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Abstract— Allowing Multi-Agent Systems (MAS) to com-
pute the mode of the agents’ initial values (i.e., the value
with largest cardinality) represents a highly valuable build-
ing block for the development of complex decision-making
tasks, as it allows agents to identify the central tendency of
data or to implement majority voting processes while con-
sidering categorical opinions for which average or median
values might not be possible to compute. This is especially
challenging in the context of Open Multi-Agent Systems
(OMAS), where agents are free to join or leave the network,
as in this case the outcome of the mode computation
process may vary depending on the current participants
to the network. In this paper, we propose a novel OMAS
mode computation framework where agents select a value
from a finite set of alternatives, and compute the mode
via the execution in parallel of a novel average-preserving
distributed consensus procedure for each of the different
alternatives. We complement the paper with simulation
results that numerically demonstrate the effectiveness of
the proposed approach.

Index Terms— Distributed Mode Computation; Dis-
tributed Majority Voting; Open Multi-Agent Systems; Dis-
tributed Consensus

I. INTRODUCTION

BEING able to compute the mode of a set of values is
a fundamental building block for decision-making, as

it allows to identify the central tendency when considering
categorical data such as movies, car models or brands of soaps,
for which it is not possible to compute average or median
values. Notably, the mode has a deep connection with majority
voting [1], [2]; in fact, considering a scenario where a group of
decision-makers each select one out of a finite set of possible
choices, e.g., candidates running for a political election or
startups being evaluated for funding, the mode essentially
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coincides with the most popular choice. Interestingly, the
computation of the mode finds application also in ensemble
learning [3], [4] and has been theorized to represent a major
underlying function of the brain’s neocortex [5], [6].

In this view, being able to compute the mode of the opinion
of a set of agents in a distributed fashion would represent a
quite useful feature, as it would allow agents to implement
complex coordination, voting and interaction strategies that
involve categorical values and would not be possible to
handle via standard consensus approaches. Distributed mode
computation is particularly challenging in the context of Open
Multi-Agent Systems (OMAS), where agents are free to join
or leave the network. Yet, being able to implement a mode
computation or majority voting process in OMAS would be
highly beneficial, as in this case the outcome of the voting
process may vary depending on the current participants to the
network. Moreover, such a feature would enable the imple-
mentation of sophisticate coordination strategies in scenarios
such as wireless sensor networks, where nodes could deplete
their batteries or be switched off to save power, or mobile
robots, where agents could be temporarily off-reach during
exploration tasks.

A. State of the Art

In the context of Multi-Agent Systems (MAS), several dis-
tributed mode computation or majority voting approaches have
been developed. In [7], a distributed voting process for agents
holding one among several possible values is mapped into
a gossip protocol where agents each choose a vertex of a
polyhedron and collectively compute the resulting center of
mass, which is then used to choose the closest vertex. In [8],
an approach is developed, where agents can initially choose
between two values, and then update their choice based on the
most frequent value among k randomly chosen neighbors. In
[9], an approach is discussed where nodes each maintain a set
of possible values. In detail, when a node randomly wakes up,
it selects a random neighbor, and then the one with the value
set of smallest cardinality updates its value as the union of the
value sets, while the other updates its set as the intersection. In
[10], distributed multi-choice voting algorithms are developed
considering agents that can communicate merely by sending
beep signals. Such algorithms are shown to converge with high
probability. In [11] an algorithm is developed where, when an
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agent wakes up, it computes the cardinality of the different
values of its neighbors. Then, the following step is executed:
decrease by one all cardinalities that are not zero and transmit
such values to a neighbor that has not yet received messages
since the node awoke. The awaken node continues until only
one outcome remains, which becomes the new value for the
node, terminating the step. Then, a new agent wakes up.

Notice that, in the literature, a fair amount of distributed
consensus approaches for OMAS scenarios have been devel-
oped [12]–[21]. In particular, in [12], an algorithm robust to
agents joining or leaving the network has been developed,
although no stability analysis has been formally carried out. In
[13] an algorithm has been developed under the assumption
that agents’ departure and arrival occurred at predetermined
times, while in [14] it is assumed that each time an agent
leaves the network, another one immediately joins it. The
above approach has been extended in [15] to the case of
time-varying network size. In [17], [18], agents estimate the
time-varying average of a set of reference signals. In [19],
stochastic consensus for OMAS based on a Bernoulli process
was considered. In [20], a consensus algorithm for OMAS
has been developed where agents track the median of time-
varying reference signals. In [21] the interactions of agents
over randomly induced discretized Laplacians is investigated.

B. Contribution
As discussed above, to the best of our knowledge, no

distributed mode computation algorithm has been developed
in the context of OMAS: in this paper we aim to fill this gap.
, we consider an OMAS scenario and we develop a distributed
algorithm that allows agents currently participating in the
network to compute the mode of their voting preferences.
The main building block of the proposed approach is a
novel average-preserving consensus process that is suitable
for OMAS, in that it allows to compute the average of the
initial conditions of agents that are currently participating in
the network. In this view, agents first implement multiple
instances of the average-preserving consensus process (i.e.,
one for each discrete value), and then compute the mode by
locally selecting the value associated with the largest among
the scalar consensus outcomes. Notice that, in this paper, we
assume that the total number of agents is upperbounded by a
finite value.

II. PRELIMINARIES

A. Notation
We denote vectors by boldface lowercase letters, matrices

with plain uppercase letters and sets by uppercase italicized
letters. We refer to the (i, j)-th entry of a matrix A by Aij .
We denote the n× n identity matrix by In and we use On×n
to denote the n×m matrix with all zero entries. Moreover, we
use |S| to denote the cardinality of a set S and we refer to the
absolute value of a scalar a ∈ R by abs(a). A matrix A is said
to be nonnegative if all its entries satisfy Aij ≥ 0. An n×m
nonnegative matrix is called row-stochastic if

∑m
j=1Aij = 1,

and column-stochastic if
∑n

j=1Aji = 1. A nonnegative matrix

that is both row- and column-stochastic is referred to as doubly
stochastic. Given an n× n matrix Q we define

ρ2(Q) = abs(λ2(Q)), (1)

where λ2(Q) is the eigenvalue of Q with second largest
magnitude.

B. Network Topology in Open Multi-Agent Systems
In this paper we consider a scenario where agents interact

on a discrete-time basis over a time-varying graph, where time
variance is given by the fact that agents are free to leave or
join the network. In particular, we assume that nodes join the
network by creating links in an arbitrary way with nodes that
are already present in the network. Notably, as it will be made
clear later, nodes each have an initially chosen value, and we
assume that nodes joining the network reset their state to the
value they chose at the beginning even if they participated to
the network at previous time instants. Moreover, once created,
the links do not change unless one of the endpoint agents is
disconnected. In case an agent is disconnected, all its incident
links are removed. Notice that, in the proposed scenario, a
disconnection is not abrupt; in particular, we assume that upon
disconnection of an agent i, all its neighbors are aware of the
disconnection and undertake appropriate actions as discussed
later in the paper. In the following, we consider a situation
where the overall number of agents is limited to nmax < ∞
and each agent has a unique identifier in {1, . . . , nmax}.

In this view, at each time instant t, the time-varying graph
is given by G(t) = {V(t), E(t)}, where V(t) ⊆ {1, . . . , nmax}
denotes the set of the indices of agents that are participating in
the network at time t, while E(t) ⊆ {V(t)× V(t)} is the set
of edges representing information exchange between agents;
in other words, two agents i, j interact at time t if and only
if (i, j) ∈ E(t). Notice that, in this paper, we assume G(t)
is undirected at all time instants t, i.e., (i, j) ∈ E(t) if and
only if (j, i) ∈ E(t). Moreover, we assume G(t) is connected1

at all time instants t, i.e., each node in V(t) can be reached
by each other node via a path composed of edges in E(t).
Let us define the neighborhood Ni(t) of an agent i at time t
as Ni(t) = {j ∈ V(t) | (i, j) ∈ E(t)}. We denote by ∆i(t) =
| Ni(t)| the degree of agent i at time t and by | V(t)| the num-
ber of agents participating in the network at time t. Moreover,
for each time t, we denote the set R(t) of agents remaining
in the network, the set A(t) of agents joining the network
and the set D(t) of agents leaving the network, respec-
tively, as R(t) = V(t) ∩ V(t+ 1), A(t) = V(t+ 1) \ V(t)
and D(t) = V(t) \ V(t+ 1). Notably, by definition, we
have that V(t+ 1) = R(t) ∪ A(t), V(t) = R(t) ∪ D(t) and
V(0) = A(−1).

III. PROBLEM STATEMENT

Let us consider an open multi-agent system where
agents interact over an undirected time-varying graph
G(t) = {V(t), E(t)}, as described in Section II-B. In particu-
lar, we consider a scenario where each agent is provided with

1The results discussed in this paper easily generalize to the case where the
graph can be composed of multiple connected components.
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a value hi selected from a finite set H of possible values, with
|H| = b ≥ 2. For simplicity, and without loss of generality,
we hereby assume that the values are consecutive integers,
i.e., H = {1, . . . , b}. For each time instant t, let us use
h(t) ∈ R| V(t)| to denote the stack of the values hi for the
agents i ∈ V(t) and let us use γj(t) to denote the cardinality
of the set of agents in V(t) holding the value j. Moreover, let
us define the mode of h(t) as

m(t) = arg max
j=1,...,b

{γj(t)};

in other words, m(t) is the value that appears most often in
h(t) (or the subset of elements of H, when multiple distinct
values equally occur most often). Notice that h(t) is a function
of time due to the agents joining and leaving the network at
each instant of time. Our objective is to design a discrete-time
distributed interaction strategy that allows agents to compute
m(t) by canceling out the influence of agents leaving the
network.

A. Proposed Strategy

Let us first assume that G(t) is fixed, i.e., G(t) = G(0) for
all time instants t. In this case, when b = 2, if the agents
execute an average consensus protocol with initial conditions

xi(0) =

{
1 if hi(0) = 1;

0 otherwise,

then the average consensus protocol yields a consensus value
in the form

x̂ =
γ1(0)

| V(0)|
,

and we observe that, without the need to know | V(0)|, the
agents are able to compute the mode. In fact, if x̂ > 0.5
then γ1(0) > 0.5| V(0)| and thus the mode is equal to one;
similarly, when x̂ < 0.5 then γ1(0) < 0.5| V(0)| and the mode
is equal to two (when x̂ = 0.5 the values one and two are
equally distributed).

Let us generalize the above intuition to the case where b
could be larger than 2. In this case, under the assumption
that each agent knows b (this is not restrictive in practice, as
we assumed the agents must be able to choose one of the b
possible values), let us consider a scenario where each agent
is provided with a vectorial initial condition

xi(0) =
[
x
(1)
i (0), . . . , x

(b)
i (0)

]T
∈ Rb,

where for all i ∈ {1, . . . , nmax} and for all ` ∈ {1, . . . , b} it
holds

x
(`)
i (0) =

{
1 if hi(0) = `;

0 otherwise.
(2)

Assume the agents execute a vectorial average consensus
protocol (or, equivalently, b scalar consensus protocols in
parallel). Then, we have that the resulting vectorial average
consensus value x̂ is such that

x̂ =
1

| V(0)|
γ(0), (3)

where γ(0) ∈ Rb is the stack of the cardinalities γi(0) for all
values in H. Therefore the agents, without the need to know
| V(0)| are able to compute the mode by setting

m(t) = arg max
i=1,...,b

{γi(0)} = arg max
i=1,...,b

{x̂i},

i.e., by choosing the index of the component of x̂ with highest
value.

At this point, let us consider an open multi-agent system
where agents interact over an undirected time-varying graph
G(t) = {V(t), E(t)}, as described in Section II-B. In this
case, given the setup of the proposed scheme, the usage of a
classical consensus protocol would not suffice, as the arrival or
departure of agents may significantly and permanently modify
the consensus value, e.g., due to the past influence of agents
leaving the network at some point. For this reason, we need
a novel mechanism to track the consensus value: this is the
objective of the next section. Notably, since we formulate the
problem of computing the mode as a set of scalar average
consensus problems in parallel, in the next section we consider
the scalar consensus case.

IV. AVERAGE-PRESERVING CONSENSUS FOR OPEN
MULTI-AGENT SYSTEMS

In the previous section we show that, in order to compute
the mode of their initial values hi(0), chosen from a set of
b possible distinct values, the agents can execute b consensus
procedures in parallel, where the initial condition x(`)i (t) of the
`-th consensus procedure is chosen according to Eq. (2). In this
section we develop an algorithm to let the agents execute the
single consensus in an open multi-agent setting. For notational
convenience, in the remainder of this section we use xi(t)
to denote the state of the i-th agent in a scalar consensus
procedure. Moreover, we use x̄i to denote the initial state of
the i-th agent. In particular, let us consider an open multi-agent
system where agents interact over an undirected time-varying
graph G(t) = {V(t), E(t)}, as described in Section II-B.

Moreover, let us assume that each agent is provided with
an initial piece of information x̄i and let us define

c(t) =
1

| V(t)|
∑

i∈V(t)

x̄i, (4)

i.e., c(t) is the average of the initial condition of the agents
that are participating in the network at time t; notably the time-
varying number of agents | V(t)| is unknown to the agents and
c(t) varies as agents join and leave the network. In this section,
our objective is to design a discrete-time distributed control
protocol to let each agent track c(t). As noted in the previous
section, standard average consensus protocols may fail due to
the effect of agents joining and leaving the network on the
resulting consensus value. Moreover, we point out that any
mechanism based on a re-initialization of a standard average
consensus procedure each time an agent joins or leaves the
network would require some mechanism to spread the need for
re-initialization across the network, and thus any topological
variation would be noticed only after some delay.
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A. Proposed Protocol

Let W (t) be an nmax × nmax matrix satisfying:

(i) Wij(t) > 0 and Wij(t) = Wji(t) whenever (i, j) ∈ E(t);
(ii) Wij(t) = 0 for all i 6= j such that (i, j) 6∈ E(t);

(iii) Wii(t) = 0 for all i 6∈ V(t);
(iv) Inmax

+W (t) is nonnegative and doubly stochastic.

Moreover let us consider boolean variables φi(t), ψi(t) defined
as follows:

φi(t) =

{
1, if i ∈ R(t);

0, otherwise,
ψi(t) =

{
1, if i ∈ A(t);

0, otherwise.

Within the proposed protocol, at each time instant t each agent
i that is participating in the network (either because it was
already participating at time t − 1 or because it joins the
network at time t) maintains and updates an auxiliary variable
zij(t) for each of its neighbors in Ni(t). As discussed later,
such a variable will represent the main ingredient to guarantee
average-preservation in spite of the openness of the multi-
agent system. In more detail, the protocol proposed for each
agent i ∈ V(t+ 1) (i.e., considering only the agents that need
to perform an update at time t+ 1) is as follows

xi(t+ 1) = ψi(t)xi + φi(t)xi(t)

+ φi(t)

 ∑
j∈Ni (t)∩R(t)

Wij(t)
(
xj(t)− xi(t)

)
+
∑

j∈Ni (t)∩D(t)

zij(t)


︸ ︷︷ ︸

ui(t)

.

(5)
Moreover, each agent i ∈ V(t + 1) maintains and updates
auxiliary variable zij(t) with the following dynamics

zij(t+ 1) = φi(t)φj(t) (zij(t)−Wij(t)(xj(t)−xi(t))) . (6)

In other words, zij(t + 1) is zero whenever either i 6∈ R(t)
or j 6∈ R(t) (or both). Notably, in the proposed approach,
each agent must maintain O(| Ni(t)|b) variables at each time
instant. In the worst-case of a complete graph where | Ni(t)| =
n − 1, amounts to O(nb) variables. Therefore, the proposed
approach is particularly suitable when b is limited (i.e., when
each agent has to choose in a small set of possible alternatives)
and | Ni(t)| � n, e.g., in the case of mobile robots or sensors
with limited communication radius.

B. Convergence Analysis

In this subsection, we show that the sum of the initial
conditions of agents participating in the network is preserved
at all times and that, assuming the network becomes fixed at
some time instant t∗, the state xi(t) of the agents in V(t∗)
asymptotically reaches the average of the initial conditions of
the agents in V(t∗).

Theorem 1: Let us consider an open multi-agent system
where agents have dynamics described by Eqs. (5) and (6)
and interact over an undirected time-varying graph
G(t) = {V(t), E(t)}, as described in Section II-B. Moreover,
suppose W (t) satisfies conditions (i)–(iv) for all time

instants t. Then, for all t ≥ 0, it holds∑
i∈V(t)

xi(t) =
∑

i∈V(t)

x̄i. (7)

Proof: In order to prove our statement, we observe that,
by construction, it holds V(0) = A(−1), therefore∑

i∈V(0)

xi(0) =
∑

i∈V(0)

xi,

and thus our claim holds true for t = 0. Let us now prove that
the claim holds true at time t+1 for all t ≥ 0. To this end, by
using Eqs. (5) and (6), we note that for all i ∈ R(t) it holds

xi(t+ 1) +
∑

j∈Ni (t+1)

zij(t+ 1) = xi(t) +
∑

j∈Ni (t)∩R(t)

Wij(xi(t)− xj(t))

+
∑

j∈Ni (t)∩D(t)

zij(t) +
∑

j∈Ni (t)∩R(t)

zij(t)−
∑

j∈Ni (t)∩R(t)

Wij(xi(t)− xj(t))

= xi(t) +
∑

j∈Ni (t)

zij(t).

Thus, by defining t?i as the last time agent i ∈ R(t) joined/ac-
tivated before time t+ 1 (notably, by construction, such time
t∗ ≤ t exists for any t ≥ 0), it holds

xi(t+ 1) +
∑

j∈Ni (t+1)

zij(t+ 1) = xi(t
?
i ) +

∑
j∈Ni (t?i )

zij(t
?
i ).

At this point we observe that, by construction, all terms zij(t?i )
are equal to zero and xi(t?i ) = x̄i; therefore we have that, for
all i ∈ R(t) it holds

xi(t+ 1) +
∑

j∈Ni (t+1)

zij(t+ 1) = x̄i.

Moreover, for all i ∈ A(t) we have that, by definition
xi(t+ 1) = x̄i and zij(t+ 1) = 0; hence, it holds

xi(t+ 1) +
∑

j∈Ni (t+1)

zij(t+ 1) = x̄i

Therefore, since V(t+1) = A(t)∪R(t) and A(t)∩R(t) = ∅,
we obtain∑
i∈V(t+1)

xi(t+ 1) +
∑

i∈V(t+1)

∑
j∈Ni (t+1)

zij(t+ 1) =
∑

i∈V(t+1)

x̄i.

The proof follows noting that, by construction
zij(t+ 1) = −zji(t+ 1) and thus∑

i∈V(t+1)

∑
j∈Ni (t+1)

zij(t+ 1) = 0.

This completes our proof.
We are now in position to prove that, assuming no agent leaves
or joins the network after a time instant t∗, the agents’ states
converge to the average of the initial conditions of the nodes
that are participating in the network at time t∗.

Theorem 2: Let us consider an open multi-agent system
where agents have dynamics described by Eqs. (5) and (6)
and interact over an undirected time-varying graph
G(t) = {V(t), E(t)}, as described in Section II-B.
Moreover, suppose W (t) satisfies conditions (i)–(iv) for
all time instants t. Further to that, suppose that there
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is a finite time instant t∗ such that G(t) = G(t∗) for
all t ≥ t∗, i.e, no agent joins or leaves the network
from time t∗ on. Then, the state xi(t) of the agents
i ∈ V(t∗) asymptotically converges to c(t∗), i.e.,
limt→∞ |xi(t)− c(t∗)| = 0 for all i ∈ V(t∗); moreover, con-
vergence is exponential, and the convergence rate is given by
ρ2(Q(t∗)) ∈ (0, 1), where Q(t∗) = I| V(t∗)| +HW (t∗)HT ,
with H =

[
I| V(t∗)| O| V(t∗)|×q

]
, and q = nmax − |V(t∗)|,

while ρ2(·) is defined in Eq. (1).

Proof: In order to prove our result, we observe that,
assuming no agent joins or leaves the network from t∗ on,
for all t ≥ t∗ it holds c(t) = c(t∗), R(t) = R(t∗),
A(t) = D(t) = ∅, and thus V(t+ 1) = R(t∗). Therefore, we
have that, for all i ∈ R(t∗) and for all t ≥ t∗ φi(t) = 1 and,
by Eq. (5),

ei(t+ 1) = xi(t+ 1)︸ ︷︷ ︸
xi(t)+ui(t)

− c(t+ 1)︸ ︷︷ ︸
c(t)

= ei(t) + ui(t)

= ei(t) +
∑

j∈Ni (t)∩R(t)

Wij(t)
(
xj(t)− xi(t)︸ ︷︷ ︸

ej(t)−ei(t)

)
−

∑
j∈Ni (t)∩D(t)

zij(t)︸ ︷︷ ︸
0

= ei(t) +
∑

j∈Ni (t)∩R(t)

Wij(t)
(
ej(t)− ei(t)

)
,

(8)
where ui(t) is defined in Eq. (5) and the last equation
holds since, for all t ≥ t∗, we have that D(t) = ∅,
and thus Ni(t) ∩R(t) = Ni(t). Stacking the above equa-
tion for all agents, we obtain e(t+ 1) = P (t)e(t), where
P (t) = P (t∗) = Inmax

+W (t∗). For the sake of simplicity,
and without loss of generality, let us assume that the identifiers
of the nodes in V(t∗) correspond to the first | V(t∗)| ones and
let us decompose eT (t) as

eT (t) =
[
εT (t) ηT (t)

]T
,

where ε(t) collects the disagreement of the first | V(t∗)| agents
(i.e., the ones participating in the network from time t∗ on)
and η(t) collects the disagreement of the remaining agents.
Considering only the agents in V(t∗), we have that

ε(t+ 1) = Q(t∗)ε(t). (9)

By construction, Q(t∗) is nonnegative, doubly stochastic, and
the graph induced by considering its positive off-diagonal
entries is connected. Therefore, Eq. (9) is essentially a standard
discrete-time average consensus process, which is known [22]
to exponentially converge to the average of the initial condi-
tions (in our case, the average of the agents’ states at time
t∗) with convergence rate equal to ρ2(Q(t∗)) ∈ (0, 1). To
conclude we point out that, since we established in Theorem 1
that the sum of the initial conditions is preserved, we have that,
by construction, it holds

1

| V(t∗)|
∑

i∈V(t∗)

εi(t
∗) =

1

| V(t∗)|
∑

i∈V(t∗)

(xi(t)− c(t∗))

=
1

| V(t∗)|
∑

i∈V(t∗)

x̄i − c(t∗) = 0;

hence ε(t) approaches zero as t approaches infinity. This

completes our proof.

Remark 1: A simple, yet effective choice for the weights
Wij(t) that satisfies points (i)–(iv) is represented by the so-
called Metropolis weights [23], defined as

Wij(t) =


1

1 + max {∆i(t),∆j(t)}
(i, j) ∈ E(t),

−
∑

j∈Ni (t)

Wij(t) i = j,

0 otherwise.
(10)

In fact, with this choice, W (t) is by construction symmetric,
nonnegative, doubly stochastic and has a structure that corre-
sponds to the graph G(t).

Remark 2: The results in Theorems 1–2 easily generalize
to the case where G(t) has multiple connected components.
In fact, using the same argument as in Theorem 1, it can be
shown that the sum of the states of the nodes currently in a
component is equal to the sum of their initial values. Moreover,
with the same logic as in Theorem 2, if from some time t∗

the topology becomes fixed then each connected component
reaches the average of the initial values of the agents in that
component, with exponential convergence rate.

V. SIMULATIONS

Let us consider an open multi-agent system featuring
nmax = 30 agents, each provided with a value hi(0) chosen
among four possible alternatives, i.e., b = 4. As discussed in
Section III-A, the mode is computed by executing four scalar
consensus procedures in parallel, where the initial condition
x
(`)
i (0) of the i-th agent in the `-th scalar consensus procedure

is chosen according to Eq. (2). We assume that the agents are
initially all participating in the network (i.e., | V(0)| = nmax)
and that the graph G(0) modeling their initial interaction is
an undirected and connected Erdös-Rényi graph [24] with link
formation probability p = 0.35 (not reported here due to page-
limit restrictions). Let us consider a scenario where, at time
t = 30, a subset of 15 agents leaves the network, while at time
t = 61, ten agents that left the network join it again. In all
cases, the graph G(t) remains connected. Table I reports the
distribution over time of the cardinalities γj(t) for the different
values j ∈ H chosen by the agents, along with the mode m(t).
Notably, for t ∈ [30, 60] the mode changes from m(t) = 4 to
m(t) = 1, since seven agents holding the value hi = 4 and
six agents holding hi = 3 leave the network, but only one
agent holding hi = 1 does. At time t = 61, six agents holding
hi = 3 but only two agents with hi = 4 join again the network
and the mode becomes m(t) = 3.

γ1(t) γ2(t) γ3(t) γ4(t) m(t)

t ∈ [0, 29] 6 4 9 11 4
t ∈ [30, 60] 5 3 3 4 1
t ≥ 61 6 4 9 6 3

TABLE I: Cardinalities γj(t) and mode m(t) over time.
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Fig. 1: Evolution of the proposed algorithm for tracking the mode in open multi-agent system, which amounts to four instances of the scalar
consensus procedure proposed in Section IV. Within each procedure, the agents are able to compute a component of x̂ (Eq. (3)), and the
mode m(t) is chosen as the index of the component of x̂ with the largest magnitude. The dotted vertical lines correspond to the time instants
t = 30 and t = 61, respectively, where some of the agents leave and/or join the network.

Figure 1 shows the evolution of four scalar average con-
sensus procedures for open multi-agent systems, developed in
Section IV, which are run in parallel and allow the agents
to compute the four components of the vector x̂, defined
in Eq. (3). According to the figure, when agents join or
leave the network, a new transient is started and, within each
scalar procedure, the average of the initial conditions of agents
participating in the network is asymptotically computed. This
allows the agents to compute the mode m(t) by selecting
the index of the consensus variable of largest magnitude. In
particular, we observe that, indeed, the agents are able to
compute m(t) as being equal to four for t ∈ [0, 29], to one
for t ∈ [30, 60] and, again, to four for t ≥ 61.

VI. CONCLUSIONS

In this paper, a distributed strategy to allow agents in an
OMAS to track the mode of the initial conditions of those
agents that are currently participating in the network has been
developed, which is thus essentially a distributed majority
voting process. The approach is based on a novel average-
preserving distributed consensus protocol, which allows agents
participating in the network to compute the average of their
initial conditions by canceling out the influence of agents
leaving the network. Based on this, we develop a strategy to let
agents track the mode of a discrete and finite set of values. In
particular, our strategy is based on the execution in parallel of
the aforementioned average-preserving distributed consensus.
Future work will be devoted to extending the approach to
guarantee finite-time tracking and use the majority voting
process as a way to combine the outcome of classifiers trained
at each agent.
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