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Abstract—Contactless fingerprint recognition is an emerging biometric technology that has several advantages over contact-based schemes,
such as improved user acceptance and fewer hygienic concerns. Like for most other biometrics, Presentation Attack Detection (PAD) is crucial to
preserving the trustworthiness of contactless fingerprint recognition methods. For many contactless biometric characteristics, Convolutional Neural
Networks (CNNs) represent the state-of-the-art of PAD algorithms. For CNNs, the ability to accurately classify samples that are not included in the
training is of particular interest, since these generalization capabilities indicate robustness in real-world scenarios.
In this work, we focus on the generalizability and explainability aspects of CNN-based contactless fingerprint PAD methods. Based on previously
obtained findings, we selected four CNN-based methods for contactless fingerprint PAD: two PAD methods designed for other biometric characteris-
tics, an algorithm for contact-based fingerprint PAD and a general-purpose ResNet18. For our evaluation, we use four databases and partition them
using Leave-One-Out (LOO) protocols. Furthermore, the generalization capability to a newly captured database is tested. Moreover, we explore
t-SNE plots as a means of explainability to interpret our results in more detail. The low D-EERs obtained from the LOO experiments (below 0.1%
D-EER for every LOO group) indicate that the selected algorithms are well-suited for the particular application. However, with an D-EER of 4.14%,
the generalization experiment still has room for improvement.

Index Terms—Contactless Fingerprint Recognition, Presentation Attack Detection, Generalizability

✦

1 INTRODUCTION

In recent years, contactless fingerprint recognition has been intro-
duced as a more convenient alternative to contact-based schemes
[11], [12], [13]. Contactless fingerprint technologies enable the
recognition of individuals without any contact between a capture
device surface and a fingertip [11], [13]. In contrast to contact-
based capturing schemes where the finger is pressed onto a planar
surface, contactless recognition workflows do not require any
contact between the subject and the capturing subsystem. This
avoids distinct issues like low contrast caused by dirt, humidity on
the capturing device, or latent fingerprints. Comparative usability
studies between contactless and contact-based fingerprint recog-
nition schemes indicate that contactless capturing schemes have
better usability and higher user acceptance [14], [15], [16]. This is
especially true in multi-user scenarios, where different individuals
share one capture device. In these cases, the subjects might have
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(a) BP (b) low-quality PA (c) high-quality PA

Fig. 1: Fingerprint images captured using a contactless fingerprint
capture device. (a) BP, (b) wood-glue PA placed on a fingertip, (c)
color adjusted Body Double PA as overlay.

fewer hygienic concerns using contactless fingerprint recognition
[14], [15]. For contactless fingerprint recognition, a wide variety
of capturing devices have been developed so far. This includes
expensive stationary devices for capturing 3D samples, specialized
hardware setups for capturing 2D samples and lightweight mobile
solutions. However, it can be observed from the literature that
most contactless fingerprint capturing devices are mobile handheld
devices like smartphones [13], [14], [15].

Like most biometric systems, contactless fingerprint recogni-
tion schemes are vulnerable to Presentation Attacks (PAs). Here,
artificial replicas, i.e. Presentation Attack Instruments (PAIs),
representing a fingerprint characteristic are used to spoof the
system. These replicas can be made of various materials like
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TABLE 1: Overview of published works concerning contactless fingerprint PAD. BD: Body Double, BW: beeswax, DS: Dragon Skin,
EL: Ecoflex Layover, GL: Gelatine, LL: Latex Layover, MG: Moldable Glue, PL: Playdoh Layover, PP: Printed Photo Paper, RP:
replay attack, SC: Silicone, SF: Synthetic Fingerprint, SP: Silly Putty, WL: Woodglue Layover

Author Year Method Databases DB size (BP / PA) PAI species Detection Performance

Stein et al. [1] 2013 Reflection properties
on video frames in-house N/A SC, PP, GL 77% detected

Taneja et al. [2] 2016 LBP, DSIFT,
LICUDI & SVM

PA: Fingerphoto Spoofing,
BF: ISPFDv1

12,288
(8,192 / 4,096) PP, RP 61.89% TAR @ 0.1%

FAR (LBP)

Zaghetto et al. [3] 2017 GLCM, ILBP, PCA &
ANN in-house 400 (200 / 200) BW, PL, WL,

LL, SC 97.56% detected

Fujio et al. [4] 2018 AlexNet, LBP & SVM PA: Fingerphoto Spoofing,
BF: ISPFDv1

12,288
(8,192 / 4,096) PP, RP 0.04% HTER (CNN)

Wasnik et al. [5] 2018 LBP, BSIF, HOG & SVM in-house 900 (750 / 150) RP 0% BPCER @ 5% APCER,
D-EER = 0.49

Marasco and Vurity [6] 2022 Multi color-spaces, patch-
based, multiple CNNs

PA: Fingerphoto Spoofing,
BF: ISPFDv1

12,288
(8,192 / 4,096) PP, RP 0.84% D-EER (fusion)

Adami et al. [7] 2023 ResNet with adapted
loss functions COLFISPOOF, LivDet2023 65,972 EL, PL, WL,

SF, LL, PP 0.63% APCER @ 0.12% BPCER

Priesnitz et al. [8] 2023 SpoofBuster PA: COLFISPOOF; BP: ISPFDv1
and v2, two in-house DBs

28,540 (1,069, 4,096,
16,175 / 7,200)

BD, EL, WL, SP,
PP, DS, MG

avg. 1.08% APCER @ 1% BPCER,
0.86% D-EER (ISPFDv2)

Purnapatra et al. [9] 2023 DenseNet-121,
NasNetMobile LivDet2023 23,036

(8,604 / 14,432)
EL, PL, WL,
SF, LL, PP

0% – 79.01% APCER @
0.18% – 9.04% BPCER

Purnapatra et al. [10] 2023 8 LivDet candidates LivDet2023 23,036
(8,604 / 14,432)

EL, PL, WL,
SF, LL, PP

Winner: avg. 11.35% APCER @
0.62% BPCER

gelatin, silicone, different glues, or latex [17], [18]. Apart from
materials that have proven to attack contact-based systems suc-
cessfully, new unknown PAIs represent a threat, especially for
contactless setups. Especially printout attacks have a high attack
potential since the color of the PAI can be precisely adjusted to
real fingerprints. Moreover, attacks where the capturing device
is spoofed by another display device presenting a fingerprint are
feasible [2]. Figure 1 shows a contactless fingerprint also referred
to as Bona fide Presentation (BP) and two PA artifacts of different
visual resemblance.

PAD mechanisms aim to reliably detect PAs and distinguish
them from BPs. For contact-based fingerprint biometrics, PAD
mechanisms can be directly integrated into the capture device,
where e.g. a finger’s impedance is measured while touching the
surface [19]. However, these countermeasures are not imple-
mentable in contactless biometric systems. Here, PAD algorithms
that operate exclusively on the captured images are required. How-
ever, it should be noted that the signals obtained from a mobile
contactless fingerprint capturing device are most commonly color
images. This property can also be exploited in PAD algorithms.

Nowadays, CNNs represent the state-of-the-art in the area
of general purpose image classification algorithms and are also
widely used for PAD on contactless biometrics. In comparison
to image classification using hand-crafted features, CNNs gener-
ally require less pre-processing and generalize better to unseen
data. This has been demonstrated in various competitions that
benchmarked general object classification [20], [21] and special
biometric PAD algorithms [22], [23], [24].

In our previous work [25], we presented a comprehensive
benchmark of contactless fingerprint PAD (COLFIPAD), which
includes a total number of 135 experiments. Nine CNNs which
were originally designed for general image classification tasks or
PAD for other biometrics, e.g. contact-based fingerprint, finger
vein, face, and iris, are considered for that work. We conducted
our experiments on the COLFISPOOF [26] database together with
three bona fide databases. For our evaluations, we used several
LOO protocols in order to get a comprehensive assessment of
the PAD performance in various scenarios. Our obtained results
indicate that state-of-the-art PAD algorithms can accurately detect
PAs on contactless fingerprints.

In this work, we put a special focus on the generalizability and
explainability aspects of CNN-based contactless fingerprint PAD.
The main goal is to explore to what extent CNNs are able to gen-
eralize to new PAI species, environmental scenarios and different
capturing workflows. Hence, we select the three best-performing
methods from our COLFIPAD benchmark [25]. Furthermore, we
include the SpoofBuster algorithm in our evaluations [8]. The
SpoofBuster was originally designed for contact-based fingerprint
PAD and was shown to be suitable for contactless fingerprint PAD.

Our contributions are as follows:

• We summarize and contextualize the results obtained from
the COLFIPAD and SpoofBuster experiments.

• A score-level fusion is performed to evaluate the robust-
ness benefits of the combinations of various algorithms.

• Additionally, we evaluate the cross-database generaliza-
tion capabilities of our methods using a newly captured
PAD database that includes color-adjusted PAI overlays
from real entities.

• Finally, we use t-SNE graphs in order to explain our
obtained findings in detail.

Our results prove that the employed PAD algorithms can accu-
rately detect PAs on contactless fingerprints and generalize to new
PAIs and capturing environments. In particular, for the baseline
and all LOO protocols, the best-performing CNNs achieve a
Detection Equal Error Rate (D-EER) below 0.1%. Furthermore,
fusion strategies can contribute to more robust and accurate detec-
tion results. Especially in a cross-database experiment, the fusion
of two algorithms reduces the D-EER from 5.99% to 4.14%.
However, our evaluations also showcase limitations in terms of
generalizability to new capturing workflows. Here, the best result
is only at 15.04% D-EER. Our explainability evaluation using t-
SNE plots indicates that there are substantial differences between
the considered PAD methods. To summarize, the obtained findings
indicate that contactless fingerprint PAD employing algorithms
derived from other characteristics results in low error rates and
generalizes well to unseen PAI species. Nonetheless, we have also
demonstrated that the generalization capabilities to new capturing
devices are constrained.

The rest of the paper is structured as follows: Section 2
summarizes the related work for contactless fingerprint PAD.
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Furthermore, Section 3 presents the considered PAD methods,
whereas Section 4 describes the experimental setup. The results
are discussed in Section 5. Finally, Section 6 concludes this paper.

2 RELATED WORK

Contact-based fingerprint PAD is a well-studied research area.
Comprehensive overviews discuss relevant aspects in this field
[18], [23], [27]. Recently, the development of software-based PAD
mechanisms evolved from hand-crafted features to deep learning
methods like CNNs. In contrast to contact-based fingerprint PAD,
contactless fingerprint PAD mechanisms have not yet been studied
comprehensively. Table 1 provides an overview on contactless
fingerprint PAD mechanisms, PAI species, available databases and
performance details.

2.1 PAI species
In the literature, it has been shown that, various PAI species are
able to spoof contactless fingerprint recognition systems. Several
works consider PAI species from the contact-based domain for
their experiments. This group includes a wide variety of PAIs.
All have in common that a soft, deformable material is used that
simulates a ridgeline characteristic when it is pressed onto a planar
surface [18]. This includes rather persistent materials like silicone,
glues, latex and gelatine but also semi-persistent materials like
wax, playdoh and dragon skin. Here, the latter ones tend to lose
the ridge-line characteristic when pressed onto a surface. It was
shown that all mentioned PAI species are able to attack contactless
recognition schemes [3], [26]. Most notably, the persistence of
the material plays a subordinate role for contactless fingerprint
recognition. However, in contrast to contact-based schemes, the
color of the PAI is of increased importance since most contactless
devices capture color images, as shown by Kolberg et al. [26]
who also published a database that includes various PAI species.
Studies including several of the aforementioned PAI species were
conducted by Zaghetto et al. [3] Adami et al. [7], Priesnitz et al.
[8] and Purnapatra et al. [9], [10]. The results indicate that PAIs
from the contact-based domain are a minor challenge for state-of-
the-art PAD algorithms.

The second group represents PAI species, which are not appli-
cable to contact-base devices. These attacks contain a ridge-line
pattern but are not assembled using soft material. Two attacks
specific to contactless fingerprint recognition have so far proven
feasible: printout attacks and replay attacks [2], [5]. Printout
attacks are assembled by printing the fingerprint on paper, whereas
replay attacks use another display device, e.g. a smartphone, to
present the PA. Both attacks have in common that they are easy
to assemble and adjustable to the capture device. The publicly
available Fingerphoto Spoofing database [2] includes both PAI
species. Moreover, the COLFISPOOF database also contains
printout attacks. Evaluations on these databases indicate that
replay attacks are fairly easy to detect, whereas printout attacks
pose a major challenge, especially if they are adjusted to skin
color.

A third group represents digital PAs, also referred to as in-
jection attacks [28]. Here, the PA is a digital signal containing a
fingerprint characteristic. Chugh et al. [29] demonstrate that digital
PAIs can be prepared and used to launch attacks on fingerprint
recognition systems. In this context, Malhotra et al. [30] show-
cased that fingerprints obtained from social media can be used to
for digital attacks and presented a method which avoids this.

2.2 PAD Algorithms

The evolution of PAD algorithms started with the analysis of
image properties. Stein et al. [1] analyzed the reflection properties
of different PAI species. Several frames of a video-based captur-
ing attempt were considered to analyze if the amount of white
reflecting pixels in the fingerprint core is above a static threshold.
However, these methods are known to generalize poorly to new
application scenarios and PAI species.

Further development concentrates on the extraction of dis-
criminative features such as LBP or SIFT. The classification
task is typically done by SVMs or simple neuronal networks, as
shown by Taneja et al. [2] and Wasnik et al. [5]. Zaghetto et
al. [3] suggested a PAD mechanism that extracts texture features
from pre-processed images. On the extracted features, the authors
conduct a Principal Component Analysis (PCA), which is used
for the classification together with a feedforward Artificial Neural
Network (ANN). An advantage of this approach is that there are
no preconditions regarding the image size, since the used image
feature extractors work on images of arbitrary size. Feature-based
methods improve the robustness of the PAD systems and reduce
the error rate. On the contrary, these methods tend to generalize
fairly to new PAI species, as evaluated by Fujio et al. [4].

The more recent research was focused on CNNs for PAD
purposes. Here, CNNs for general purpose object detection are
fine-tuned for the special PAD task, like proposed by Fujio et
al. [4] and Marasco and Vurity [31]. The proposals process the
fingerprint samples in various ways in order to maximize detection
accuracy. The most common sample pre-processing is a center
cropping, whereas more advanced proposals consider e.g. multiple
color channels [6] and minutiae-based patch extraction [6], [25].
Moreover, adaptations of loss function have been tested [7].

In 2023, the first LivDet competition on contactless fingerprint
PAD was conducted by Purnapatra et al. [10]. Five competitors
submitted eight algorithms to the competition. Most notably, all
submitted algorithms are based on CNNs.

It should be noted that several works propose contactless fin-
gerprint PAD schemes on ShortWave InfraRed (SWIR) [32], [33],
Optical Coherence Tomography (OCT) [34], [35] or Laser Speckle
Contrast Imaging (LSCI) [33] images. These mechanisms require
specialized hardware and highly constrained capturing scenarios.
The PAD algorithms suggested in these works also rely on deep
learning methods like CNNs and convolutional autoencoders.

In summary, we can observe that recently, contactless finger-
print PAD gained a lot of attention. Various machine learning
methods are considered to solve the task of contactless fingerprint
PAD. The first approaches mainly relied on texture descriptors
in combination with SVMs, whereas nowadays, CNNs represent
the majority of new proposals. As shown in Table 1, the PAD
research is boosted by publicly available databases like the IIITD
Fingerphoto Spoofing database, the COLFISPOOF database and
more recently, the database included in the LivDet2023 competi-
tion [10]. However, new proposals are difficult to compare against
baseline methods because the databases used, pre-processing,
evaluation protocols and performance metrics may vary.

3 CONTACTLESS FINGERPRINT PAD METHODS

We selected four CNN-based PAD algorithms: The three best-
performing methods from the COLFIPAD benchmark [25] and
a fourth algorithm named SpoofBuster which we adapted in a
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(a) Constrained scenario (b) Attended scenario

Fig. 2: Two contactless fingerprint capturing scenarios: (a) Con-
strained scenario where a box-like setup avoids external illumina-
tion and (b) attended scenario where an operator is handling the
capturing device.

previous work [8]. In this section, we describe generalization
requirements and the considered methods in detail.

3.1 Generalization Requirements
A key requirement for robust PAD mechanisms in real-world
setups is the ability to generalize to new scenarios. In this context,
generalization refers to the correct classification of samples that
deviate from the initial scenario that the algorithm was designed
and trained for. Attackers might intentionally or unintentionally
circumvent PAD algorithms by using distinct capturing setups.
Generalization should be given in three main aspects:

• Subjects: The partitioning into training, validation and
testing of the considered database should be subject-
disjoint. This means that all samples of a bona fide subject
should only occur in either the training, the validation, or
the test partition due to their natural similarity. If this is
not the case, a BP could be correctly classified based on
the specific fingerprint characteristic and not based on the
differences to PAs.

• PAIs and PAI species: As discussed in Section 2, a wide
variety of PAI species are known to successfully attack
contactless fingerprint recognition schemes. Only one PA
sample might successfully attack a recognition system,
but many samples are required to train a CNN. Hence,
the number of samples per PAI species has to be high
enough for a reliable training process. Furthermore, the
variety of the PAI species presented to the CNN during the
training should be high enough. This increases the CNNs
generalization capabilities to unseen data. Furthermore,
the PAIs should also be assembled thoroughly to train the
classifier on high-quality data. Figure 4 illustrates the ma-
terials used for the preparation PAIs which are included in
the COLFISPOOF database [26]. As mentioned, attackers
might challenge a recognition workflow with new PAIs
that are not included in the training set. For this reason, it is
crucial to assess the algorithms’ generalization capabilities
to new PAI species. E.g. an algorithm that was trained on
Latex and Silicone materials should also be able to detect
printout attacks.

• Capturing device and environments: For mobile con-
tactless fingerprint recognition, off-the-shelf devices such
as smartphones are used in many scenarios. For this
reason, camera setups and hence, captured fingerprint

Original
image

Pre-processed
image

Extracted
patches

MobileNet Spoofness
scores

Fig. 3: Overview of the proposed SpoofBuster workflow including
pre-processing, patch extraction and classification of the individual
patches.

samples, may vary between different capturing devices.
PAD algorithms should be robust against these deviations
in order to be deployed in large-scale applications. In
addition to the capturing device, the capture environment
drastically influences the biometric sample and hence the
decision obtained from the PAD algorithm. E.g. different
illumination situations can lead to increased image noise
or deviated skin colors. PAD algorithms should be robust
against these deviations in the capturing environment.
Figure 2 illustrates different capturing scenarios included
in our test database.

To summarize the generalization requirements, new PAD pro-
posals should aim to include a subject-disjoint partitioning of the
database and a strategy to test the proposals on PAI species which
are unseen in the training set, e.g. LOO protocols. Furthermore,
cross-database evaluations should be conducted using different
capturing devices and environmental scenarios. It should be noted,
that generalization to new environmental scenarios is a require-
ment that is not present for contact-based fingerprint recognition
and additionally, generalization between capturing devices might
also deviate less for contact-based methods.

3.2 COLFIPAD Candidates
We select the three best-performing CNNs for PAD from our
COLFIPAD benchmark:

• A-PBS [36] is an attention-based deep pixel-wise binary
supervision method for iris PAD based on DenseNet. First,
the pixel-wise supervision recognizes fine-grained pixel or
patch-level cues. Then, the attention mechanism guides the
network to automatically find regions that most contribute
to an accurate PAD decision.

• LMFD [37] represents a dual-stream convolution neural
network for face PAD. Here, one stream learns features in
the frequency domain, which are less influenced by sen-
sors and illumination variations. The other stream lever-
ages the RGB images. A hierarchical attention module
joins the information from the two streams at different
layers of the CNN.

• ResNet18 [38] is a 72-layered architecture with 18 deep
layers. This network aims to enable large numbers of con-
volutional layers to function efficiently by using shortcut
connections.

For ResNet18, we exchanged the last fully connected layers
to support binary classifications. Apart from this, we adopted all
the settings from the original proposals. All CNNs use pre-trained
models that are fine-tuned using the considered databases.
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3.3 SpoofBuster
As a fourth PAD algorithm, we consider the SpoofBuster origi-
nally proposed by Chugh et al. [39]. The SpoofBuster was orig-
inally designed for contact-based fingerprint PAD and is patch-
based, whereas the patch locations are defined by minutiae posi-
tions, which are extracted using the MINDTCT method [40]. The
method uses a MobileNetv1 with a modified last fully connected
layer to support binary classifications. The CNN gets several
image patches of one sample and outputs a Presentation Attack
(PA) score in the range [0.0, 1.0] for every patch. All PA scores are
averaged to the final PAD result for the tested sample. The original
proposal was adapted and tested on contactless fingerprints in an
earlier work [8]. In summary, the following main adaptations are
applied to the original SpoofBuster method in order to make it
most suitable for contactless fingerprint PAD:

• Patch size: We use an increased patch size of 112×112
pixels instead of 96×96 pixels as in the original approach
from Chugh [39]. This has two reasons: firstly, the ac-
quired and normalized contactless fingerprints are approx.
10% larger in our setup compared to contact-based ones,
so the patch size needs to be increased. Secondly, due to
the lack of rotation, we avoid protruding edges and, for this
reason, it is possible to increase the patch size. Preliminary
experiments using various patch sizes confirmed that the
selected one works best.

• Patch angle and alignment: We do not implement a
patch alignment based on the minutiae angle, but extract
unaligned patches. The main reason for this is that most
extracted patches contain parts of the fingerprint’s core
area that does not have a distinct orientation. Hence, an
alignment would be of low benefit since only the center
area would be aligned, whereas the border areas would
remain unaligned. Preliminary comparative experiments
with and without alignment show no significant differ-
ences for our experimental setup.

• Patch number reduction: To reduce the number of
patches, we consider a combination of minutiae quality
and background thresholding. The minutiae quality thresh-
old excludes minutiae with a quality score below 0.25 (in
a range [0, 1]) whereas the background threshold excludes
patches with more than 10% white background pixels.

It should be noted that various adaptations have been tested in
advance. The discussed ones turned out to perform best in the
presented experimental setup. All further settings, such as the
usage of MINDTCT and the MobileNetv1 training parameters,
remain the same as in the original SpoofBuster algorithm. In
summary, we replaced the last MobileNetv1 layer with a 2-unit
softmax layer, set the learning rate to 0.0001 and trained 50 epochs
with an early stop if not improvement was seen for 10 epochs.

4 EXPERIMENTAL SETUP

This section describes the databases, pre-processing and evalua-
tion protocols we used for the evaluation of the selected CNNs.

4.1 Considered Databases
For our work, we consider one database containing contactless fin-
gerprint PAs in combination with three databases that contain bona
fide contactless fingerprints. Furthermore, for our cross-database

(a) PAI Materials (b) PAI overlay preparation

Fig. 4: Illustrations of the PAI preparation process: (a) materials
which have proven to successfully attack contactless fingerprint
recognition and (b) the preparation process of PAI overlays which
are adjusted to skin color.

TABLE 2: Number of BPs and PAs for each database. It should
be noted that the UniCa-HDA database is only used for testing.

Database BF Samples PA Samples

COLFISPOOF – 7,200
HDA 1,069 –

ISPFDv1 4,029 –
ISPFDv2 16,175 –

UniCa-HDA 2,040 1,512

evaluation, a new database was acquired. Table 2 summarizes
the number of samples for each database, whereas this section
describes the acquisition processes:

• COLFISPOOF [26]: COLFISPOOF is acquired using a
contactless fingerprint recognition system utilizing two
different smartphones as capture devices. The database
comprises 7,200 samples of 72 different PAI species. It
includes various PAI species that are known to effec-
tively attack contact-based capture devices like playdoh,
dragon skin, sillyputty (each with various colors), trans-
parent overlays made of gelafix and different glues. It
also includes printout attacks of different colors, which
effectively attack contactless capturing devices. The PAIs
contain only synthetic ridge patterns and no BPs are
included in the database, which is why the database is
publicly available. It should be noted that all PAs are
captured and pre-processed using an automated contactless
fingerprint recognition workflow. The detailed description
of this can be found in [8], [14], [26] Figure 5a presents
some example images of this database.

• HDA [14]: The HDA database consists of contactless sam-
ples captured in two different setups: a constrained box-
setup and an unconstrained tripod-setup. For the capturing,
the authors used two different smartphones. An application
automatically captured the four inner-hand fingers and pro-
cessed them into fingerprint samples. The authors captured
and processed a database of 29 subjects in two rounds,
which resulted in 1,360 individual fingerprints. Example
images of the database are presented in Figure 5b.

• ISPFDv1 [41]: The IIITD SmartPhone Fingerphoto
Database v1 consists of contactless fingerprint images
collected with an Apple iPhone 5 smartphone. For the
capturing, the smartphone’s inbuilt photo application was
used and hence the samples included in the database are
not further pre-processed or quality assured. The authors
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(a) PA: COLFISPOOF (b) BP: HDA

(c) BP: ISPFDv1 / ISPFDv2 (d) AP: UniCa-HDA

Fig. 5: Example finger images of the used datasets. It should be noted that the ISPFDv2 is visually similar to the ISPFDv1.

captured four different environmental scenarios, including
indoor and outdoor images with natural and white back-
ground. Every scenario contains 1,024 finger photos from
64 subjects, which results in 4,096 contactless samples.
Figure 5c depicts example images of the database.

• ISPFDv2 [42]: The IIITD Smartphone Finger-Selfie
Database v2 consists of 16,175 self-captured and un-
processed fingerphotos obtained from 304 subjects. The
fingerphotos are taken using two smartphones. Like for the
ISPFDv1 database the inbuilt photo application was used
for the capturing. The database contains three scenarios:
Indoor with a constrained and unconstrained background
and outdoor.

• UniCa-HDA: In addition, we conduct a test on the newly
captured UniCa-HDA database, comprising BPs and PAs.
Here, the same capturing setup as in the HDA database
was used, but a different environmental scenario was
chosen. Along with the newly acquired BPs, we prepared
and captured PAs of high quality. For this, the subject’s
fingers are covered with a thin overlay of Body Double,
which is then turned inside out after the material has
solidified. To make the PAI as realistic as possible, we
added additional color to the PA material. This process
makes the PAI appear as similar as possible to the subject’s
real skin color, c.f. Figure 5 (d). The overlays are then
captured in the same setup as the BP fingerprints. Figure 4
illustrates the PAI preparation process. It should be noted
that the obtained PAIs are a mirrored copy of the original
source.

For our experiments, we combine COLFISPOOF with each
of the bona fide databases. Furthermore, we evaluate all sub-
databases of each database together to maximize the number
of samples for training and evaluation and to provide a realis-
tic scenario. As introduced before, it should be noted that in
mobile real-world application scenarios, different environmental
situations can occur during capturing attempts. For this reason, a
training, and evaluation database that includes different scenarios
should be chosen in order to achieve a robust PAD mechanism that

(a) original sample (b) highlighted ROI (c) cropped patch

(d) original sample (e) highlighted ROI (f) cropped patch

Fig. 6: Illustration of the patch generation process for the COLFI-
PAD candidates: (a – c) PA sample (COLFISPOOF) and (d – f) a
BP sample (HDA Database).

generalizes across different capturing environments.

4.2 Sample Pre-processing
We apply two different pre-processing methods to the database
in order to meet the requirements of the considered CNNs and
conduct a fair evaluation.

COLFIPAD Candidates
The databases have to be pre-processed to be suitable for the
training and evaluation procedure. Also, the background and finger
/ PAI border region are cropped, since some PAIs included in the
COLFISPOOF database are not looking realistic in the outer areas
(c.f. Figure 5a). This process avoids that the PAD methods classify
samples based on their border region and might fail on more
thoroughly prepared PAIs. We adopt the pre-processing pipeline
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TABLE 3: Number of PAIs and bona fide samples for each
partition for the evaluation protocols.

Database Protocol Train Validation Test

COLFISPOOF

baseline 2,160 1,440 3,600
LOO printout 4,200 1,800 1,200

LOO transparent 4,690 2,010 500
LOO default color 2,450 1,050 3,700

LOO colored silicone 3,780 1,620 1,800
HDA – 322 547 200

ISPFDv1 – 1,207 766 2,056
ISPFDv2 – 4,664 3,287 8,224

UniCa-HDA Cross-database testing only 3,552

suggested in the COLFISPOOF paper [26] for our experiments
and apply it to both, COLFISPOOF and the bona fide databases.

Since both ISPFD databases consist of fingerphotos, the finger
area is segmented from the background. We use a semantic
segmentation method based on DeepLabv3+ [43] for this task [44].
Moreover, all fingerprint images are rotated to an upright position
and normalized to a ridge-line distance of approximately 9 pixels,
which corresponds to 500 ppi live-scanned samples. The normal-
ization avoids that the CNNs learning distinct characteristics like
different ridge frequencies.

Further, we crop a patch of 100 × 200 pixels out of the
center area of the image. This pre-processing ensures that only the
Region of Interest (ROI) from within the fingertip is considered,
and hence the algorithms do not learn to detect certain artifacts at
the border area of a PAI or fingerprint image. Also, the fixed size
ensures that the input data is equally suited for all considered
algorithms. Figure 6 shows example images of after this first
pre-processing step. It should be noted that the pre-processing
workflow is publicly available 1.

SpoofBuster
For the SpoofBuster algorithm, the samples are pre-processed
using the contactless fingerprint pre-processing proposed in [14].
Since the ISPFD database contains unsegmented and un-rotated
finger photos, the fingerprint region of interest is segmented by the
same method as introduced before. The segmented finger image
is then rotated to an upright position. All other databases already
provide segmented and rotated fingerprint images, so this step is
omitted.

The segmented data is then converted to grayscale, and a
Contrast Limited Adaptive Histogram Equalization (CLAHE) is
applied to emphasize the ridge-line characteristics. The CLAHE
algorithm is iteratively applied with a decreasing size of tile grids,
starting at a window-size of 64 pixels and ending at a grid-size
of 8. First, this process equalizes the brightness throughout the
fingerprint region and second, it emphasizes the ridge pattern.
Next, the fingerprint samples are normalized to a fixed ridge-
line frequency of approximately 9 pixels, which aligns to approxi-
mately 500 ppi live-scanned fingerprints. It should be noted that in
general, no samples are manually pre-processed or discarded from
the experiment due to erratic pre-processing.

4.3 Score Level Fusion
The fusion of scores of several biometric systems is a promising
approach to improve the overall system’s accuracy. This also
applies to PAD methods, where typically features or results of

1. https://github.com/dasec/COLFISPOOF

various algorithms are fused [45], [46]. In this work, we conduct
a normalized score level fusion across the considered algorithms
, like discussed in [47] and standardized in [48]. This is required
for two reasons: First, the considered algorithms do not operate in
the same interval and second, not all algorithms use the score
range to full extent. This process consists of two steps: First,
the scores of the algorithms to fuse are normalized to a closed
interval [0, 1]. Here, we adjust all scores so that their average is
0.5 and then multiply the all scores with a factor so that the full
range between 0 and 1 is used. This ensures that all algorithms
are equally weighted during the fusion. It should be noted, that
score fusion in general increases the computational complexity
and hence, individual algorithms should be favored if possible.

4.4 Evaluation Protocols and Metrics

For our research, we consider three stages of generalizability
evaluations: baseline protocols, LOO protocols and cross-database
evaluations. The baseline protocol, includes all PAI species in the
training and validation sets. It randomly splits the samples for
each PAI species into training (30%), validation (20%), and test
(50%) partitions. This partitioning ensures that as many samples
as possible are included in the test partition while providing
enough samples for training the CNNs. This setup provides the
most realistic results. It should be noted that it is assumed that
larger training partitions lead to more robust results. The non-
overlapping partitions ensure that PAD algorithms are tested on
samples that are not considered during training and validation,
and thus guarantee a fair evaluation.

The more advanced LOO protocols to analyze the PAD per-
formance in the presence of unknown attacks. They do not split
samples of each PAI, but rather split PAIs into training, validation,
and testing. With this method, we can evaluate the generalization
capabilities to PAIs that have not been seen during the training.
Since the COLFISPOOF includes 72 PAI species, similar materi-
als but different colors are considered as one LOO group. In total,
four LOO protocols are created: printouts, transparent overlays,
default color materials and colored silicone. It should be noted that
due to the availability of different colors, the number of samples
for every LOO group is different. The exact number of samples
can be seen in Table 3 For more detailed information, the reader
is referred to the original COLFISPOOF paper [26].

The cross-database evaluation represents the most challenging
protocol, which benchmarks the generalization capabilities to new
high-quality PAs and a different capturing scenario. Here, we train
and validate on the entire COLFISPOOF database in combination
with one of the bona fide databases (60% train, 40% validation)
and test on the UniCa-HDA database. With this experiment, the
generalization capabilities are analyzed in two ways: first, the
generalization to a new type of PA and second, the generalization
from PAs contained in the COLFISPOOF database to those from
a newly captured database. In particular, this is interesting, since
the PAs in the COLFISPOOF database were generated based on
synthetic ridge line patterns, while in the newly captured database,
PAs are generated from real fingerprints. This experiment is
referred to as cross-database experiment.

We use the in ISO/IEC 30107-3 [49] standardized APCER vs.
BPCER metric and the D-EER metric to report the results of our
experiments. To make our work comparable to others, we fix the
BPCER at an operation point of 1% and report the corresponding
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TABLE 4: Overview of APCERs for a fixed BPCER of 1% and
D-EERs obtained from the baseline and LOO experiments.
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HDA ISPFDv1 ISPFDv2
APCER D-EER APCER D-EER APCER D-EER

Baseline

X 0.36 0.56 0.0 0.11 0.0 0.02
X 0.22 1.2 0.03 0.36 0.0 0.08

X 0.89 0.92 0.08 0.23 0.0 0.22
X 5.28 1.86 0.03 0.64 0.83 0.92

X X 0.33 0.56 0.0 0.09 0.0 0.02
X X 0.47 0.7 0.0 0.11 0.0 0.02
X X 0.19 0.3 0.0 0.04 0.0 0.02

X X 0.42 0.71 0.03 0.19 0.0 0.08
X X 0.17 0.26 0.03 0.06 0.0 0.04

X X 0.0 0.31 0.0 0.04 0.0 0.06
X X X 0.39 0.54 0.0 0.15 0.0 0.02
X X X 0.08 0.31 0.0 0.04 0.0 0.0
X X X 0.03 0.31 0.0 0.0 0.0 0.0

X X X 0.11 0.31 0.0 0.04 0.0 0.0

LOO
colored
silicone

X 0.06 0.2 0.0 0.06 0.0 0.01
X 0.06 1.03 0.03 0.36 0.0 0.76

X 1.33 1.25 0.08 0.29 0.28 0.5
X 0.17 0.32 0.08 0.68 0.0 0.39

X X 0.11 0.2 0.0 0.06 0.0 0.27
X X 0.06 0.38 0.0 0.09 0.0 0.1
X X 0.0 0.0 0.0 0.06 0.0 0.0

X X 1.39 1.28 0.03 0.23 0.17 0.44
X X 0.0 0.24 0.03 0.04 0.0 0.22

X X 0.0 0.06 0.0 0.09 0.0 0.06
X X X 0.06 0.38 0.0 0.11 0.0 0.22
X X X 0.0 0.0 0.0 0.04 0.0 0.05
X X X 0.0 0.0 0.0 0.0 0.0 0.01

X X X 0.0 0.03 0.0 0.04 0.0 0.17

LOO
default
color

X 2.27 1.44 0.43 0.84 0.0 0.05
X 1.24 2.17 0.0 2.04 0.0 1.21

X 3.08 1.81 0.43 0.69 0.3 0.6
X 2.41 1.85 0.0 0.54 0.0 0.43

X X 2.11 1.42 0.92 0.92 0.0 0.22
X X 1.32 1.1 0.19 0.49 0.0 0.02
X X 0.05 0.3 0.0 0.11 0.0 0.0

X X 1.54 1.27 0.76 0.87 0.08 0.43
X X 1.11 1.17 0.0 0.38 0.0 0.24

X X 0.19 0.3 0.0 0.0 0.0 0.05
X X X 1.11 1.1 0.22 0.84 0.0 0.22
X X X 0.05 0.36 0.0 0.33 0.0 0.02
X X X 0.0 0.29 0.0 0.11 0.0 0.0

X X X 0.27 0.37 0.0 0.3 0.0 0.16

LOO
printout

X 2.5 1.83 0.25 0.58 0.0 0.08
X 1.92 1.66 0.08 0.86 0.0 0.14

X 5.25 1.66 0.67 0.68 0.33 0.42
X 14.5 2.49 0.33 0.68 3.92 2.42

X X 2.75 1.44 0.17 0.56 0.0 0.08
X X 2.08 1.27 0.17 0.58 0.0 0.1
X X 0.0 0.28 0.33 0.43 0.25 0.42

X X 1.67 1.27 0.33 0.5 0.0 0.26
X X 1.0 0.97 0.0 0.0 0.0 0.17

X X 0.0 0.32 0.25 0.58 0.33 0.34
X X X 1.17 1.09 0.17 0.56 0.0 0.08
X X X 0.08 0.36 0.0 0.4 0.0 0.08
X X X 0.08 0.32 0.25 0.24 0.25 0.24

X X X 0.08 0.64 0.17 0.24 0.0 0.17

LOO
transparent

X 18.8 6.4 0.0 0.18 0.0 0.05
X 18.6 9.15 0.0 0.44 0.0 0.58

X 26.4 7.74 0.2 0.76 1.2 1.2
X 15.6 3.75 0.0 0.64 0.4 0.6

X X 20.8 6.02 0.0 0.05 0.0 0.18
X X 17.8 5.44 0.0 0.4 0.0 0.04
X X 1.6 1.47 0.0 0.0 0.0 0.0

X X 25.2 7.55 0.0 0.37 0.2 0.6
X X 4.8 2.18 0.0 0.0 0.0 0.36

X X 3.0 2.18 0.0 0.0 0.0 0.16
X X X 21.6 5.82 0.0 0.22 0.0 0.18
X X X 0.6 0.97 0.0 0.0 0.0 0.03
X X X 2.8 1.57 0.0 0.0 0.0 0.0

X X X 6.4 1.47 0.0 0.0 0.0 0.2

APCER. The D-EER indicates the lowest detection error made by
an algorithm without considering any specific operation point.

5 RESULTS

In this section, we present the results of the experiments conducted
and discuss our findings in more detail. Table 4 gives an overview
on APCERs at a BPCER of 1% and D-EERs, whereas the Figures
7 – 10 show the corresponding DET plots. First, we discuss the
results obtained from the individual algorithms, the second part
evaluates the results of our score level fusions and the third part
presents the obtained cross-database results.

5.1 Baseline and LOO Protocols

The results of our previous COLFIPAD benchmark [25] show that
A-PBS, LMFD and ResNet18 perform best, whereas the other
tested algorithms show less accurate results. Furthermore, it can
be summarized that the experiments on the HDA database show
inferior results compared to the experiments conducted on the
ISPFD databases. This is due to the low number of available train-
ing data. The three best-performers also show, in general, good
generalizability to new PAIs. Here, the results of the four defined
LOO-protocols showcase that algorithms are able to generalize
well across various PAI species.

From the PAD scores in Table 4, we can observe that all
algorithms have at least a few misclassified BPs. For both ISPFD
databases, we observe that some samples are misclassified by
every method. These samples suffer from erratic capture or pre-
processing. Namely, few images contain compression artifacts,
whereas others were not segmented accurately. Figure 9a – c show
examples of these insufficiencies. It should be noted that these
samples should not occur in a real-world process where capturing
and pre-processing are calibrated to each other.

Further, we discuss the detailed results of the considered eval-
uation protocols by analyzing individual misclassified samples.
For the baseline protocol, A-PBS and LMFD show the highest
possible detection rate. All PAIs are correctly classified, whereas
only the aforementioned erratic BPs are wrongly classified as
PAIs. ResNet18 tends to struggle to separate BPs from PAs in
the baseline experiments. Here, the average PAD scores are closer
together compared to A-PBS and LMFD.

A general observation on all LOO experiments with the A-PBS
algorithm is that the vast majority of PAs are correctly classified
with high confidence, whereas the algorithm tends to struggle with
BPs. LMFD and ResNet18 do not have this disbalance. Further-
more, a weakness of A-PBS can be identified in the LOO group
default color. Here, especially dark purple playdoh (c.f. Figure
9d) is prone to misclassification. This PAI is also challenging
for LMFD and ResNet18. LMFD also tends to misclassify pink
sillyputty whereas ResNet18 also has trouble with playdoh of
other colors, e.g. teal and pink.

Another finding is that A-PBS and ResNet18 do not accurately
detect printout attacks using SynCoLFinGer PAIs (c.f. Figure 9e)
whereas LMFD is more stable against these types of attacks. For
the LOO group transparent overlays, no general trend can be
identified. Both, A-PBS and LMFD robustly identify all PAs but
struggle to correctly classify BPs. In this experiment, ResNet18
shows inferior performance. From this, it can be concluded that the
algorithms are failing to generalize well to PAIs that have a similar
color, like BPs (printout SynCoLFinGer, transparent overlays) if
only different colored PAIs are included in the training set.

For the LOO group colored silicone, A-PBS works very ro-
bustly, whereas LMFD fails to classify several materials (e.g.
darkred drangonskin, orange dark brown dragonskin) especially on
the ISPFDv2 database. Again, ResNet18 shows inferior detection
performance and misclassifies various PAIs.

Unless discussed exceptions, no significant difference in terms
of PAD scores can be observed between the two ISPFD databases.
However, it can be seen that the experiments conducted on the
ISPFDv2 database show better results, which could be caused by
a more homogenous or larger database.

Compared to the COLFIPAD results, the SpoofBuster method
shows inferior results for the baseline protocol, but performs on
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Fig. 7: DET curves obtained on the considered databases using the baseline evaluation protocol.
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Fig. 8: DET curves obtained on the considered databases using the LOO protocol colored silicone.
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Fig. 9: Examples of misclassified samples: (a – c) BPs, (d – e)
PAs.

average equally well for the LOO protocols. The better generaliza-
tion capabilities are explained by the fact that patches of grayscale
images are used and thus no color bias is learned. One exception
is the LOO protocol printout. Here, the detailed structure of the
print and the paper might get lost during the pre-processing, which
makes the detection more challenging. Despite the patch-based
process and hence various training patches per sample, it is not
observable that SpoofBuster is more robust against a low number
of training samples, as is the case for the HDA database.

The findings obtained from our previous works are summarized

as follows:

• A-PBS overall performs best and precisely detects PAIs in
almost all scenarios, but has trouble robustly classifying
all BPs.

• LMFD accurately separates BPs from PAs in many scenar-
ios, and is particularly good at classifying BPs. However,
it fails to detect PAIs in some rare cases.

• ResNet18 as a general-purpose CNN is a viable alternative
to the aforementioned algorithms. It shows only slightly
decreased detection performance and generalizes well to
unseen PAIs.

• SpoofBuster represents a vital alternative to the afore-
mentioned methods. The detection performance is worse
for the baseline and loo printout protocol, but on par with
the COLFIPAD algorithms for the other loo protocols.

5.2 Score Fusion

We conduct the score fusion of two and three algorithms for all
conducted protocols. From the results, we can observe that the
fusion contributes to a more robust detection of PAIs, especially if
a small number of training data samples are available. For the large
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Fig. 10: DET curves obtained on the considered databases using the LOO protocol default color.
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Fig. 11: DET curves obtained on the considered databases using the LOO protocol printout.

ISPFDv2 database, the APCER a BPCER of 1% is already 0% for
A-PBS. However, we see that the D-EER is further reduced due
to fusion. This trend amplifies if less training data is available,
such as for the ISPFDv1 and HDA databases. Especially the
improvement for the HDA database and the challenging LOO pro-
tocols printout and transparent is more significant. Most notably, a
fusion of SpoofBuster with the color-based CNNs leads to the best
improvement, as Table 4 indicates. Here, different approaches lead
to more robust detection results across all protocols. Furthermore,
in most cases, the fusion of the three best-performing algorithms
outperforms the fusion of only two.

The results obtained from the ISPFDv2 database also indicate
that a fusion might be more robust against error-prone samples
such as the ones discussed above and presented in Figure 9. Here,
none of the algorithms were able to classify these challenging
samples entirely correct. However, as the fusion results show,
the fusion method is able to perfectly separate all samples (c.f.
baseline protocol).

5.3 Cross Database Generalization
In addition to the LOO experiments, we analyze the generalization
capabilities of the algorithms and their fusions to new scenarios in

TABLE 5: Overview of APCERs for a fixed BPCER of 5% and
D-EERs obtained from the baseline and LOO experiments.
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18
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r

HDA ISPFDv1 ISPFDv2
APCER D-EER APCER D-EER APCER D-EER

Cross
database

X 6.75 5.99 42.06 26.28 30.95 15.82
X 11.51 9.12 76.45 48.92 74.72 43.44

X 8.33 7.18 77.38 37.08 76.79 37.50
X 6.75 5.99 56.15 19.42 45.63 16.65

X X 10.32 7.94 44.64 29.68 32.94 17.01
X X 4.96 4.98 77.18 36.9 76.39 35.72
X X 3.37 4.22 47.62 18.66 32.34 15.04

X 10.71 8.36 77.38 37.33 76.79 36.90
X X 10.32 8.36 57.34 19.68 42.66 16.30

X X 4.56 4.73 65.48 28.80 57.34 26.43
X X X 9.33 7.94 77.18 37.08 76.39 35.80
X X X 9.13 7.94 49.6 19.68 35.12 15.12
X X X 3.77 4.14 65.28 28.80 57.14 25.76

X X X 9.72 8.11 65.87 29.74 57.34 26.01

a cross-database scenario. As introduced in Section 4, we train the
algorithms on COLFISPOOF in combination with one of the bona
fide databases and test them on the new UniCa-HDA database.
Figure 13 presents the obtained DET plots, whereas Table 5 shows
the APCER for a BPCER of 5% and the D-EERs.

The obtained results show good generalization capabilities
for the HDA database but also highlight limitations for both
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Fig. 12: DET curves obtained on the considered databases using the LOO protocol transparent overlay.

0.10.2 0.5 1 2 5 10 20 40 65 85 95
APCER (in %)

0.1
0.2
0.5

1
2

5

10

20

40

65

85

95

BP
CE

R 
(in

 %
)

A-PBS
LMFD
ResNet18
SpoofBuster
A-PBS_LMFD
A-PBS_ResNet18
A-PBS_SpoofBuster

LMFD_ResNet18
LMFD_SpoofBuster
ResNet18_SpoofBuster
A-PBS_LMFD_ResNet18
A-PBS_LMFD_SpoofBuster
A-PBS_ResNet18_SpoofBuster
LMFD_ResNet18_SpoofBuster

(a) HDA

0.10.2 0.5 1 2 5 10 20 40 65 85 95
APCER (in %)

0.1
0.2
0.5

1
2

5

10

20

40

65

85

95

BP
CE

R 
(in

 %
)

A-PBS
LMFD
ResNet18
SpoofBuster
A-PBS_LMFD
A-PBS_ResNet18
A-PBS_SpoofBuster

LMFD_ResNet18
LMFD_SpoofBuster
ResNet18_SpoofBuster
A-PBS_LMFD_ResNet18
A-PBS_LMFD_SpoofBuster
A-PBS_ResNet18_SpoofBuster
LMFD_ResNet18_SpoofBuster

(b) ISPFDv1

0.10.2 0.5 1 2 5 10 20 40 65 85 95
APCER (in %)

0.1
0.2
0.5

1
2

5

10

20

40

65

85

95

BP
CE

R 
(in

 %
)

A-PBS
LMFD
ResNet18
SpoofBuster
A-PBS_LMFD
A-PBS_ResNet18
A-PBS_SpoofBuster

LMFD_ResNet18
LMFD_SpoofBuster
ResNet18_SpoofBuster
A-PBS_LMFD_ResNet18
A-PBS_LMFD_SpoofBuster
A-PBS_ResNet18_SpoofBuster
LMFD_ResNet18_SpoofBuster

(c) ISPFDv2

Fig. 13: DET curves obtained on the considered databases in the cross-database experiment.

ISPFD databases. For the HDA database, we see that A-PBS and
SpoofBuster perform best with a similar D-EER or 5.99% whereas
LMFD and ResNet18 show slightly inferior results. Taking the
fusion result into account, a combination of A-PBS, ResNet18
and SpoofBuster reduces the D-EER to 4.14%.

In contrast to the aforementioned scenario, none of the CNNs is
able to generalize well from ISPFDv1 or ISPFDv2 to the UniCa-
HDA test database. Here, the majority of BPs are classified as
PAs which results in very high APCERs. Consequently, fusion
strategies are not very beneficial in this case.

5.4 Explainability Results
In addition to our DET curves, we present t-SNE plots for
two representative experiments. All presented plots include the
validation and the test set in order to assess how the trained models
deviate from the test data.

Figure 14 shows the obtained t-SNE plots obtained from the
ISPFDv2 baseline experiment. For this plot, we further separate
the validations set according to PAI species, like for the LOO
protocols. We can observe that all plots indicate a clear separation
between BPs and PAs. However, there are certain differences
between A-PBS and both other algorithms. A-PBS has two disjoint

areas, whereas the PAI species are not clustered together. For
LMFD and ResNet18 the plots are different. Here, the BPs are
separated into two clusters: a big one a rather sparse accumulation
and a little cluster with a dense accumulation. These clusters
might be based on the two sub-databases included in the ISPFDv2
database, the indoor and outdoor subsets. Furthermore, we also
see a clustering of the different PAI species in the validation set.
From these findings, we can summarize that A-PBS learns the
distinct feature to separate BPs from PAs much better than the
other CNNs.

Figure 15 presents t-SNE plots of the cross-database exper-
iment, including the HDA and COLFISPOOF for training and
the UniCa-HDA database for testing. The plots indicate a huge
difference between the three CNNs. For A-PBS, the validation set
and the test set are heavily superimposed for both the BPs and the
PAs. The misclassified samples are located merely located at the
transition between the BP and PA validation sets. This indicates
that A-PDS generalizes reasonably well from the COLFISPOOF
database to the UniCA-HDA database and to new capturing sce-
narios. For both other CNNs, the t-SNE plots indicate subordinate
generalization capabilities. We see the PAI test data is clearly
separated from the training data and much closer to the BPs.
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Fig. 14: t-SNE plots obtained from the ISPFDv2 baseline experiments.
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Fig. 15: t-SNE plots obtained from the UniCa-HDA cross database experiments.

Furthermore, the BP in the test partition is not fully superimposed
by the validation data but is located around it. This indicates
that both algorithms are not able to generalize well from the
COLFISPOOF database to the UniCa-HDA database. However,
it should be noted that despite this, both CNNs can classify a large
share of the test samples correctly.

5.5 Summary and Discussion
Our experimental results show the great potential of CNN-based
PAD for contactless fingerprint recognition. CNNs detect PAs they
are trained on with very low error rates. Furthermore, they are
able to generalize to new materials and capturing environments to
a high extent.

As motivated in Section 3, a PAD mechanism might be ex-
posed to a wide variety of possible PAs, different environmental
scenarios and capturing workflows. Our results also showcase
challenges and limitations. General-purpose CNNs like the tested
ResNet18 perform considerably well for PAs they are trained on
and generalize to a certain extent to new PAs. However, they
might have severe limitations when it comes to cross-database
generalization scenarios. Also, specialized PAD CNNs like the
tested LMFD algorithm show limitations when it comes to cross-
database generalizability.

Omitting distinct information, like converting samples from
color to grayscale, does not have to be detrimental, as our Spoof-
Buster experiments demonstrate. This algorithm shows inferior
results in our baseline and some LOO scenarios, but performs
considerably well for the more challenging cross-database exper-
iments. It is assumed that the limited color information, together
with the more elaborated method, leads to good generalizability.

Score fusion leads to a more robust PAD mechanism. In all
experiments conducted, fusions result in the lowest error rates.
However, the algorithms considered for fusion should be selected
carefully to improve the detection performance. Especially for the
cross-database scenarios, a fusion of different approaches, like in
our case, A-PBS and SpoofBuster shows the best results.

Generalization is a strong requirement in order to implement
PAD in large-scale systems and unconstrained environmental
scenarios. We have shown that the considered algorithms gen-
eralize reasonably well to new capturing scenarios and unseen
PAI species. However, we also clearly identified limitations when
new capturing workflows are used to acquire the samples. Here,
the capturing workflow including segmentation, normalization
and quality control, might have a major impact on the samples
presented to the PAD algorithm.

Explainability methods like the presented t-SNE plots are
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beneficial to assess the generalization capabilities of a method. We
showcased that there are severe differences in the t-SNE represen-
tations of A-PBS, LMFD and ResNet18, which could also indicate
general generalization capabilities. In general, explainability tools
should be considered to acquire a more profound understanding
of the learned features and potential biases. Here, our approach of
including the validation set and analyzing the deviation from the
test set is suggested for a significant analysis.

6 CONCLUSION

For most biometric systems, PAD is crucial to preserving opera-
tional security. Especially, capturing processes that operate with-
out any contact between the capturing device and the biometric
trait offer severe challenges for robust and efficient PAD.

In this paper, we address the research area of contactless
fingerprint PAD from an operational point of view. First, we dis-
cuss distinct challenges and promising approaches for contactless
fingerprint PAD. In the second part, we select four CNN-based
contactless fingerprint PAD methods and conduct a comprehensive
and comparative evaluation. Here, we considered the COLFIS-
POOF database in combination with an HDA and the publicly
available ISPFDv1 and ISPFDv2 databases to evaluate the PAD
performance in baseline and more advanced LOO experiments.
Furthermore, we evaluate the cross-database generalization capa-
bilities to unseen PAI species and new capturing scenarios using a
newly captured UniCa-HDA database. For all experiments, we
discuss the results for the individual algorithms and algorithm
fusion based on score level. During an explainability evaluation,
we also illustrate the capabilities of t-SNE plots for a more
profound understanding of the obtained results.

The obtained results show a good performance for many
experiments but also highlight the limitations of the considered
methods. We conclude that the algorithms should be precisely
designed and adjusted to the application and environmental sce-
nario. The tested algorithms are able to generalize to new PAI
species and environmental situations, but they cannot generalize
to new capturing devices. Moreover, we conclude that the score
fusion is a vital tool to establish a more robust PAD mechanism.
Especially, a fusion of different approaches could lead to more
robust detection results.

Our work opens up various new possible research directions.
E.g. a fusion of databases captured using different devices and
environmental setups could be explored to study if the obtained
model leads to better generalization capabilities. Instead of car-
rying out an algorithm fusion strategy, a dual-channel CNN
e.g. , operating on enhanced grayscale and color images, could
solve the detection task more, efficient and accurate. Furthermore,
additional databases focusing on various capturing workflows,
environments, PAIs and a wide variety of subjects would lead
to a more profound assessment of the algorithm’s generalization
capability.
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