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Abstract

Paraorthomodular BZ∗-lattices, for short PBZ∗-lattices, were intro-
duced in [8] as an abstraction from the lattice of effects of a complex
separable Hilbert space, endowed with the spectral ordering. These struc-
tures were meant to be a first approximation to a complete description
of the equational theory of such lattices of effects. A better approxima-
tion is introduced here, together with a preliminary investigation of its
properties.
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1 Introduction

The variety PBZL∗ of paraorthomodular BZ ∗-lattices, for short PBZ ∗-lattices,
was introduced in the paper [8] and further studied in [9, 10, 11, 18, 12]. The key
motivation for this enquiry comes from the foundations of quantum mechanics.
Consider the structure

E (H) = 〈E (H) ,∧s,∨s,′ ,∼ ,O, I〉 ,

where:

� E (H) is the set of all effects of a given complex separable Hilbert space
H, i.e., positive linear operators of H that are bounded by the identity
operator I;

� ∧s and ∨s are the meet and the join, respectively, of the spectral ordering
≤s so defined for all E,F ∈ E (H):

E ≤s F iff ∀λ ∈ R : MF (λ) ≤ME(λ),

where for any effect E, ME is the unique spectral family [15, Ch. 7]
such that E =

∫∞
−∞ λ dME(λ) (the integral is here meant in the sense of

norm-converging Riemann-Stieltjes sums [19, Ch. 1]);
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� O and I are the null and identity operators, respectively;

� E′ = I− E and E∼ = Pker(E) (the projection onto the kernel of E).

The operations in E (H) are well-defined. The spectral ordering is indeed a
lattice ordering [4] that coincides with the usual ordering of effects induced via
the trace functional when both orderings are restricted to the set of projection
operators of the same Hilbert space.

A PBZ∗-lattice can be viewed as an abstraction from this concrete physi-
cal model, much in the same way as an orthomodular lattice can be viewed as
an abstraction from a certain structure of projection operators in a complex
separable Hilbert space. Indeed, the analogy can be pressed further: the equa-
tional theories of both classes of algebras are incomplete with respect to the
concrete structures they intend to capture. It is well-known (see e.g. [3]) that
there are identities — like, e.g., the orthoarguesian identity —that fail in cer-
tain orthomodular lattices, but hold in all orthomodular lattices of projection
operators of Hilbert spaces. A similar phenomenon can be detected in the case
of PBZ∗-lattices.

In this paper, we enrich the equational theory of PBZ∗-lattices so as to ob-
tain a better approximation to the equational properties of PBZ∗-lattices of
effects. The additional property we consider, called semiorthomodularity, corre-
sponds to one of the several possible expressions of the orthomodular property
in the language of PBZ∗-lattices, which expands the language of orthomodu-
lar lattices by an additional unary operator ∼. The preliminary investigation
of semiorthomodularity offered in this paper barely scratches the surface of its
potential uses. To mention only one possible application, we expect, in future
work, to be in a position to reconstruct for semiorthomodular PBZ∗-lattices
at least part of the theory of the commuting relation in orthomodular lattices,
including a reasonable version of the Foulis-Holland theorem [1].

The paper is structured as follows. We start with some preliminaries. Section
2 contains some background notions and notational conventions on universal
algebra and lattice theory, while Section 3 is devoted to a presentation of PBZ∗-
lattices that is as self-contained as possible — although the reader is still advised
to look at the above-cited papers for additional information on these structures.
In Section 4 we introduce semiorthomodular PBZ∗-lattices and make a note of
some of their elementary properties, including a proof that the PBZ∗-lattices of
the form E (H), for H a complex separable Hilbert space, are semiorthomodular.
In Section 5 we provide a different characterisation of PBZ∗-lattices, with a
more order-theoretical flavour. In Section 6 we determine the whereabouts of
semiorthomodular PBZ∗-lattices in the lattice of subvarieties of PBZ∗-lattices.
Finally, in Section 7, we prove that the variety of semiorthomodular PBZ∗-
lattices is term equivalent to a variety of expanded left-residuated groupoids.
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2 Preliminaries from Universal Algebra and Lat-
tice Theory

We denote by N the set of the natural numbers, and by N∗ = N \ {0}. All alge-
bras in this paper will be nonempty, and by trivial algebra we mean a singleton
algebra. For any signature, the trivial variety, consisting of the singleton alge-
bras of that signature, will be denoted by T, and its members will be considered
subdirectly irreducible.

Let A and B be algebras with reducts in a variety V of type τ and C be a
class of algebras with reducts in V. For any first order formula ϕ over τ , we say
that A � ϕ iff the τ–reduct of A satisfies ϕ. Now let n ∈ N∗ and A1, . . . , An
be nonempty subsets of A; if ϕ contains n variables x1, . . . , xn enumerated here
in their order of appearance in ϕ, then we denote by A �A1,...,An

ϕ(x1, . . . , xn)
the property that ϕA(a1, . . . , an) holds for any a1 ∈ A1, . . . , an ∈ An; if any of
the sets A1, . . . , An is a singleton {a}, then {a} can be replaced with a in the
previous notation.

We denote by A ∼=τ B the fact that the τ–reducts of A and B are isomor-
phic. HV(C), SV(C) and PV(C) will be the classes of the homomorphic images,
subalgebras and direct products of the τ–reducts of the members of C, respec-
tively, and we abbreviate by VV(C) = HVSVPV(C) the subvariety of V generated
by the τ–reducts of the members of C.

ConV(A) will denote the lattice of the congruences of the τ–reduct of A.
As an immediate consequence of [13, Corollary 2, p. 51], if A belongs to a
variety W, then ConW(A) is a complete bounded sublattice of ConV(A). For
any n ∈ N∗ and any constants κ1, . . . , κn in τ , we denote by ConVκ1,...,κn

(A) =
{θ ∈ ConV(A) : (∀ i ∈ 1, n) (κAi /θ = {κAi })}: the set of the congruences of
the τ–reduct of A with singleton classes of κA1 , . . . , κ

A
n . Recall from [11] that

ConVκ1,...,κn
(A) is a complete sublattice of ConV(A) and thus a bounded lattice.

If V is the variety of lattices or that of bounded lattices, then the index V will
be eliminated from all previous notations.

For any lattice L, we denote by Ld the dual of L, and, given any a ∈ L, [a)
and (a] will denote the principal filter and the principal ideal generated by a,
respectively. For any n ∈ N∗, Dn will designate the n–element chain, as well as
any algebra having this lattice reduct. The lattice reduct of an arbitrary lattice–
ordered algebra M will be denoted by Ml, and, for any class K of algebras with
lattice reducts, we will denote by Kl = {Ll : L ∈ K}.

Recall that the ordinal sum (also called glued sum) of a lattice L with top
element 1L with a lattice M with bottom element 0M is the lattice L ⊕M
obtained by glueing 1L and 0M together and thus stacking M on top of L;
L ⊕M will denote its universe, obtained by factoring the disjoint union of L
with M through the equivalence having {1L, 0M} as unique nonsingleton class.
See the exact definition in [11].

If (Li)i∈I is a nonempty family of nontrivial bounded lattices, then the
horizontal sum of the family (Li)i∈I is the nontrivial bounded lattice �i∈ILi
obtained by glueing the bottom elements 0Li of these lattices together, glue-
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ing their top elements 1Li together, and, for every i, j ∈ I with i 6= j, letting
every element from Li \ {0Li , 1Li} be incomparable with every element from
Lj \ {0Lj , 1Lj}, so that the union of the orders of the lattices from this family
becomes the order of the lattice �i∈ILi; we denote by �i∈ILi its universe, ob-
tained by factoring the disjoint union of the family (Li)i∈I through the equiv-
alence with the classes {0Li : i ∈ I}, {1Li : i ∈ I} and every other class a
singleton. See the exact definition in [11]. If αi is an equivalence on Li for
each i ∈ I, then we denote by �i∈Iαi the equivalence on �i∈ILi generated by⋃
i∈I αi. Note that �i∈Iαi ∈ Con01(�i∈ILi) if αi ∈ Con01(Li) for each i ∈ I.

Note that the ordinal sum of bounded lattices is associative, while the hori-
zontal sum for the case when |I| ≤ 2 is associative, commutative and has D2 as
a neutral element.

3 Preliminaries on PBZ∗-lattices

We recap in this section some preliminary notions on PBZ∗-lattices needed to
make this paper self-contained. For additional information, we refer the reader
to [8, 9, 10, 11, 12, 18].

Recall that a bounded involution lattice (in brief, BI–lattice) is an algebra
L = 〈L,∧,∨,′ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that 〈L,∧,∨, 0, 1〉 is a bounded
lattice and ′ : L → L is an order–reversing map that satisfies a′′ = a for all
a ∈ L. This makes ′ a dual lattice automorphism of L, called involution. If
A is an algebra having a BI–lattice reduct, then this reduct will be denoted
by Abi. If C is a class of algebras with BI–lattice reducts, then we denote by
CBI = {Mbi : M ∈ C}.

Until mentioned otherwise, let L be a BI–lattice. We let S(L) = {a ∈ L :
a ∧ a′ = 0} and we call the elements of S(L) the sharp elements of L. L is
called an ortholattice iff S(L) = L. L is said to be paraorthomodular iff, for all
a, b ∈ L, if a ≤ b and a′ ∧ b = 0, then a = b. L is called an orthomodular lattice
iff, for all a, b ∈ L, a ≤ b implies b = (b ∧ a′) ∨ a.

A pseudo–Kleene algebra is a BI–lattice L which satisfies the following equa-
tional condition that we will refer to as the Kleene condition: a ∧ a′ ≤ b ∨ b′
for all a, b ∈ L. The involution of a pseudo–Kleene algebra is called Kleene
complement. Distributive pseudo–Kleene algebras are called Kleene algebras or
Kleene lattices. Clearly, any ortholattice is a pseudo–Kleene algebra, ortho-
modular lattices are exactly the paraorthomodular ortholattices, distributive
orthomodular lattices are exactly Boolean algebras (with their Boolean comple-
ments as involutions), and any modular ortholattice is an orthomodular lattice.
The bounded lattice D4 � D4 can be organised as a non–orthomodular, and
thus non–paraorthomodular, ortholattice, called the Benzene ring and denoted
by B6. Following general usage, for any non–empty set I, if κ = |I|, we denote
by MOκ = �i∈ID2

2 the modular ortholattice of length 3 having exactly 2 · κ
atoms.

For any bounded lattice M and any BI–lattice K, if ′K is the involution
of K and f is a dual lattice automorphism of M, then the bounded lattice
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M ⊕ K ⊕Md, can be canonically endowed with the involution ′ : M ⊕ K ⊕
Md → M ⊕ K ⊕Md defined by: ′ |M= f : M → Md, ′ |K=′K: K → K and
′ |Md= f : Md → M , thus becoming a BI–lattice that we will also denote by
M ⊕ K ⊕Md. Clearly, M ⊕ K ⊕Md is a pseudo–Kleene algebra iff K is a
pseudo–Kleene algebra.

For any non–empty family of BI–lattices (Li)i∈I , the horizontal sum of
bounded lattices �i∈I(Li)l can be organised as a BI–lattice �i∈ILi with the
involution that restricts to the involution of Li for every i ∈ I. Note that the
BI–lattice �i∈ILi is a pseudo–Kleene algebra iff every member of the family
(Li)i∈I is a pseudo–Kleene algebra and at most one member of this family is
not an ortholattice.

A Brouwer–Zadeh lattice (in brief, BZ-lattice) is an algebra

L = 〈L,∧,∨,′ ,∼, 0, 1〉

of type 〈2, 2, 1, 1, 0, 0〉, such that 〈L,∧,∨,′ , 0, 1〉 is a pseudo–Kleene algebra and
the unary operation ∼, called Brouwer complement, reverses the lattice order
and satisfies a ∧ a∼ = 0 and a ≤ a∼∼ = a∼′ for all a ∈ L. In any BZ-lattice L,
we denote by ♦a = a∼∼ and �a = a′∼ for any a ∈ L.

It is easy to notice that, in any BZ-lattice L:

� {a∼ : a ∈ L} = {a ∈ L : a = ♦a};

� for all a ∈ L, a∼ ≤ a′, thus �a ≤ a′′ = a;

� for all a, b ∈ L, ♦(a ∧ b) ≤ ♦a ∧ ♦b and ♦(a ∨ b) = ♦a ∨ ♦b.

A BZ∗-lattice is a BZ-lattice L that satisfies the following equation, which we
call condition (∗): (a∧ a′)∼ = a∼ ∨�a for all a ∈ L. We call paraorthomodular
BZ∗-lattices, in brief, PBZ∗-lattices.

We denote by BI, PKA, KA, OL, OML, MOL and BA the varieties of BI–
lattices, pseudo–Kleene algebras, Kleene algebras, ortholattices, orthomodular
lattices, modular ortholattices and Boolean algebras, respectively. Note that
BA ( MOL ( OML ( OL ( PKA ( BI and BA ( KA ( PKA.

For any BZ-lattice L, we denote by S(L) the set S(Lbi) of the sharp elements
of the BI–lattice reduct of L and we call these elements sharp or Kleene sharp
elements of L. If L is a PBZ∗-lattice, then

S(L) = {a∼ : a ∈ L} = {a ∈ L : a = ♦a} = {a ∈ L : a′ = a∼}

and S(L) is the universe of the largest orthomodular subalgebra of L, that we
denote by S(L); consequently, L is orthomodular iff all its elements are sharp
iff its Kleene complement coincides to its Brouwer complement.

We denote by BZL and BZL∗ the varieties of BZ-lattices and BZ∗-lattices,
respectively. PBZ∗-lattices form a variety, as well, that we denote by PBZL∗. By
the above, the variety OML can be identified with the subvariety of PBZL∗ con-
sisting of its orthomodular members, each of which is endowed with a Brouwer
complement equal to its Kleene complement. A staple result in the theory of
orthomodular lattices will be useful in what follows:

5



Theorem 1 (Foulis–Holland). [1] If L ∈ OML and a, b, c ∈ L are such that
(a∧ b)∨ (a′ ∧ b) = b and (a∧ c)∨ (a′ ∧ c) = c, then the sublattice of Ll generated
by {a, b, c} is distributive.

For any PBZ∗-lattice L, we set D(L) = {x ∈ L : x∼ = 0}; we call the
elements of D(L) dense elements of L. It is easy to see that any element a of a
PBZ∗-lattice with a ≥ a′ is dense.

The PBZ∗-lattices with no sharp elements besides 0 and 1 are called an-
tiortholattices. They form a positive proper universal class that we denote by
AOL. Antiortholattices are exactly the PBZ∗-lattices L endowed with the triv-
ial Brouwer complement, defined by 0∼ = 1 and a∼ = 0 for all a ∈ L\{0}. Thus
antiortholattices coincide with the PBZ∗-lattices in which all nonzero elements
are dense.

Any BZ-lattice with the 0 meet–irreducible, in particular any BZ–chain, is
an antiortholattice. Moreover, antiortholattices are exactly the pseudo–Kleene
algebras with no nontrivial sharp elements, endowed with the trivial Brouwer
complement (conditions which imply paraorthomodularity). Hence, if M is a
nontrivial bounded lattice and K is a pseudo–Kleene algebra, then the canon-
ical pseudo–Kleene algebra M ⊕ K ⊕Md, endowed with the trivial Brouwer
complement, becomes an antiortholattice, that we denote by M⊕K⊕Md, as
well.

Proposition 2. Any pseudo–Kleene algebra L = 〈L,∧,∨,′ , 0, 1〉 can be endowed
with at most one Brouwer complement ∼ : L→ L such that 〈L,∧,∨,′ ,∼, 0, 1〉 is
a PBZ∗-lattice.

Proof. Let L ∈ PKA, and let ∼ : L → L and ◦ : L → L be such that both
L∼ = 〈L,∧,∨,′ ,∼ , 0, 1〉 and L◦ = 〈L,∧,∨,′ ,◦ , 0, 1〉 are PBZ∗-lattices. Then,
by the above, S(L∼) = S(L◦) = S(L) = {a ∈ L : a ∨ a′ = 1}, hence, for
any x ∈ L, we have: x∼ ∈ S(L∼) = S(L◦), thus x ≤ x∼∼ = x∼′ = x∼◦,
hence x◦ ≥ x∼◦◦ ≥ x∼, thus x∼ ≤ x◦. Analogously, x◦ ≤ x∼, hence x∼ = x◦.
Therefore the Brouwer complements ∼ and ◦ coincide.

Example 3. For BZ∗-lattices or paraorthomodular BZ-lattices instead of PBZ∗–
lattices, the previous result does not hold. Indeed, for instance, the 4–element
Boolean algebra can be organised as a paraorthomodular BZ-lattice both as an
orthomodular lattice, that is with its Brouwer complement equalling its Kleene
(Boolean) complement, and with the trivial Brouwer complement, while the
following non-paraorthomodular ortholattice can be organised as a BZ∗–lattice
with any of the Brouwer complements from the table next to its Hasse diagram:

0
rr rr rr rr

@@ ��

�� @@

1

a b
c
b′

c′
a′ x 0 a a′ b b′ c c′ 1

x∼ 1 b b′ a a′ c c′ 0
x◦ 1 b b′ a a′ b b′ 0

For any nonempty family of BZ-lattices (Ki)i∈I such that the BI–lattice
reduct of at most one member of this family is not an ortholattice, the horizontal
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sum of pseudo–Kleene algebras �i∈I(Ki)bi becomes a BZ-lattice �i∈IKi when
endowed with the union of the Brouwer complements of the members of this
family. Clearly, the BZ-lattice �i∈IKi satisfies condition (∗) iff each member of
the family (Ki)i∈I satisfies condition (∗). By the above, the BZ-lattice �i∈IKi

is paraorthomodular iff all members of this family are paraorthomodular and at
most one of them is not orthomodular.

Now we recall some notations from [11].
Let C and D be nonempty classes of lattice–ordered algebras such that:

either C and D are subclasses of the variety of bounded lattices, or they are
both subclasses of BI, or C ⊆ OL and D ⊆ PKA, or C ⊆ OML and D ⊆ PBZL∗.
Then we denote by C � D = T ∪ {L �M : L ∈ C \ T,M ∈ D \ T}, which is a
class of bounded lattices, or a subclass of BI, or of PKA, or of PBZL∗, in the
cases above, respectively. Since D2 is a neutral element w.r.t. the horizontal
sum, if D2 ∈ D, then C ⊆ C� D.

We consider the following equations over BZL, out of which we may note
that the equation OML is equivalent with orthomodularity expressed by the
implication above:

SDM (Strong De Morgan) (x ∧ y)
∼ ≈ x∼ ∨ y∼

WSDM (weak SDM ) (x ∧ y∼)
∼ ≈ x∼ ∨ ♦y

SK x ∧ ♦y ≤ �x ∨ y
J0 (x ∧ y∼) ∨ (x ∧ ♦y) ≈ x
J1 (x ∧ (x ∧ y)

∼
) ∨ (x ∧ ♦ (x ∧ y)) ≈ x

J2 (x ∧ (y ∧ y′)∼) ∨ (x ∧ ♦ (y ∧ y′)) ≈ x
OML ((x ∨ y′) ∧ y) ∨ y′ ≈ x ∨ y′
MOD x ∨ (y ∧ (x ∨ z)) ≈ (x ∨ y) ∧ (x ∨ z)
DIST x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

All subdirectly irreducible members of the variety VBZL(AOL) generated by
antiortholattices belong to AOL, which shows that, for any subvariety V of
PBZL∗, the intersection V ∩ VBZL(AOL) is generated by V ∩ AOL: the an-
tiortholattices that belong to V.

We denote by SK, SDM, WSDM, MOD and DIST the subvarieties of PBZL∗
relatively axiomatised by SK, SDM, WSDM, MOD and DIST w.r.t. PBZL∗,
respectively. We also denote by SAOL = SDM ∩ VBZL(AOL), which, by the
above, is generated by the antiortholattices with the Strong De Morgan property,
which are exactly the PBZ∗–lattices with the 0 meet–irreducible. We have
OML ( SDM ( WSDM ( PBZL∗.

By the above, in PBZL∗, OML is equivalent to x′ ≈ x∼. Clearly, OML
implies SDM, SDM implies WSDM, J0 implies J1 and J2, and, by [10], J0
implies WSDM. By [10], J0 axiomatises the variety VBZL(AOL) over PBZL∗.
VBZL(AOL) is incomparable to OML, it intersects it at the single atom OML∩
VBZL(AOL) = OML∩DIST = BA of the lattice of subvarieties of PBZL∗ and it
joins it strictly below PBZL∗, at the variety OML∨VBZL(AOL) axiomatised by
{WSDM, J1} or, equivalently, by {WSDM, J2} w.r.t. PBZL∗, according to [10].

By [11], J1 and J2 are equivalent under WSDM. Also by [11], we have the
following:
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� OML ∨ VBZL(AOL) ( VBZL(OML� AOL) ( VBZL(OML� VBZL(AOL));

� the varieties VBZL(OML�AOL) and VBZL(OML�VBZL(AOL)) are incom-
parable to each of SDM and WSDM;

� VBZL(OML � AOL) ∩WSDM = VBZL(OML � VBZL(AOL)) ∩WSDM =
OML ∨ VBZL(AOL).

In the same paper, an equational basis for VBZL(OML � AOL) relative to
PBZL∗ is given, and it is shown that J1 is preserved (and reflected) by horizontal
sums with orthomodular lattices, while J2 is not; in fact, every member of the
class OML� (VBZL(AOL) \ AOL) fails J2.

4 Semiorthomodular BZ∗–Lattices

In [8] there is a short discussion concerning the determination of the equational
properties valid in all PBZ∗–lattices of effects of some Hilbert space, as opposed
to the equational properties characterising PBZ∗–lattices in general. As a con-
tribution towards shedding more light on this problem, we set out to investigate
one of the possible ways to express the orthomodular property in the language
of PBZ∗-lattices, which we call semiorthomodularity since it does not imply,
although it is implied by, the identity x′ ≈ x∼. The semiorthomodular identity
holds in all PBZ∗–lattices of effects of some Hilbert space, but not throughout
PBZL∗.

Definition 4. We call semiorthomodular BZ ∗–lattice a BZ∗-lattice that satisfies
the following identity, hereafter referred to as semiorthomodularity :

SOML ((x ∨ y∼) ∧ ♦y) ∨ y∼ ≈ x ∨ y∼.

We denote by SOML the variety of semiorthomodular BZ∗–lattices. Next,
we provide some examples of such structures. First, observe that all orthomod-
ular lattices, as well as all members of VBZL(AOL), satisfy SOML. The next
proposition shows, as already claimed, that SOML holds in PBZ∗–lattices of
effects — where, as recalled in the introduction, ∧s and ∨s denote the lattice
operations derived from the spectral ordering.

Proposition 5. If H is a complex separable Hilbert space, the PBZ∗–lattice

E (H) = 〈E (H) ,∧s,∨s,′ ,∼ ,O, I〉

of effects of H is semiorthomodular.

Proof. Let E,F ∈ E (H). By [5, p. 109], if E and F commute, the set {E,F}
generates a finite von Neumann algebra. However, it is shown in [4] that the
PBZ∗-lattice of effects of a finite von Neumann algebra is modular. Thus, in
order to show our claim it suffices to prove that E ∨s F∼ commutes with F∼.
Now, since F∼ ≤s E ∨s F∼ and F∼ is a projection operator, our conclusion
follows.
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We now provide some equivalent characterisations of semiorthomodularity.
For the next theorem, note that SOML clearly implies the quasiequation in (1),
and vice versa, substituting x with x∨y∼ in this quasiequation gives us SOML.
Similarly for the equivalences between the quasiequations and the equations
stated directly in conditions (2) through (8) from this theorem.

Theorem 6. In the variety of BZ-lattices, the following equational conditions
are equivalent:

(1) semiorthomodularity, or, equivalently: y∼ ≤ x⇒ x ≈ y∼ ∨ (x ∧ ♦y);

(2) ♦y ≤ x ⇒ x ≈ ♦y ∨ (x ∧ y∼), otherwise written: x ∨ ♦y ≈ ((x ∨ ♦y) ∧
y∼) ∨ ♦y;

(3) y ≤ x⇒ x ≈ y∨(x∧(�y)∼), otherwise written: x∨y ≈ ((x∨y)∧(�y)∼)∨y,
or, equivalently: x ≈ (x ∧ y) ∨ (x ∧ (�(x ∧ y))∼);

(4) x ≤ y ⇒ x ≈ (x ∨ y∼) ∧ y, otherwise written: x ∧ y ≈ ((x ∧ y) ∨ y∼) ∧ y,
or, equivalently: x ≈ (x ∨ (x ∨ y)

∼
) ∧ (x ∨ y);

(5) x ≤ y ⇒ x ≈ (x ∨ y∼)∧♦y, otherwise written: x∧y ≈ ((x ∧ y) ∨ y∼)∧♦y,
or, equivalently: x ≈ (x ∨ (x ∨ y)

∼
) ∧ ♦ (x ∨ y);

(6) x ≤ y∼ ⇒ x ≈ (x ∨ y) ∧ y∼, otherwise written: x ∧ y∼ ≈ ((x ∧ y∼) ∨ y) ∧
y∼;

(7) x ≤ y∼ ⇒ x ≈ (x ∨ ♦y) ∧ y∼, otherwise written: x ∧ y∼ ≈ ((x ∧ y∼) ∨
♦y) ∧ y∼;

(8) x ≤ ♦y ⇒ x ≈ (x ∨ y∼)∧♦y, otherwise written: x∧♦y ≈ ((x ∧ ♦y) ∨ y∼)∧
♦y;

(9) x ∧ y ≈ ((x ∧ ♦y) ∨ y∼) ∧ y.

Proof. Both implications in each of the equivalences (1) ⇔ (2) and (7) ⇔ (8),
as well as the implication (6) ⇒ (8) can be obtained by replacing y with y∼.
The implication (4) ⇒ (8) can be obtained by replacing y by ♦y. Now let L be
a BZ-lattice and let a, b ∈ L. (1) ⇔ (8). If L satisfies (1), then:

a ∧ ♦b = a′′ ∧ ♦b
= (a′ ∨ b∼)

′

= (((a′ ∨ b∼) ∧ ♦b) ∨ b∼)
′

= ((a′ ∨ b∼) ∧ ♦b)′ ∧ ♦b
= ((a ∧ ♦b) ∨ b∼) ∧ ♦b.

The converse implication is handled similarly. Analogously, (2) ⇔ (7). (8) ⇒
(9). If L satisfies (8), then:

a ∧ b = a ∧ b ∧ ♦b
= b ∧ ((a ∧ ♦b) ∨ b∼) ∧ ♦b (by (8))
= b ∧ ((a ∧ ♦b) ∨ b∼) (by b ≤ ♦b)
= ((a ∧ ♦b) ∨ b∼) ∧ b.
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(9) ⇒ (4). If L satisfies (9) and a ≤ b, then a = a ∧ b = ((a ∧ ♦b) ∨ b∼) ∧ b =
(a ∨ b∼) ∧ b. (8) ⇒ (5). Our conclusion follows since a ≤ a ∨ b ≤ ♦ (a ∨ b). (5)
⇒ (6). If L satisfies (5) and a ≤ b∼, then:

a = (a ∨ (a ∨ b∼)
∼

) ∧ ♦ (a ∨ b∼) (by (5))
= (a ∨ ♦b) ∧ b∼ (by assumption)
≥ (a ∨ b) ∧ b∼
≥ a.

(2) ⇒ (3). If b ≤ a, then ♦(�b) = b′∼∼∼ = b′∼ = �b ≤ b ≤ a, hence, by
substituting x with a and y with �b in (2), we get that a = ♦(�b)∨(a∧(�b)∼) =
�b ∨ (a ∧ (�b)∼) ≤ b ∨ (a ∧ (�b)∼) ≤ a since �b ≤ b, a ∧ (�b)∼ ≤ a and, by
the hypothesis, b ≤ a, as well, therefore a = b ∨ (a ∧ (�b)∼). (3) ⇒ (2). If
♦b ≤ a, then, by substituting x with a and y with ♦b in (3), we get that
a = ♦b∨ (a∧ (�(♦b))∼) = ♦b∨ (a∧ b∼) since (�(♦b))∼ = b∼∼′∼∼ = b∼∼∼∼∼ =
b∼.

Notice that the equation in (7) from Theorem 6 is the lattice dual of semiortho-
modularity. Observe that the identities corresponding to the lattice duals of the
first equation in (4):

(4d) x ∨ y ≈ ((x ∨ y) ∧ y∼) ∨ y
(4d’) x ∨ y ≈ ((x ∨ y) ∧ x∼) ∨ x,

fail in SOML. For a counterexample e.g. to (4d), consider D3 and denote by a
its single unsharp element. Then:

(x ∨ y)
D3 (1, a) = 1 6= a = (((x ∨ y) ∧ y∼) ∨ y)

D3 (1, a) .

In an axiomatisation of SOML relative to BZL∗, paraorthomodularity doesn’t
need to be postulated. Indeed, upon recalling that

Lemma 7. [10] In the variety of BZ∗-lattices, paraorthomodularity is equivalent
to the following equational condition, called ♦–orthomodularity:

(x∼ ∨ (♦x ∧ ♦y)) ∧ ♦x ≤ ♦y,

we obtain that

Corollary 8. SOML implies paraorthomodularity in BZL∗, but not in in BZL.

Proof. By the equivalence of (1) with (7) in Theorem 6, SOML is equivalent to
((x∧ y∼)∨♦y)∧ y∼ ≈ x∧ y∼, in which, by replacing x with ♦y and y with x∼

and switching the joinands in the lhs, we obtain:

(x∼ ∨ (♦x ∧ ♦y)) ∧ ♦x ≈ ♦x ∧ ♦y ≤ ♦y,

which thus implies ♦–orthomodularity, which in turn is equivalent to paraortho-
modularity in BZL∗, according to Lemma 7. The benzene ring B6, endowed
with the trivial Brouwer complement, is a BZ-lattice that satisfies SOML, but
fails condition (∗) and also fails paraorthomodularity.

Corollary 9. Any semiorthomodular BZ∗–lattice is a PBZ∗–lattice.
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5 An Order–Theoretic Characterisation of SOML

In this section, we aim at a better description of SOML from the order–theoretic
viewpoint.

Lemma 10. Let L be a BZ–lattice. Then:

(1) L � SOML iff, for all a, b ∈ L, L �a,b∼ SOML;

(2) for any a, b ∈ L: L �a,b∼ SOML iff L �a,b∼ OML, and L �a,b SOML iff
L �a,♦b SOML iff L �a,♦b OML;

(3) if L is a PBZ∗–lattice, then: L � SOML iff L �L,S(L) SOML iff L �L,S(L)

OML.

Proof. (1) L � SOML iff, for all a, b ∈ L, L �a,b SOML. Both implications
follow by changing b with b∼ in the current equation.
(2) By the fact that b∼′ = b∼∼ and ♦b∼ = b∼ for any b ∈ L.
(3) By (2) and the fact that, if L is a PBZ∗–lattice, then S(L) = {b∼ : b ∈
L}.

Lemma 11. For any BZ–lattice L and any a, b ∈ L, we have:

(1) L �a,b SOML iff L �a∨b∼,b SOML iff L �a∨b∼,♦b SOML iff L �a∨b∼,♦b
OML; L �a,b∼ SOML iff L �a,b∼ OML iff L �a∨♦b,b∼ SOML iff L �a∨♦b,b∼
OML;

(2) if a ≤ b∼, then L �a,b SOML and L �a,♦b SOML;

(3) L �(b∼],b SOML and L �(b∼],♦b SOML.

Proof. (1) Both the lhs and the rhs of the equation SOML evaluated in (a, b)
coincide with the same terms evaluated in (a∨b∼, b), hence the first equivalence,
from which, along with Lemma 10.(2), we get the rest.
(2) If a ≤ b∼, then ((a∨ b∼)∧♦b)∨ b∼ = (b∼∧♦b)∨ b∼ = 0∨ b∼ = b∼ = a∨ b∼,
thus L �a,b SOML, hence L �a,♦b SOML, as well, according to Lemma 10.(2).
(3) By (2).

Lemma 12. Let L be a BZ–lattice and a, b ∈ L.

(1) if a ≥ b∼, then: L �a,b SOML iff (a ∧ ♦b) ∨ b∼ = a iff (a ∧ ♦b) ∨ b∼ ≥ a
iff (a ∧ ♦b) ∨ b∼ ≮ a iff {0, b∼, a ∧ ♦b, a} is the universe of a sublattice of
Ll iff {0, b∼, a ∧ ♦b,♦b, a, 1} is the universe of a bounded sublattice of Ll;

(2) if a > b∼, then: L �a,b SOML iff {0, b∼, a ∧ ♦b, a} is the universe of a
sublattice of Ll isomorphic to D2

2;

(3) if 1 6= a > b∼, then: L �a,b SOML iff {0, b∼, a∧♦b,♦b, a, 1} is the universe
of a bounded sublattice of Ll isomorphic to D2 ×D3.
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Proof. (1) Let us recall that L �a,b SOML iff ((a ∨ b∼) ∧ ♦b) ∨ b∼ = a ∨ b∼,
which in this case when a ≥ b∼ is equivalent to (a ∧ ♦b) ∨ b∼ = a.

Since (a∨ b∼)∧♦b ≤ a∨ b∼ and thus ((a∨ b∼)∧♦b)∨ b∼ ≤ a∨ b∼, it follows
that L �a,b SOML iff ((a∨b∼)∧♦b)∨b∼ ≥ a∨b∼ iff ((a∨b∼)∧♦b)∨b∼ ≮ a∨b∼.

0
r
rr rr

�
�r
1

a ∧ ♦b
♦b b∼

a

@
@
�
�

�
�
@
@

a ∧ ♦b ∧ b∼ = a ∧ 0 = 0, thus L �a,b SOML iff {0, b∼, a ∧ ♦b, a} is the set
reduct of a sublattice of Ll.

Since a ≥ b∼, we have a ∨ ♦b = 1, thus {a ∧ ♦b,♦b, a, 1} is the set reduct of
a sublattice of Ll, hence {0, b∼, a∧♦b, a} is the universe of a sublattice of Ll iff
{0, b∼, a ∧ ♦b,♦b, a, 1} is the universe of a bounded sublattice of Ll.
(2),(3) By (1).

Proposition 13. Let L be a BZ–lattice and a, b ∈ L. Then:

(1) L �a,b SOML iff ((a∨b∼)∧♦b)∨b∼ ≥ a∨b∼ iff ((a∨b∼)∧♦b)∨b∼ ≮ a∨b∼
iff {0, b∼, (a ∨ b∼) ∧ ♦b, a ∨ b∼} is the universe of a sublattice of Ll iff
{0, b∼, (a∨b∼)∧♦b,♦b, a∨b∼, 1} is the universe of a bounded sublattice of
Ll; L �a,b∼ SOML iff ((a∨♦b)∧b∼)∨♦b ≥ a∨♦b iff ((a∨♦b)∧b∼)∨♦b ≮
a∨♦b iff {0,♦b, (a∨♦b)∧ b∼, a∨♦b} is the universe of a sublattice of Ll
iff {0,♦b, (a∨♦b)∧b∼, b∼, a∨♦b, 1} is the universe of a bounded sublattice
of Ll;

(2) if a � b∼, then: L �a,b SOML iff {0, b∼, (a ∨ b∼) ∧ ♦b, a ∨ b∼} is the
universe of a sublattice of Ll isomorphic to D2

2; if a � b∼ and a∨ b∼ 6= 1,
then: L �a,b SOML iff {0, b∼, (a ∨ b∼) ∧ ♦b,♦b, a ∨ b∼, 1} is the universe
of a bounded sublattice of Ll isomorphic to D2 ×D3;

(3) if a � ♦b, then: L �a,b∼ SOML iff {0,♦b, (a ∨ ♦b) ∧ b∼, a ∨ ♦b} is the
universe of a sublattice of Ll isomorphic to D2

2; if a � ♦b and a∨♦b 6= 1,
then: L �a,b∼ SOML iff {0,♦b, (a∨♦b)∧ b∼, b∼, a∨♦b, 1} is the universe
of a bounded sublattice of Ll isomorphic to D2 ×D3.

Proof. By Lemma 11.(1) and Lemma 12 in which we replace a by a ∨ b∼, then
by a ∨ ♦b.

0
r
rr rr

�
�r
1

(a ∨ b∼) ∧ ♦b
♦b b∼

a ∨ b∼
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�

�
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@
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(a ∨ ♦b) ∧ b∼

a ∨ ♦b
♦b b∼
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�

�
�

@
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Theorem 14. Let L be a BZ–lattice. Then the following are equivalent:
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� L � SOML;

� for all a, b ∈ L, ((a ∨ b∼) ∧ ♦b) ∨ b∼ ≥ a ∨ b∼;

� for all a, b ∈ L, ((a ∨ b∼) ∧ ♦b) ∨ b∼ ≮ a ∨ b∼;

� for all a, b ∈ L, ((a ∨ ♦b) ∧ b∼) ∨ ♦b ≥ a ∨ ♦b;

� for all a, b ∈ L, ((a ∨ ♦b) ∧ b∼) ∨ ♦b ≮ a ∨ ♦b;

� for all a, b ∈ L, {0, b∼, (a∨ b∼)∧♦b, a∨ b∼} is the universe of a sublattice
of Ll;

� for all a, b ∈ L such that a � b∼, {0, b∼, (a ∨ b∼) ∧ ♦b, a ∨ b∼} is the
universe of a sublattice of Ll isomorphic to D2

2;

� for all a, b ∈ L, {0, b∼, (a ∨ b∼) ∧ ♦b,♦b, a ∨ b∼, 1} is the universe of a
bounded sublattice of Ll;

� for all a, b ∈ L such that a � b∼ and a∨b∼ 6= 1, {0, b∼, (a∨b∼)∧♦b,♦b, a∨
b∼, 1} is the universe of a bounded sublattice of Ll isomorphic to D2×D3;

� for all a, b ∈ L, {0,♦b, (a∨♦b)∧ b∼, a∨♦b} is the universe of a sublattice
of Ll;

� for all a, b ∈ L such that a � ♦b, {0,♦b, (a ∨ ♦b) ∧ b∼, a ∨ ♦b} is the
universe of a sublattice of Ll isomorphic to D2

2;

� for all a, b ∈ L, {0,♦b, (a ∨ ♦b) ∧ b∼, b∼, a ∨ ♦b, 1} is the universe of a
bounded sublattice of Ll;

� for all a, b ∈ L such that a � ♦b and a∨♦b 6= 1, {0,♦b, (a∨♦b)∧b∼, b∼, a∨
♦b, 1} is the universe of a bounded sublattice of Ll isomorphic to D2×D3.

Proof. By Proposition 13, Lemma 11.(2) and Lemma 10.(1).

Corollary 15. A BZ–lattice L fails SOML iff there exist elements a, b ∈ L with
a > b∼ that fail the equivalent statements from Lemma 12.(1).

Proof. L 2 SOML iff there exist c, b ∈ L such that L 2c,b SOML. If we denote
by a = c ∨ b∼ ≥ b∼ and we take into account the fact that, if a = b∼, that is if
c ≤ b∼, then L �c,b SOML by Lemma 11.(2), then we get the characterisation
in the enunciation.

In any BZ–lattice L, the elements of {b∼ : b ∈ L} are called ♦–sharp elements
of L, while the elements whose Kleene and Brouwer complements coincide are
called Brouwer–sharp elements.

Proposition 16. If L is a PBZ∗–lattice, then, for any u ∈ S(L), we have
L �(u],u′ SOML.
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Proof. If L is a PBZ∗–lattice, then any u ∈ S(L) is of the form u = b∼ for some
b ∈ L, hence, according to Lemma 11.(3), we have L �(b∼],♦b SOML, that is
L �(u],u′ SOML since u is sharp.

Theorem 17. A PBZ∗–lattice L fails SOML iff it contains a sharp element u
and an element a > u such that one of the following equivalent properties holds:

� (a ∧ u′) ∨ u 6= a;

� (a ∧ u′) ∨ u � a;

� (a ∧ u′) ∨ u < a;

� {0, a ∧ u′, u, a} is not the set reduct of a sublattice of Ll;

� {0, a ∧ u′, u, u′, a, 1} is not the set reduct of a bounded sublattice of Ll.

Proof. By taking u = b∼ in Corollary 15 and using the fact that, in PBZ∗–
lattices, the ♦–sharp elements coincide to the (Kleene–)sharp elements and also
to the Brouwer–sharp ones.

0
r
rr rrr
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a ∧ u′
u′ = ♦b b∼ = u

(a ∧ u′) ∨ u
c ∨ b∼ = c ∨ u = a
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6 Placing SOML in the lattice of subvarieties of
PBZL∗

In Section 4 we already gave some examples of semiorthomodular PBZ∗-lattices,
remarking that OML∨VBZL(AOL) ⊆ SOML. In this section, we investigate the
place occupied by SOML in the lattice of subvarieties of PBZL∗.

For a start, observe that SOML is a proper subvariety of PBZL∗. The PBZ∗-
lattice L0 displayed below:

L0:

0
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ra a′

c

c′

t

t′

r
r1
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x 0 a a′ c c′ t t′ 1
x∼ 1 a′ a a′ 0 a′ 0 0

fails SOML. Note, also, that L0 satisfies SDM, hence SDM * SOML.
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It is easy to prove that the variety MOD of the modular PBZ∗-lattices is
strictly included in SOML, the strictness of the inclusion being proven by the
fact that, for instance, the non–modular antiortholattice D2 ⊕ (D2

2 �D4)⊕D2

satisfies SOML according to the above.
Another important subvariety of PBZL∗ that fails to be included in SOML

is SK, although a proof of this claim calls for a little more work.

Lemma 18. Let L ∈ SK. Then, for all a, b ∈ L:

(1) a ∧ (�a ∨ b) = a ∧ (�a ∨ ♦b);

(2) a = �a ∨ (a ∧ a′);

(3) if ♦b ≤ a, then a = �a ∨ (a ∧ b∼).

Proof. (1) Since L � SK, we have a ∧ ♦(�a ∨ b) ≤ �a ∨�a ∨ b = �a ∨ b, thus

a ∧ (�a ∨ b) = a ∧ ♦(�a ∨ b) ∧ (�a ∨ b) = a ∧ ♦(�a ∨ b)
= a ∧ (♦(�a) ∨ ♦b) = a ∧ (�a ∨ ♦b).

(2) By (1), condition (∗) and Theorem 1 applied to S(L),

a ∧ (�a ∨ (a ∧ a′)) = a ∧ (�a ∨ ♦(a ∧ a′)) = a ∧ (�a ∨ (♦a ∧ ♦a′))
= a ∧ (�a ∨ ♦a) ∧ (�a ∨ ♦a′) = a ∧ ♦a ∧ 1 = a,

hence a ≤ �a ∨ (a ∧ a′) ≤ a, thus a = �a ∨ (a ∧ a′).
(3) Assume that ♦b ≤ a, so that �b ≤ a and thus �b ∨ (♦b ∧ a) ≤ a, and
also a′ ≤ (♦b)′ = (♦b)∼ = b∼. By (2), it follows that a = �a ∨ (a ∧ a′) ≤
�a ∨ (a ∧ b∼) ≤ a, thus a = �a ∨ (a ∧ b∼).

Theorem 19. SK ( SOML.

Proof. Let L ∈ SK and let a, b ∈ L be such that ♦b ≤ a. Then a = �a∨ (a∧b∼)
by Lemma 18.(3) and a′ ≤ b∼ so that a′ ≤ b∼∧(♦b∨a′), so (b∼∧(♦b∨a′))∼ ≤ �a.
We have that:

(b∼ ∧ (♦b ∨ a′))∼′ ∧�a
= (b∼ ∧ (♦b ∨ a′))∼∼ ∧�a
≤ b∼ ∧ (♦b ∨ a′)∼∼ ∧�a
= b∼ ∧�a ∧ ((♦b)∼ ∧�a)∼

= b∼ ∧�a ∧ (b∼ ∧�a)∼ = 0.

Since L is paraorthomodular, it follows that �a = (b∼ ∧ (♦b ∨ a′))∼. By the
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above,

a = �a ∨ (a ∧ b∼)

= (b∼ ∧ (♦b ∨ a′))∼ ∨ (a ∧ b∼)

≤ (b∼ ∧ (♦b ∨ a′))′ ∨ (a ∧ b∼)

= b∼′ ∨ (♦b ∨ a′)′ ∨ (a ∧ b∼)

= ♦b ∨ (a ∧ b∼∼′) ∨ (a ∧ b∼)

= ♦b ∨ (a ∧ b∼) ∨ (a ∧ b∼)

= ♦b ∨ (a ∧ b∼).

By Theorem 6.(1)⇔(2), it follows that L ∈ SOML. Therefore SK ⊆ SOML.
Since AOL ⊆ SOML, for instance, the antiortholattice D4 ∈ SOML \ SK, thus
SOML * SK. Hence SK ( SOML.

Next, we determine the inclusion relationships between SOML and some
notable varieties of PBZ∗–lattices generated by horizontal sums. Let A and B
be nontrivial bounded lattices (or lattice–ordered algebras whose horizontal sum
can be defined). We say that A�B is a nontrivial horizontal sum of bounded
lattices iff |A| > 2 and |B| > 2, that is iff A�B /∈ {A,B}.

Clearly, if A�B is nontrivial, then |A�B| ≥ 4 and: A�B is distributive iff
|A�B| = 4 iff (the underlying lattice of) A�B is isomorphic to the 4-element
Boolean algebra. If A is an orthomodular lattice and B is a PBZ∗–lattice, then
A is not the 3-element chain, thus, if A�B is nontrivial, then |A�B| > 4.

Lemma 20. (1) Any non–distributive nontrivial horizontal sum of bounded
lattices is directly indecomposable. Equivalently, no direct product of a
bounded lattice of cardinality at least 2 with a bounded lattice of cardinality
at least 3 is a nontrivial horizontal sum of bounded lattices.

(2) The underlying lattice Ll � Al of any nontrivial horizontal sum of an
orthomodular lattice L and a PBZ∗–lattice A is directly indecomposable,
thus the PBZ∗–lattice L�A is directly indecomposable.

Equivalently, no direct product of two nontrivial PBZ∗–lattices is a non-
trivial horizontal sum of an orthomodular lattice with a PBZ∗–lattice.

(3) If A and B are nontrivial PBZ∗–lattices and C is a class of PBZ∗–lattices
such that A×B ∈ OML� C, then A×B ∈ OML ∪ C.

Proof. (1) Let L and A be bounded lattices each of cardinality at least 3. If
|L�A| = 5, then L�A ∼= N5, which is, of course, even subdirectly irreducible.
If |L| > 3 and |A| > 3, then assume by absurdum that L�A = X×Y for some
nontrivial bounded lattices X and Y, so that 0X 6= 1X and 0Y 6= 1Y. Say, for
instance, that

〈
0X, 1Y

〉
∈ L. Then〈

0X, 1Y
〉
∈ L \ {

〈
0X, 0Y

〉
,
〈
1X, 1Y

〉
} = L \ {0, 1},
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hence every element a ∈ A \ {0, 1} satisfies a ∨
〈
0X, 1Y

〉
= 1 =

〈
1X, 1Y

〉
and

a∧
〈
0X, 1Y

〉
= 0 =

〈
0X, 0Y

〉
, therefore a =

〈
1X, 0Y

〉
, thus A = {0,

〈
1X, 0Y

〉
, 1},

which contradicts the fact that |A| > 3. Therefore L �A is directly indecom-
posable. By noticing that D2 ×D2 = D2

2 ∈ BA ⊂ OML, we get the equivalent
statement.

(2) By (1).
(3) By (2), if L ∈ OML \ T and M ∈ C \ T are such that A×B = L�M,

then L ∼=BZL D2 or M ∼=BZL D2, thus A ×B = L �M = M ∈ C or A ×B =
L�M = L ∈ OML, so A×B ∈ OML ∪ C.

Next, let us define, for any subclass C of PBZL∗: Ξ(C) = OML � C =
T ∪ {L � A : L ∈ OML \ T,A ∈ C \ T}. Clearly, the operator Ξ preserves
arbitrary unions and arbitrary intersections and, for all C ⊆ PBZL∗ such that
D2 ∈ C: C ⊆ OML ∪ C ⊆ Ξ(C), ΞΞ(C) = Ξ(C), in particular Ξ is a closure
operator on the class of the subclasses of PBZL∗ which contain the two–element
chain. Let us investigate the commutation properties of Ξ with the usual class
operators H,S,P (see also [11, Section 6, Proposition 9]).

For any nontrivial subvariety V of PBZL∗, we have OML ∪ V ⊆ Ξ(V). If
D2 ∈ C ⊆ OML, then Ξ(C) = OML. On the other hand, if D2 ∈ C ⊆ PBZL∗
and C is closed w.r.t. Ξ, that is Ξ(C) = C, then OML ⊆ C. In particular, all
nontrivial subvarieties of PBZL∗ which are closed w.r.t. Ξ include OML.

Proposition 21. For any nonempty subclass C of PBZL∗ such that D2 ∈ C,
the following hold:

(1) ΞSBZL(C) = SBZLΞ(C);

(2) ΞHBZL(C) ⊇ HBZLΞ(C); if C is closed w.r.t. quotients or the proper con-
gruences in each member of C have singleton classes of 0 (equivalently, of
1), then ΞHBZL(C) = HBZLΞ(C);

(3) if C is closed w.r.t. direct products, then ΞPBZL(C) ⊆ PBZLΞ(C); if Ξ(C)
is closed w.r.t. direct products, then PBZLΞ(C) ⊆ OML∪C ⊆ ΞPBZL(C); if
C and Ξ(C) are closed w.r.t. direct products, then PBZLΞ(C) = OML∪C =
ΞPBZL(C).

Proof. Let L ∈ OML \ T and A ∈ C \ T.
(1) Since the BZ-lattice operations are defined by restriction to the summands,
we have SBZL(L � A) = {M � B : M ∈ SBZL(L),B ∈ SBZL(A)}. Thus Ξ
commutes with the operator SBZL.
(2) We have that

ConBZL(L�A) = {λ� α : λ ∈ ConBZL01(L), α ∈ ConBZL01(A)} ∪ {∇L�A}
= {∆L � α : α ∈ ConBZL01(A)} ∪ {∇L�A}

and, for any α ∈ ConBZL01(A), (L � A)/(∆L � α) ∼=BZL L/∆L � A/α ∼=BZL
L � A/α. Hence ΞHBZL(C) ⊇ HBZLΞ(C), and, in the particular case when
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ConBZL(B) = ConBZL01(B) ∪ {∇B} for all B ∈ C, such as the case when C ⊆
AOL, the converse inclusion holds, as well. Furthermore, in the particular case
when HBZL(C) = C, we have ΞHBZL(C) = Ξ(C) ⊆ HBZLΞ(C), so this is another
situation in which we also have the converse inclusion.
(3) If C is closed w.r.t. direct products, then ΞPBZL(C) = Ξ(C) ⊆ PBZLΞ(C).

Since the operator Ξ is order–preserving, we have Ξ(C) ⊆ ΞPBZL(C), so, if
Ξ(C) is closed w.r.t. direct products, then PBZLΞ(C) = Ξ(C) ⊆ ΞPBZL(C). But,
by Lemma 20.(3), if Ξ(C) is closed w.r.t. direct products, then Ξ(C) ⊆ OML∪C.

Hence the equalities in the case when C and Ξ(C) are closed w.r.t. direct
products.

Corollary 22. For any nontrivial subvariety V of PBZL∗, the following are
equivalent:

(1) Ξ(V) is a variety, that is VBZLΞ(V) = Ξ(V);

(2) Ξ(V) is closed w.r.t. direct products, that is PBZLΞ(V) = Ξ(V);

(3) Ξ(V) = OML ∪ V and OML ∪ V is closed w.r.t. direct products.

Proof. (1)⇒(2) and (3)⇒(1): Clear. (2)⇒(1): By Proposition 21.(1)–(2).
(2)⇒(3): By Proposition 21.(3).

Corollary 23. For any nontrivial subvariety V of PBZL∗, the following are
equivalent:

(1) Ξ(V) = V;

(2) VBZLΞ(V) = V;

(3) PBZLΞ(V) = V.

Proof. (1)⇒(2): Clear. (2)⇒(1): By the fact that VBZLΞ(V) ⊇ Ξ(V) ⊇ V.
(1)⇒(3): By the fact that V is closed w.r.t. direct products. (3)⇒(1): By the
fact that PBZLΞ(V) ⊇ Ξ(V) ⊇ V.

Corollary 24. For any nontrivial subvariety V of PBZL∗:

(1) if Ξ(V) is a variety, then V ⊆ OML or OML ⊆ V, hence Ξ(V) = OML
or Ξ(V) = V;

(2) Ξ(V) is a variety iff V ⊆ OML or Ξ(V) = V;

(3) Ξ(V) = V iff OML ⊆ V and Ξ(V) is a variety.

Proof. (1) If Ξ(V) is a variety, but V * OML and OML * V, then there exist
an A ∈ V \ OML and a B ∈ OML \ V, so that A � B ∈ Ξ(V) \ (OML ∪ V),
contradicting Corollary 22.(3), since A,B ∈ SBZL(A�B) and A /∈ OML, while
B /∈ V.
(2) and (3) follow from (1).
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Not any supervariety V of OML satisfies Ξ(V) = V. For instance, if we let
V = VBZL(OML � AOL), then VBZL(OML � V) = VBZL(OML � VBZL(OML �
AOL)) ⊇ VBZL(OML � VBZL(AOL)) ) V [11], thus Ξ(V) = OML � V * V, so
Ξ(V) 6= V.

An example of a subvariety of PBZL∗ that has the equivalent properties in
Corollary 23 is precisely SOML, as we now proceed to show.

Proposition 25. (1) For any subclass C ⊆ PBZL∗, we have: Ξ (C) ⊆ SOML
iff C ⊆ SOML.

(2) SOML = Ξ (SOML) = VBZL(Ξ (SOML)).

Proof. (1) We prove that for any M ∈ OML and any L ∈ PBZL∗, M � L �
SOML iff L � SOML. The direct implication is trivial. For the converse, let
us denote by A = M � L. Then, since OML � SOML and L � SOML by
the hypothesis of this implication, it follows that A �M,M SOML and A �L,L
SOML. Now let x, y ∈ A\{0, 1}. If x ∈ L and y ∈M , then ((x∨y∼)∧♦y)∨y∼ =
((x∨ y′)∧ y)∨ y′ = (1∧ y)∨ y′ = y ∨ y′ = 1 = x∨ y′ = x∨ y∼, so Lx,y � SOML.
Now assume that x ∈ M and y ∈ L. Observe that, for any PBZ∗-lattice
L, L �L,D(L) SOML. Thus, if x ∈ D(A) = D(L), then Lx,y � SOML. If
x /∈ D(A), then ((x ∨ y∼) ∧ ♦y) ∨ y∼ = (1 ∧ ♦y) ∨ y∼ = ♦y ∨ y∼ = 1 = x ∨ y∼,
thus Lx,y � SOML. Therefore M� L � SOML.

(2) By (1).

We may easily notice that Proposition 25 also holds for SK:

Proposition 26. � For any M ∈ OML and any L ∈ PBZL∗, M� L � SK
iff L � SK.

� For any subclass C ⊆ PBZL∗, we have: Ξ (C) ⊆ SK iff C ⊆ SK.

� SK = Ξ (SK) = VBZL(Ξ (SK)).

Since PBZ∗–lattices are lattice–ordered and thus congruence–distributive,
the lattice of subvarieties of PBZL∗ is distributive, thus, as noted in [18], any
subvarieties V, W, U of PBZL∗ satisfy V ∨W = V ×s W, thus Si(V ∨W) =
Si(V) ∪ Si(W), and therefore: U = V ∨W iff Si(U) = Si(V) ∪ Si(W).

Corollary 27. (SDM ∩ SOML) ∨ VBZL(Ξ (VBZL(AOL))) ( SOML.

Proof. By Proposition 25.(1) and the fact that VBZL(AOL) ⊆ SOML, we have
VBZL(Ξ (VBZL(AOL))) ⊆ SOML. Let us consider the following PBZ∗-lattice:

L1:

0
r

rp p′r
r1

rwrmrw′
@
@

@

�
�
�@

@
@

�
�

�

@
@
@

x 0 p p′ m w′ w 1
x∼ 1 p′ p 0 0 p 0
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L1 satisfies SOML and fails SDM and J1, thus L1 ∈ SOML\(SDM∩SOML)∪
VBZL(Ξ (VBZL(AOL))) since VBZL(Ξ (VBZL(AOL))) � J1 [11].

Note that ConBZL(L1) = {∆L1
, θ,∇L1

} ∼= D3, where L1/θ = {{0, p},
{w,m,w′}, {p′, 1}}, thus L1 is subdirectly irreducible, hence L1 ∈ Si(SOML) \
(Si(SDM ∩ SOML) ∪ Si(VBZL(Ξ (VBZL(AOL))))) = Si(SOML) \ Si((SDM ∩
SOML)∨VBZL(Ξ (VBZL(AOL)))) by the above, so L1 ∈ SOML\(SDM∩SOML)∨
VBZL(Ξ (VBZL(AOL))).

Proposition 28. SOML is incomparable to SDM and to WSDM and we have:

� OML ∨ VBZL(AOL) ( SOML ∩WSDM;

� OML ∨ SAOL ( SOML ∩ SDM;

� SOML ∩ SDM ( SOML ∩WSDM;

� SDM ∨ VBZL(AOL) ( WSDM;

� WSDM ∨ SOML ( PBZL∗.

Proof. Let us consider the following PBZ∗–lattices:

L2:

0
rrhr r�@

r
h′

r r
�@rr r′

e l′

e′l r
r1

@
@

@

�
�
�

�
�

�

@
@
@

L3:

0
rrcr r�
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@
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�
�
�@
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a b

a′b′ rr1PPP
PP
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@�
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0
r

rp p′r
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@
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@

endowed with the following Brouwer complements, respectively:
x 0 r r′ e e′ l′ h h′ l 1
x∼ 1 r′ r r′ 0 r 0 0 0 0

x 0 s s′ a b c a′ b′ c′ 1
x∼ 1 s′ s s s s 0 0 0 0

x 0 p p′ m v′ v w′ w 1
x∼ 1 p′ p 0 0 p 0 p 0

By the above, OML ∨ VBZL(AOL) ⊆ SOML ∩WSDM and OML ∨ SAOL ⊆
SOML ∩ SDM. L2 satisfies SOML and SDM, thus also WSDM, and fails J2,
thus also J1, hence, by the results recalled at the end of Section 3,

L2 ∈ (SOML ∩ SDM) \ (OML ∨ SAOL)

= (SOML \ VBZL(Ξ (VBZL(AOL))) ∩ SDM
⊆ (SOML \ VBZL(Ξ (VBZL(AOL))) ∩WSDM
= (SOML ∩WSDM) \ (OML ∨ VBZL(AOL)).

Since AOL ⊂ SOML∩WSDM, any antiortholattice that fails SDM, for instance
D2

2⊕D2
2, belongs to (SOML∩WSDM)\ (SOML∩SDM). By the above, SOML

is incomparable to SDM and also to WSDM.

20



L3 satisfies WSDM and fails SDM and J0, hence L3 ∈ WSDM \ (SDM ∪
VBZL(AOL)).

Note that ConBZL(L3) = {∆L3
, α, β,∇L3

}, where: L3/α = {{0, b}, {a, c}, {s},
{s′}, {c′, a′}, {b′, 1}} and L3/β = {{0, a, b, c, s′}, {s, a′, b′, c′, 1}}, so that α ⊂ β
and thus ConBZL(L3) ∼= D4, hence L3 is subdirectly irreducible. Therefore L3 ∈
Si(WSDM)\(Si(SDM)∪Si(VBZL(AOL))) = Si(WSDM)\Si(SDM∨VBZL(AOL))
by the above, so L3 ∈WSDM \ (SDM ∨ VBZL(AOL)).

L4 fails WSDM and SOML, thus L4 ∈ PBZL∗ \ (WSDM ∪ SOML).
It is easy to check that ConBZL(L4) = {∆L4

, ζ,∇L4
} ∼= D3, where L4/ζ =

{{0, p}, {w, v,m, v′, w′}, {p′, 1}}, hence L4 is subdirectly irreducible, thus, as
above, L4 ∈ Si(PBZL∗)\(Si(WSDM)∪Si(SOML)) = Si(PBZL∗)\Si(WSDM∨
SOML), so L4 ∈ PBZL∗ \ (WSDM ∨ SOML).

As noticed in [18], the distributivity of the lattice of subvarieties of PBZL∗
entails that, for any subvarieties V, W of PBZL∗, the map (S1,S2) 7→ S1 ∨ S2
from [V∩W,V]× [V∩W,W] to [V∩W,V∨W] is a lattice isomorphism, whose
inverse maps S 7→ (S∩V,S∩W), where we consider these intervals in the lattice
of subvarieties of PBZL∗.

By the above and the fact that VBZL(OML�AOL)∩WSDM = VBZL(OML�
VBZL(AOL))∩WSDM = OML∨ VBZL(AOL) [11], we get that the following is a
sublattice of the lattice of subvarieties of PBZL∗, where V = (SDM∩ SOML)∨
VBZL(OML � AOL), W = SDM ∨ VBZL(OML � AOL), X = (SDM ∩ SOML) ∨
VBZL(OML� VBZL(AOL)) and Y = SDM ∨ VBZL(OML� VBZL(AOL)):

OML ∨ SAOL

OML ∨ VBZL(AOL)

VBZL(OML� AOL)

VBZL(OML� VBZL(AOL))

WSDM∩
SOML

SDM ∩ SOML

WSDM

SDM ∨ VBZL(AOL)

SDM

SOML

X

WSDM ∨ SOML

WSDM ∨ VBZL(OML� AOL)

WSDM ∨ VBZL(OML� VBZL(AOL)) SDM ∨ SOML

V

W

Y

r r r rr rr r rr rrr r r r

rPBZL∗
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7 A term equivalence result

Some years ago, Chajda and Länger [2] proved that the variety of orthomodular
lattices is term equivalent to a certain variety of bounded left-residuated lattice-
ordered groupoids. Indeed, the Sasaki projection x ◦ y := (x ∨ y′) ∧ y and the
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Sasaki hook x y := (y ∧ x) ∨ x′ satisfy the left-residuation law

x ◦ y ≤ z iff x ≤ y  z.

This result is important in so far as it provides a conceptually significant, if
partial, bridge between the theories of orthomodular lattices and residuated
structures, which are ubiquitous and of crucial importance both in algebra and
in logic [7, 16, 17]. Since PBZ∗-lattices are a generalisation of orthomodular
lattices, it is natural to ask whether they also contain some left-residuated pair
of operation. In general, this is not true, but if we restrict our attention to the
subvariety SOML the defined term operation x · y := (x ∨ y∼) ∧ ♦y is indeed
left-residuated.

In this subsection we present a term equivalence between SOML and an
expansion of the variety of left-residuated groupoids in a language containing
an additional pseudo-Kleene implication ⇒. The precise definition of this class
follows.

Definition 29. A SOML left-residuated groupoid is an algebra

A = 〈A, ·,→,⇒,∧,∨, 0, 1〉

of type 〈2, 2, 2, 2, 2, 0, 0〉 such that:

(1) the term reduct 〈A,∧,∨,′ , 0, 1〉, where a′ = a ⇒ 0, is a pseudo-Kleene
algebra;

(2) 〈A, ·, 1〉 is a right-unital groupoid, i.e., · is a binary operation and a ·1 = a
for all a ∈ A;

(3) for all a, b, c ∈ A, a · b ≤ c iff a ≤ b→ c (left residuation);

(4) the following conditions hold for all a, b, c ∈ A:

(Str.idemp.) a · (a ∨ b) = a;

(Antit) if a ≤ b, then b→ 0 ≤ a→ 0;

(*) (a ∧ (a⇒ 0))→ 0 = (a→ 0) ∨ ((a⇒ 0)→ 0);

(Sas1) a · b = (a ∨ (b→ 0)) ∧ ((b→ 0)→ 0);

(Ksas) a⇒ b = (a ∧ b) ∨ (a⇒ 0);

(Str.invol.) a→ b = ((b⇒ 0) · a)⇒ 0.

The class of SOML left-residuated groupoids will be denoted by SLRG.
Hereafter, we often denote · by plain juxtaposition. We follow the convention
that · binds stronger than the lattice operations, which in turn bind stronger
than either → or ⇒.

Observe that, by the results in [6], the quasi-equational conditions in Defi-
nition 29 can be replaced by identities, whence SLRG is a variety.

Lemma 30. Let A ∈ SLRG. Then the following holds for all a, b, c ∈ A:
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(1) ab ≤ (b→ 0)→ 0;

(2) The map ϕ (x) = (x→ 0)→ 0 is a closure operator on 〈A,≤〉;

(3) a→ 0 ≤ a⇒ 0;

(4) ((a→ 0)⇒ 0) (a→ 0) = 0;

(5) (a ∧ b) b = a ∧ b;

(6) if a ≤ b, then ac ≤ bc;

(7) a ∧ b ≤ ab;

(8) a (a→ 0) = 0;

(9) (a→ b) a ≤ ((a→ 0)→ 0) ∧ b;

(10) if a ≤ b, then c→ a ≤ c→ b.

Proof. (1) By (Sas1), ab = (a ∨ (b→ 0)) ∧ ((b→ 0)→ 0) ≤ (b→ 0)→ 0.
(2) We show that ϕ is reflexive. Using (Str.idemp) and (Sas1), we get:

a = a (a ∨ a) = aa = (a ∨ (a→ 0)) ∧ ((a→ 0)→ 0) ≤ ((a→ 0)→ 0) .

Using this fact and (Antit), we obtain that ϕ is order-preserving and idem-
potent.

(3) By (2), (Str.invol.), (Sas1) and pseudo-Kleene algebra properties, we get:

a ≤ ((a→ 0)→ 0) = 1a = (((0⇒ 0) a)⇒ 0)⇒ 0 = (a→ 0)⇒ 0,

whence, by pseudo-Kleene algebra properties, a→ 0 ≤ a⇒ 0.
(4) By (Sas1), 1 (a→ 0) = (1 ∨ ((a→ 0)→ 0)) ∧ (a→ 0) ≤ a → 0. This

implies 1 = (a→ 0) → (a→ 0). Using (Str.invol.) and pseudo-Kleene algebra
properties, ((a→ 0)⇒ 0) (a→ 0) = ((a→ 0)→ (a→ 0))⇒ 0 = 0.

(5) By (Str.idemp.) a ∧ b = (a ∧ b) ((a ∧ b) ∨ b) = (a ∧ b) b.
(6) By left residuation, b ≤ c→ bc. Thus, if a ≤ b, then a ≤ c→ bc, whence

ac ≤ bc.
(7) Since a ∧ b ≤ a, by (5) and (6) a ∧ b = (a ∧ b) b ≤ ab.
(8) By (2) and left-residuation.
(9) By (1), left-residuation and lattice properties.
(10) Let a ≤ b. By (9), (c→ a) c ≤ ((c→ 0)→ 0)∧ a ≤ ((c→ 0)→ 0)∧ b ≤

b, whence c→ a ≤ c→ b.

The next results highlight the fact that SLRG, as a variety of expanded left-
residuated groupoids, is fairly well-behaved. It satisfies a form of Modus Ponens
that is also found in Heyting algebras, and its lattice order is a divisibility order.

Lemma 31. Let A ∈ SLRG. Then the following holds for all a, b ∈ A:

MP a ∧ b = (b→ a) ∧ b.
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Proof. By Lemma 30.(5), (a ∧ b) b = a∧ b ≤ a, so a∧ b ≤ b→ a, whence a∧ b ≤
(b→ a) ∧ b. Conversely, by Lemma 30.(7) and left residuation, (b→ a) ∧ b ≤
(b→ a) b ≤ a, and since also (b→ a)∧ b ≤ b, we obtain (b→ a)∧ b ≤ a∧ b.

Lemma 32. In any A ∈ SLRG the lattice order is a divisibility order, i.e. the
next two equivalent conditions hold for all a, b ∈ A:

Div1 if a ≤ b, then (b→ a) b = a;

Div2 if a ≤ b, then there is c ∈ A s.t. a = cb.

Proof. We first show that (Div1) and (Div2) are equivalent. For the nontrivial
implication, suppose that (Div2) holds and that a ≤ b. Then a∧ b = a = cb, for
some c ∈ A. In particular, cb ≤ a ∧ b, i.e., c ≤ b→ a ∧ b. Hence, using Lemma
30.(6):

(b→ a) b ≤ a = a ∧ b = cb ≤ (b→ a ∧ b) b = (b→ a) b,

and the consequent of (Div1) follows.
Now we show that (Div1) holds. Suppose that a ≤ b. Then by Lemmas

30.(7) and 31,
a = a ∧ b = (b→ a) ∧ b ≤ (b→ a) b.

Since the converse inequality always holds, we obtain our conclusion.

Next, we present our term equivalence. We provide mutually inverse func-
tions mapping members of SLRG to members of SOML, and back.

Definition 33. (1) Let A = 〈A, ·,→,⇒,∧,∨, 0, 1〉 be a member of SLRG.
We define

f (A) = 〈A,∧,∨,′ ,∼ , 0, 1〉 ,

where for any a ∈ A, a∼ = a→ 0 and a′ = a⇒ 0.

(2) Let L = 〈L,∧,∨,′ ,∼ , 0, 1〉 be a semiorthomodular BZ∗-lattice. We define

g (L) = 〈L, ·,→,⇒,∧,∨, 0, 1〉 ,

where for any a, b ∈ L, ab = (a ∨ b∼) ∧ ♦b, a → b = (b ∧ ♦a) ∨ a∼ and
a⇒ b = (b ∧ a) ∨ a′.

For a start, we show that the maps in Definition 33 are well-defined.

Lemma 34. f (A) is a semiorthomodular BZ∗-lattice.

Proof. 〈A,∧,∨,′ , 0, 1〉 is a pseudo-Kleene algebra by Definition 29. We now
check the BZ∗-axioms.

[x ∧ x∼ ≈ 0] By Lemma 30.(7)-(8), a ∧ (a→ 0) ≤ a (a→ 0) = 0.
[x ≤ x∼∼] By Lemma 30.(2).
[x ≤ y implies y∼ ≤ x∼] By (Antit).
[x∼′ ≈ x∼∼] By Lemma 30.(3) (a→ 0) → 0 ≤ (a→ 0) ⇒ 0. By Lemma

30.(4), ((a→ 0)⇒ 0) (a→ 0) = 0, whence (a→ 0)⇒ 0 ≤ (a→ 0)→ 0.
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[(x ∧ x′)∼ = x∼ ∨�x] By (*).
We are left with semiorthomodularity. By (Sas1) and Theorem 6, all we have

to prove is that for all a, b such that a ≤ b → 0, we have that a = a (b→ 0).
However, if a ≤ b→ 0, then by (Str.idemp) a = a (a ∨ (b→ 0)) = a (b→ 0).

Lemma 35. g (L) is a SOML left-residuated groupoid.

Proof. Clearly, 〈L,∧,∨,′ , 0, 1〉 is a pseudo-Kleene algebra, and for all a ∈ L,
a1 = (a ∨ 1∼) ∧ ♦1 = a. We check left residuation.

ab ≤ c implies (a ∨ b∼) ∧ ♦b ≤ c
implies (a ∨ b∼) ∧ ♦b ≤ c ∧ ♦b
implies a ≤ a ∨ b∼

= ((a ∨ b∼) ∧ ♦b) ∨ b∼
≤ (c ∧ ♦b) ∨ b∼
= b→ c.

Conversely,
a ≤ b→ c implies a ≤ (c ∧ ♦b) ∨ b∼

implies a ∨ b∼ ≤ (c ∧ ♦b) ∨ b∼
implies ab = (a ∨ b∼) ∧ ♦b

≤ ((c ∧ ♦b) ∨ b∼) ∧ ♦b
= c ∧ ♦b ≤ c.

As to the other axioms, (Antit) and (*) are clear. Moreover, for all a, b ∈ L,
(Str.idemp.) a (a ∨ b) = (a ∨ (a ∨ b)∼) ∧ ♦ (a ∨ b) = a, by Theorem 6.(5)

(Sas1) This holds true by the definition of product in g (L).
(Ksas) a⇒ b = (b ∧ a) ∨ a′ = (b ∧ a) ∨ (a⇒ 0).
(Str.Invol.) a → b = (b ∧ ♦a) ∨ a∼ = ((b′ ∨ a∼) ∧ ♦a)

′
= ((b⇒ 0) a) ⇒

0.

Theorem 36. There exists a term equivalence between SOML and SLRG, in-
duced by the correspondences f and g in Definition 33.

Proof. By Lemmas 34 and 35, all we have to prove is that f and g are mutually
inverse. Let L = 〈L,∧,∨,′ ,∼ , 0, 1〉 be a semiorthomodular PBZ∗-lattice, and
let a ∈ L. Then:

� a∼f(g(L)) = a→g(L) 0 =
(
0 ∧L ♦a

)
∨L a∼L = a∼L.

� a′f(g(L)) = a⇒g(L) 0 =
(
0 ∧L a

)
∨L a′L = a′L.

Let now A = 〈A, ·,→,⇒,∧,∨, 0, 1〉 be a SOML left-residuated groupoid,
and let a, b ∈ A. Then:

� a·g(f(A))b =
(
a ∨ b∼f(A)

)
∧♦f(A)b = (a ∨ (b→ 0))∧((b→ 0)→ 0) = a·Ab

by (Sas1).

� a⇒g(f(A)) b = a⇒A b, by (Ksas).
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� Let c =
(
a→A 0

)
→A 0. Then:

a→g(f(A)) b =
(
b ∧ ♦f(A)a

)
∨ a∼f(A)

=
(((

b⇒A 0
)
∨
(
a→A 0

))
∧ c
)
⇒A 0 (pseudo-Kleene)

=
((
b⇒A 0

)
a
)
⇒A 0 (Sas1)

= a→A b. (Str. invol.)

Note from the definition of the map f and the fact that orthomodular lat-
tices are exactly the PBZ∗–lattices whose complements coincide that this term
equivalence takes OML into the subvariety V = {A ∈ SLRG :→A=⇒A} of
SLRG.

One can define the horizontal sum A�B of any nontrivial member A of this
subvariety V with any nontrivial SOML left–residuated groupoid B by letting
its bounded lattice reduct be the horizontal sum of the bounded lattice reducts
of A and B and defining its multiplication and two implications by restriction
to the summands. A handy way to see that the result of this horizontal sum is
indeed a SOML left–residuated groupoid is denoting V� SLRG = T∪{A�B :
A ∈ V \ T,B ∈ SLRG \ T} and using Proposition 25.(2) and the definition of
the map f to get that V � SLRG = SLRG in the variety of all algebras of the
same signature as SOML left–residuated groupoids.
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ed.), Birkhäuser, Basel, 1998.

27


