ =

P1T/|P1T|. ϕS1
is the azimuthal angle of the spin of the hadron h1 and, when the

polarization is measured perpendicularly to the production plane, that is along
the unit vector n̂ defined as:

n̂ ≡ (cos ϕn, sin ϕn, 0) =
−Ph2

×Ph1

|Ph2
×Ph1

| = − sin ϕ1x̂L + cos ϕ1ŷL , (5.10)

the factor entering Eq. (5.8) [56] simplifies as

− sin(ϕ1 − ϕS1
) = 1 . (5.11)

Generally, it is possible to define the TMD fragmentation functions in the conju-
gate bT-space as the Fourier transform of the fragmentation function in kT-space.
By employing the integral definition of the Dirac’s delta function
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δ(2)(kT + pT − qT) =
∫ d2bT

(2π)2 eibT ·(kT+pT−qT) , (5.12)

we can write the convolutions, Eq. (5.9), in terms of the FF defined in the conju-
gate bT-space. The Fourier transform of the unpolarized FF is defined as:

D̃1(z, bT) =
∫

d2kT eibT ·kT D1(z, k⊥) = 2π
∫

dkT kT J0(bTkT)D1(z, k⊥) , (5.13)

where we have used Eq. (G.4), the integral definition of the J0, the Bessel function
of the first kind of order zero. With the above relation, the FUU convolution in
bT-space can be written as:

FUU =F [D1D̄1] = B0

[
D̃ ˜̄D]

=∑
q

e2
q

∫ dbT
(2π)

bT J0(bT qT)D̃1(z1, bT)
˜̄D1(z2, bT) .

(5.14)

Regarding the bT-space convolution of Fsin(ϕ1−ϕS)
TU , we first define the Fourier

transform of the product of the polarizing fragmentation function with ki
T, the

i-th component of the quark transverse momentum with respect to the hadron
direction, see Appendix G:

∫
d2kT

ki
T

Mh1

eibT ·kT D⊥
1T(z1, k⊥) = ibi

T Mh1
D̃⊥(1)

1T (z1, bT) . (5.15)

Here we have introduced D̃⊥(1)
1T (z1, bT), the first moment of the polarizing frag-

mentation function in bT-space, defined as



84
Transverse Λ polarization within the CSS framework and TMD evolution of

the polarizing fragmentation function

D̃⊥(1)
1T (z1, bT) = − 2

M2
h1

∂

∂b2
T

D̃⊥
1T(z1, bT) , (5.16)

where D̃⊥
1T(z1, bT) is the Fourier transform of the polarizing FF, Eq. (G.9). The

first moment in kT-space, D⊥(1)
1T (z1), defined as a weighted integral on k⊥,

D⊥(1)
1T (z1) =

∫
d2k⊥

(
k2
⊥

2z2
1M2

h

)
D⊥

1T(z1, k⊥) , (5.17)

can be related to that in bT-space, Eq. (5.16), as follows:

lim
bT → 0

D̃⊥(1)
1T (z1, bT) =

1

z2
1

D⊥(1)
1T (z1) . (5.18)

Employing the above equations and using the integral definition of the Bessel

function J1, Eq. (G.18), we can find the expression of F
sin(ϕ1−ϕS1

)

TU in bT-space:

F
sin(ϕ1−ϕS1

)

TU =F
[

ĥ · kT
Mh1

D⊥
1TD̄1

]
= Mh1

B1

[
D̃⊥(1)

1T
˜̄D1

]
=Mh1 ∑

q
e2

q

∫ dbT
2π

b2
T J1(qT bT)D̃⊥(1)

1T (z1, bT)
˜̄D1(z2, bT) .

(5.19)

Finally, we can re-write the polarization of the final hadron, Eq. (5.8), along the n̂
direction as the ratio of the two convolutions in bT-space:

Ph
n (z1, z2) =

∫
d2qT F

sin(ϕ1−ϕS1
)

TU∫
d2qT FUU

=
Mh1

∫
dqT qT dϕ1 B1

[
D̃⊥(1)

1T
˜̄D1

]
∫

dqT qT dϕ1 B0

[
D̃1
˜̄D1

] , (5.20)

where
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B0

[
D̃1
˜̄D1

]
=∑

q
e2

q

∫ dbT
2π

bT J0(bT qT)D̃1(z1, bT)
˜̄D1(z2, bT) (5.21)

B1

[
D̃⊥(1)

1T
˜̄D1

]
=∑

q
e2

q

∫ dbT
2π

b2
T J1(qT bT)D̃⊥(1)

1T (z1, bT)
˜̄D1(z2, bT) . (5.22)

The last step is to integrate both convolutions on qT. The integration over the
azimuthal dependence dϕ1 gives a factor of 2π that cancels in the polarization
definition. Meanwhile for the radial part, since the only terms inside the convo-
lutions that depend on qT are the Bessel functions, we can separately integrate
them from the rest of the terms, over the interval [0, qTmax

] (see below for the
meaning of qTmax

), obtaining the following results:

∫ qTmax

0
dqT qT J0(bT qT) =

qTmax

bT
J1(bT qTmax

) (5.23)

∫ qTmax

0
dqT qT J1(bT qT)

=
πqTmax

2bT
{J1(bT qTmax

)H0(bT qTmax
)− J0(bT qTmax

)H1(bT qTmax
)}

(5.24)

where H0,1 are the Struve functions of order zero and one respectively. To fulfill
the conditions of validity for the TMD factorization [57] qTmax

≪ Q. In the
phenomenological analysis, Section 5.5, we will perform various tests adopting
different values of the ratio qTmax

/Q.

5.3. Double hadron production: CSS formalism

In this Section we extend the discussion of the convolutions, presented in Sec-
tion 5.2, with the proper treatment of the scale evolution within the Collins-
Soper-Sterman (CSS) approach and we will summarize the results presented
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in [24, 57, 58]. According to the CSS formalism, the full form of the two convolu-
tions, Eqs. (5.21), (5.22), is given by:

B0

[
D̃1
˜̄D1

]
= ∑

q
e2

q H
(e+e−)(Q)

×
∫ dbT

(2π)
bT J0(bT qT)D̃1,q/h1

(z1, bT; ζ1, µ) ˜̄D1,q̄/h2
(z2, bT; ζ2, µ)

(5.25)

B1

[
D̃⊥(1)

1T
˜̄D1

]
=∑

q
e2

q H
(e+e−)(Q)

×
∫ dbT

2π
b2

T J1(qT bT)D̃⊥(1)
1T,q/h1

(z1, bT; ζ1, µ) ˜̄D1,q̄/h2
(z2, bT; ζ2, µ)

(5.26)

where H(e+e−)(Q) is the hard scattering part, for the massless on-shell process
e+e− → qq̄, at the center-of-mass energy Q. This term is process dependent and
in this particular case, for unpolarized qq̄ production, the two convolutions
share the same hard term. With respect to the previous expressions, the two
fragmentation functions have two scale arguments: the renormalization scale
µ and the ζ scale, that describes the effect of the recoil against the emission of
soft gluons into an energy range determined approximately by µ and ζ. The
fragmentation functions dependence on these two scales is regulated by the CSS
and Renormalization Group (RG) equations.

5.3.1. Evolution equations for TMD fragmentation functions

The CSS evolution equation for the ζ dependence of the unpolarized TMD-FF
has the following form:
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∂ ln D̃1(z1, bT; ζ1, µ)

∂ ln
√

ζ1
= K̃(bT; µ) , (5.27)

where K̃ is the CSS kernel and derived from the soft factor, that takes into account
all the effects due to soft gluons [24]. It is independent of the flavor and spin of
the quark, of the nature of the final-state hadron and of the light-cone momentum
fraction z. However, since it depends on the color representation carried by the
parton, it is different for quark and gluon FFs. The RG equation for the kernel is

dK̃(bT; µ)

d ln µ
= −γK(g(µ)) , (5.28)

where the anomalous dimension γK has no dependence on bT, since the UV
divergences only arise from virtual graphs [24]. Meanwhile for the fragmentation
function the RG equation is

d ln D̃1(z1, bT; ζ1, µ)

d ln µ
= γD(g(µ); ζ1/µ2) , (5.29)

where, unlike the DGLAP equation, there is no convolution in the fraction
z, although the anomalous dimension, γD, depends on it via the variable ζ

[24]. Since the differentiation of the fragmentation function with respect to µ

commutes with the differentiation with respect to ζ, we can finally obtain the
energy dependence of γD, that is:

γD(g(µ); ζ1/µ2) = γD(g(µ); 1)− 1
2

γK(g(µ)) ln
ζ1

µ2 . (5.30)
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In addition, the anomalous dimensions and the CSS Kernel can be computed
order by order perturbatively. Hence, by solving Eq. (5.27), we get the evolution
from the reference scale ζ1,0 to the scale ζ1 of the fragmentation functions:

D̃1(z1, bT; ζ1, µ) = D̃1(z1, bT; ζ1,0, µ) exp
{

1
2

K̃(bT; µ) ln
ζ1

ζ1,0

}
. (5.31)

This can be used in turn in Eq. (5.29) in order to get the evolution from the
reference energy scale, µ0, to µ, (notice that µ0 has to be in the pertubative region
so that the lowest-order perturbative calculations of γD and γK are reliable):

D̃1(z1, bT; ζ1, µ) = D̃1(z1, bT; ζ1, µ0) exp

{ ∫ µ

µ0

dµ′

µ′ γD(g(µ′); ζ1/µ′2)

}

= D̃1(z1, bT; ζ1, µ0) exp

{ ∫ µ

µ0

dµ′

µ′

[
γD(g(µ′); 1)− 1

2
γK(g(µ′)) ln

ζ1

µ′2

]}

= D̃1(z1, bT; ζ1,0, µ0) exp

{
1
2

K̃(bT; µ0) ln
ζ1

ζ1,0

}

× exp

{ ∫ µ

µ0

dµ′

µ′

[
γD(g(µ′); 1)− 1

2
γK(g(µ′)) ln

ζ1

µ′2

]}
.

(5.32)

The dependence on ζ1 involves the function K̃, implying an energy dependence
on the shape of the transverse momentum distribution. Moreover, the function
D̃1, at its reference scales ζ1,0 and µ0, can be thought as the Fourier transform
of an intrinsic transverse momentum distribution of the hadron with respect to
its parent parton. The term that multiplies this function, cointaining the CSS
Kernel, mimics the effect of the energy-dependent recoil against the emission of
soft gluons.
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The full solution of the evolution equations in terms of the anomalous dimen-
sions and the CSS Kernel, and all the results above, can also be extended to the
D̃⊥(1)

1T function [24].

5.3.2. Small-bT expansion

The first term of the last line in Eq. (5.32) is the TMD FF at the reference energy
scale, and it is related to the short distance and small bT behaviour of D1 and
therefore computable in perturbation theory. So at small-bT, the unpolarized
TMD fragmentation function can be expressed in terms of the corresponding in-
tegrated fragmentation function dj/h(z; µ) using an Operator Product Expansion
(OPE):

D̃1,q/h(z1, bT; ζ1,0, µ0)

=∑
j

∫ 1

z1

dẑ

ẑ3−2ϵ
C̃j/q(z1/ẑ, bT; ζ1,0, µ0, g(µ0)) dj/h(ẑ; µ0) +O[(mbT)

p] ,
(5.33)

where the error term is suppressed by some power of the transverse position.
The sum is over all parton types j , including gluons and antiquarks. When bT is
small, the coefficient function C̃j/q can be expanded in perturbation theory and
calculated from Feynmann graphs with external on-shell partons of type j, with
a double-counting subtraction in order to cancel all collinear contributions [24].
The lowest-order coefficient is unitary:

C̃j/q(z1/ẑ, bT; ζ1, µ, g(µ)) = δjqδ(z1/ẑ − 1) +O(g2) . (5.34)

An OPE of the same kind applies also to the other collinear fragmentation
functions, e.g G1L and H1T, but they generally have different coefficient functions
beyond lowest-order. For the other, polarization-dependent, TMD fragmentation
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functions, like the Collins and the (single)polarizing fragmentation functions, it
is possible to generalize the OPE involving quantities that are associated with
matrix elements of higher-twist operators [59], like in the case of the Sivers
function with the Qiu-Sterman function [60, 61].

5.3.3. Matching perturbative and non-perturbative bT

dependence for TMD fragmentation

In order to combine information on the bT dependence coming from perturbative
calculations, valid at small bT, and the one from the non-perturbative part, that
must be extracted from experimental data, it is necessary to introduce a matching
procedure. Note that the perturbatively calculable functions, like the CSS Kernel
and the anomalous dimensions, appear in an exponent, thus any error in a
perturbative calculation can be magnified by large logarithms.

Firstly it is necessary to choose a parameter bmax, representing the maximum
distance at which perturbation theory is to be trusted; it could be taken within
an interval of [0.5 − 1.5]GeV−1. Then we define a function b∗(bT) with the
properties that for small bT it reduces to bT, and that at larger bT it is not bigger
than bmax:

b∗(bT)→

bT bT ≪ bmax

bmax bT ≫ bmax

. (5.35)

A standard choice is the following:

b∗ =
bT√

1 + b2
T/b2

max

. (5.36)
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Then one re-defines the CSS Kernel as:

K̃(bT; µ) = K̃(b∗; µ)− gK(bT; bmax) , (5.37)

where K̃(b∗; µ) is always defined in a region where perturbation theory is appro-
priate and the correction term gK is only important at large bT. This last term, gK,
which has to be fitted to data in a phenomenological analysis, is a functions of bT

and can depend explicitly or not on the parameter bmax. Since it is the difference
of K̃ calculated at two values of its position argument, it is RG invariant and has
to vanish as bT → 0.

If we want to match the perturbative and non-perturbative part of the unpolar-
ized fragmentation function D̃1, we can use b∗ defined in Eq. (5.43). Generalizing
Eq. (5.37), it is possibile to introduce an intrinsically non-perturbative part with
the following decomposition:

D̃1,q/h(z1, bT; ζ1, µ)

=D̃1,q/h(z1, b∗; ζ1, µ)

[
D̃1,q/h(z1, bT; ζ1, µ)

D̃1,q/h(z1, b∗; ζ1, µ)

]

=D̃1,q/h(z1, b∗; ζ1, µ) exp

[
− gq/h(z1, bT; bmax)− gK(bT; bmax) ln

√
ζ1√

ζ1,0

]

=D̃1,q/h(z1, b∗; ζ1, µ) exp

[
− gq/h(z1, bT; bmax)− gK(bT; bmax) ln

√
ζ1z1

Mh1

]
.

(5.38)

In the second line we can find D̃(b∗), that can now be calculated perturbatively,
and in the last line we have used the reference value ζ1,0 = M2

h1
/z2

1 [24]. By
employing Eq. (5.32), the anomalous dimensions, γD and γK, cancel between
numerator and denominator. Meanwhile it survives only gK, the correction and
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"non-perturbative" term of K̃. The remaining factor, written as an exponential,
e−gq/h , that is introduced with the following definition [58]

e−gq/h(z1,bT ;bmax) =
D̃1,q/h(z1, bT; ζ1, µ)

D̃1,q/h(z1, b∗; ζ1, µ)
e gK(bT ;bmax) ln

√
ζ1/

√
ζ1,0 , (5.39)

can be interpreted as the non-perturbative part of the intrinsic transverse momen-
tum distribution. Both gK and gq/h vanish approximately as b2

T at small bT [24],
and become significant when bT approaches bmax and beyond. Both functions are
independent of ζ and µ, being invariant under the application of the CSS and RG
equations; moreover they depend on the choice of the value of bmax. But despite
this, the full TMD fragmentation function and the function K̃ are independent of
bmax and of the use of the b∗ prescription. The flavor and z dependences of gK

and gq/h follow from those of the corresponding parent functions, respectively K̃
and the TMD fragmentation functions [58]. Since K̃ is independent of the quark’s
and hadron’s flavor, polarization and fraction z, so is gK. The same, of course, is
not true in general for the TMD fragmentation functions and therefore for e−gq/h .
In addition, this last term is usually written as MD(bT; bmax) or DNP(bT; bmax), a
generic function of bT, since it could assume also a non-exponential functional
form, still preserving its properties, and the fact that it vanishes like b2

T at small
bT; it is usually referred to as the non-perturbative model of the fragmentation
function, and within a parton model, can be seen as the Fourier transform of the
transverse momentum distribution. As already said for the gK, the function MD

can depend explicitly or not on the parameter bmax. In a more general way, the
phenomenological extraction of both non-perturbative functions is affected by
the choice of the bmax value.

To use the perturbative small-bT result from Eq. (5.33), it is necessary to evolve
the D̃ term in Eq. (5.38), with the b∗ prescription, from a region where no large
kinematic ratios appear in the coefficient function C̃, whose logarithms would
prevent the effective use of perturbation theory [24]. The standard choice is to
replace µ0 by:
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µb =
C1

b∗(bT)
, (5.40)

where C1 = 2e−γE (where γE is the Euler-Mascheroni constant), and replace the
reference value ζ1,0 by µ2

b. Then the TMD fragmentation function can be written
as:

D̃1,q/h(z1, bT; ζ1, µ)

= ∑
j

∫ 1

z1

dẑ

ẑ3−2ϵ
C̃j/q(z1/ẑ, b∗; µ2

b, µb, g(µb)) dj/h(ẑ; µb)

× MD(bT, z1; bmax) exp

{
− gK(bT; bmax) ln

√
ζ1z1

Mh1

}

× exp

{
1
2

K̃(b∗; µb) ln
ζ1

µ2
b
+
∫ µ

µb

dµ′

µ′

[
γD(g(µ′); 1)− 1

2
γK(g(µ′)) ln

ζ1

µ′2

]}
.

(5.41)

Finally, we need to modify the bT definition using [62]:

bc(bT) =

√
b2

T + b2
min , (5.42)

where bmin = 2e−γE /Q and decreases like 1/Q in contrast to bmax which remains
fixed. This definition reduces to bT when bT ≫ 1/Q but it is of order 1/Q when
bT is small, thereby providing a cutoff at small bT. Naturally b∗ has to be replaced
by:
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b∗(bc(bT)) =

√√√√ b2
T + b2

min

1 + b2
T/b2

max + b2
min/b2

max
, (5.43)

which has the following behaviour:

b∗(bc(bT))→


bmin bT ≪ bmin

bT bmin ≪ bT ≪ bmax

bmax bT ≫ bmax

. (5.44)

Lastly, instead of µb, we use the new scale:

µ̄b(bc(bT)) =
C1

b∗(bc(bT))
, (5.45)

implying a maximum cutoff on the renormalization scale equal to µ̄b ≃ C1/bmin.
Recollecting all the above results we can now write the TMD fragmentation
function, Eq. (5.41), employing the new definitions of bT, as:

D̃1,q/h(z1, bc(bT); ζ1, µ)

= ∑
j

∫ 1

z1

dẑ

ẑ3−2ϵ
C̃j/q(z1/ẑ, b∗(bc(bT)); µ̄2

b, µ̄b, g(µ̄b)) dj/h(ẑ; µ̄b)

× MD(bc(bT), z1; bmax) exp

{
− gK(bc(bT); bmax) ln

√
ζ1z1

Mh1

}

× exp

{
1
2

K̃(b∗; µ̄b) ln
ζ1

µ̄2
b
+
∫ µ

µ̄b

dµ′

µ′

[
γD(g(µ′); 1)− 1

2
γK(g(µ′)) ln

ζ1

µ′2

]}
,

(5.46)
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where, in addition, we will perform the following substitutions ζ1 = Q2 and
µ = Q, leading to:

D̃1,q/h(z1, bc(bT); Q2, Q)

= ∑
j

∫ 1

z1

dẑ

ẑ3−2ϵ
C̃j/q(z1/ẑ, b∗(bc(bT)); µ̄2

b, µ̄b, g(µ̄b)) dj/h(ẑ; µ̄b)

× MD(bc(bT), z1; bmax) exp

{
− gK(bc(bT); bmax) ln

Qz1
Mh1

}

× exp

{
1
2

K̃(b∗; µ̄b) ln
Q2

µ̄2
b
+
∫ Q

µ̄b

dµ′

µ′

[
γD(g(µ′); 1)− 1

2
γK(g(µ′)) ln

Q2

µ′2

]}
.

(5.47)

5.3.4. Convolutions

Thanks to the evolution equations and the matching procedure, we can write the
full form of the convolutions in Eqs. (5.25) and (5.26). For the convolution B0 we
have:

B0

[
D̃ ˜̄D]

=H(e+e−)(Q)∑
q

e2
q

∫ dbT
(2π)

bT J0(bT qT)D̃(z1, bT; ζ1, µ) ˜̄D(z2, bT; ζ2, µ)

=
H(e+e−)(Q)

z2
1z2

2
∑
q

e2
q

∫ dbT
(2π)

bT J0(bT qT) dq/h1
(z1; µ̄b)dq̄/h2

(z2; µ̄b)

× MD1
(bc(bT); bmax) MD2

(bc(bT); bmax) exp

{
− gK(bc(bT); bmax) ln

(
Q2z1z2
Mh1

Mh2

)}

× exp

{
K̃(b∗; µ̄b) ln

Q2

µ̄2
b
+
∫ Q

µ̄b

dµ′

µ′

[
2γD(g(µ′); 1)− γK(g(µ′)) ln

Q2

µ′2

]}
,

(5.48)
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where in the second line we have used the lowest-order coefficient, Eq. (5.34), of
the OPE expression for both the fragmentation functions, and we have adopted
the notation MDj

for the non-perturbative bT-models for the two unpolarized
fragmentation functions. Similarly, for the convolution B1 we have:

B1

[
D̃⊥(1)

1T
˜̄D1

]
=H(e+e−)(Q)∑

q
e2

q

∫ dbT
(2π)

b2
T J1(bT qT)D̃⊥(1)

1T (z1, bT; ζ1, µ) ˜̄D(z2, bT; ζ2, µ)

=
H(e+e−)(Q)

z2
1z2

2
∑
q

e2
q

∫ dbT
(2π)

b2
T J1(bT qT)D̃⊥(1)

1T (z1; µ̄b) dq̄/h2
(z2; µ̄b)

× M⊥
D(bc(bT); bmax) MD2

(bc(bT); bmax) exp

{
− gK(bc(bT); bmax) ln

(
Q2z1z2
Mh1

Mh2

)}

× exp

{
K̃(b∗; µ̄b) ln

Q2

µ̄2
b
+
∫ Q

µ̄b

dµ′

µ′

[
2γD(g(µ′); 1)− γK(g(µ′)) ln

Q2

µ′2

]}
,

(5.49)

where again we have used the lowest-order coefficient for the OPEs and M⊥
D as

the non-perturbative function for the polarizing fragmentation function.

The last lines of Eq. (5.48) and (5.49) are usually referred to as perturbative
Sudakov factors and, as explained above, they can be computed analytically.
The anomalous dimension of the fragmentation functions at order αs(µ), with
αs(µ) = g2(µ)/4π, is [62]:

γD(αs(µ); ζ1/µ2) = 4CF

(
3
2
− ln

ζ1

µ2

)(
αs(µ)

4π

)
+O(α2

s (µ)) , (5.50)

where CF = 4/3. Meanwhile the anomalous dimension of the CSS Kernel K̃ at
one-loop order is:
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γK(αs(µ)) = 8CF

(
αs(µ)

4π

)
+O(α2

s (µ)) , (5.51)

with K̃ = 0 at the first order. For the running coupling [62] we use the form:

αs(µ) =
A

2 ln(µ/ΛQCD)
, (5.52)

with

A =
1
β0

=
12π

33 − 2n f
, (5.53)

where n f is the number of active flavors and the used value of ΛQCD is 0.2123 GeV.
With these results we can then analytically integrate the perturbative Sudakov
factor, obtaining:

K̃(b∗; µ̄b) ln
Q2

µ̄2
b
+
∫ Q

µ̄b

dµ′

µ′

[
2γD(g(µ′); 1)− γK(g(µ′)) ln

Q2

µ′2

]

=
2A
π

[
ln
(

ln(Q/ΛQCD)

ln(µ̄b/ΛQCD)

)
− 4

3
ln(Q/ΛQCD) ln

(
ln(Q/ΛQCD)

ln(µ̄b/ΛQCD)

)
+

4
3

ln(Q/µ̄b)

]
.

(5.54)

5.3.5. Non-perturbative models: gK(bT ; bmax)

The non-perturbative functions, introduced in the previous subsection, cannot
be computed from first principles; therefore, they must be obtained through a
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phenomenological analysis. However, as shown in [58], it is possible to extract
some of their properties from perturbative calculations. Indeed, we have that
the lowest-order formula for K̃ gives:

gK(bT, bmax) =
αs(C1/b∗)CF

π
ln(1 + b2

T/b2
max) , (5.55)

that has a b2
T behaviour at small bT, but a slower rise above bmax. A similar func-

tional form has been used and extracted in [62, 63] with the following expression

gK(bT; bmax) = g2 ln
(

bT
b∗

)
, (5.56)

with an extracted value of g2 = 0.84. For large bT values, Eq. (5.55) is not expected
to be an accurate parametrization of gK(bT). Indeed, it is an extrapolation of a
lowest-order perturbative calculation and it depends strongly on bmax at large
bT. The b2

T behaviour at small bT can be found expanding Eq. (5.55) at small bT,
obtaining:

gK(bT; bmax) =
CF
π

b2
T

b2
max

αs(µb∗) , (5.57)

with an explicit quadratic form of the gK function. This justifies the use of the
following expression:

gK(bT; bmax) =
g2b2

T
2

, (5.58)
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employed and fitted to data by BLNY [64] and KN [65] where they found,
respectively, a value of g2 = 0.68 GeV2, with bmax = 0.5 GeV−1, and a value of
g2 = 0.18 GeV2, with bmax = 1.5 GeV−1.

0 1 2 3 4
bT (GeV 1)

0.0

0.2

0.4

0.6

0.8

1.0

e
g K

(b
T)

AFGR / SIYY
Logarithmic
Quadratic
BLNY

Figure 5.2.: Graphical representation of the different form of the gK non-perturbative
function listed in Eq. (5.60).

Since the real non-perturbative physics is at larger bT, one wants to extract
gK(bT; bmax) with a more general parametrization and be sure that the data
used to extract it are sensitive to high values of bT. Moreover, the complete
TMD factorization formalism is bmax independent and, in principle, optimized
fits should not depend on its choice. A proposed functional form [58] that is
bmax independent in the asymptotic small and large-bT limit, and that goes to a
constant at large bT is:

gK(bT; bmax) = g0(bmax)

(
1 − exp

[
−

CFαs(µb∗)b
2
T

πg0(bmax)b
2
max

])
. (5.59)
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In the phenomenological analysis, discussed in Section 5.5, we will employ the
following functional forms of the non-perturbative function, gK, see Fig. 5.2:

gK(bT; bmax) =
g2b2

T
2

; g2 = 0.68 GeV2 BLNY

gK(bT; bmax) =
CF
π

b2
T

b2
max

αs(µb∗) Quadratic

gK(bT; bmax) =
αs(C1/b∗)CF

π
ln(1 + b2

T/b2
max) Logarithmic

gK(bT; bmax) = g2 ln
(

bT
b∗

)
g2 = 0.84 AFGR / SIYY .

(5.60)

Thanks to their universality they can be used to predict observables or be sup-
portive in the extraction of other non-perturbative functions, in processes like
e+e− collisions, Semi-inclusive DIS and Drell-Yan.

5.3.6. Non-perturbative models: MD(bT ; bmax) and M⊥
D (bT ; bmax)

In [58] it has been shown that the arguments for the approximately quadratic
behaviour of gK(bT) at small bT are also valid for the function gq/h(bT), and
this corresponds, after an exponentiation, to a Gaussian model for the TMD
fragmentation function:

MD(bT; bmax) = exp
(
− ab2

T
2

)
. (5.61)

Hence this justifies the use of the following parameterization:

MD(bT; bmax) = exp
(
− ⟨p2

⊥⟩b
2
T

4z2
p

)
, (5.62)
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where ⟨p2
⊥⟩ is the Gaussian width in the p⊥-space2, where this model corre-

sponds to the following expression:

M̃D(p⊥) =
e−p2

⊥/⟨p2
⊥⟩

π⟨p2
⊥⟩

. (5.63)
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0.0
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Gaussian < p2 > = 0.2 GeV2

Figure 5.3.: Representation of non-perturbative hadronic models for MD(bT): in orange
(solid line) the Gaussian model and in blue (dash-dotted line) the Power-
Law model.

The commonly assumed quadratic behaviour of gK(bT) and the Gaussian be-
haviour of the TMD fragmentation function can only be a valid approximation,
at best, for moderate bT. Appropriate parametrizations for the non-perturbative
large-bT behaviour of TMD fragmentation functions and of the CSS Kernel need
to be inferred from the general principles of quantum field theory [58], that
suggest an exponentially decaying behaviour for large bT. From many one-loop

2This space is equivalent to the k⊥-space used in previous sections.



102
Transverse Λ polarization within the CSS framework and TMD evolution of

the polarizing fragmentation function

calculations of the TMD quantities of interest, we know that a typical integral
giving the proper bT dependence is of the form

∫
d2pT

eipT ·bT

p2
T + m2 . (5.64)

One possible functional form that generalizes, in bT-space, the Fourier transform
of the previous equation, and preserves the quadratic behaviour at small bT,
used in [39, 66], is the following:

MD(bT, p, m; bmax) =
22−p

Γ(p − 1)
(bTm/zp)

p−1Kp−1(bTm/zp) , (5.65)

where Kp−1 is a Bessel function of the second kind, with the condition p > 1. Its
Fourier transform in p⊥-space is given by:

M̃D(p⊥) =
Γ(p)

πΓ(p − 1)
m2(p−1)

(p2
⊥ + m2)p . (5.66)

These two functional forms, Eqs. (5.62) and (5.65), shown in Fig. 5.3, will be used
to parametrize the non-perturbative component of the polarizing fragmentation
function in the phenomenological analysis presented in Section 5.5.

5.4. Single-inclusive hadron production and

polarization

We summarize here the kinematics and give the expression of the cross section,
already presented in [38, 67], for the process e+e− → h1(Sh1

) + X, that is the
single-inclusive production of an unpolarized or transversely polarized spin-1/2
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hadron in e+e− annihilations. In this configuration, shown in Fig. 5.4, the hadron
is produced with a certain energy fraction :

zh1
=

2Ph1
· q

Q2 , (5.67)

where q is the virtual photon four-momentum and Q2 = q2 = s. The hadron has
transverse momentum j⊥ measured with respect to the thrust axis T̂ , defined as
the vector, T̂ , which maximizes the thrust variable T

T =
∑i |pi · T̂ |

∑i |pi|
, (5.68)

where pi represent the three-momenta of the measured final-state particles. This
is referred to as the thrust frame configuration. We have, moreover, that the full
phase space is divided into two hemispheres by the plane perpendicular to the
thrust axis at the e+e− interaction point.

Figure 5.4.: Kinematics of the thrust frame configuration.
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For this process, the single-inclusive measurement is carried out only in
the hemisphere that contains the thrust axis, while the other hemisphere is
fully inclusive. Thus, only soft radiation which is emitted into the hemisphere
containing the thrust axis will contribute to j⊥. Indeed the factorized expression,
used in [67] and given at next-to-leading logarithm accuracy (NLL) in [38],
introduces the hemisphere soft function Shemi, that is different from the typical
soft function S usually defined to describe the almost back-to-back double hadron
production in e+e− collisions. On the other hand, as demonstrated in [38], since
Shemi at one-loop order accuracy is equal to

√
S, both the unpolarized and

polarizing FFs, in the single-inclusive process, are the same FFs that appear in
the double-hadron production process. The cross section for the unpolarized
hadron production is then given by:

dσ

dz1d2j⊥
=

σ0

z2
1

∑
q

e2
q

∫ dbT
(2π)

bT J0(bT qT)dq/h1
(z1; µ̄b)UNG(µ̄b, Q)

× MD1
(bc(bT); bmax) exp

{
− gK(bc(bT); bmax) ln

(
Qz1
Mh1

)}

× exp

{
K̃(b∗; µ̄b) ln

Q
µ̄b

+
∫ Q

µ̄b

dµ′

µ′

[
γD(g(µ′), 1)− γK(g(µ′)) ln

Q
µ′

]}
,

(5.69)

where z1 is the hadron light-cone momentum fraction, related to zh1
as shown in

Eq. (5.4), and where

σ0 =
4Ncπα2

em

3Q2 . (5.70)

Here we find the same elements already presented in Section 5.3: dq/h1
is the inte-

grated unpolarized fragmentation functions, MD and gK are the non-perturbative
models, and in the third line we have the perturbative Sudakov factor. Simi-
larly, the cross section for the transversely polarized hadron production has the
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following form:

d∆σ

dz1d2j⊥
= sin(ϕSh1

− ϕj)
σ0

z2
1

∑
q

e2
q

∫ dbT
(2π)

b2
T J1(bT qT)D̃⊥(1)

1T (z1, µ̄b)UNG(µ̄b, Q)

× M⊥
D(bc(bT); bmax) exp

{
− gK(bc(bT); bmax) ln

(
Qz1
Mh1

)}

× exp

{
K̃(b∗; µ̄b) ln

Q
µ̄b

+
∫ Q

µ̄b

dµ′

µ′

[
γD(g(µ′), 1)− γK(g(µ′)) ln

Q
µ′

]}
,

(5.71)

where D̃⊥(1)
1T is the small-bT limit of the first moment of the polarizing fragmen-

tation function.

Since the soft radiation is restricted to only one hemisphere, the cross section
is a non-global observable. The factorization formula for this kind of observables
have been derived within an effective field theory context [68–71], where a multi-
Wilson-line structure [72–74] is the key ingredient to capture the non-linear QCD
evolution effects from the so-called non-global logarithms. For this reason in both
cross sections, Eqs. (5.69) and (5.71), we have introduced the function UNG (see
Ref. [38]), which accounts for the effects of such non-global logarithms.

In the following we will use the parametrization given in Ref. [75]

UNG(µ̄b, Q) = exp
[
− CACF

π2

3
u2 1 + (au)2

1 + (buc)

]
, (5.72)

with a = 0.85 CA, b = 0.86 CA, c = 1.33 and

u =
1
β0

ln
[

αs(µ̄b)

αs(Q)

]
, (5.73)

where β0 = 11
3 CA − 4

3 TFn f , with TF = 1/2 and n f is the number of the active
flavors. In addition, when the polarization is measured along the axis n̂ =

T̂ × P̂h1
, the spin and transverse momentum azimuthal angles are such that
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sin(ϕSh1
− ϕj) = 1. Finally, the expression of the transverse polarization can be

given as:

P(z1, p⊥) =
d∆σ/dz1d2j⊥
dσ/dz1d2j⊥

, (5.74)

that will be used to fit the Belle data. This will allows us to extract the first mo-
ment of the polarizing fragmentation function and its non-perturbative function.

5.5. Phenomenological analysis

We can now proceed with the analysis of Belle data [33], for the transverse Λ
polarization measured in e+e− collisions, employing the approach presented in
the previous sections. Two data sets are provided: one where the Λ particle is
produced almost back-to-back with respect to a light unpolarized hadron, that
we will refer to as double-hadron production (2-h) data set, and one where the
Λ transverse momentum is measured with respect to the thrust axis, the single-
inclusive production (1-h) data set. We will start considering the double-hadron
production data alone and present the corresponding results. In a second phase,
we will include in the study also the single-inclusive hadron production case.

5.5.1. Double-hadron production data fit

In this section, by employing Eqs. (5.20), (5.23), (5.24), (5.48) and (5.49), we
present the analysis of the Λ/Λ̄ polarization produced with a light hadron, π ±

or K ± , measured at
√

s = 10.58 GeV. The 128 data points are given [33] as a
function of zΛ and zπ/K, the energy fractions of the Λ/Λ̄ and π/K particles, but
for the current analysis we impose a cut for large values of the light-hadrons
energy fractions, zπ/K < 0.5, keeping only 96 data points. Notice that here
we consider the transverse polarization for inclusive Λ particles, namely those
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directly produced from qq̄ fragmentation and those indirectly produced from
strong decays. The purpose of the analysis is to extract D̃⊥(1)

1T, Λ/q and M⊥
D,Λ, the

first moment and the non-perturbative function of the polarizing fragmentation
function of the Λ/Λ̄ particle. We will use the following expression to parametrize
the z dependence of D̃⊥(1)

1T, Λ/q:

D̃⊥(1)
1T, Λ/q(z; µb) = N p

q (z)dq/Λ(z; µb) , (5.75)

with q = u, d, s, sea, and where z is the light-cone momentum fraction defined
in Eq. (5.3). N p

q (z) parametrized as:

N p
q (z) = Nqzaq(1 − z)bq

(aq + bq)
(aq+bq)

a
aq
q b

bq
q

, (5.76)

without imposing any constraint on the parameters entering N p
q (z). dq/Λ is the

collinear unpolarized fragmentation function of the Λ for which we employ, here
and in the convolutions, the AKK08 set [50]. This set adopts the longitudinal
momentum fraction, zp, as scaling variable and the parametrization is given for
Λ + Λ̄. In order to separate the two contributions we assume3

dq/Λ̄ = dq̄/Λ = (1 − zp)dq/Λ . (5.77)

This is a common way to take into account the expected difference between
the quark and antiquark FF with a suppressed sea at large zp with respect to
the valence component. Other similar choiches have a very little impact on the
fit. Concerning the non-perturbative function M⊥

D,Λ we employ two different
functional forms. The first is the Gaussian model, Eq. (5.62):

3Notice that, in Chapter 3, we used the notation DΛ/q for the Λ unpolarized fragmentation
function, see Eq. (3.16).
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M⊥
D,Λ(bT) = exp

(
−

⟨p2
⊥⟩pb2

T

4z2
p

)
, (5.78)

where zp is the longitudinal momentum fraction and ⟨p2
⊥⟩p, the Gaussian width,

is a free parameter that we extract from the fit. The second model is the Power-
Law model, Eq. (5.65):

M⊥
D,Λ(bT) =

22−p

Γ(p − 1)
(bTm/zp)

p−1Kp−1(bTm/zp) , (5.79)

where we will extract the values of p and m (with the condition p > 1). Regarding
the collinear FFs of the unpolarized light hadrons, π and K, we adopt the DSS07
set [49], meanwhile for MD, their non-perturbative function, we assume a Gaus-
sian model, compatible with previous extractions, with ⟨p2

⊥⟩ = 0.2 GeV2 [51].
For what concerns the non-perturbative function of the unpolarized FF of the Λ
we use either a Gaussian model, with the same width as for the light hadrons, or a
Power-Law model, Eq. (5.65), with the parameters values p = 2 and m = 1 GeV.
These are represented in Fig. 5.3. Notice that all the conversions among the
different scaling variables (z, zh, zp) involved, Eqs. (5.3), (5.4) and (5.5), are prop-
erly taken into account. Concerning the gK function, we use the four functions
presented in Section 5.3, in Eq. (5.60) and Fig. 5.2, listed below:

gK(bT; bmax) =
g2b2

T
2

; g2 = 0.68 GeV2 BLNY

gK(bT; bmax) =
CF
π

b2
T

b2
max

αs(µb∗) Quadratic

gK(bT; bmax) =
αs(C1/b∗)CF

π
ln(1 + b2

T/b2
max) Logarithmic

gK(bT; bmax) = g2 ln
(

bT
b∗

)
g2 = 0.84 AFGR / SIYY .

(5.80)
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In all non-perturbative functions and in the b∗-prescription, we have used:

bmin = 2e−γE /Q ; bmax = 0.6 GeV−1 ,

with Q = 10.58 GeV. Bearing in mind that the larger is the value of bmax, the
smaller is the value assumed by µb (that is the energy scale at which we call the
AKK routine), we chose the value of bmax to be as large as possible, taking into
account that the AKK set lower scale is Q = 1 GeV.

Along with the already mentioned non-perturbative functions that can be
used for MD, for the unpolarized pions and kaons, and for the gK function,
there are those extracted in [76] from SIDIS, Drell-Yan and Z-boson production.
Although these functions are an important source of informations for what
concerns non-perturbative effects, we will not use them in the current analysis
because they were extracted by employing a different b∗-prescription and a
larger value of bmax.

Lastly, for the upper limit of the integration in Eqs. (5.23) and (5.24), we
use qTmax

= 0.25 Q, checking also the impact of different values of qTmax
/Q. To

perform the phenomenological analysis we use iMINUIT [77] as a minimizer
for the χ2 function, and for the Fourier transforms we employ the Fast Bessel
Transform algorithm presented in [78].

5.5.2. Fit results

Concerning the first moment of the polarizing FF, Eqs. (5.75) and (5.76), we adopt
the same parameter choice already considered in Chapter 3 and Ref. [41], that is:

Nu, Nd, Ns, Nsea, as, bu, bsea , (5.81)

with all other a and b parameters set to zero. All the considerations in Section 3.3
on the choice and number of these parameters are also valid in this analysis.
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Regarding the non-perturbative functions, we have used various combinations
of them, for a total of 36 fits. We have also considered different initial values of
the p parameter4 of the Power-Law model, noticing that this leads to different
chi-square minimum values. This means that we have 8 or 9 free parameters
depending on whether we use the Gaussian or the Power-Law model for the
polarizing non-perturbative function. The best results for the double-hadron
production case are found, as reported in Tab. 5.1, using the Logarithmic function
for gK, the Power-Law model for the unpolarized Λ FF and a Gaussian or Power-
Law model for the polarizing FF, leading to a χ2

dof around 1.2.

Polarizing Unpolarized gK χ2
dof (2-h) χ2

dof (2-h + 1-h)

Gaussian Power-Law Logarithmic 1.192 2.813

Power-Law Power-Law Logarithmic 1.21 2.39

Table 5.1.: Values of the χ2
dof obtained fitting the double hadron production data set only

(column 2-h), and those obtained for the combined fit (column 2-h + 1-h).

As reported in Tab. 5.2, the parameters values extracted employing the Gaus-
sian or Power-Law models are totally consistent and, similarly, the two polar-
izing non-perturbative models M⊥

D are compatible as shown in Fig. 5.5. As in
the case of the previous extraction, we find that only the first moment of the up
quark is positive, confirming, moreover, that the contributions to the transverse
polarization given by the up and the down quarks are opposite in sign.

In Fig. 5.7 we show the estimates of the transverse Λ polarization, produced
in association with a light-hadron, compared to Belle data [33], adopting the
parameters extracted with the Gaussian model. The shaded areas, corresponding
to a 2σ uncertainty, are computed according to the procedure explainded in the
Appendix of Ref. [52].

It is important to notice that, unlike the other experimental data points not
included in the fit, the ΛK+ and Λ̄K− data with zK > 0.5, can be described

4iMINUIT allows the users to choose the starting values of the parameters that will be extracted.
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Parameters Gaussian Power-Law

Nu 0.093−0.052
+0.092 0.100−0.054

+0.095

Nd −0.100−0.036
+0.035 −0.107−0.041

+0.036

Ns −0.117−0.09
+0.059 −0.115−0.089

+0.057

Nsea −0.055−0.058
+0.033 −0.058−0.062

+0.034

as 2.19−0.83
+1.07 2.12−1.0

+1.5

bu 3.5−2.2
+2.8 3.5−1.9

+2.8

bsea 2.3−1.8
+2.5 2.3−1.9

+2.7

⟨p2
⊥⟩p 0.066−0.031

+0.039

p 3.0−1.4
+2.5

m 0.35−0.22
+0.3

Table 5.2.: Best values of the parameters for the polarizing first moment and for the two
non-perturbative functions used to fit the double hadron data set.

neither by the previous fit, see Ref. [41] (also presented in Chapter 3), nor by the
present new extraction. This points out that even including evolution effects we
cannot describe these experimental points. Thus, further investigation, probably
with the inclusion of heavier quark flavors, is needed.

In Tab. 5.3 we report the χ2
dof range of values, for the different fits performed;

we notice that the extractions are consistent and stable when we employ the
same gK. Moreover, we see that the best fits are found when we make use of the
Logarithmic gK function, meanwhile the Quadratic and AFGR functional forms
give worse χ2

dof and return similar results. Finally, the worst χ2
dofs, are obtained

with the BLNY functional form.

In Fig. 5.6 we show the impact of choosing different values of qTmax
/Q on the

quality of the fit obtained using the Power-Law and the Gaussian models. In
general, the Gaussian model gives a smaller χ2

dof values than the Power-Law one.
Both models reach their minimum χ2

dof value at qTmax
/Q = 0.22. The growth of
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gK χ2
dof range

Logarithmic 1.192 - 1.287

Quadratic 1.4 - 1.472

AFGR 1.474 - 1.514

BLNY 1.67 - 1.783

Table 5.3.: Range of the χ2
dof values for different non-perturbative gK functions.

0 1 2 3 4
bT (GeV 1)

0.0

0.2

0.4

0.6

0.8

1.0

M
D

(b
T)

Power Law p = 3, m = 0.35 GeV
Gaussian < p2 > = 0.066 GeV2

Figure 5.5.: Representation of the two non-perturbative functions extracted from the
double-hadron data fit: Gaussian model (orange solid line) and Power-Law
model (blue dash-dotted line).

the χ2
dof, as qTmax

/Q increases, can be explained considering that we are gradually
going out of the validity region of the TMD factorization. Meanwhile, the growth
for lower values of qTmax

/Q can be attributed to the fact that the smaller is the
value of qTmax

/Q, the larger is the distance between the nodes of Bessel functions.
Hence, the Fast Bessel Transform algorithm [78] is not able to sample sufficiently
well the integrand, whose Fourier transform is to be computed.
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0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
qTmax/Q

1.175

1.200

1.225

1.250

1.275

1.300

1.325

2 do
f

Power-Law Model
Gaussian Model

Figure 5.6.: χ2
dof values for the fits obtained with the Power-Law model (blue dashed

line) and with the Gaussian model (red dashed line) as a function of qTmax
/Q

values.

5.5.3. Combined fit: double and single-inclusive hadron

production data

In this section we discuss the combined fit of both data sets. Employing Eqs. (5.69),
(5.71) and (5.74), we first tried to check if, using the parameters extracted from
the double-hadron production fit (Tab. 5.2), we can describe the single-inclusive
hadron production data. This data set is presented as a function of p⊥, the
transverse momentum of the Λ/Λ̄ particle with respect to the thrust axis, that
coincides with j⊥ in Eqs. (5.69) and (5.71), for different bins of the energy fraction
zΛ [33]. As shown in Fig. 5.8 the two models cannot fully describe the pattern
and the size of the polarization. Indeed, if the single-inclusive hadron data set is
included in the fit we obtain a higher χ2

dof as shown in the last column of Tab. 5.1.
In addition, we have also performed the combined fit using all the other different
combinations of non-perturbative models, as we have done in the double-hadron
production section, obtaining χ2

dof values ranging from 2.4 to 5.4. Since the first
moment of the polarizing FF is a collinear quantity, it should be the same in both
the double hadron and the single-inclusive cross sections. Therefore, the fact
that the two data set cannot be fitted simultaneously could point out that these
processes cannot be described by the same factorization theorems and/or by the
same M⊥

D non-perturbative functions.
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5.5.4. Combined fit: different non-perturbative function M⊥
D

In order to investigate the possible reasons why the combined fit is not satisfac-
tory and why the parameters extracted in the double-hadron fit cannot describe
the single-inclusive polarization data, we try to fit both data sets using the same
parametrizations for the first moment of the polarizing FF and the same func-
tional form for M⊥

D , but with two different sets of parameters. In the case of the
Gaussian model we fit two gaussian widths, while in the case of the Power-Law
model we fit two different pairs of (p, m), one for the 2-h data set and one for the
1-h data set. Concerning gK and the unpolarized non-perturbative functions we
use the same functions as in Tab. 5.1. As we can see in Tab. 5.4, with this approach
we can find χ2

dofs lower than the ones presented in the last column of Tab. 5.1.
Indeed, we have a χ2

dof = 1.801 for the Gaussian model and a χ2
dof = 1.565 for

the Power-Law model.

Gaussian Power-Law

χ2
dof = 1.801 χ2

dof = 1.565

2-h 1-h 2-h 1-h

⟨p2
⊥⟩p 0.04−0.02

+0.03 0.2−0.01
+0

p 1.352−0.055
+0.068 1.623−0.011

+0.011

m 0.151−0.024
+0.026 0.48−0.005

+0.005

Table 5.4.: Values of the best fit non-perturbative function parameters using a double
set of parameters for the Gaussian and Power-Law model.

Focusing on the results obtained with the Power-Law model, since it has a
better χ2

dof, we can see how the estimates for the single-inclusive polarization,
Fig. 5.9, describe the experimental data better than the estimates in Fig. 5.8, and
how the two data sets are better described when using two different pairs of
(p, m), which values are reported in Tab. 5.4.

Comparing the two Power-Law models for the 2-h and 1-h data sets in Fig. 5.10,
we can see that they reach the same value at small bT, as expected since the
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two fragmentation functions should be the same in the collinear limit, but they
differ as bT increases: the model related to the 2-h data set, blue solid line, is
wider than the model related to the 1-h data set, orange dash-dotted line. This
corresponds in p⊥-space to have a similar behaviour for large p⊥ values, Fig.
5.11, while differing at small p⊥: this could suggest the fact that the two models
are probably convoluted with different soft factors and that the effects of the
recoil against emission of soft gluons are different in the two cross sections.

The fragmentation functions of the single-inclusive hadron production, in
the factorization scheme presented in Ref. [38], coincide only with those in the
double-hadron production at one-loop order. Indeed, we have that exclusively
in this case the hemisphere soft factor, Shemi, corresponds to the soft factor,√

S, convoluted with one of the fragmentation functions in the double-hadron
production cross sections.

Hence in future analysis, a possible way to have a better combined fit, without
using artificially two different sets of parameters, would be to calculate and
employ the Shemi beyond the one-loop order. Otherwise, another manner would
be to exploit the cross sections formulated in Ref. [47], within an effective theory
context, or in [40, 55], which derivation is based on the CSS approach.
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Figure 5.7.: Best-fit estimates, using the Gaussian model and the parameters in Tab. 5.2,
of the transverse polarization for Λ and Λ̄ produced in e+e− →Λ(Λ̄)h +
X, for Λπ ± (a), Λ̄π ± (b), ΛK ± (c), Λ̄K ± (d), as a function of zh (of the
associated hadron) for different zΛ bins. Data are from Belle [33]. The
statistical uncertainty bands, at 2σ level, are also shown. Data for zπ,K > 0.5
are not included in the fit.
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Figure 5.8.: Estimates of the transverse polarization in the single-inclusive Λ production.

The results are obtained using the Eqs. (5.69), (5.71) and (5.74) and with the
parameter values of Tab. 5.2, found with the Gaussian model (upper plot)
and with the Power-Law model (lower plot).
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Figure 5.9.: Estimates of the single-inclusive polarization with the Power-Law model.
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Figure 5.10.: Representation of the two Power-Law models in the double model fit in
bT-space: the 2-h in blue solid line and the 1-h in orange dash-dotted line.
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Figure 5.11.: Representation of the two Power-Law models in the double model fit in
p⊥-space: the 2-h (blue solid line) and the 1-h (orange dash-dotted line).
The functional form is presented in Eq. (G.25).
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5.6. Conclusions

The analysis of Belle data through the TMD factorization theorems and the
CSS evolution equations has allowed to confirm the results previously obtained
in a former extraction of the Λ polarizing FF, and to have deeper insights on
the transverse polarization mechanism of Λ hyperons. The double-hadron
production data can be well described through different combinations of non-
perturbative functions, showing also that the M⊥

D functions extracted, with the
Gaussian and with the Power-Law model, are totally compatible. However, for
what concerns the non-perturbative function gK, the smallest χ2

dofs are found
by employing the Logarithmic functional form. On the other hand, none of the
models extracted from the double-hadron production data can describe either
the size or the pattern of the Λ transverse polarization data in the single-inclusive
production.

It is worth recalling that, the ΛK+ and Λ̄K− polarization data, with zK > 0.5,
cannot be described even employing the CSS evolution equations. As shown
in a recent work [79], data could be possibly fitted by including heavier quark
contributions, like charm quarks, and imposing a SU(2) symmetry for the up
and down pFFs. The preservation of this symmetry has not been observed in
our analysis (where we have not included charm quark contributions) and for
this reason a further investigation and a comparison with future experimental
data are required.

The combined fit of the double and the single-inclusive hadron production
data sets, by extracting the same or two different sets of parameters for the
M⊥

D function, brings to light that these two kinds of processes could not be
formulated within the same factorization scheme. Indeed, the discrepancy
between the two models extracted separately from the two data sets, in Fig. 5.10,
could highlight that there are different effects of recoil against emission of soft
gluons, and distinct polarization mechanisms for Λ hyperons between double
and single-inclusive hadron production processes.



120
Transverse Λ polarization within the CSS framework and TMD evolution of

the polarizing fragmentation function

Future analysis and further theoretical developments will be necessary to
understand/unveil the contrasting hadronization mechanisms involved in these
two processes.



Chapter 6.

Conclusions

Single Spin Asymmetries and transverse polarization phenomena are an im-
portant source of information for our understanding on the inner structure of
the hadrons and on hadronization mechanism, in terms of parton distribution
and fragmentation functions. Since large values of SSAs and of transverse
polarization could not be explained within the framework of collinear QCD
factorization at leading twist, the first approaches were based on an extension of
the collinear parton model in pQCD. By including a dependence on the spin and
the transverse momentum, the TMD-PDFs and the TMD-FFs were introduced.

Only years later, a formulation of the TMD factorization was devised, mainly
for three hadronic processes: Drell-Yan (DY), semi-inclusive deep inelastic scat-
tering (SIDIS), and almost back-to-back double-hadron production in e+e− an-
nihilation processes. These results have been a breakthrough both from the
theoretical and the phenomenological point of view, as they have extended
and generalized the original factorization theorems sensitive only to collinear
momentum fractions.

Among the processes for which the factorization is proven, the double-hadron
production in e+e− annihilation processes plays an important role. Indeed, it
allows to access cleanly the parton-to-hadron fragmentation mechanism and
polarization effects for spin-1/2 hadrons. In this thesis we have focused on a
detailed theoretical study of e+e− → h1 h2 + X, as well as on a phenomenological
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analysis of Belle data for the transverse polarization of Λ/Λ̄ hyperons. The
single-inclusive hadron production process, e+e− → h1 + X, has been also con-
sidered, firstly within a simplified approach and then by employing a proper
TMD factorization scheme.

In Chapter 2 we presented, adopting a TMD approach and within the helicity
formalism, the complete expressions for all leading-twist azimuthal dependences
and polarization observables for double-hadron production in e+e− annihila-
tion processes. Moreover, by adopting a Gaussian model for the transverse
momentum dependence of TMD-FFs, we derived the expression for the trans-
verse polarization of a spin-1/2 hadron, which has been exploited, in Chapter 3,
for a phenomenological analysis of Belle data for the transverse Λ/Λ̄ polar-
ization. Belle data have been used to extract, for the first time, the polarizing
fragmentation function of Λ hyperons, leading to a clear separation of different
contributions from the quark flavors. The analysis shows how it is necessary to
have different pFFs for the up, down and strange quarks, as well as a contribu-
tion from the sea quarks. Simpler fits with only two pFFs, the same for up/down
and one for strange quarks, or without any sea contribution, would give much
higher χ2

dof. Higher statistics for experimental data and further analysis in the
future, as well as complementary studies in other processes, will certainly allow
to have a deeper understanding on the role of quark flavors, and if contributions
from heavier quarks could be relevant.

In Chapter 4 we provided the expression for the transverse polarization of
a spin-1/2 hadron produced in SIDIS processes. Through the polarizing FF
extracted from Belle data, we were able to give estimates for the transverse
Λ polarization at energy fractions, zh and xB, reachable at the future Electron-
Ion Collider. This kind of studies will play an important role in testing the
universality of the Λ pFF.

By employing a simplified phenomenological model, we have also considered
Belle single-inclusive hadron production data, obtaining the first preliminary
indication on the transverse momentum dependence of the Λ pFF. On the other
hand, since double and single-inclusive hadron production processes, according
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to new theoretical developments, should be studied with two different factor-
ization frameworks, in Chapter 5 we have presented a re-analysis of Belle data,
keeping into account the Collins-Soper-Sterman (CSS) evolution equations and
proper factorization theorems. The convolutions in bT-space and the expressions
for the transverse polarization for the double and single-inclusive production
of a spin-1/2 hadron, which have been used in the phenomenological analysis,
were given in detail.

The analysis of double-hadron production data confirms the main features
of the previous results, leading to four different first moments of the polarizing
FF for the up, down, strange and sea quarks, and coming up with estimates
of the transverse polarization compatible with those of the former analysis. At
the same time, it allowed us to extend our knowledge on the non-perturbative
functions, showing how these data can be described by several combinations
of those functions, all compatible with each other. Data with higher statistics
and further analysis will help in the future to extract different non-perturbative
functions, M⊥

D , for each quark flavors.

The combined fit of double and single-inclusive data brings to light that these
two processes can be described neither by the same M⊥

D function nor formulated
within the same TMD factorization approach. The estimates for transverse Λ
polarization in single-inclusive hadron production, obtained by employing the
fit results extracted from double-hadron data are in fact incompatible with data.
As shown, the two models, obtained separately from a combined fit, have a
common behaviour only at small bT. Thus, the two processes, even though
they look very similar, could apparently give place to different hadronization
mechanisms and polarization phenomena.

In the future, further theoretical developments and a systematic comparison
among different processes, in which the transverse momentum of final state
hadrons is measured with respect to a reference hadron, like in SIDIS and e+e−

annihilation processes, or with respect to the thrust axis, will let us to better
understand the diffences between these hadronization mechanisms. Moreover,
new measurements for the transverse Λ polarization in SIDIS processes, at the
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future EIC, will have a strong impact on our comprehension about the role of
heavy quarks on the transverse polarization, and if the SU(2) symmetry, for
up and down pFFs, is preserved in the fragmentation process of transversely
polarized Λ’s.

All of this will allow us to take a step forward in the comprehension of the
long-standing problem of the spontaneous Λ transverse polarization.



Appendix A.

Fragmentation amplitudes for
spin-1/2 hadrons and their properties

As mentioned in Section 2.2, for a fragmentation process we can introduce a
hadron fragmentation density matrix or a generalized fragmentation function.
Following the approach adopted in Ref. [31], we define

D̂λh,λ′
h

λc,λ′
c
(z, p⊥) =∑

∫
X,λX

D̂λh,λX ;λc
(z, p⊥)D̂

∗
λ′

h,λX ;λ′
c
(z, p⊥) , (A.1)

where D̂λh,λX ;λc
is the fragmentation amplitude for the process c → h + X,

with z =
P+

h
p+c

the hadron light-cone momentum fraction, and p⊥ the transverse
momentum of the hadron with respect to the parton.

Defining ϕh as the azimuthal angle of the hadron h in the helicity reference
frame of the parton c we can rewrite the fragmentation function as [31, 80]

D̂λh,λX ;λc
(z, p⊥) = Dλh,λX ;λc

(z, p⊥)e
iλcϕh , (A.2)

that allows us to write the generalized fragmentation function in the following
way

D̂λh,λ′
h

λc,λ′
c
(z, p⊥) = Dλh,λ′

h
λc,λ′

c
(z, p⊥) exp[i(λc − λ′

c)ϕh] . (A.3)
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The function Dλh,λ′
h

λc,λ′
c
(z, p⊥) has the same definition of Eq. (A.1), with D̂ re-

placed by D, but without any phase dependence.

From Eq. (A.1) we can get the following relation, valid both for quarks and
gluons,

(
D̂λ′

h,λh
λ′

c,λc

)∗
= D̂λh,λ′

h
λc,λ′

c
, (A.4)

which, in particular, gives

(D̂+−
+−)

∗ = D̂−+
−+ (D̂+−

−+)
∗ = D̂−+

+− (A.5)

(D++
+−)

∗ = D++
−+ (D+−

++)
∗ = D−+

++ . (A.6)

Concerning the parity properties of the D amplitudes they are the usual ones
valid for the helicity amplitudes in the ϕh = 0 plane, that is [80]

D−λh,−λX ;−λc
= η eiπ(sc−Sh−SX) eiπ(λc−λh+λX) Dλh,λX ;λc

, (A.7)

where η is an intrinsic parity factor such that η2 = 1. This implies that

D−λh,−λ′
h

−λc,−λ′
c
(z, p⊥) = eiπ[(λc−λ′

c)−(λh−λ′
h)] Dλh,λ′

h
λc,λ′

c
(z, p⊥) . (A.8)

Notice that the extra factor makes a difference between quarks and gluons.

Indeed, by exploiting the above relation, we get for quark (upper signs) e
gluon (lower signs) fragmentation functions:

D++
++ = D−−

−− D++
−− = D−−

++ (A.9)

D++
+− = ∓ D−−

−+ D++
−+ = ∓ D−−

+− (A.10)

D+−
++ = −D−+

−− D−+
++ = −D+−

−− (A.11)

D+−
+− = ± D−+

−+ D+−
−+ = ± D−+

+− . (A.12)
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By using the above relations we see that there are six independent quantities

D++
++ , D++

−− , D++
+− , D+−

++ , D+−
+− , D+−

−+ . (A.13)

These are in principle complex quantities, however: D++
++ and D++

−− are real
since, as we can see from Eq. (A.1), they are moduli squared; D+−

+− and D+−
−+ are

purely real for quarks and purely imaginary for gluons, see Eqs. (A.6) and (A.12);
and, eventually, D++

+− and D+−
++ are both complex, giving us four additional real

quantities. This leaves us with eight independent real quantities.
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Appendix B.

Gluon TMD fragmentation functions
for spin-1/2 hadrons

Even if not directly relevant for the study of hadron production in e+e− collisions,
that at LO involves only quark contributions, we present the gluon TMD-FFs
for spin-1/2 hadrons, at leading twist, following the same procedure as for the
quark ones. We start again with

ρ
h,Sh
λh,λ′

h
D̂h/g,Pg

(z, p⊥) = ∑
λg,λ′

g

ρ
g
λg,λ′

g
D̂λh,λ′

h
λg,λ′

g
(z, p⊥) , (B.1)

where now we have defined the fragmentation function for a massless gluon with
polarization state Pg, D̂h/g,Pg

(z, p⊥), fragmenting into an unpolarized hadron.
Notice that for a spin-1 parton, like a gluon, it is more convenient to refer to the
polarization states (i.e. to circular and/or linear polarizations).
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Indeed for the gluon helicity density matrix we have

ρ
g
λg,λ′

g
=

1
2

ρ
g
++ ρ

g
+−

ρ
g
−+ ρ

g
−−


=

1
2

 1 + Pg
z T g

1 − iT g
2

T g
1 + iT g

2 1 − Pg
z


=

1
2

 1 + Pg
circ −Pg

line−i2ϕ

−Pg
linei2ϕ 1 − Pg

circ

 .

(B.2)

In this case we can still define longitudinally, Pg
z , or circularly, Pg

circ, polarization
states, keeping in mind that the off-diagonal elements are now related to the
linear polarization in the xy plane with an angle ϕ with respect to the x axis [31].

Once again the x, y, z axes are those of the helicity frame of the gluon, where its
four-momentum is pµ

g = (p, 0, 0, p). Pg
lin is expressed in terms of the parameters

T g
1 and T g

2 , which are closely related to the Stokes’ parameters used in classical
optics; formally their role is analogous to that played by the x and y components
of the quark polarization vectors. The use of the T g

1 and T g
2 parameters makes

the gluon fragmentation functions formally similar to those of the quarks and
simplifies all formulas for the spin asymmetries.

Before exploiting the sum over the gluon helicity indices on the right hand
side of Eq. (B.1), let us show how one can define the eight gluon TMD-FFs in
close analogy with the quark case:

Ph
J D̂h/q,Pg

= D̂h/g
SJ/Pg

− D̂h/g
−SJ/Pg

≡ ∆D̂h/g
SJ/Pg

, (B.3)
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where J = X, Y, Z. We will use again the notations:

Ph
J D̂h/g,Plin

= ∆D̂h/g
SJ/Plin

= D̂h/g
SJ/Plin

− D̂h/g
−SJ/Plin

≡ ∆D̂h/g
SJ/Plin

(z, p⊥) (B.4)

Ph
J D̂h/g,sz

= ∆D̂h/g
SJ/sz

= D̂h/g
SJ/+ − D̂h/g

−SJ/+ ≡ ∆D̂h/g
SJ/+(z, p⊥) (B.5)

D̂h/g,Plin
= D̂h/g(z, p⊥) +

1
2

∆D̂h/Plin
(z, p⊥) , (B.6)

where, in the second line, for the circular or longitudinal polarization, we have
used sz, fixed as +.

These amount to eight gluon TMD-FFs. Analogously, to what has been done
for quarks, we now exploit the sum in the right hand side of Eq. (B.1). Thus we
can obtain the following three expressions:

ρ
h,Sh
++ D̂h/g,Pg

=
1
2
(1 + Ph

Z)D̂h/g,Pg

=
1
2
(D++

++ + D++
−−) +

1
2

Pg
circ(D++

++ − D++
−−)

− Pg
lin[ReD++

+− cos [2(ϕ − ϕh)] + ImD++
+− sin [2(ϕ − ϕh)]] (B.7)

ρ
h,Sh
−− D̂h/g,Pg

=
1
2
(1 − Ph

Z)D̂h/g,Pg

=
1
2
(D++

++ + D++
−−)−

1
2

Pg
circ(D++

++ − D++
−−)

− Pg
lin[ReD++

+− cos [2(ϕ − ϕh)]− ImD++
+− sin [2(ϕ − ϕh)]] (B.8)

ρ
h,Sh
+− D̂h/g,Pg

=
1
2
(Ph

X − iPh
Y)D̂h/g,Pg

= iImD+−
++ + Pg

circReD+−
++

− 1
2

Pg
lin[i(ImD+−

+− + ImD+−
−+) cos [2(ϕ − ϕh)]

+ (ImD+−
+− − ImD+−

−+) sin [2(ϕ − ϕh)]] , (B.9)
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where once again we have used the properties of the generalized fragmentation

functions, D̂λh,λ′
h

λg,λ′
g
(z, p⊥), discussed in Appendix A.

By suitably combining the above expressions, we can find the eight gluon
TMD-FFs for a spin-1/2 hadron. For instance, by summing or subtracting
Eqs. (B.7) and (B.8) we obtain respectively the TMD-FF for an unpolarized and a
longitudinally polarized hadron

D̂h/g,Pg
= (D++

++ + D++
−−)− 2Pg

linReD++
+− cos [2(ϕ − ϕh)] (B.10)

Ph
ZD̂h/g,Pg

= Pg
circ(D++

++ − D++
−−)− 2Pg

linImD++
+− sin [2(ϕ − ϕh)]. (B.11)

As we can see from Eq. (B.10), we can have an unpolarized hadron coming from
the fragmentation of an unpolarized or a linearly polarized gluon: this last case,
in analogy with the quark one, is referred to as the Collins-like gluon TMD-FF.
By taking the real or the imaginary part of Eq. (B.9) we get the FF for a hadron
transversely polarized along, respectively, its X or Y helicity axis as coming from
a polarized gluon

Ph
XD̂h/g,Pg

= 2Pg
circReD+−

++ − Pg
lin(ImD+−

+− − ImD+−
−+) sin[2(ϕ − ϕh)] (B.12)

Ph
YD̂h/g,Pg

= −2ImD+−
++ + Pg

lin(ImD+−
+− + ImD+−

−+) cos [2(ϕ − ϕh)] . (B.13)

Once again we can combine the two above expressions as follows

Ph
TD̂h/g,Pg

= −2ImD+−
++ sin ϕSh

+ 2Pg
circReD+−

++ cos ϕSh

+ Pg
lin[ImD+−

+− sin(ϕSh
− 2(ϕ − ϕh)) + ImD+−

−+ sin(ϕSh
+ 2(ϕ − ϕh))] ,

(B.14)
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and by using Eq. (2.49) we have

Ph
TD̂h/g,Pg

= −2ImD+−
++ sin(ϕ′

Sh
− ϕh) + 2Pg

circReD+−
++ cos(ϕ′

Sh
− ϕh)

+ Pg
lin[ImD+−

+− sin(ϕ′
Sh
− 2ϕ + ϕh)) + ImD+−

−+ sin(ϕ′
Sh
+ 2ϕ − 3ϕh))] .

(B.15)

By fixing now the gluon polarization we can recover the eight TMD-FFs
discussed above. Using Eq. (B.10) we have

D̂h/g = D̂h/g,Pcirc
= D++

++ + D++
−− ≡ Dh/g , (B.16)

giving the TMD-FF for an unpolarized (or circularly polarized) gluon fragment-
ing into an unpolarized hadron, and

D̂h/g,Plin
= D̂h/g − 2ReD++

+− cos [2(ϕ − ϕh)] (B.17)

= D̂h/g +
1
2

∆NDh/g,Plin
cos [2(ϕ − ϕh)] , (B.18)

giving the TMD-FF for a linearly polarized gluon fragmenting into an unpolar-
ized hadron.

Through Eq. (B.11) we get

Ph
ZD̂h/g,Pcirc

= D++
++ − D++

−− = ∆Dh/g
SZ/Pcirc

(B.19)

Ph
ZD̂h/g,Plin

= −2ImD++
+− sin [2(ϕ − ϕh)] = ∆Dh/g

SZ/Plin
sin [2(ϕ − ϕh)] , (B.20)

giving, respectively, the TMD-FFs for a circularly and for a linearly polarized
gluon fragmenting into a longitudinally polarized hadron. Analogously from
Eq. (B.12) we have the FF for a hadron transversely polarized, along its X helicity
axis, produced by a circularly and a linearly polarized gluon

Ph
XD̂h/g,Pcirc

= 2 ReD+−
++ = ∆Dh/g

SX/Pcirc
(B.21)

Ph
XD̂h/g,Plin

= −(ImD+−
+− − ImD+−

−+) sin [2(ϕ − ϕh)] = ∆Dh/g
SX/Plin

sin [2(ϕ − ϕh)] .

(B.22)
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Finally, from Eq. (B.13) we have the TMD-FF for a hadron transversely po-
larized along its Y direction coming from, respectively, a circularly and linearly
polarized gluon

Ph
YD̂h/g,Pcirc

= −2ImD+−
++ = ∆Dh

SY/g (B.23)

Ph
YD̂h/g,Plin

= −2ImD+−
++ + (ImD+−

+− + ImD+−
−+) cos [2(ϕ − ϕh)] (B.24)

= ∆Dh
SY/g + ∆−D̂h/g

SY/Plin
= ∆Dh

SY/g + ∆−Dh/g
SY/Plin

cos [2(ϕ − ϕh)] .

(B.25)

Also in this case we have introduced the function ∆−D̂h/g
SY/Plin

, analogously to
Eq. (2.60), that changes sign if the gluon linear polarization has an off-set of π/2.
Thus, as for the quark case, we are able to collect all TMD-FFs as follows

D̂h/g(z, p⊥) = Dh/g = (D++
++ + D++

−−)

∆D̂h/g,Plin
(z, p⊥) = ∆NDh/g,Plin

cos [2(ϕ − ϕh)] = −4 ReD++
+− cos [2(ϕ − ϕh)]

∆D̂h/g
SZ/Pcirc

(z, p⊥) = ∆Dh/g
SZ/Pcirc

= (D++
++ − D++

−−)

∆D̂h/g
SZ/Plin

(z, p⊥) = ∆Dh/g
SZ/Plin

sin [2(ϕ − ϕh)] = −2ImD++
+− sin [2(ϕ − ϕh)]

∆D̂h/g
SX/Pcirc

(z, p⊥) = ∆Dh/g
SX/Pcirc

= 2ReD+−
++

∆D̂h/g
SX/Plin

(z, p⊥) = ∆Dh/g
SX/Plin

sin [2(ϕ − ϕh)] = −(ImD+−
+− − ImD+−

−+) sin [2(ϕ − ϕh)]

∆D̂h
SY/g(z, p⊥) = ∆Dh

SY/g = −2ImD+−
++

∆−D̂h/g
SY/Plin

(z, p⊥) = ∆−Dh/g
SY/Plin

cos [2(ϕ − ϕh)] = (ImD+−
+− + ImD+−

−+) cos [2(ϕ − ϕh)] .

(B.26)
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Comparison with other notations

In the literature another notation is also commonly used for the eight leading-
twist quark TMD-FFs, referred to as the Amsterdam notation [21, 30]. There the

main quantity, corresponding to our D̂λh,λ′
h

λq,λ′
q
(z, p⊥), is the quark-hadron correlator

∆(z, kT) and all mass effects are neglected. It is important to notice that kT is
the transverse three-momentum of the fragmenting quark w.r.t. the produced
hadron, which implies kT ≃ −p⊥/z (valid in the massless hadron limit). We
will also use the spin-polarization vector Ph = (Ph

L , Ph
T) to allow for a more direct

comparison.

For the case of an unpolarized quark fragmenting into a spin-1/2 hadron
and a transversely polarized quark fragmenting into an unpolarized or spin-
less hadron we recover the results of the “Trento Conventions”, see Ref. [17].
Following Ref. [21] we have

∆(z, kT) =
1
2

{
D1/n− + D⊥

1T
ϵµνρσγµn−

ν kTρPh
Tσ

Mh
+
(

Ph
L G1L + G1T

kT · Ph
T

Mh

)
γ5/n−

+ H1Tiσµνγ5n−
µ Ph

Tν +
(

Ph
L H⊥

1L + H⊥
1T

kT · Ph
T

Mh

) iσµνγ5n−
µ kTν

Mh
+ H⊥

1
σµνkTµn−

ν

Mh

}
,

(C.1)

where D1 = D1(z, p⊥), with p⊥ = |p⊥| as adopted through the present thesis.
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By appropriate Dirac projection, ∆[Γ] = Tr[Γ∆], one can single out the various
sectors of the fragmentation functions. In particular, Γ = /n+/2 projects out the
D sector, relative to an unpolarized quark, that is the unpolarized D1 and the
polarizing D⊥

1T fragmentation functions:

Tr
[

/n+

2
∆(z, kT)

]
= D1 − D⊥

1T
ϵµνρσn−

µ kTνPh
Tρn+

σ

Mh
= D1 + D⊥

1T
(p̂q × p⊥) · Ph

zMh
,

(C.2)

where n± are two auxiliary lightlike vectors, and the second equality holds
in frames where n− and the direction p̂q of the quark momentum point in
opposite directions. By choosing Γ = /n+γ5/2 we select the contribution from a
longitudinal polarized quark, the G sector, that is

Tr
[

/n+

2
γ5 ∆(z, kT)

]
= Ph

L G1L + G1T
kT · Ph

T
Mh

= Ph
L G1L − Ph

T
p⊥

zMh
G1T cos (ϕ′

Sh
− ϕh) ,

(C.3)

where the angle ϕ′
Sh

is the azimuthal angle of the hadron spin in the quark
helicity frame. Finally, to obtain the H sector, relative to the fragmentation of
a transversely polarized quark, we use the projector Γ = iσρσγ5 n+

ρ Pq
σ/2, with

Pqµ = (0, cos ϕsq
, sin ϕsq

, 0):

Tr
[

1
2

iσρσγ5 n+
ρ Pq

σ ∆(z, kT)

]
= H1T Ph

T · Pq +
(

Ph
L H⊥

1L + H⊥
1T

kT · Ph
T

Mh

) kT · Pq

Mh
− H⊥

1
ϵµνρσn−

µ kTνPq
ρ n+

σ

Mh

= Ph
T

[
H1 cos(ϕ′

Sh
− ϕsq

) +
p2
⊥

2z2M2
h

H⊥
1T cos(ϕsq

+ ϕ′
Sh
− 2ϕh)

]
− Ph

L
p⊥

zMh
H⊥

1L cos(ϕsq
− ϕh) + H⊥

1
(p̂q × p⊥) · Pq

zMh
, (C.4)
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with

H1 = H1T +
p2
⊥

2z2M2
h

H⊥
1T . (C.5)

To obtain the relation between the Dλh,λ′
h

λqλ′
q

fragmentation functions, including the

TMD-FFs in the notation adopted here, and those of the Amsterdam group, one
has to take into account that, while the first ones are given fixing the polarization
vector of the hadron, the others are given at fixed quark polarization. By properly
exploiting Eqs. (2.43), (2.44) and (2.50) and Eqs. (C.2)-(C.4), we get

Dh/q = D++
++ + D++

−− = D1(z, p⊥) (C.6)

∆Dh
SY/q = ∆NDh↑/q = −2 ImD+−

++ =
p⊥

zMh
D⊥

1T(z, p⊥) (C.7)

∆Dh/q
SZ/sL

= D++
++ − D++

−− = G1L(z, p⊥) (C.8)

∆Dh/q
SX/sL

= 2 ReD++
+− = − p⊥

zMh
G1T(z, p⊥) (C.9)

∆Dh/q
SZ/sT

= 2 ReD+−
++ = − p⊥

zMh
H⊥

1L(z, p⊥) (C.10)

∆NDh/q↑ = 4 ImD++
+− =

2p⊥
zMh

H⊥
1 (z, p⊥) (C.11)

1
2
[∆DSX/sT

+ ∆−DSY/sT
] = D+−

+− = H1(z, p⊥) (C.12)

1
2
[∆DSX/sT

− ∆−DSY/sT
] = D+−

−+ =
p2
⊥

2z2M2
h

H⊥
1T(z, p⊥) . (C.13)

To complete this comparison we observe that by inserting Eqs. (C.5), (C.7), (C.12)
and (C.13) into Eqs. (2.57) and (2.59) we get

Ph
XD̂h/q,sT

= ∆D̂h/q
SX/sT

(z, p⊥) =

[
H1T(z, p⊥) +

p2
⊥

z2M2
h

H⊥
1T(z, p⊥)

]
cos(ϕsq

− ϕh)

(C.14)

Ph
YD̂h/q,sT

= ∆D̂h/q
SY/sT

(z, p⊥) =
p⊥

zMh
D⊥

1T(z, p⊥) + H1T(z, p⊥) sin(ϕsq
− ϕh) ,

(C.15)



138 Comparison with other notations

showing that H1T and H⊥
1T are combinations of hadron polarized fragmentation

functions.



Appendix D.

Tensorial analysis

A useful tool to exploit the integrals over p⊥2 involved in the convolutions
C[w∆D∆D̄] appearing in Section 2.5 is a simple tensorial decomposition, a pro-
cedure already developed in Ref. [28] for the general helicity formalism in SIDIS.

All the integrals can be indeed reduced to a linear combination of the follow-
ing convolutions:

Ti =
1

P1T

∫
d2p⊥2 pi

⊥2 ∆Dh1(z1, p⊥1)∆Dh2(z2, p⊥2) (D.1)

Tij =
1

P2
1T

∫
d2p⊥2 pi

⊥2pj
⊥2 ∆Dh1(z1, p⊥1)∆Dh2(z2, p⊥2) (D.2)

Tijk =
1

P3
1T

∫
d2p⊥2 pi

⊥2pj
⊥2pk

⊥2 ∆Dh1(z1, p⊥1)∆Dh2(z2, p⊥2) (D.3)

Tijkl =
1

P4
1T

∫
d2p⊥2 pi

⊥2pj
⊥2pk

⊥2pl
⊥2 ∆Dh1(z1, p⊥1)∆Dh2(z2, p⊥2) , (D.4)

where we have denoted by ∆Dh1,2 any fragmentation function (depending only
on the moduli of the intrinsic transverse momenta) appearing in the definition
of the particular structure function F one is considering and where the upper
index of p⊥2 can be i = x, y (hadron frame):

px
⊥2 = p⊥2 cos φ2 py

⊥2 = p⊥2 sin φ2 . (D.5)
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Notice that we have normalized each tensor by a suitable power of P1T

and that Ti, Tij, Tijk and Tijkl are symmetric, rank 1, 2, 3, 4 Euclidean tensors,
respectively. Bearing in mind that p⊥1 is not independent and can be expressed
in terms of p⊥2 and P1T (see Eq. (2.26)) , we have, in a completely general way,
that the convolutions depend only on P1T and ϕ1, i.e. the measured modulus
and azimuthal phase of the final observed hadron transverse momentum:

Ti =
Pi

1T
P1T

S1(P1T) (D.6)

Tij =
Pi

1TPj
1T

P2
1T

S2(P1T) + δij S3(P1T) (D.7)

Tijk =
Pi

1TPj
1TPk

1T

P3
1T

S4(P1T) +
1

P1T

(
Pi

1Tδjk + Pj
1Tδik + Pk

1Tδij) S5(P1T) (D.8)

Tijkl =
Pi

1TPj
1TPk

1TPl
1T

P4
1T

S6(P1T) +
1

P2
1T

(
Pk

1TPl
1Tδij + Pl

1TPj
1Tδik + Pk

1TPj
1Tδil + Pi

1TPl
1Tδjk

+ Pi
1TPk

1Tδjl + Pi
1TPj

1Tδkl) S7(P1T) +
(
δijδkl + δilδjk + δikδjl) S8(P1T) , (D.9)

where the tensorial structure is given by the components of P1T

PX
1T = P1T cos ϕ1 ; PY

1T = P1T sin ϕ1 (D.10)

while S1–S8 are eight scalar functions which can only depend on P1T (modulus),
and can be determined directly by contracting Eqs. (D.6)-(D.9) with suitable
symmetric tensorial structures. One then finds

S1(P1T) =
1

P1T

∫
d2p⊥2 (p⊥2 · P̂1T)∆Dh1 ∆Dh2 (D.11)

S2(P1T) =
1

P2
1T

∫
d2p⊥2 [2(p⊥2 · P̂1T)

2 − p2
⊥2]∆Dh1 ∆Dh2 (D.12)

S3(P1T) =
1

P2
1T

∫
d2p⊥2 [p

2
⊥2 − (p⊥2 · P̂1T)

2]∆Dh1 ∆Dh2 (D.13)
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S4(P1T) =
1

P3
1T

∫
d2p⊥2 [4(p⊥2 · P̂1T)

3 − 3p2
⊥2(p⊥2 · P̂1T)]∆Dh1 ∆Dh2 (D.14)

S5(P1T) =
1

P3
1T

∫
d2p⊥2 [p

2
⊥2(p⊥2 · P̂1T)− (p⊥2 · P̂1T)

3]∆Dh1 ∆Dh2 (D.15)

S6(P1T) =
1

P4
1T

∫
d2p⊥2

[
8
(

p⊥2 · P̂1T
)4 − 8

(
p⊥2 · P̂1T

)2 p2
⊥2 + p4

⊥2

]
∆Dh1 ∆Dh2

(D.16)

S7(P1T) =
1

3P4
1T

∫
d2p⊥2

[
− 4
(

p⊥2 · P̂1T
)4

+ 5
(

p⊥2 · P̂1T
)2 p2

⊥2 − p4
⊥2

]
∆Dh1 ∆Dh2

(D.17)

S8(P1T) =
1

3P4
1T

∫
d2p⊥2

[(
p⊥2 · P̂1T

)4 − 2
(

p⊥2 · P̂1T
)2 p2

⊥2 + p4
⊥2

]
∆Dh1 ∆Dh2 .

(D.18)

From the above relations we can get∫
d2p⊥2 cos φ2 ∆Dh1 ∆Dh2 = cos ϕ1

∫
d2p⊥2 (p̂⊥2 · P̂1T) ∆Dh1 ∆Dh2 (D.19)

∫
d2p⊥2 sin φ2 ∆Dh1 ∆Dh2 = sin ϕ1

∫
d2p⊥2 (p̂⊥2 · P̂1T) ∆Dh1 ∆Dh2 (D.20)

∫
d2p⊥2 cos2 φ2 ∆Dh1 ∆Dh2

=
1
2

∫
d2p⊥2

{
1 + cos 2ϕ1 [2(p̂⊥2 · P̂1T)

2 − 1]
}

∆Dh1 ∆Dh2 (D.21)

∫
d2p⊥2 sin2 φ2 ∆Dh1 ∆Dh2

=
1
2

∫
d2p⊥2

{
1 − cos 2ϕ1 [2(p̂⊥2 · P̂1T)

2 − 1]
}

∆Dh1 ∆Dh2 (D.22)
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∫
d2p⊥2 cos φ2 sin φ2 ∆Dh1 ∆Dh2

= cos ϕ1 sin ϕ1

∫
d2p⊥2 [2(p̂⊥2 · P̂1T)

2 − 1] ∆Dh1 ∆Dh2 (D.23)

∫
d2p⊥2 cos3 φ2 ∆Dh1 ∆Dh2

= cos3 ϕ1

∫
d2p⊥2 [4(p̂⊥2 · P̂1T)

3 − 3(p̂⊥2 · P̂1T)] ∆Dh1 ∆Dh2

+ 3 cos ϕ1

∫
d2p⊥2 [(p̂⊥2 · P̂1T)− (p̂⊥2 · P̂1T)

3] ∆Dh1 ∆Dh2 (D.24)

∫
d2p⊥2 sin3 φ2 ∆Dh1 ∆Dh2

= sin3 ϕ1

∫
d2p⊥2 [4(p̂⊥2 · P̂1T)

3 − 3(p̂⊥2 · P̂1T)] ∆Dh1 ∆Dh2

+ 3 sin ϕ1

∫
d2p⊥2 [(p̂⊥2 · P̂1T)− (p̂⊥2 · P̂1T)

3] ∆Dh1 ∆Dh2 (D.25)

∫
d2p⊥2 cos2 φ2 sin φ2 ∆Dh1 ∆Dh2

= cos2 ϕ1 sin ϕ1

∫
d2p⊥2 [4(p̂⊥2 · P̂1T)

3 − 3(p̂⊥2 · P̂1T)] ∆Dh1 ∆Dh2

+ sin ϕ1

∫
d2p⊥2 [(p̂⊥2 · P̂1T)− (p̂⊥2 · P̂1T)

3] ∆Dh1 ∆Dh2 (D.26)

∫
d2p⊥2 cos φ2 sin2 φ2 ∆Dh1 ∆Dh2

= cos ϕ1 sin2 ϕ1

∫
d2p⊥2 [4(p̂⊥2 · P̂1T)

3 − 3(p̂⊥2 · P̂1T)] ∆Dh1 ∆Dh2

+ cos ϕ1

∫
d2p⊥2 [(p̂⊥2 · P̂1T)− (p̂⊥2 · P̂1T)

3] ∆Dh1 ∆Dh2 (D.27)
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∫
d2p⊥2 sin4 φ2 ∆Dh1 ∆Dh2

= sin4 ϕ1

∫
d2p⊥2

[
8
(

p̂⊥2 · P̂1T
)4 − 8

(
p̂⊥2 · P̂1T

)2
+ 1
]

∆Dh1 ∆Dh2

+ 2 sin2 ϕ1

∫
d2p⊥2

[
− 4
(

p̂⊥2 · P̂1T
)4

+ 5
(

p̂⊥2 · P̂1T
)2 − 1

]
∆Dh1 ∆Dh2

+
∫

d2p⊥2

[(
p̂⊥2 · P̂1T

)4 − 2
(

p̂⊥2 · P̂1T
)2

+ 1
]

∆Dh1 ∆Dh2 (D.28)

∫
d2p⊥2 cos4 φ2 ∆Dh1 ∆Dh2

= cos4 ϕ1

∫
d2p⊥2

[
8
(

p̂⊥2 · P̂1T
)4 − 8

(
p̂⊥2 · P̂1T

)2
+ 1
]

∆Dh1 ∆Dh2

+ 2 cos2 ϕ1

∫
d2p⊥2

[
− 4
(

ˆp⊥2 · P̂1T
)4

+ 5
(

p̂⊥2 · P̂1T
)2 − 1

]
∆Dh1 ∆Dh2

+
∫

d2p⊥2

[(
p̂⊥2 · P̂1T

)4 − 2
(

p̂⊥2 · P̂1T
)2

+ 1
]

∆Dh1 ∆Dh2 (D.29)

∫
d2p⊥2 cos2 φ2 sin2 φ2 ∆Dh1 ∆Dh2

= cos2 ϕ1 sin2 ϕ1

∫
d2p⊥2

[
8
(

p̂⊥2 · P̂1T
)4 − 8

(
p̂⊥2 · P̂1T

)2
+ 1
]

∆Dh1 ∆Dh2

+
∫

d2p⊥2

[
−
(

p̂⊥2 · P̂1T
)4

+
(

p̂⊥2 · P̂1T
)2
]

∆Dh1 ∆Dh2 (D.30)

∫
d2p⊥2 cos φ2 sin3 φ2 ∆Dh1 ∆Dh2

= cos ϕ1 sin3 ϕ1

∫
d2p⊥2

[
8
(

p̂⊥2 · P̂1T
)4 − 8

(
p̂⊥2 · P̂1T

)2
+ 1
]

∆Dh1 ∆Dh2

+ cos ϕ1 sin ϕ1

∫
d2p⊥2

[
− 4
(

p̂⊥2 · P̂1T
)4

+ 5
(

p̂⊥2 · P̂1T
)2 − 1

]
∆Dh1 ∆Dh2

(D.31)
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∫
d2p⊥2 cos3 φ2 sin φ2 ∆Dh1 ∆Dh2

= cos3 ϕ1 sin ϕ1

∫
d2p⊥2

[
8
(

p̂⊥2 · P̂1T
)4 − 8

(
p̂⊥2 · P̂1T

)2
+ 1
]

∆Dh1 ∆Dh2

+ cos ϕ1 sin ϕ1

∫
d2p⊥2

[
− 4
(

p̂⊥2 · P̂1T
)4

+ 5
(

p̂⊥2 · P̂1T
)2 − 1

]
∆Dh1 ∆Dh2 .

(D.32)

We can then reconstruct directly the following quantities appearing in Section 2.5:∫
d2p⊥2 cos(2φ2)∆Dh1 ∆Dh2 = cos(2ϕ1)

∫
d2p⊥2 [2(p̂⊥2 · P̂1T)

2 − 1] ∆Dh1 ∆Dh2

(D.33)

∫
d2p⊥2 sin(2φ2)∆Dh1 ∆Dh2 = sin(2ϕ1)

∫
d2p⊥2 [2(p̂⊥2 · P̂1T)

2 − 1] ∆Dh1 ∆Dh2

(D.34)

∫
d2p⊥2 cos(3φ2)∆Dh1 ∆Dh2

= cos(3ϕ1)
∫

d2p⊥2 [4(p̂⊥2 · P̂1T)
3 − 3(p̂⊥2 · P̂1T)] ∆Dh1 ∆Dh2 (D.35)∫

d2p⊥2 sin(3φ2)∆Dh1 ∆Dh2

= sin(3ϕ1)
∫

d2p⊥2 [4(p̂⊥2 · P̂1T)
3 − 3(p̂⊥2 · P̂1T)] ∆Dh1 ∆Dh2 (D.36)∫

d2p⊥2 cos(4φ2) ∆Dh1 ∆Dh2

= cos(4ϕ1)
∫

d2p⊥2

[
8
(

p̂⊥2 · P̂1T
)4 − 8

(
p̂⊥2 · P̂1T

)2
+ 1
]

∆Dh1 ∆Dh2 (D.37)∫
d2p⊥2 sin(4φ2) ∆Dh1 ∆Dh2

= sin(4ϕ1)
∫

d2p⊥2

[
8
(

p̂⊥2 · P̂1T
)4 − 8

(
p̂⊥2 · P̂1T

)2
+ 1
]

∆Dh1 ∆Dh2 . (D.38)



Appendix E.

Helicity frames

Our physical observables are computed in two kinematical configurations, the
thrust and the hadron frames, with axes denoted by x̂L, ŷL, and ẑL, where we use
L to indicate a generic laboratory (LAB) frame. The helicity frame of a particle
with momentum p along the direction p̂ = (sin θ cos φ, sin θ sin φ, cos θ) – as
defined in the laboratory frame – can be reached by performing the rotations [80]

R(φ, θ, 0) = Ry′(θ) RzL
(φ) . (E.1)

The first is a rotation by an angle φ around the ẑL-axis and the second is a
rotation by an angle θ around the new (that is, obtained after the first rotation)
ŷ′-axis. This means

a) ẑ = p̂ b) ŷ =
ẑL × p̂
|ẑL × p̂| = ẑL × p̂⊥ c) x̂ = ŷ× ẑ . (E.2)

In the present study we are interested in the helicity frames of the final
quark/antiquark as well as those of the two hadrons coming from their fragmen-
tation. Let us describe them, starting from the relations between the parent quark
and the corresponding hadron helicity frames and then focusing separately on
the two configurations for a process e+(k+)e−(k−)→ c(q1) d(q2)→ h1(Ph1

)h2(Ph2
) X.
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The helicity frame of a non-collinear hadron with momentum

Ph = Ph(sin θh cos ϕh, sin θh sin ϕh, cos θh) ,

as reached from the helicity frame of its parent quark, following the above
procedure a)-c) in Eq. (E.2), is simply given as:

Ẑh = sin θh cos ϕh x̂ + sin θh sin ϕh ŷ + cos θh ẑ ≡ P̂h (E.3)

Ŷh = − sin ϕh x̂ + cos ϕh ŷ (E.4)

X̂h = cos θh cos ϕh x̂ + cos θh sin ϕh ŷ − sin θh ẑ . (E.5)

E.1. The thrust frame

In this case the particles c and d move along the ẑL and −ẑL direction respectively.
This results in the helicity frames with axes along the following directions in the
laboratory frame:

x̂c = x̂L ŷc = ŷL ẑc = ẑL (E.6)

for a quark/antiquark c moving along +ẑL, and

x̂d = x̂L ŷd = −ŷL ẑd = −ẑL (E.7)

for a quark/antiquark d moving along −ẑL. From these relations we find that
the helicity axes of the hadrons h1 in the LAB frame as reached from the quark
helicity frames are [using Eqs. (E.3)-(E.5) with h = h1 and Eq. (E.6)]

Ẑh1
= sin θh1

cos ϕh1
x̂L + sin θh1

sin ϕh1
ŷL + cos θh1

ẑL (E.8)

Ŷh1
= − sin ϕh1

x̂L + cos ϕh1
ŷL (E.9)

X̂h2
= cos θh1

cos ϕh1
x̂L + cos θh1

sin ϕh1
ŷL − sin θh1

ẑL (E.10)
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and the ones for the hadron h2 [using Eqs. (E.3)-(E.5) with h = h2 and Eq. (E.7)]

Ẑh2
= sin θh2

cos ϕh2
x̂L − sin θh2

sin ϕh2
ŷL − cos θh2

ẑL (E.11)

Ŷh2
= − sin ϕh2

x̂L − cos ϕh2
ŷL (E.12)

X̂h2
= cos θh2

cos ϕh2
x̂L − cos θh2

sin ϕh2
ŷL + sin θh2

ẑL . (E.13)

On the other hand, the hadron unit three-momenta as defined in the LAB
frame, see Eqs. (2.15) and (2.16), are

P̂h1
= Ẑh1

=
2η⊥1
zp1

cos φ1 x̂L +
2η⊥1
zp1

sin φ1 ŷL + β1 ẑL (E.14)

P̂h2
= Ẑh2

=
2η⊥2
zp2

cos φ2 x̂L +
2η⊥2
zp2

sin φ2 ŷL − β2 ẑL . (E.15)

By a direct comparison between Eqs. (E.8) and (E.14) and between Eqs. (E.11)
and (E.15) we then get

ϕh1
= φ1 ϕh2

= 2π − φ2 . (E.16)

E.2. The hadron frame

In the hadron frame the unit vectors specifying the helicity frames of the two
particles c and d, as reached from the laboratory frame are:

ẑc =
2η⊥2
zp2

cos φ2 x̂L +
2η⊥2
zp2

sin φ2 ŷL + β2 ẑL (E.17)

ŷc = − sin φ2 x̂L + cos φ2 ŷL (E.18)

x̂c = β2 cos φ2 x̂L + β2 sin φ2 ŷL −
2η⊥2
zp2

ẑL (E.19)
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ẑd = −2η⊥2
zp2

cos φ2 x̂L −
2η⊥2
zp2

sin φ2 ŷL − β2 ẑL (E.20)

ŷd = sin φ2 x̂L − cos φ2 ŷL (E.21)

x̂d = β2 cos φ2 x̂L + β2 sin φ2 ŷL −
2η⊥2
zp2

ẑL , (E.22)

where we started from the quark-antiquark directions in the LAB frame as
defined in Eqs. (2.18) and (2.19) and, then we applied the standard procedure to
identify the other two axes (see Eq. (E.2)).

From the above relations one can get the expressions of the hadron helicity
axes as reached from the parton helicity ones in the LAB frame. In particular, for
the Z axes we find

Ẑh1
=
(

sin θh1
(β2 cos ϕh1

cos φ2 − sin ϕh1
sin φ2) +

2η⊥2
zp2

cos θh1
cos φ2

)
x̂L

+
(

sin θh1
(β2 cos ϕh1

sin φ2 + sin ϕh1
cos φ2) +

2η⊥2
zp2

cos θh1
sin φ2

)
ŷL

−
(2η⊥2

zp2

sin θh1
cos ϕh1

− β2 cos θh1

)
ẑL (E.23)

Ẑh2
=
(

sin θh2
(β2 cos ϕh2

cos φ2 + sin ϕh2
sin φ2)−

2η⊥2
zp2

cos θh2
cos φ2

)
x̂L

+
(

sin θh2
(β2 cos ϕh2

sin φ2 − sin ϕh2
cos φ2)−

2η⊥2
zp2

cos θh2
sin φ2

)
ŷL

−
(2η⊥2

zp2

sin θh2
cos ϕh2

+ β2 cos θh2

)
ẑL , (E.24)

that have to be compared with the corresponding expressions in the LAB frame,
coming from Eqs. (2.20) and (2.17),

Ẑh1
=

2η1T
zp1

cos ϕ1 x̂L +
2η1T
zp1

sin ϕ1 ŷL +

√√√√1 − 4η2
1T

z2
p1

ẑL (E.25)

Ẑh2
= −ẑL . (E.26)
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By using

sin θh1,2
=

2η⊥1,2

zp1,2

, (E.27)

after some algebra we get

cos ϕh1
=

η1T
η⊥1

β2 cos(ϕ1 − φ2)−
η⊥2
η⊥1

zp1

zp2

√√√√1 − 4η2
1T

z2
p1

≃ P1T
p⊥1

cos(ϕ1 − φ2)−
p⊥2
p⊥1

zp1

zp2

(E.28)

sin ϕh1
=

η1T
η⊥1

sin(ϕ1 − φ2) =
P1T
p⊥1

sin(ϕ1 − φ2) , (E.29)

together with ϕh2
= 0.

For their role we give here the explicit expressions of the helicity axes of the
hadrons h1 and h2 in terms of the variables in the LAB frame

Ẑh1
=

2η1T
zp1

cos ϕ1 x̂L +
2η1T
zp1

sin ϕ1 ŷL +

√√√√1 − 4η2
1T

z2
p1

ẑL

≃ 2η1T
zp1

cos ϕ1 x̂L +
2η1T
zp1

sin ϕ1 ŷL + ẑL ≃ ẑL (E.30)

Ŷh1
≃
(zp1

zp2

p⊥2
p⊥1

sin φ2 −
P1T
p⊥1

sin ϕ1

)
x̂L +

( P1T
p⊥1

cos ϕ1 −
zp1

zp2

p⊥2
p⊥1

cos φ2

)
ŷL

(E.31)

X̂h1
≃
( P1T

p⊥1
cos ϕ1 −

zp1

zp2

p⊥2
p⊥1

cos φ2

)
x̂L +

( P1T
p⊥1

sin ϕ1 −
zp1

zp2

p⊥2
p⊥1

sin φ2

)
ŷL

(E.32)

Ẑh2
= −ẑL (E.33)

Ŷh2
= sin φ2 x̂L − cos φ2 ŷL (E.34)

X̂h2
= cos φ2 x̂L + sin φ2 ŷL . (E.35)
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Notice that, while the Ẑh1
axis does not involve any intrinsic transverse

momentum dependence, special care, when carrying out the integration over
the unobserved variables, is due for the transverse axes. Moreover, at the lowest
order in η1T the Ẑh1

axis almost coincides with the ẑL one.

Before concluding this section we warn the reader that the hadron helicity
frames obtained directly from the LAB frame, without passing through the
parton helicity frame, give a different result where, while the Ẑ axes coincide,
the X̂ and Ŷ axes are rotated:

ẐLAB
h1

=
2η1T
zp1

cos ϕ1 x̂L +
2η1T
zp1

sin ϕ1 ŷL +

√√√√1 − 4η2
1T

z2
p1

ẑL (E.36)

ŶLAB
h1

= − sin ϕ1 x̂L + cos ϕ1 ŷL = n̂ (E.37)

X̂LAB
h1

=

√√√√1 − 4η2
1T

z2
p1

cos ϕ1 x̂L +

√√√√1 − 4η2
1T

z2
p1

cos ϕ1 ŷL −
2η1T
zp1

ẑL (E.38)

ẐLAB
h2

= −ẑL (E.39)

ŶLAB
h2

= −ŷL (E.40)

X̂LAB
h2

= x̂L . (E.41)



Appendix F.

Transverse momenta in different
frames and kinematic power
corrections

Here we derive the relations between the different transverse momenta, pre-
sented in Section 5.2, in the hadron frame. To do this, we work in a frame where
the two final state hadrons are exactly back-to-back along the ± z direction, the
fragmenting quarks have a transverse momentum with respect to the direction
of their own hadrons and the photon has a transverse momentum as well. We
label the momenta as follows:

• k is the four-momentum of the quark fragmenting into hadron h1, with
four-momentum P1 and moving along −z;

• p is the four-momentum of the anti-quark fragmenting into the hadron h2,
with four-momentum P2 and moving along +z;

• kT and pT are respectively the transverse momenta of the quark and the
anti-quark with respect to their hadron momenta, while k⊥ and p⊥ are
respectively the transverse momenta of the two hadrons with respect to
their parent quark directions of motion;
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• q is the four-momentum of the virtual photon and qT is its transverse
component. This one can be related to P1T, the transverse momentum of
hadron h1 with respect to the second hadron h2 (see below).

By adopting light-cone coordinates where for a generic four-vector a, we have

a± =
a0 ± a3
√

2
, (F.1)

we define the quarks and photon momenta as follows [18]:

k =

(
k2

T

2k−
, k−, kT

)
where kT = |kT| (F.2)

p =

(
p+,

p2
T

2p+
, pT

)
where pT = |pT| (F.3)

q =

(
Q̃√

2
,

Q̃√
2

, qT

)
, (F.4)

where Q̃2 = Q2 + q2
T. Since k + p = q, we can find the values of the components

of the quark momenta:

k− =
Q√

2
+O(q2

T/Q2); k+ =
k2

T√
2Q

+O(q2
T/Q2) (F.5)

k0 =
Q
2

(
1 +

k2
T

2Q2

)
; k3 = −Q

2

(
1 − k2

T

2Q2

)
(F.6)

p+ =
Q√

2
+O(q2

T/Q2); p− =
p2

T√
2Q

+O(q2
T/Q2) (F.7)

and that kT + pT = qT. Meanwhile the hadron momenta are defined as follows:
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P1 =

(
M2

1

z1Q
√

2
,

z1Q√
2

, 0

)

P2 =

(
z2Q√

2
,

M2
2

z2Q
√

2
, 0

) (F.8)

where we have used the light-cone momentum fractions, defined as:

z1 =
P−

1

k−
; z2 =

P+
2

p+
. (F.9)

For massive hadrons we can introduce two further scaling variables: the energy
fraction (often adopted in experimental analyses)

zhi
=

P0
i

l0 = zi

(
1 +

M2
i

2z2
i Q2

)
(F.10)

and the longitudinal momentum fraction

zpi
=

P3
i

l3 = zi

(
1 −

M2
hi

2z2
i Q2

)
, (F.11)

where we are keeping terms of order M2/Q2 while neglecting terms of order
q2

T/Q2 or larger. Notice that here l is the four-momenta of the quark fragmenting
into the hadron hi.

Now we can proceed in the derivation of the relations between the transverse
momenta. Firstly, we want to move to a frame where the hadron h1 has a
transverse momentum with respect to its parent quark and the quark has zero
transverse momentum component. We can reach this with two subsequent
rotations: Rz(φ) and Ry′(ξ, λ):
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Rz(φ) =


1 0 0 0

0 cos φ sin φ 0

0 − sin φ cos φ 0

0 0 0 1

 Ry′(ξ, λ) =


1 0 0 0

0 ξ 0 −λ

0 0 1 0

0 λ 0 ξ

 (F.12)

where ξ2 + λ2 = 1. Given that, the quark four-momentum k in the initial frame
and k′ in the final frame are:

k =


k0

|kT| cos φ

|kT| sin φ

k3

 , k′ = Ry′(ξ, λ) Rz(φ) k =


k0

0

0

−k0

 , (F.13)

we have ξ = −k3/k0 and λ = −kT/k0. Applying the above rotations to the
hadron four-momentum in the initial frame

P1 =


P0

1

0

0

P3
1

 , P′
1 = Ry′(ξ, λ) Rz(φ) P1 =


P0

1

k⊥

0

P′3
1

 , (F.14)
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with

P0
1 =

z1Q
2

(
1 +

M2
i

2z2
i Q2

)
(F.15)

P3
1 =

z1Q
2

(
1 − M2

i

2z2
i Q2

)
(F.16)

P′3
1 = ξP3

1 , (F.17)

we obtain that k⊥, the transverse momentum of the hadron with respect to the
direction of its parent quark, follows the relations:

|k⊥| = −λP3
1 (F.18)

k⊥ = −kTzp1
, (F.19)

and that, for massless hadrons, reduces to the usual kT = −k⊥/z1 relation. If
we want to find the relation between P1T, the transverse momentum of h1 with
respect to h2, and qT, the transverse momentum of the photon, we can use the
following tensor gµν

⊥ [18]:

gµν
⊥ = gµν − t̂µ t̂ν + ẑµẑν

t̂µ =
qµ

Q

ẑµ = 2
Pµ

2
zh2

Q
− t̂µ.

By applying the above tensor to the four-momentum of hadron h1, Pµ
1T = gµν

⊥ P1ν,
we find the following relation

Pµ
1T = Pµ

1 + Pµ
2

(
2

z1
zh2

−
zh1

zh2

)
− z1qµ , (F.20)

where we have neglected the mass of the second hadron, Mh2
= 0. Performing

the calculation we find that all components but the transverse one are zero, and
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so we can recover the following relation

P1T = −z1qT (F.21)

where z1 is the light-cone momentum fraction. This reduces to the usual relation
P1T = −zh1

qT for massless hadrons.



Appendix G.

Convolutions and Fourier transforms

In order to exploit the CSS evolution equations, in Section 5.2 we showed how
the convolutions, in kT-space, can be written in the conjugate bT-space through
Fourier transforms of TMD-FFs. We derive here all the steps to write the convo-
lutions in this conjugate space. The first convolution we consider is FUU, defined
according to Eq. (5.6)

F [ωDD̄] = ∑
q

e2
q

∫
d2kTd2pT δ(2)(kT + pT − qT)ω(kT, pT)D(z1, k⊥)D̄(z2, p⊥) ,

(G.1)

as follows:

FUU =F [D1D̄1] . (G.2)

It is trivial to transform this convolution in bT-space employing the Fourier
transform definition of the TMD unpolarized fragmentation function:

D̃(z1, bT) =
∫

d2kT eibT ·kT D1(z1, k⊥)

=2π
∫

dkT kT J0(bTkT)D1(z1, k⊥) ,
(G.3)
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where we have used the integral representation of J0, the Bessel function of the
first kind ∫ 2π

0
dθ eibTkT cos θ = 2π J0(bTkT) . (G.4)

With the above relations, the FUU convolution in bT-space can be written as:

FUU =F [D1D̄1]

=∑
q

e2
q

∫ d2bT

(2π)2 e−ibT ·qT D̃1(z1, bT)
˜̄D1(z2, bT)

=∑
q

e2
q

∫ dbT
(2π)

bT J0(bT qT)D̃1(z1, bT)
˜̄D1(z2, bT)

=B0

[
D̃ ˜̄D] .

(G.5)

The second convolution we consider is Fsin(ϕ1−ϕS)
TU , defined as follows:

F
sin(ϕ1−ϕS1

)

TU =F
[

ĥ · kT
Mh1

D⊥
1TD̄1

]
. (G.6)

To work out this convolution we need the Fourier transform of the unpolar-
ized fragmentation function, presented above, and the one of the polarizing
fragmentation function multiplied by ki

T, the i-th component of the transverse
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momentum of the quark with respect to the hadron direction:

∫
d2kT

ki
T

Mh1

eibT ·kT D⊥
1T(z1, k⊥)

=
−i

Mh1

∂

∂bi
T

∫
d2kT eibT ·kT D⊥

1T(z1, k⊥)

=
−i

Mh1

∂

∂bi
T

D̃⊥
1T(z1, bT) =

−i
Mh1

bi
T

bT

∂

∂bT
D̃⊥

1T(z1, bT)

=
−ibi

T
Mh1

2
∂

∂b2
T

D̃⊥
1T(z1, bT) = ibi

T Mh1

(
− 2

M2
h1

∂

∂b2
T

D̃⊥
1T(z1, bT)

)
=ibi

T Mh1
D̃⊥(1)

1T (z1, bT) ,

(G.7)

where we have used, to go from the first line to the second one, the following
relation

ki
T eibT ·kT =− i

∂

∂bi
T

eibT ·kT , (G.8)

and the definition of the Fourier transform of the polarizing fragmentation
function

D̃⊥
1T(z1, bT) =

∫
d2kT eibT ·kT D⊥

1T(z1, k⊥) .
(G.9)

In the very last step we have introduced D̃⊥(1)
1T (z1, bT), the first moment of the

polarizing fragmentation function in bT-space:

D̃⊥(1)
1T (z1, bT) =

(
− 2

M2
h1

∂

∂b2
T

D̃⊥
1T(z1, bT)

)
. (G.10)

This term can be related to the first moment in kT-space, defined as:
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D⊥(1)
1T (z1) =

∫
d2k⊥

(
k2
⊥

2z2
1M2

h1

)
D⊥

1T(z1, k⊥) , (G.11)

adopting the limit of bT going to zero:

lim
bT → 0

D̃⊥(1)
1T (z1, bT) =

1

z2
1

D⊥(1)
1T (z1) . (G.12)

We have indeed that:

D̃⊥(1)
1T (z1, bT) =

(
− 2

M2
h1

∂

∂b2
T

D̃⊥
1T(z1, bT)

)
= − 2π

bT M2
h1

∂

∂bT

∫ dk⊥ k⊥
z2

1
J0

(
bTk⊥

z1

)
D⊥(1)

1T (z1, k⊥)

=
2π

M2
h1

z3
1

∫
dk⊥

k2
⊥

bT
J1

(
bTk⊥

z1

)
D⊥(1)

1T (z1, k⊥) ,

(G.13)

where we have used the following relations:

∂

∂bT
J0(abT) = −aJ1(abT)

1
2bT

∂

∂bT
=

∂

∂b2
T

.
(G.14)

Then by employing the additional relation

lim
bT → 0

J1(abT)

bT
=

a
2

, (G.15)

we are able to find Eq. (G.12):

lim
bT → 0

D̃⊥(1)
1T (z1, bT) =

1

z2
1

∫
d2k⊥

(
k2
⊥

2z2
1M2

h

)
D⊥

1T(z1, k⊥) . (G.16)
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Finally with the results above, we can write again the Fsin(ϕ1−ϕS)
TU convolution in

bT-space:

Fsin(ϕ1−ϕS)
TU = F

[
ĥ · kT
Mh1

D⊥
1TD̄1

]
=∑

q
e2

q

∫
d2kTd2pT δ(2)(kT + pT − qT)

ĥ · kT
Mh1

D⊥
1T(z1, kT)D̄1(z2, pT)

=Mh1 ∑
q

e2
q

∫ d2bT

(2π)2 e−ibT ·qT(iĥ · bT)D̃⊥(1)
1T (z1, bT)

˜̄D1(z2, bT)

=Mh1 ∑
q

e2
q

∫ dbT
2π

b2
T J1(qT bT)D̃⊥(1)

1T (z1, bT)
˜̄D1(z2, bT)

=Mh1
B1

[
D̃⊥(1)

1T
˜̄D1

]
,

(G.17)

where we have used the integral definition of the J1 Bessel function:

∫ 2π

0
dθ eibTkT cos θ cos θ = (2πi)J1(bTkT) . (G.18)

G.1. Examples of Fourier transforms and first

moments: Gaussian model

As a first example of parametrization for the transverse momentum dependence
of FFs, we present a simple Gaussian model, and we will derive its Fourier
transform and first moment. We use the following Gaussian model for a generic
TMD fragmentation function:

D(z1, k⊥) = D(z1, 0)
e−k2

⊥/⟨k2
⊥⟩D

π⟨k2
⊥⟩1

. (G.19)
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where ⟨k2
⊥⟩1 is the Gaussian width of the unpolarized TMD-FF. According to

Eq. (G.11), its first moment is:

D(1)(z1) =
∫

d2k⊥

(
k2
⊥

2z2
1M2

h

)
D(z1, k⊥)

= D(z1, 0)
⟨k2

⊥⟩
2
D

2z2
1M2

h⟨k
2
⊥⟩1

(G.20)

and the bT-space fragmentation function is

D̃(z1, bT) =
∫

d2kT eibT ·kT D1(z1, k⊥)

=2π
∫

dkT kT J0(bTkT)D1(z1, k⊥)

=2π
∫ dk⊥ k⊥

z2
1

J0

(
bTk⊥

z1

)
D1(z1, k⊥)

=
D1(z1, 0)

z2
1

⟨k2
⊥⟩D

⟨k2
⊥⟩1

e−b2
T⟨k

2
⊥⟩D/(4z2

1)

(G.21)

We notice that, when ⟨k2
⊥⟩D = ⟨k2

⊥⟩1 in the case of the unpolarized fragmentation
function, then

lim
bT → 0

D̃(z1, bT) =
1

z2
1

D1(z1, 0) (G.22)

where D1(z1, 0) coincides with dj/h in the OPE in Eq. (5.33). Employing the first
moment definition in bT-space, Eq. (G.10), we have:
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D̃(1)(z1, bT) =

(
− 2

M2
h

∂

∂b2
T

D̃⊥
1T(z1, bT)

)
=D(z1, 0)

1

2z4
1M2

h

⟨k2
⊥⟩

2
D

⟨k2
⊥⟩1

e−b2
T⟨k

2
⊥⟩D/(4z2

1) .
(G.23)

Then, using Eq. (G.12), we find:

lim
bT → 0

D̃(1)(z1, bT) =
1

z2
1

[
1

2M2
hz2

1

⟨k2
⊥⟩

2
D

⟨k2
⊥⟩1

D(z1, 0)
]

=
1

z2
1

D(1)(z1) .
(G.24)

G.2. Examples of Fourier transforms and first

moments: Power Law model

The second, and last, model used to parametrize the transverse momentum
dependence of FFs, of which we calculate its Fourier transform and first moment,
is the the Power-Law model. This is defined as follows:

D(z1, k⊥) = D(z1, 0)
Γ(p)

πΓ(p − 1)
m2(p−1)

(k2
⊥ + m2)p . (G.25)

Its Fourier transform is:

D̃(z1, bT) = D(z1, 0)
22−p

Γ(p − 1)
(bTm/z1)

p−1Kp−1(bTm/z1) . (G.26)

The integrated first moment and the first moment in bT space are:
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D(1)(z1) = D(z1, 0)
1

M2
hz2

1

m2

2(p − 2)
(G.27)

D̃(1)(z1, bT) = D(z1, 0)
22−p

Γ(p − 1)
m2

M2
hz2

1
(bTm/z1)

p−2Kp−2(bTm/z1) . (G.28)
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