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Abstract

The integration of arti�cial intelligence (AI) in educational systems has revolutionized
the �eld of education, o�ering numerous bene�ts such as personalized learning, intel-
ligent tutoring, and data-driven insights. However, alongside this progress, concerns
have arisen about potential algorithmic disparities and performance issues in AI appli-
cations for education. This doctoral thesis addresses these concerns and aims to foster
the development of AI in educational contexts that emphasize performance analysis.

The thesis begins by investigating the challenges and needs of the educational com-
munity in integrating responsible practices into AI-based educational systems. Through
surveys and interviews with experts in the �eld, real-world needs and common areas for
developing more responsible AI in education are identi�ed.

According to our �ndings, further research delves into the analysis of student be-
havior in both synchronous and asynchronous learning environments. By examining
patterns of student engagement and predicting student success, the thesis uncovers po-
tential performance issues (e.g., unknown unknowns: the model is really con�dent of
its predictions but actually wrong), emphasizing the need for nuanced approaches that
consider hidden factors impacting students’ learning outcomes.

By providing an integrated view of the performance analyses conducted in di�erent
learning environments, the thesis o�ers a comprehensive understanding of the chal-
lenges and opportunities in developing responsible AI applications for education. Ul-
timately, this doctoral thesis contributes to the advancement of responsible AI in edu-
cation, o�ering insights into the complexities of algorithmic disparities and their im-
plications. The research work presented herein serves as a guiding framework for de-
signing and deploying AI-enabled educational systems that prioritize responsibility, and
improved learning experiences.
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AI Arti�cial Intelligence
ANN Arti�cial Neural Network
EDA Exploratory Data Analysis
EDM Educational Data Mining
EML Educational Machine Learning
K-NN K-Nearest Neighbors
ML Machine Learning
MOOC Massive Open Online Course
RF Random Forest
SVM Support Vector Machine
UU Unknown Unknowns

Numerical Expressions
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Chapter 1

Introduction

1.1 Motivation

Educational systems integrating arti�cial intelligence (AI) are transforming the land-
scape of education, o�ering personalized learning pathways, timely feedback, and data-
driven insights. AI-based models have been employed in various educational applica-
tions, such as predicting student success, recommending learning materials, and pro-
viding motivational feedback [1, 2, 3, 4, 5]. While these advancements hold promising
prospects, there is a growing concern about potential irresponsibility in AI-enabled ed-
ucational systems. Reports of systemic biases in automated college enrollment systems
and biased machine-learning evaluations for PhD applicants raise alarms about the im-
pact of AI on educational equality [6, 7].

E�orts to address responsibility in AI applications have primarily focused on design-
ing responsibility de�nitions and developing algorithms to assess and mitigate biases
[8, 9]. However, responsible-aware practices should be prevalent when developing AI
for education to ensure positive and equitable outcomes for learners. Therefore, un-
derstanding the challenges and needs of the educational community in integrating and
monitoring responsibility in AI applications is crucial.

This thesis investigates algorithmic disparities in AI for education, with a speci�c
focus on performance issues, including cases where AI models exhibit high con�dence
but make signi�cant predictive errors. These performance problems can lead to irre-
sponsible treatment and perpetuate inequalities in educational settings. We explore the
challenges and implications of algorithmic disparities in both synchronous and asyn-
chronous learning environments, shedding light on the signi�cance of considering not
only visible student behavior but also background knowledge, learning history, and char-
acteristics.
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1.2 Challenges

While performance analysis has been investigated in the wider AI domain, its adap-
tation to educational AI remains relatively underexplored. Responsibility concerns in
AI for education introduce distinctive challenges, and current research in this area often
consists of isolated instances. Therefore, there is a need to understand the speci�c chal-
lenges faced by the educational community in developing responsible AI for education
and to identify the areas that require attention and improvement.

In the context of synchronous and asynchronous learning, signi�cant opportunities
exist to analyze and model student behavior. Asynchronous learning provides �exibility
but lacks real-time interaction, while synchronous learning allows for immediate feed-
back but may require better monitoring and understanding of student engagement pat-
terns. Analyzing and predicting student behavior in both modalities can inform teach-
ing strategies, optimize infrastructures, and improve learning outcomes. However, the
extensive data generated from these learning modes requires thoughtful analysis and
interpretation to ensure its e�ective use.

1.3 Contributions

This thesis makes several contributions to better understand performance issues and
unknown unknowns in AI for education (see also Figure 1.1):

• A comprehensive investigation of experts’ challenges and needs in responsible
AI for education, conducted through an anonymous survey and semi-structured
interviews with educational researchers and practitioners.

• An analysis of student behavior in synchronous online learning environments to
understand participation patterns, the in�uence of course delivery times, and im-
plications for course attendance and quality prediction.

• A study on algorithmic disparities and unknown unknowns in student success
prediction models, examining their prevalence, impact, and the feasibility of char-
acterizing them in di�erent instructional settings.

• An exploration of the dissonance between teacher and model predictions regard-
ing learners at risk in a �ipped course, identifying decision-making patterns, con-
�dence levels, and intervention needs of teachers.

1.4 Outline

The following sections of this thesis will be structured as follows: in Chapter 2 we
delve into the fundamental concepts of machine learning in the context of education.
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Fig. 1.1: Key Contributions of the Thesis.

It provides a comprehensive review of the methods commonly used in AI applications
for education, o�ering essential background knowledge to understand the subsequent
chapters.

Chapter 3, we present the results of our comprehensive investigation into the chal-
lenges and requirements of experts regarding fairness-aware AI in education, as well as
the technical perspectives. The work presented in this chapter is a collaborative e�ort
with Dr. Mirko Marras and Prof. Gianni Fenu from the University of Cagliari, Italy. We
are proud to report that our �ndings have been published and presented in the presti-
gious Arti�cal Intelligence in Education (AIED 2022) Conference [10].

Chapter 4, delves into the analysis of student behavior in synchronous learning en-
vironments, exploring participation patterns and their implications. This research en-
deavor was conducted in collaboration with Dr. Mirko Marras, Prof. Gianni Fenu from
the University of Cagliari, Italy. Our valuable �ndings from this chapter have been dis-
seminated through the First InternationalWorkshop on Enabling Data-Driven Decisions
from Learning on the Web (L2D 2021) [11] and the 4th International Conference on
Higher Education Learning Methodologies and Technologies Online (HELMETO 2022)
Conference [12].
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Chapter 5, investigates algorithmic performance and unknown unknowns in student
success prediction models, examining their prevalence and impact in di�erent instruc-
tional settings. This investigation has been supported by two signi�cant research works
published in the Learning Analytics and Knowledge (LAK 2023) Conference [13] and the
Conference on User Modeling, Adaptation, and Personalization (UMAP 2023) [14].

Finally, in Chapter 6, we summarize the main contributions of the thesis, discuss key
�ndings, and outline future research directions.



Chapter 2

Background on Machine Learning
for Education

2.1 Introduction

2.1.1 Role of ML in Education

Machine learning (ML) represents a �eld of computational science that empowers
algorithms to acquire knowledge autonomously, without the need for constant repro-
gramming or external guidance. In particular, it is a technological discipline focused
on developing computer algorithms capable of replicating human intelligence. Through
the analysis of novel data, ML systems enhance their intelligence by recognizing and
categorizing patterns and trends. This continual learning process leads to progressively
improved performance. This technology has been applied in such diverse �elds as pat-
tern recognition [15], computer vision [16], spacecraft engineering [17], �nance [18],
entertainment [19, 20], ecology [21], computational biology [22, 23], and biomedical and
medical applications [24, 25]. The most important property of these algorithms is their
distinctive ability to learn the surrounding environment from input data with or with-
out a teacher [26, 27]. The integration of machine learning within educational contexts
serves as a valuable asset, aiding students, educators, and administrators in streamlining
their work�ows and enriching the educational experience.

Machine learning algorithms play a pivotal role in reshaping education by tailoring
content, schedules, and learning objectives to individual student needs and capabilities.
This level of personalization signi�cantly enhances the e�ciency and quality of both
teaching and learning processes. As a result, educators can shift their focus to aspects
of education that truly bene�t from a human touch [28, 29, 30]. Incorporating machine
learning into education empowers educators to predict future learning outcomes and
adapt teaching methods accordingly. Predictive analytics harnesses the power of ma-
chine learning to identify patterns in student behavior, ultimately determining the likeli-
hood of each student successfully completing a course or participating in extracurricular
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activities [31, 32, 33]. Machine learning proves particularly invaluable at the K-12 level. It
enables the early detection and prediction of behavioral issues and academic challenges
with remarkable accuracy. Educators can proactively address these concerns, ensuring
timely support for students before problems escalate. Additionally, ML enhances secu-
rity measures and facilitates self-service tools for students and parents [34, 35]. Machine
learning extends its reach to higher education, assisting institutions in predicting enroll-
ment levels and identifying potential applicants. Moreover, ML contributes to ground-
breaking research endeavors, swiftly and accurately analyzing the ever-expanding vol-
umes of data in this domain [36, 37]. The transformative potential of machine learning
isn’t limited to educational institutions alone. Learning and EdTech companies harness
ML to elevate learning outcomes, re�ne customer service, and craft targeted marketing
strategies. Capabilities such as text-to-speech, translation, transcription, chatbots, and
content classi�cation are among the myriad tools enhancing the educational technology
landscape [38].

2.1.2 Bene�ts of ML in Education
Machine learning, a facet of arti�cial intelligence, o�ers a spectrum of advantages

when integrated into the realm of education. It provides a robust foundation for person-
alized support, enabling educators to swiftly identify and address individual students’
challenges. For instance, if a teacher detects a student struggling with mathematics, ma-
chine learning steps in with insights drawn from the student’s past performance, thereby
assisting the teacher in �ne-tuning their teaching strategies. Moreover, machine learn-
ing lends itself to the creation of tailored learning experiences. By dynamically adjusting
instruction based on each student’s performance [39, 40], educators can optimize their
teaching methods. This not only results in time savings but also ensures an enriched
learning journey for all students.

Beyond personalized support and tailored learning, machine learning contributes to
enhancing overall student performance [29, 41]. Schools leverage machine learning to
monitor student progress comprehensively [42]. By analyzing various data points, in-
cluding test results, valuable trends come to light, empowering educators to make in-
formed decisions about instructional improvements and timely interventions. Machine
learning also serves as a beacon of e�ciency and cost savings for educational institu-
tions. It automates essential tasks like grading[43] and record management, e�ectively
reducing operational costs. This streamlined automation of administrative processes
liberates educators to dedicate more time to their primary role: teaching.

One of the most compelling advantages of machine learning is its ability to facilitate
early intervention. ML algorithms excel at identifying students who might be at risk of
dropping out or falling behind grade-level standards. This early detection equips educa-
tors with the insights needed to provide timely support and intervention, ultimately
driving improvements in student outcomes [44, 45]. Furthermore, machine learning
plays a pivotal role in understanding student behavior. Leveraging Educational Data
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Mining (EDM) techniques, often powered by machine learning, educational institutions
gain profound insights into students’ learning behaviors and interests. This in-depth un-
derstanding forms the bedrock for designing e�ective teaching strategies that not only
enhance performance but also curtail dropout rates [46].

In summation, these multifaceted advantages exemplify how machine learning en-
riches the educational landscape, delivering substantial bene�ts to students, educators,
and institutions alike.

2.2 Educational Environments

Education occurs in diverse settings, each with its unique characteristics and require-
ments. Understanding these environments is essential for applying machine learning
e�ectively in education. The following subsections provide an overview of key educa-
tional environments.

2.2.1 Traditional Face-to-Face Education
Traditional face-to-face education is the conventional form of learning that takes

place in physical classrooms. In this environment, the educational process is charac-
terized by direct, in-person interactions between educators and students. These interac-
tions create a dynamic learning atmosphere that o�ers several distinct advantages [47].

One of themost noteworthy features of traditional education is the ability for students
to receive immediate feedback from instructors. Whether through verbal responses to
questions, discussions, or real-time assessments, this feedback loop is instrumental in
reinforcing learning and clarifying doubts. Furthermore, traditional education facili-
tates hands-on learning experiences. In science laboratories, art studios, and vocational
workshops, students can directly apply theoretical knowledge, fostering a deeper un-
derstanding of concepts and skills.

Physical classrooms encourage collaboration among students. Group projects, peer
discussions, and cooperative problem-solving are inherent to this learning environment.
These interactions not only enhance subject comprehension but also cultivate crucial in-
terpersonal skills. Moreover, traditional education often follows a structured curriculum
and timetable, providing a sense of routine and discipline for students. This structure
can be particularly bene�cial in ensuring comprehensive coverage of topics.

Beyond academics, face-to-face education supports the holistic development of stu-
dents. It provides opportunities for social interaction, the formation of friendships, and
participation in extracurricular activities like sports and clubs. It’s essential to note that
traditional education has a rich historical legacy and continues to be a predominantmode
of instruction worldwide. However, advancements in technology and changing educa-
tional paradigms have led to the emergence of various alternative learning modalities,
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such as online and blended learning. As a result, educational researchers often conduct
studies and comparisons between face-to-face learning and these emerging models to
evaluate their e�ectiveness, adaptability, and relevance in modern education [48, 49, 50].

This comprehensive understanding of traditional face-to-face education lays the
groundwork for assessing its strengths and limitations in comparison to newer edu-
cational approaches, providing valuable insights for educators and policymakers.

2.2.2 Synchronous Learning
Synchronous learning refers to real-time, online education where students and in-

structors engage simultaneously. It replicates aspects of traditional classroom learning
but takes place in virtual environments. Participants can interact through video con-
ferencing, chat, and other digital tools, allowing for live discussions, group activities,
and immediate feedback. One of the de�ning features of synchronous learning is real-
time engagement. Students and instructors are connected in real-time, allowing for live
discussions, questions, and responses. This real-time interaction can simulate the spon-
taneous exchanges often found in physical classrooms. Virtual classrooms are at the
core of synchronous learning. These online spaces host a variety of interactive tools,
including video conferencing, chat features, and interactive whiteboards. These tools
enable instructors to present lessons, share resources, and engage students e�ectively
[51, 52].

Live discussions are a hallmark of synchronous learning. They o�er a platform for
students to voice questions, share insights, and engage in debates. Instructors can facil-
itate these discussions, ensuring that students actively participate and contribute to the
learning experience. Synchronous learning also supports collaborative group activities.
Students can work together on projects, assignments, and problem-solving tasks in real
time. This fosters teamwork, peer learning, and the development of critical collabora-
tive skills [53, 54]. Like traditional classroom, synchronous learning allows for imme-
diate feedback. Instructors can assess students’ understanding during lessons and ad-
dress misconceptions promptly. This feedback loop enhances comprehension and helps
students stay on track [55]. Interactive learning resources are another strength of syn-
chronous learning platforms. From multimedia presentations to live demonstrations,
these resources cater to diverse learning styles and keep students engaged throughout
the lesson [56].

Despite its synchronous nature, this mode of learning o�ers �exibility. While it has a
�xed schedule, students from di�erent geographical locations can participate, making it
a viable option for distance education. Additionally, recorded sessions can accommodate
students whomay have scheduling con�icts. Furthermore, synchronous learning fosters
a sense of community among students, despite being in virtual environments. Regular
interactions and shared learning experiences create a supportive and collaborative atmo-
sphere. In educational practice, synchronous learning can be particularly e�ective when
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well-designed, balancing the advantages of real-time engagement with the �exibility
demanded by modern learners. Educators and institutions often integrate synchronous
components into blended learningmodels, combining the strengths of both synchronous
and asynchronous approaches to create comprehensive learning experiences [57, 58].

2.2.3 Asynchronous Learning

Asynchronous learning, on the other hand, o�ers �exibility by allowing students to
access educational content and resources at their convenience. It doesn’t require si-
multaneous participation. Students can engage with course materials, assignments, and
discussions at their own pace, making it suitable for individuals with varied schedules
[59]. One of the de�ning features of asynchronous learning is the absence of real-time
constraints. Students have the freedom to choose when and where they engage with
the course materials. This �exibility is particularly bene�cial for individuals with busy
schedules, as it enables them to balance their education with other commitments. On-
line learning platforms are central to asynchronous learning. These platforms serve as
repositories for educational resources, including lecture videos, readings, quizzes, and
assignments. Students can access these materials 24/7, allowing them to learn at their
most productive times.

Self-pacing is a key component of asynchronous learning. Students progress through
the course materials independently, enabling them to spend more time on challenging
concepts and move quickly through familiar topics. This autonomy over the learning
process encourages self-regulation [60, 61] and time management skills [62, 63]. Discus-
sion boards and forums are often integral to asynchronous learning environments. These
platforms facilitate communication and collaboration among students and instructors.
While not in real-time, these discussions provide opportunities for students to ask ques-
tions, seek clari�cation, and engage in meaningful conversations about course content.

One signi�cant advantage of asynchronous learning is its accessibility [64]. Students
from diverse geographical locations can participate, overcoming the barriers of time
zones and physical distances. This inclusivity enhances the diversity of perspectives
in the learning community. Asynchronous learning also accommodates various learn-
ing styles. Students can choose the format that best suits their preferences, whether
it’s reading text-based materials, watching video lectures, or participating in interactive
simulations. This �exibility caters to a broad range of learners. While instructors are
not present in real-time during asynchronous learning, they remain actively involved.
They design and curate course materials, provide clear instructions, and set deadlines for
assignments and assessments. Instructors also participate in discussion boards, answer
questions, and o�er guidance. Assessment in asynchronous learning is often based on
assignments, quizzes, and exams that students complete within speci�ed time-frames.
This approach allows instructors to gauge students’ understanding of the material and
provide feedback for improvement [65].
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In summary, asynchronous learning o�ers a �exible and inclusive educational expe-
rience. It caters to students’ diverse needs and schedules, promotes independent learn-
ing, and fosters a sense of self-regulation. When thoughtfully designed, asynchronous
courses provide valuable educational opportunities for a wide range of learners, con-
tributing to the ever-evolving landscape of online education.

2.3 Data Mining Techniques

Data mining techniques play a pivotal role in educational data analysis, particularly
in the classi�cation and prediction of students’ outcomes. These methods are employed
to distribute datasets into distinct classes, facilitating predictions about future data based
on prede�ned categories. In this section, we’ll provide an overview of key classi�cation
techniques, used in previous research (as shown in Table 2.1), for predicting students’
performance.

One of these techniques is Decision Trees. Decision Trees are graphical models that
use a tree-like structure to make decisions. In education, these trees are used to clas-
sify students into di�erent categories based on features such as grades, attendance, or
demographic information. Decision Trees are interpretable and can help educators iden-
tify important factors that a�ect student performance. Another technique is K-Nearest
Neighbors (K-NN). K-NN is a classi�cation algorithm that assigns a class label to a data
point based on the majority class among its k-nearest neighbors. In education, it can
be used to predict a student’s performance by looking at the performance of their clos-
est peers in terms of academic history, interests, or study habits. Random Forest is an
ensemble learning method that builds multiple decision trees and combines their pre-
dictions to improve accuracy and reduce over�tting. In educational contexts, it can be
used to make more robust predictions about student outcomes by considering various
factors and reducing the impact of noise in the data.

Support Vector Machine (SVM) is a supervised machine learning algorithm used for
classi�cation and regression tasks. In education, SVM can be applied to predict student
outcomes by �nding a hyperplane that best separates di�erent classes of students based
on features such as test scores, attendance, or study time. Arti�cial Neural Network

Acronym Description

Decision Trees Graphical models for classifying students based on features like grades and more.
K-NN Assigns class labels based on peers’ performance in academic history, interests, etc.
Random Forest Ensemble method for robust student outcome predictions by considering various factors.
SVM Separates students into classes using a hyperplane based on features like test scores.
ANN Complex pattern recognition using interconnected nodes for predicting student performance.
Naïve Bayes Probabilistic classi�cation for predicting student outcomes based on attributes.

Table 2.1: Data Mining Techniques for Student Performance Prediction.
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(ANN), inspired by the structure and function of the human brain, consists of layers of
interconnected nodes (neurons) and is used for complex pattern recognition tasks. In
education, ANNs can be employed for predicting student performance by processing
a vast amount of data and identifying intricate patterns and trends. Naïve Bayes is a
probabilistic classi�cation algorithm based on Bayes’ theorem. It assumes that features
are conditionally independent, simplifying the calculation of probabilities. In educa-
tional applications, Naïve Bayes can be used to predict student outcomes by estimating
the likelihood of a student belonging to a particular class based on their attributes and
behaviors.

These are some of the fundamental data mining techniques utilized in educational
data analysis. Each technique has its strengths and limitations, making them suitable for
di�erent types of educational predictive tasks. The choice of technique often depends
on the speci�c problem and the nature of the available data.

2.4 Data Mining Tools

In the �eld of Educational Data Mining (EDM), several tools and software platforms
have emerged to facilitate data analysis, predictive modeling, and decision-making pro-
cesses. These tools o�er educators and researchers powerful capabilities for extracting
valuable insights from educational datasets. Below are some of the commonly used tools:

R is a popular open-source programming language and environment for statistical com-
puting and graphics. It o�ers a wide range of packages and libraries speci�cally designed
for data mining and machine learning in education. Researchers and educators often use
R for data preprocessing, visualization, and building predictive models1.

Python is another versatile programming language widely adopted in EDM. Its exten-
sive ecosystem of libraries, including scikit-learn, pandas, and TensorFlow, makes it suit-
able for tasks such as data analysis, machine learning, and natural language processing
in the educational domain2.

Weka is user-friendly data mining software that provides a graphical user interface for
building and evaluating machine learning models. It o�ers a wide variety of data pre-
processing, classi�cation, clustering, and visualization tools, making it accessible to ed-
ucators and researchers without extensive programming experience3.

RapidMiner is an integrated data science platform that simpli�es the entire data mining
work�ow, from data preparation to model deployment. It o�ers educational institutions

1https://www.r-project.org/
2https://www.python.org/
3https://www.cs.waikato.ac.nz/ml/weka/

https://www.r-project.org/
https://www.python.org/
https://www.cs.waikato.ac.nz/ml/weka/
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and researchers an intuitive interface for building and deploying predictive models4.

KNIME is an open-source platform for data analytics, reporting, and integration. It
allows users to create data pipelines and execute data miningwork�ows through a visual
interface. KNIME’s �exibility and extensibility make it a valuable tool for educators and
researchers in EDM5.

Orange is a user-friendly open-source data visualization and analysis tool. It provides
a visual programming interface for constructing work�ows and analyzing data, making
it suitable for both beginners and experts in EDM6.

IBM SPSS is a widely used statistical software package that includes advanced analytics
capabilities. In the context of education, it can be employed for data analysis, predictive
modeling, and reporting7.

Tableau is a popular data visualization tool that helps educators and researchers trans-
form complex educational data into interactive and easy-to-understand visualizations.
It enables users to gain insights from data quickly and e�ectively8.

These tools o�er diverse capabilities for data mining, predictive modeling, and data
visualization in educational settings. The choice of tool often depends on the speci�c
requirements of the educational data analysis project and the expertise of the users in-
volved. For this thesis, Python served as the primary tool for data analysis andmodeling.

2.5 Data Mining Process

In this section, we delve into the methodologies employed to bridge the gap between
raw data and practical applications within the scope of AI in education. The methods
outlined here encompass the transformative journey from data collection to the devel-
opment of AI-enabled educational systems, re�ecting the essence of translating research
insights into real-world impact. The steps detailed below in the data mining process, are
also presented in Figure 2.1

Step 1: Data Collection. The foundation of any data-driven research in AI for ed-
ucation begins with data collection. This process involves acquiring diverse datasets
encompassing student demographics, academic performance, engagement metrics, and
other relevant attributes. Data preprocessing is a crucial initial step, entailing tasks like
data cleaning, normalization, and feature extraction. It ensures that the data is in a suit-
able format for subsequent analysis.

4https://rapidminer.com/
5https://www.knime.com/
6https://orangedatamining.com/
7https://www.ibm.com/it-it/spss
8https://www.tableau.com/

https://rapidminer.com/
https://www.knime.com/
https://orangedatamining.com/
https://www.ibm.com/it-it/spss
https://www.tableau.com/
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Fig. 2.1: Interconnected steps in the data mining process for AI-driven educational
systems

Step 2: Exploratory Data Analysis. Exploratory Data Analysis is an indispensable
phase aimed at understanding the inherent patterns, distributions, and anomalies within
the collected data. Statistical and visualization techniques are leveraged to unearth valu-
able insights, identify trends, and highlight potential correlations among variables. This
stage contributes signi�cantly to guiding the subsequent analysis.

Step 3: Model Selection. The selection of appropriate machine learning models hinges
on the research objectives and the nature of the data. Commonly employed algorithms
include decision trees, support vector machines, random forests, and neural networks,
among others. The chosen models are tailored to address speci�c tasks, such as predict-
ing student outcomes or identifying engagement patterns.

Step 4: Model Training. The selected machine learning models are trained on a por-
tion of the dataset, utilizing techniques like cross-validation to ensure robustness and
generalizability. During this phase, models learn to recognize underlying patterns and
relationships within the data.

Step 5: Feature Extraction. Feature extraction involves the creation of new variables
or the transformation of existing ones to enhance the predictive power of machine learn-
ing models. This process can uncover latent insights and improve the accuracy of pre-
dictions, making it an essential component of the methodology.
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Step 6: Model Evaluation. Rigorous evaluation of model performance is conducted
using metrics tailored to the speci�c research goals. Common evaluationmetrics include
accuracy, precision, recall, F1-score, and area under the receiver operating characteristic
curve (AUC-ROC). Models are assessed for their ability to make accurate predictions and
provide actionable insights.

Step 7: Interpretability and Explainability. In the context of AI in education, in-
terpretability and explainability of models are paramount. Interpretability tools, such
as SHAP (SHapley Additive exPlanations) values, LIME (Local Interpretable Model-
Agnostic Explanations), and feature importance analysis, are employed to elucidate the
rationale behind model predictions. This ensures that stakeholders can trust and com-
prehend the AI-driven decisions.

Step 8: Model Deployment. Successful machine learning models are deployed within
educational systems, where they facilitate data-driven decision-making. Deployment in-
volves integrating models into existing educational technologies or platforms, ensuring
seamless interaction with educators, administrators, and students.

Step 9: Continuous Monitoring and Improvement. The journey from data to ap-
plications does not culminate with deployment; it evolves into a cycle of continuous
monitoring and improvement. Models are subject to ongoing evaluation, recalibration,
and �ne-tuning to adapt to evolving educational landscapes and data dynamics.

Throughout these methodological phases, ethical considerations remain a paramount
concern. The research adheres to ethical guidelines, promoting fairness, transparency,
and accountability in AI-enabled educational systems.

In essence, this section outlines the systematic progression from data acquisition
and preprocessing to the development, deployment, and re�nement of machine learn-
ing models within the educational context. These methods form the critical bridge that
translates data insights into actionable solutions, ultimately contributing to the advance-
ment of AI in education.

2.6 Educational Applications

In this section, we explore diverse applications of AI in education, showcasing how
machine learning and data-driven approaches are harnessed to address critical chal-
lenges and enhance various facets of the educational landscape. These applications un-
derscore the multifaceted impact of AI technologies on students, educators, and institu-
tions alike.

One of the foremost applications of AI in education is predicting student success. Ma-
chine learning models analyze historical student data, including academic performance,
engagement metrics, and demographics, to forecast outcomes. Early identi�cation of
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at-risk students allows educators to intervene proactively and provide tailored support,
ultimately improving retention rates and student success [66, 67]. AI-powered person-
alized learning systems adapt content, pace, and instructional strategies to individual
student needs. These systems leverage data analytics to understand students’ strengths
and weaknesses, ensuring that learning experiences are tailored for optimal comprehen-
sion and engagement [68, 69]. Student modeling involves creating detailed pro�les of
individual students based on their interactions with educational platforms. These mod-
els track learning progress, identify knowledge gaps, and provide recommendations for
further study. This application enhances both teaching and learning by o�ering real-
time insights into student performance [70, 71].

AI algorithms analyze student behavior and preferences to recommend relevant edu-
cational content. Whether suggesting reading materials, exercises, or supplementary re-
sources, content recommendation systems foster self-directed learning and engagement
[72]. Machine learning streamlines the grading process by automating the evaluation
of assignments, quizzes, and exams. This not only reduces the workload on educators
but also ensures consistency and objectivity in grading practices [73]. AI-driven data
analysis informs curriculum development and enhancement. Educators and institutions
can use insights from machine learning to optimize course content, delivery methods,
and assessment strategies, resulting in more e�ective teaching and learning [74].

Learning analytics harness AI to scrutinize vast educational datasets. This application
extracts actionable insights, such as identifying e�ective teaching strategies, optimizing
resources, and enhancing overall learning experiences [75]. Gami�cation incorporates
game elements into educational contexts to boost engagement and motivation. AI al-
gorithms can tailor gami�ed experiences to individual student preferences and learning
objectives [34]. AI streamlines administrative tasks in educational institutions, from stu-
dent enrollment and resource allocation to facility management and budget planning.
Automation of these processes optimizes e�ciency and resource utilization. AI-driven
language processing tools facilitate language acquisition by o�ering real-time transla-
tion, pronunciation feedback, and grammar correction. These applications are particu-
larly valuable in language learning courses [76].

AI-driven assistive technologies support students with disabilities, providing tools
such as speech recognition, text-to-speech, and screen readers to ensure equal access
to educational content. Institutions leverage predictive analytics to forecast enrollment
trends, allocate resources e�ectively, and plan for future academic o�erings. AI-powered
chatbots o�er immediate support to students and educators. They can answer questions,
provide guidance, and o�er feedback, enhancing the overall educational experience [77].

These diverse applications demonstrate the transformative potential of AI in educa-
tion, from improving student outcomes and engagement to enhancing administrative
e�ciency. By harnessing the power of machine learning and data analytics, educational
institutions are poised to revolutionize teaching and learning in the digital age.





Chapter 3

Needs and Challenges in Machine
Learning for Education

This chapter presents the �ndings of our investigation into experts’ challenges and
needs in performance analysis AI for education.

3.1 Introduction

Arti�cial intelligence (AI) integrated into educational systems is signi�cantly impact-
ing the quality of education. Examples of AI-basedmodels integrated so far include early
predictors of student success [1], clustering techniques for learner modeling [2], intel-
ligent tutoring and sca�olding [3], agents for motivational diagnosis and feedback [4],
and models for recommending peers or learning material [5]. However, alongside this
growth, there is a growing concern about the potential of AI to exacerbate unfairness
in educational applications. Mainstream media has reported systemic unfair behaviors
of some AI-enabled educational systems, such as automated college enrollment systems
that exhibit biases based on ethnicity, gender, or age [6], or machine-learning systems
for evaluating PhD applicants that perpetuate existing inequalities in the �eld [7].

E�orts to address fairness in educational applications have mainly focused on design-
ing fairness de�nitions [8] and developing algorithmic methods to assess and mitigate
biases based on these de�nitions [9]. Some studies have also examined fairness in ed-
ucational AI systems from social and psychological perspectives [78]. While there are
already some research studies on fair AI, they often represent isolated examples. For the
resulting AI applications to have a positive impact on education, fairness-aware prac-
tices should become common when developing educational applications that leverage
AI. Understanding the actual challenges and needs for developing fairer AI for educa-
tion is therefore crucial.

Creating AI-based educational systems presents unique challenges that are not com-
monly encountered in other domains of AI [79]. Although fairness has received attention
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in the broader AI �eld [80, 81, 82, 83], only a few studies have speci�cally investigated
challenges and needs for creating fairer AI by directly consulting experts [84, 85]. Un-
like previous studies that focused on public-sector and commercial AI practitioners, our
study focuses on educational researchers and practitionerswho are incorporatingAI into
their work but are relatively new to considering fairness. Integrating fairness considera-
tions, beliefs, practices, motivations, and priorities may be less clear in these educational
contexts and cultures.

In this chapter, we are interested in investigating the challenges and needs faced by
the educational community, whose products have a direct impact on individuals’ ed-
ucation, in integrating and monitoring for unfairness and taking appropriate action.
Through an anonymous survey of 136 educational researchers and practitioners who
have published their research in top-tier educational conferences in 2021, we analyze
their existing opinions, experiences, challenges, and needs regarding the development
of fair educational AI. Additionally, we conduct semi-structured interviews with 29 of
these experts to delve deeper into the key themes identi�ed in the survey. To our knowl-
edge, this is the �rst systematic investigation of experts’ challenges and needs related to
fairness in educational AI.

Through our investigation, we identify a range of real-world needs that have not
been extensively addressed in the literature thus far, as well as several common areas.
For instance, unlike the broader AI �eld, large-scale data collection is not always con-
sidered a solution in educational AI due to complex biases driven by local contextual
factors. Research teams also struggle with identifying sub-populations and forms of un-
fairness that need to be considered for speci�c applications, indicating their own blind
spots. Moreover, while fair educational AI has predominantly focused on data collection
issues, assessment and debiasing of unfairness are equally crucial, necessitating continu-
ous fairness assessment at all stages of the development pipeline. Given the context and
application-dependent nature of fairness, there is an urgent need for domain-speci�c ed-
ucational resources, metrics, processes, and tools, including open data and source code
for public scrutiny and participatory processes for fairness checking. Another area that
requires attention is the development of auditing processes and tools to bring fairness is-
sues to light. Based on our �ndings, we highlight opportunities to have a greater impact
on the landscape of fair educational AI. Given the complexities associated with these
challenges and the crucial need for equitable development of educational AI, we present
the following research questions:

1. RQ1: What are the signi�cant challenges faced by individuals and organizations
interested in the practical application of these techniques within real-world set-
tings, particularly in the realm of education and AI?

2. RQ2: Considering themultifaceted challenges identi�ed in the �rst question, what
are the current, pressing needs and requirements for e�ectively addressing them
in the pursuit of advancing responsible AI within educational contexts?



Chapter 3. Needs and Challenges in Machine Learning for Education 19

3.2 Methodology

In our study, we took several steps to ensure a comprehensive understanding of the
challenges and needs for addressing fairness in the development of educational AI.

3.2.1 Survey Study Implementation
Initially, we conducted an anonymous online survey to gather a broad sense of these

issues. To ensure a representative sample, we employed a systematic recruitment process
rather than relying on an arbitrarily selected population.

We manually scanned the proceedings of top-tier educational conferences held in
2021, including AIED, EAAI, EC-TEL, EDM, ICALT, ITS, LAK, and L@S. Additionally, we
considered authors of papers in special issues about fair educational AI in IJAIED. This
rigorous approach allowed us to identify authors who had papers accepted at these con-
ferences and directly emailed them the survey between September and December 2021.
Furthermore, we encouraged them to share the survey with their colleagues working
on educational AI within their organizations. In total, we contacted 2,175 experts, and a
noteworthy 136 individuals (6%) completed at least one section beyond the demographic
questions. A description of the respondents is provided in Fig. 3.1a.

The survey was structured as a Google Form, and we designed speci�c questions to
explore the prevalence and generality of emerging themes. Initially, we gathered demo-
graphic information to gain insights into the respondents’ backgrounds, including their
technological areas and roles. Subsequently, the survey consisted of sections branch-
ing into various stages of the educational AI development pipeline1. In each section,
participants were asked about their opinions, challenges, and support requirements re-
garding fairness. Open-ended response options allowed respondents to elaborate on
their arguments. Finally, we requested their email addresses in case they were willing
to participate in subsequent interviews.

By employing this comprehensive survey methodology, we aimed to collect diverse
perspectives and insights from the educational AI community.

3.2.2 Interview Study Implementation
In order to validate and deepen our �ndings from the previous survey, we conducted

a series of semi-structured, one-to-one interviews with selected participants. To recruit
interviewees, we reached out to the experts who had completed the survey and ex-
pressed their willingness to participate in follow-up interviews by providing their email
addresses. Out of the 136 survey respondents, 29 individuals (21%) agreed to take part
in this second step, representing a diverse range of research teams. We made an e�ort

1A pdf copy of the survey questions is available at https://bit.ly/FairAIEdSurvey.

https://bit.ly/FairAIEdSurvey
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(a) Survey (b) Interview

Fig. 3.1: Sample population statistics for our survey and interview process.

to include individuals in di�erent roles within the same team to capture diverse per-
spectives. The interviews were conducted remotely, as the participants were located in
various countries.

During each interview, we reminded the participants of the purpose of our research
and then focused on their awareness of the ongoing debate and research on demographic
fairness in educational AI. We also explored the most important challenges and open
questions in the �eld, as indicated in questions 7 and 8 of the survey. Furthermore, we
asked participants to provide more details about the educational AI applications they
were working on and the target users of these applications, as mentioned in question 8
of the survey. We delved into the participants’ perspectives on fairness and whether it
is regularly considered in their work�ow. We aimed to understand their interpretation
of fairness within their speci�c application context, as mentioned in question 9 of the
survey. The discussion during the interviews often referred back to the participants’
survey responses.

To further explore fairness in the educational AI development pipeline, we presented
survey questions related to each stage, from data collection to dataset design, and the
assessment and potential mitigation of fairness issues (questions 10 to 13 of the survey).
For each stage, we posed a broad opening question aligned with the corresponding sur-
vey question, followed by speci�c follow-up questions based on the participants’ survey
responses. This approach encouraged participants to providemore in-depth insights into
their practices and re�ections. Through this series of interviews, we aimed to validate
and enrich the insights gained from the survey. By gaining a deeper understanding of the
perspectives and experiences of the educational AI community, we sought to strengthen
the �ndings and ensure a comprehensive understanding of the challenges and needs
related to fairness in educational AI.
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3.2.3 Survey and Interview Data Analysis

After collecting data from both the survey and interview phases, we proceeded with
the analysis of the responses. Each survey and interview entry was assigned a unique ID,
allowing us to link corresponding survey and interview data from the same participant.

To analyze and synthesize the �ndings, we followed a standard methodology used
in contextual design. We conducted interpretation sessions and employed a�nity dia-
gramming, a technique commonly used in qualitative research (e.g., see also [86]). Our
approach involved a bottom-up process of generating codes based on individual text
segments, followed by grouping these codes into higher-level themes. Importantly, the
themes that emerged from the analysis were derived directly from the data rather than
being imposed on the responses.

Through this iterative process of a�nity diagramming, we identi�ed key themes that
encapsulated the participants’ perspectives and experiences. These themes, which we
will present in the following section, provide valuable insights into the challenges and
needs surrounding fairness in educational AI.

3.3 Results and Discussion

In the following discussion, we will address the current challenges and needs related
to fairness in educational AI. These insights are organized into top-level themes, which
are based on both the survey questions and the in-depth interviews. The interviews
served to con�rm and enrich the responses obtained from the survey, providing a more
comprehensive understanding of the subject. The resulting a�nity diagram helped us
categorize the challenges and needs into speci�c sub-themes.

The themes discussed cover various aspects, starting with the challenges and needs
surrounding data collection andmodeling, as highlighted in questions 9-10. We explore
the issues related to detecting and mitigating unfairness in educational AI, as presented
in question 11. Additionally, we examine the provision of fairness guarantees, as outlined
in question 12, and the importance of holistic fairness auditing, as discussed in ques-
tion 13. These themes are accompanied by systemic aspects such as team composition,
cross-organizational collaborations, and the maturity of educational AI, as addressed in
question 7.

Within each top-level theme, we further present selected sub-themes that shed light
on speci�c areas of concern. It is important to note that our study primarily aims to
identify open questions and highlight areas that require further exploration. Providing
comprehensive answers to these challenges necessitates ongoing discussions and collab-
orative e�orts within the research community as a whole. Our study serves as a catalyst
for these discussions and encourages further work in this important �eld.
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3.3.1 Challenges and needs in data collection and grouping

Cultural dependencies in demographic representation. Many participants ac-
knowledged that researchers themselves, who are often not demographically represen-
tative of their societies, tend to involve individuals within their immediate circles, such
as their own students, who may also lack diversity. In question 10 of the survey, a par-
ticipant highlighted the challenge of collecting data that adequately represents di�erent
contexts, including countries, universities, and society, due to variations in culture, view-
points, and rules. During the interview, the same participant further commented on how
research tends to focus on speci�c countries and is predominantly conducted in English,
resulting in �ndings that are more representative of certain societies and educational
systems. Overall, it was commonly emphasized that no dataset fully encompasses the
diversity of the population, inevitably leaving some individuals underrepresented. This
cultural dependency poses a signi�cant challenge when striving for fairness in educa-
tional AI, as it requires considering and addressing the inherent biases and limitations
present in the data collection process.

Biases driven by reasons to be understood in the local context: In contrast to
the broader �eld of AI, several participants expressed the belief that large-scale data
collection may not e�ectively capture the nuances of fairness in educational AI. They
emphasized that biases in educational AI are in�uenced by complex and context-speci�c
factors. As stated by a participant in question 10 of the survey, "biases in education are
driven by complex reasons to be understood locally." This highlights the need for localized
data collection e�orts and the importance of sharing data practices to address fairness
issues e�ectively.

Hidden relationships between demographics and learning variables: Participants
encountered di�culties in identifying the underlying issues that contribute to fairness
challenges. During an interview, a participant mentioned that in some cases, ethnicity
itself may not directly cause di�erences in how students interact with educational soft-
ware or the resulting data. Instead, it is the students’ life experiences, correlated with
ethnicity, such as facing discrimination, that in�uence their engagement. It was noted
that di�erent demographic groups might respond di�erently to psychological measures
and educational interventions. In light of this, a participant suggested during the inter-
view that educational AI models might need to be demographically strati�ed. Overall,
challenges were identi�ed in understanding what demographic attributes truly repre-
sent and how experts can e�ectively measure and address their impact on fairness in
educational AI.

Giving individuals continuous control of their data: A signi�cant number of par-
ticipants emphasized the importance of individuals having complete access and control
over their data, including any new data generated about them. It was widely recognized
that individuals should be able to manage their data in a way that ensures con�dential-
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ity and prevents unintended sharing. As one participant suggested, "access should be
controlled in such a way that con�dential information will not be inadvertently shared
beyond their control," building upon their response in the survey. The a�nity diagram
revealed a clear need for supporting tools that inform users about the data being used
by the system and for what purposes. A participant envisioned in the survey that these
tools could allow users to selectively enable or disable the use of speci�c data by the sys-
tem. Challenges and needs were identi�ed regarding the development of mechanisms
that empower individuals to exercise control over their data within educational systems.

Our study suggests the importance of localized data collection e�orts. We emphasize
the need to capture the nuances of fairness issues by considering local contexts, cul-
tures, and viewpoints. Additionally, our �ndings underline the signi�cance of involving
diverse and representative groups in the data collection process to ensure a more bal-
anced and culturally sensitive dataset.

3.3.2 Challenges and needs of fairness-aware technical pipelines

Continuous fairness assessment at all stages of the pipeline: Participants con-
sistently emphasized the importance of integrating fairness considerations throughout
the entire development pipeline of educational AI systems. They stressed that fairness
should be a fundamental aspect from the outset, in�uencing choices related to data col-
lection, optimization criteria, and interventions. One participant highlighted the need
for clearly de�ned aims and objectives of data collection, emphasizing the importance of
explicit discussions and negotiation with participants. The inclusion of fairness should
be seen as an integral part of the design process, involving expertise in fairness and en-
suring its integration at every stage. Protocols and guidelines are needed to facilitate the
incorporation of fairness considerations throughout the pipeline.

Understanding and acknowledging weaknesses of the system: Participants recog-
nized the signi�cance of understanding the strengths and weaknesses of educational AI
systems. It was noted that achieving full transparency or explainability may be challeng-
ing, but e�orts should be made to comprehend the scope and limitations of the underly-
ing data. Participants suggested informing users about the limitations of the system and
its accuracy variations among di�erent demographic groups. By acknowledging these
aspects, a better understanding can be gained regarding the capabilities and limitations
of the systems.

Reducing frictions between model e�ectiveness and fairness: Balancing predic-
tion accuracy with fairness was identi�ed as a major challenge. Participants expressed
concerns that using demographic features directly for accurate predictionsmay not align
with fairness goals, as those features may encode biases. Alternative practices were sug-
gested that achieve comparable performance without relying heavily on demographic
features. Additionally, debates arose regarding whether the bene�ts of a model that per-
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forms well for one group should be withheld from another. Exploring approaches that
promote fair usage while maintaining high model performance is crucial.

Creating cross-institutional frameworks for addressing fairness: The need for
cross-institutional collaboration and the establishment of uni�ed frameworks for data
collection and fairness-aware model evaluation was highlighted. Participants proposed
the formation of consortia consisting of organizations from di�erent countries, such
as universities and companies, to develop a shared framework. Trust-building among
government, institutions, researchers, and practitioners was deemed essential for ac-
cessing sensitive data, while ensuring compliance with privacy regulations and using
de-identi�ed data in educational systems. However, participants acknowledged the chal-
lenges associated with leveraging data, even when anonymized, to improve educational
systems.

Our study underscores the need for continuous fairness assessment at all stages of
the pipeline. We advocate for the integration of fairness considerations from the outset,
in�uencing choices related to data collection, optimization criteria, and interventions.
This approach ensures that the individual strengths and limitations of students are con-
sidered throughout the development process.

3.3.3 Challenges and needs in providing fairness guarantees

Opening data and source code for public scrutiny: Participants expressed the im-
portance of transparency and public scrutiny in the development of educational AI sys-
tems. They emphasized the need for developers to publish or release models, analyses,
and related resources for public examination, particularly when concerns about fairness
arise. Sharing data, source code, and pre-trained models in open online repositories was
seen as an essential practice. However, guidelines and directives regulating this sharing
process are necessary to navigate the tension with copyright and intellectual property
rights.

Fairness should not be a property of the model only: Participants emphasized that
fairness should not be limited to the underlying predictive model but should extend to
the overall service provided to users within the educational ecosystem. They highlighted
the need for guidelines and practices that embed fairness as a constraint or metric for
the underlying model and as a key indicator for the service itself. Fairness should be
considered throughout the entire system’s deployment, not just in the design of the
model.

Showing explicit evidence of the system’s potential unfair impacts: Participants
stressed the importance of institutions adopting educational AI systems having access
to evidence that supports the claim of fairness. There were di�ering opinions regarding
the extent to which transparency should be provided to students. Some participants sug-
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gested that students should not be made explicitly aware of demographic considerations
to avoid invoking stereotype threat. However, others argued that students have the right
to know how the system works and be informed about any fairness shortcomings. The
level of transparency, accountability, and explainability should be proportional to the
impact of the system, with more signi�cant decisions requiring greater accountability.

Creating participatory processes for fairness checking: Participants proposed the
establishment of independent third-party entities or ethical commissions responsible for
assessing the fairness of educational AI systems. These entities would provide sample
data to the system and evaluate its fairness. Additionally, the involvement of learner
advocates or conducting exploratory research to uncover potential detrimental e�ects on
learner successwas suggested. The exactmechanisms and stakeholders involved in these
participatory processes are open questions to be addressed by the research community.

Regulations for de�ning responsibilities around fairness issues: Participants em-
phasized the importance of de�ning clear responsibilities and consequences for ensuring
fairness in educational AI systems. They drew parallels to service level agreements in
cloud services, where failure to meet guarantees may result in �nancial penalties. It
was suggested that guarantees of fair treatment and certi�cation of fairness according
to speci�c variables should become mandatory in fair educational AI systems. Regu-
lations and guidelines are needed to establish accountability and consequences for not
upholding fairness guarantees.

Our research �ndings recommend the formation of consortia consisting of organiza-
tions from di�erent countries. These consortia would develop a shared framework, em-
phasizing trust-building among government, institutions, researchers, and practitioners.
Such frameworks are essential for accessing sensitive data while ensuring compliance
with privacy regulations and fostering transparent and equitable educational AI out-
comes.

3.3.4 Challenges and needs of a more holistic fairness auditing

Human-centered evaluation of fairness: Participants highlighted the importance of
human-centered evaluation of fairness, which should involve multiple levels of analysis.
This evaluation process would incorporate statistical metrics, expert audits of system
design and training data sets, and meetings with stakeholders representing the most
impacted groups. The goal is to ensure that the evaluation protocol is tailored to the
speci�c educational context. While automation can play a role in parts of the evaluation
process, stakeholders should remain actively involved.

Creation of tools that allow stakeholders to audit models: Transparency of educa-
tional AI systems to end-users is crucial, and participants expressed the need for stake-
holders to be able to analyze system data for fairness and outcomes. Some participants
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noted that this auditing process would require experts, as it may be resource-intensive
for other stakeholders. It is important for students (or instructors) to understand why
they receive certain predictions from the system so that they can re�ect and respond
constructively. However, there may be challenges in explaining AI-driven predictions to
students, especially younger ones. E�orts should be made to ensure that students have a
high-level understanding of what the system does, potentially through speci�c training.

Contextualized and application-speci�c properties to inspect: Participants ex-
pressed doubts about the generalizability of fairness metrics and protocols from the
broader AI community to educational AI systems. They emphasized the need to in-
vestigate and develop a fairness spectrum speci�cally tailored to the educational �eld.
Context-speci�c frameworks, adapted to di�erent educational contexts and applications,
should be developed, taking into account local data privacy and protection laws. The
unique characteristics of the educational �eld, which is highly human-centered, require
frameworks that are aligned with its speci�city rather than relying on black-box ap-
proaches from other domains.

Long-term learning-related evaluation of fairness: Participants argued against an
overly computational de�nition of fairness that focuses on demographic di�erentials in-
stead of recognizing and addressing the strengths and weaknesses of individual students
to help them reach their full potential. They questioned the overemphasis onmetrics and
protocols, noting that unfair outcomes could be deemed fair solely based on model per-
formance on these metrics. Instead, participants proposed evaluating systems based on
broader educational goals, looking beyond immediate intended e�ects (e.g., whether an
auto-generated hint helps students answer a question) and considering long-term out-
comes in students’ overall educational performance.

3.3.5 Challenges and needs in team blind spots and practices

Support in the selection of demographic groups to consider: Participants ex-
pressed the challenge of determining which demographic attributes to consider in an
analysis. There were di�ering opinions on whether certain demographic attributes, such
as gender, are relevant or irrelevant for certain problems. The lack of consideration for
socioeconomic characteristics in many studies was also highlighted as a potential bias
in resulting models. Participants noted that datasets often lack fair observations and
may still contain biases due to human decision-making. Establishing standards for the
demographic groups to consider is necessary to address these challenges.

Building social and multi-disciplinary awareness in teams: Participants empha-
sized the need for teams developing educational AI models to have social science train-
ing and an understanding of the socio-cultural implications of their algorithm designs. It
was noted that technical individuals without such training may prioritize computational
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e�ciency over social justice considerations. Participants called for equity training and
awareness among developers and researchers. Inclusive and diverse teams were deemed
necessary to incorporate multiple perspectives, including those from social sciences, to
understand the validity and implications of collected variables in AI models that impact
people.

3.4 Findings and Recommendations

In this chapter, we present the �ndings of our systematic investigation, which aimed
to understand the challenges and needs faced by expert teams in developing fairer educa-
tional AI systems. Our research sheds light on the technical and organizational barriers
that experts encounter, despite their motivation to improve fairness in educational ap-
plications. Though researchers and practitioners are already grappling with biases and
unfairness in educational AI systems, research on this topic is rarely guided by a common
understanding and view of the faced challenges and needs. In this work, we conducted
the �rst systematic investigation of experts teams’ challenges and needs for support in
developing fairer educational AI. Even when experts are motivated to improve fairness
in their educational applications, they often face technical and organizational barriers.
We highlight a few emerged aspects below.

Findings RQ1. Challenges in applying AI in education include complex data
collection, driven by cultural and local factors. Understanding how demographics
relate to learning variables is challenging, as is ensuring data control and empow-
erment tools for individuals. Fairness issues extend beyond AI models to the entire
user service, requiring explicit evidence and clear responsibilities.

Future research should also support experts in collecting and curating high-quality
datasets, with an eye towards fairness in downstream AI models, reducing cultural de-
pendencies in demographic representation. Moreover, large-scale data collection should
be paired with an in-depth description of the local contexts, since biases are driven by
complex reasons to be understood locally. Localized and causal data collection paired
with data sharing practices are needed, posing attention in giving individuals control of
their data. Though fair educational AI has mainly focused on data collection, assessment
and debiasing of unfairness is also an important area of work. Challenges and needs in
this area include having continuous fairness assessment at all stages of the pipeline, un-
derstanding and acknowledging the potential weaknesses of the system, reducing fric-
tions between model e�ectiveness and fairness, and creating cross-institutional frame-
works for addressing fairness.
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Findings RQ2. Addressing AI challenges in education necessitates transparency,
data sharing, and fairness integration in the entire service. Evidence of fairness
and consideration of long-term learning outcomes are vital. Third-party fairness
assessment and clear accountability are essential. Teams need help in selecting
demographic factors and building multi-disciplinary awareness.

Domain-speci�c educational resources, metrics, processes, and tools are urgently
needed. Challenges and needs in this perspective include, among others, practices
for opening data and source code for public scrutiny, including fairness not only as a
property of the AI model, showing explicit evidence the system’s potential unfair im-
pacts, creating participatory processes for fairness checking, and de�ning responsibili-
ties around fairness issues. The development of processes and tools for fairness-focused
auditing is also important, to surface fairness issues in complex, multi-component ed-
ucational AI systems. Among others, challenges and needs include fostering a more
focused human-centered evaluation of fairness, contextualized and application-speci�c
tools for auditing, and long-term learning-related auditing of fairness. Finally, another
area with several challenges and needs concern the teams working on educational AI.
Among others, supporting the team in the selection of the demographic groups to con-
sider and building multi-disciplinary awareness in teams are two of the more relevant
aspects to work on.

The rapidly growing area of fairness in educational AI presents many challenges and
needs. The resulting systems are increasingly widespread, with proved potential to am-
plify social inequities, or even to create new ones. As research in this area progresses, it
is urgent that research agendas are aligned with the challenges and needs of those who
a�ect and are a�ected by educational AI systems. We view the directions outlined in this
work as critical opportunities for the AI and the educational research communities to
play more active, collaborative roles in making real-world educational AI systems fair.



Chapter 4

Analyses of Algorithmic Perfor-
mance in Synchronous Learning

In Chapter 3, we ventured into the intricacies of AI techniques for data collection and
model fairness in educational AI systems. Now, in this Chapter, our focus narrows to
synchronous learning environments. We delve into algorithmic performance within this
context, speci�cally into student behavior modeling, course attendance prediction, and
course quality prediction in AI-enabled educational systems. This chapter is dedicated
to dissecting the challenges inherent to algorithmic performance and presenting our
research �ndings pertaining to data analysis and predictions within the synchronous
learning domain.

4.1 Error Analysis on Student Behavior Modelling

4.1.1 Introduction

The Covid-19 pandemic has compelled educational institutions to transition from tra-
ditional face-to-face classroom learning to online environments. Online learning refers
to educational approaches that utilize multimedia and Internet technologies for teach-
ing and learning purposes. Initially, this strategy was adopted to support students who
were unable to physically attend in-person classes. Recent literature has focused on
providing guidance and discussing the advantages and limitations of online learning,
particularly exploring asynchronous and synchronous strategies. These discussions ad-
dress questions such as when, why, and how to employ these two modes of educational
delivery [87]. Speci�cally, synchronous learning involves a group of participants engag-
ing simultaneously, either in the same physical location (e.g., a classroom) or within the
same online environment (e.g., a web conference room). Participants can interact with
each other in real-time during these learning experiences. On the other hand, asyn-
chronous learning refers to approaches where instructors and students are not engaged
in the learning process at the same time. This can include interactions with pre-recorded
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videos or completing on-demand online exams [88].

The increasing focus on synchronous and asynchronous online learning in recent
years [89, 90] underscores the importance of analyzing student behavior in these con-
texts. Such analysis holds signi�cant implications for various aspects, including en-
hancing teaching strategies, optimizing technological infrastructures, assessing and pre-
dicting student engagement, preventing disengagement and potential dropout, and ulti-
mately improving student learning outcomes. Asynchronous learning has been shown
to bene�t online students by o�ering �exibility and allowing for more time to re�ect
on course content. However, asynchronous learning lacks certain aspects that are char-
acteristic of face-to-face lessons, such as the ability to ask questions and the sense of
belonging to a class. Therefore, when transitioning from traditional in-person instruc-
tion to an online format, synchronous lessons are often preferred in order to replicate
some of the features of face-to-face interaction.

The extensive tracking of student behavior in both synchronous and asynchronous
learning modes has generated a wealth of data, presenting unprecedented opportuni-
ties for the research and educational communities to gain deeper insights into how stu-
dents learn. While there is a signi�cant body of literature exploring asynchronous online
learning [91, 92, 93, 94, 95, 96], particularly focusing on click-stream analysis to predict
dropout rates [97, 98] or forecast students’ �nal grades [99, 100], synchronous online
learning remains relatively unexplored. Given its increasing adoption, it is crucial to
analyze how students learn and model their behavior in this educational modality as
well [101]. By conducting in-depth research on synchronous online learning, we can
gain valuable insights into student engagement, participation, and learning outcomes in
real-time interactive settings.

In this chapter, we investigate how students interact with a synchronous online learn-
ing platform in various courses delivered by a university over a semester. Our analysis
focuses on collecting and preprocessing students’ entry-exit records from lesson rooms,
followed by the application of clustering techniques to identify shared behavioral pat-
terns among students at the faculty and course levels. By interpreting and characterizing
these clusters, we aim to address the following research questions:

1. RQ1: How does the level of student’s participation in courses change over a
semester?

2. RQ2: Which are the principal participation patterns at faculty and course level?

3. RQ3: Does the hour of the day a course is delivered in�uence the level of partici-
pation?

4.1.2 Related Work
Our research bridges the gap between two important areas of study: the analysis

of synchronous learning from an educational science perspective and the application



Chapter 4. Analyses of Algorithmic Performance in Synchronous Learning 31

of educational data mining in the context of online learning. By combining these two
�elds, we aim to provide a comprehensive understanding of synchronous learning in
online environments.

Synchronous Online Learning

Synchronous online learning is a widely adopted method by teachers for various rea-
sons. It refers to real-time, instructor-led online learning experiences where partici-
pants are connected simultaneously and can interact with each other [102]. This mode
of learning enables students to ask questions and receive immediate answers, allowing
for dynamic discussions and instant feedback. Instructors can assess students’ under-
standing in real-time and adapt their teaching accordingly. The sense of presence and
engagement is increased, and interactive activities such as breakout group sessions, live
chats, and o�ce hours can be facilitated. Synchronous learning provides a structured
schedule that helps students stay on track and promotes task initiation.

The bene�ts of synchronous online learning have been studied by researchers. For
example, Francescucci et al. [103, 104] investigated the e�ects of a novel synchronous
course format, based on virtual interactive rooms, on students’ learning outcomes and
engagement levels compared to traditional face-to-face instruction. Kohnke and Moor-
house [105] examined the interrelationships between students’ perceptions and behav-
iors in synchronous online learning environments. Recent studies, such as those con-
ducted by Yang et al. [106] and Shoepe et al. [107], have focused on learner behavior
during synchronous online lectures, particularly during the COVID-19 pandemic, high-
lighting the increasing adoption of this mode of learning.

The COVID-19 pandemic has highlighted the challenges faced by educational insti-
tutions in managing online learning, including high schools [108]. It has also revealed
the vulnerability of the education system to external disruptions [109]. Feldman [110]
discusses student assessment during the pandemic and provides recommendations for
unbiased and fair grading policies, considering the impact of pandemic-related anxiety,
disparities in racial and economic backgrounds, and the need for instructors to adapt to
remote instruction e�ectively.

Overall, synchronous online learning has become a crucial component of educational
delivery, particularly in times of crisis. It o�ers unique opportunities for real-time in-
teraction, engagement, and immediate feedback, while also presenting challenges that
require careful consideration and adaptation to ensure equitable and e�ective learning
experiences for all students.

Student Behavior Modeling

Educational data mining focuses on developing methods to explore large-scale data
in educational settings [111, 112, 113, 114, 115]. In the context of online learning, sev-
eral studies have modeled students’ behavioral patterns and examined the relationship
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between these patterns and learning performance [116]. By analyzing server logs and
applying data mining techniques, researchers have identi�ed typical patterns of online
learning behaviors and developed predictive models for online learning [117]. For exam-
ple, Hung et al. [118] applied data mining techniques to analyze student online learning
behaviors in a collaborative project-based learning course. Ahuja et al. [119] compared
the performance of di�erent clustering and classi�cation algorithms in an educational
dataset, while Rodrigues et al. [120] provided a comprehensive review of educational
data mining based on clustering in teaching and learning processes.

Clustering approaches have been used to group students based on their learning be-
havior and personalize the e-learning experience [121, 122]. Other studies have em-
ployed clustering algorithms, such as K-Means, to model behavioral patterns of passing
and failing students and develop indicators of student performance [123, 124]. These
studies have primarily focused on asynchronous online learning.

In our research, we di�erentiate ourselves by focusing on synchronous online learn-
ing, which has received less attention in the �eld of educational data mining. Although
we employ similar techniques, such as K-Means clustering, to model student behavior,
our study provides novel observations and contributions speci�c to the synchronous
learning context. We argue that behavioral patterns in synchronous learning are in�u-
enced by the unique characteristics of this educational modality. Therefore, our research
contributes to a better understanding of student behavior in the synchronous online
learning environment.

4.1.3 Methodology

Our research focuses on synchronous learning delivered by the University of Cagliari,
an Italian university. The university utilizes Adobe Connect as its e-learning platform,
where students can access virtual rooms using computers, tablets, and smartphones. We
analyze the data collected from Adobe Connect to understand students’ participation
levels in synchronous lessons. The dataset includes information on students’ partici-
pation in synchronous lessons. For each student and each day of a speci�c university
lesson, we analyze their level of participation based on the duration of their connec-
tion to the virtual room. By examining this data, we aim to gain insights into students’
engagement and behavior in synchronous online learning environments.

University Structure Description. The study encompasses more than 25,000 students
across various degree programs. Six faculties are involved in our analysis: Biology and
Pharmacy, Engineering and Architecture, Medicine and Surgery, Science, Economic, Law
and Political Sciences, and Humanities. Figure 4.1 provides an overview of the number
of degree programs o�ered by each faculty, totaling 89 degree courses. Each faculty des-
ignates a coordinator responsible for planning the lessons across programs and booking
the virtual rooms in Adobe Connect.
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Fig. 4.1: Overview of Bachelor’s and Master’s Degree Programmes per Faculty.

Online Educational Infrastructure and Delivering. The lessons in our study were
conducted using Adobe Connect, a virtual room platform that o�ers teleconferencing,
e-learning sessions, and collaborative content creation and delivery. Each lesson was de-
livered in a dedicated Adobe Connect virtual room, which served as a permanent online
space for instructors to engage with students.

In the context of the University of Cagliari, over 50 virtual rooms were created, with
each room assigned to a speci�c lesson of a course at a designated time slot, similar
to classroom assignments in face-to-face settings. Instructors were assigned to virtual
rooms during �xed time slots throughout the weeks. Students enrolled in a course could
log in using their Adobe Connect accounts and enter the virtual room associated with
the desired lesson. Once the instructor initiated the lesson, students could actively par-
ticipate by raising their virtual hand, engaging in chat discussions, and requesting the
activation of video and audio features to ask or answer questions and contribute to the
discussion. Figure 4.2 provides a schematic representation of the online synchronous
environment used in this study, illustrating the interaction between instructors and stu-
dents within the Adobe Connect platform.

This online infrastructure provided the necessary tools and features to facilitate real-
time interaction and engagement between instructors and students, creating an envi-
ronment conducive to synchronous learning experiences. In the next sections, we will
delve into the analysis of student behavior and participation patterns within this online
learning context.

Data Collection Process and Format To collect data on student participation in syn-
chronous lessons, we recorded the entry and exit times of students from the virtual room,
as well as the content of the chat, reactions, and raised hands. However, due to privacy
considerations, this paper focuses solely on the analysis of entry and exit data. The
collected data is organized in a hierarchical folder structure that aligns with the faculty-
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degree-course structure of the university. At the top level, there are six sub-folders, one
for each faculty. Within each sub-folder, there are Excel �les containing multiple sheets,
each corresponding to a speci�c course within the faculty. Each sheet represents the en-
try and exit records for a particular lesson of that course. Table 4.1 provides an example
of the structure of a sheet.

In total, we collected 6,296 sheets of data across the faculties and degree programs,
with varying numbers of sheets for each faculty. Speci�cally, there were 684 sheets for
the Faculty of Biology and Pharmacy, 1,320 sheets for the Faculty of Engineering and
Architecture, 947 sheets for the Faculty of Medicine and Surgery, 760 sheets for the Fac-
ulty of Science, 1,362 sheets for the Faculty of Economic, Law and Political Sciences, and
1,223 sheets for the Faculty of Humanities. This amounted to approximately 464.5 MB
of data. The data covers an entire semester, fromMarch to June 2020. The detailed entry
and exit data provides valuable insights into student participation patterns and engage-
ment during synchronous online lessons. In the following sections, we will describe our
approach to analyzing this data and uncovering meaningful behavioral patterns.

4.1.4 Results and Discussion
In this section, we will analyze student participation patterns throughout the

semester, examine the relationship between student groups and the courses they are
enrolled in, and explore any correlation between student participation and class sched-
ule. We aim to gain insights into the dynamics of student behavior in the synchronous
online learning environment and understand the factors that in�uence their level of en-
gagement.

Participation Level. We aim to investigate the participation level of students at the fac-
ulty level and understand whether the trend of participation changes over the semester.
We utilized the entry-exit logs collected in the form of CSV �les from Adobe Connect.
For each CSV �le corresponding to a speci�c lesson of a course, we counted the num-
ber of students present. We excluded cases of university sta� logins, empty �elds, and

Fig. 4.2: Schematic representation of the online synchronous environment.
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Attribute Description
Example of a
registered user
(Guest)

transcript-id The id of the transcription and it is unique
for each line 4445626093

asset-id

The id related to that session. When a
teacher closes the classroom and ends the
meeting, another one with a di�erent id is
generated at the next login

4445465743

sco-id The unique id of the virtual classroom 4211809190

principal-id The unique id of the registered user. For guest
logins this �eld is empty

3727616656
(-)

login It is the username and for guests it is empty student@gmail.com
(-)

session-name It is the name �eld, which is also present
for guests

2019_20/40/12345 John Smith
(Guest Name)

sco-name
It is name of the virtual classroom. Now it
has changed its name and it is called
"training object"

CdL Letters - Room 3

date-created Is the timestamp of entry into the classroom 2020-11-10 08:37:50

date-end It is the timestamp of leaving the classroom 2020-11-10 08:38:02
(-)

participant-name It is the registered username �eld and it is not
present for guests

2019_20/40/12345 John Smith
(-)

answered-survey If a survey is proposed, indicate who answered 0

Table 4.1: Example of data recorded for a lesson of a given course.

duplicates. This procedure was repeated for all lessons within a faculty, and the aver-
age number of students present in each lesson was calculated for a given day across all
lessons delivered for that faculty on that day.

Figure 4.3 displays the participation level over the semester for each of the six facul-
ties. The x-axis represents the time span from mid-March to early June, and the y-axis
represents the average number of students. It is important to note that the participation
levels across faculties cannot be directly compared due to the varying number of students
in each faculty. Instead, we focus on analyzing the general participation trend within
each faculty. The plots indicate a strong initial interest in the lessons, which gradually
declines over time. This decline is particularly prominent in the faculties ofMedicine and
Surgery, Economic, Law and Political Sciences, and Humanities. The Faculty of Science,
on the other hand, shows a relatively consistent average number of students throughout
the semester, with a slight decline over time. It is worth mentioning that the peaks and
dips in the plots are associated with lessons that were planned but not delivered. This
highlights the need for a more �ne-grained analysis, which we leave for future work.

These participation level patterns provide insights for teachers and support sta�. By
observing the decreasing number of students over time, teachers can strive to make



36 Section 4.1.4 Results and Discussion

Fig. 4.3: Average number of students per lesson for the six faculties.

lessons more interactive and increase the attention threshold to minimize the drop in
student participation. Additionally, these trends suggest the need for adaptive techno-
logical infrastructure to accommodate the changing participation levels over time. While
these plots provide an overview of the changing participation level over the semester,
they do not capture the variation of these patterns within each course of a faculty. There-
fore, the next section will further analyze the participation patterns at the course level.

Findings RQ1. Student participation levels change signi�cantly over a semester,
starting high but gradually declining. This trend is consistent across faculties,
highlighting the need for ongoing e�orts to keep students engaged throughout the
term.

Group Modelling. We investigate the existence of core participation patterns in each
course and how these patterns vary across courses. To focus our analysis and better
shape our �ndings, we selected a speci�c faculty and degree program, namely the Sci-
ence faculty and the Bachelor’s Degree in Computer Science. We analyzed the second
semester, which spanned from March to June 2020, and included 9 courses from the
Computer Science program (4 �rst-year courses, 4 second-year courses, and 1 �rst-year
course). For each course and lesson, we measured the amount of time each student
was connected to the platform, representing their participation level. Using this data,
we created an N-dimensional vector for each student, where N is the total number of
lessons in that course. Each vector contained the minutes the student was connected
for each lesson. We then calculated pairwise distances between the vectors and applied
the K-Means clustering algorithm to the pairwise-distance vectors of all students in each
course. To determine the optimal number of clusters, we used the Elbow method, using
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the Silhouette score as a measure of cluster quality.

Figure 4.4 displays the centroids of the clusters identi�ed for each course using this
methodology. Formost courses, twomain clusters of students were identi�ed, represent-
ing those who consistently followed the course and those whose level of participation
decreased over time. This �nding is crucial for designing adaptive interventions to mo-
tivate students who may need additional support throughout the course. Notably, one
course (plot d) exhibited three main clusters. In this case, there is a subset of students
who did not engage with the course from the beginning, highlighting the need for mul-
tiple levels of adaptive interventions. Additionally, we observed a relationship between
the slope of the participation curves for the cluster of students who lost engagement
and the time of day for courses delivered during the same year of study. This �nding has
implications for future lesson scheduling and planning.

It is important to note that some clusters exhibited peaks towards zero in speci�c
lessons. This can be attributed to various factors, such as technical issues or the comple-
tion of assigned exercises. These circumstances were observed across multiple courses.
Overall, our analysis of groupmodeling provides insights into the core participation pat-
terns within each course and their variations across courses. Furthermore, considering
the time of day in relation to student engagement can inform future lesson scheduling
and interventions to support student participation and motivation.

Findings RQ2 and RQ3. We identi�ed key participation patterns using cluster-
ing techniques, with most courses showing two clusters: engaged and disengaging
students. Additionally, the time of day a�ects participation, with earlier courses
seeing quicker declines. Educators should use these insights for tailored interven-
tions and optimal scheduling to maintain student engagement.

Implications and Limitations. In this subsection, we discuss the implications of our
�ndings and acknowledge the limitations of our study. Firstly, it is important to note that
our analysis focused solely on the entry and exit data of student connections, without
considering intermediate intervals. This means that cases where students were con-
nected for short periods and made multiple intermediate accesses, without actively par-
ticipating in the lesson for a signi�cant period, were not captured. Incorporating this
information could provide a more comprehensive understanding of student engagement
during synchronous lessons.

Additionally, due to privacy constraints, we did not consider additional information
such as student interventions via chat or system interactions like raised hands. These
types of interactions can provide valuable insights into student engagement and partic-
ipation. Including such data in future studies could enhance the depth of our analysis.
Another limitation of our study is the relatively short period of time considered. Our data
covers a three-month semester, and extending the analysis to longer periods could re-
veal di�erent patterns and trends. Examining data from multiple semesters or academic
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(a) 1st Year
9.00 - 10.40 a.m. (Mon)

(b) 2nd Year
9.00 - 10.40 a.m. (Wed)

(c) 1st Year
9.00 - 10.40 a.m. (Tue - Thu)

(d) 1st Year
11.00 - 12.40 a.m. (Tue - Thu)

(e) 1st Year
11.00 - 12.40 a.m. (Thu)

(f) 3rd Year
11.00 - 12.40 a.m. (Mon - Tue)

(g) 2nd Year
3.00 - 4.40 p.m. (Mon - Wed)

(h) 2nd Year
3.00 - 4.40 p.m. (Thu - Fri)

(i) 2nd Year
3.00 - 4.40 p.m. (Tue)

Fig. 4.4: Centroids of the clusters identi�ed for the nine considered courses.

years would provide a more robust understanding of student behavior and participation
patterns over time.

Furthermore, our analysis did not account for connection problems that students may
have encountered during the lessons. As we have previously observed, these problems
can impact the accuracy of the entry-exit records and a�ect the interpretation of stu-
dent participation. Exploring and addressing these issues in future research would help
to re�ne our understanding of student behavior in synchronous learning environments.
Lastly, we employed the K-Means algorithm for clustering analysis. While this approach
provided meaningful insights into student groupings, there are other clustering tech-
niques that could be explored. Comparing di�erent clustering algorithms and their per-
formance on the data would contribute to a more comprehensive analysis.
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Despite these limitations, our study has important implications for data-driven sup-
port in synchronous teaching. By analyzing student behavior and participation patterns,
we can gain valuable insights into student engagement and identify areas where inter-
ventions may be necessary. These �ndings can inform the design of adaptive teaching
strategies, personalized interventions, and timely support for students.

4.1.5 Findings and Recommendations
In this work, we conducted an analysis of student behavior in synchronous online

learning using data extracted from the Adobe Connect platform. We focused on mea-
suring student participation and modeling their behavior across an entire semester in
various courses and faculties of a university. Based on our analysis, we made several
key observations and identi�ed potential areas for adaptive interventions and improve-
ments in teaching strategies.

Firstly, we found that the workload on the technological infrastructure varied
throughout the semester, with higher workloads observed during the initial period. This
highlights the importance of adapting computational resources associated with the plat-
form over time to ensure smooth and e�cient delivery of lessons. Furthermore, we ob-
served that a signi�cant portion of students exhibited a decrease in attention and partic-
ipation as the semester progressed. This trend was particularly evident in certain degree
programs. Recognizing this pattern allows for the implementation of adaptive interven-
tions, such as notifying teachers about students who are disengaging or have completely
stopped participating. This can help identify the reasons behind the decrease in engage-
ment and enable targeted e�orts to keep students engaged throughout the semester.
Additionally, we found a correlation between the participation level and the time of day
when courses are delivered. Courses held earlier in the day experienced a more rapid
decline in student participation. This �nding has implications for future lesson schedul-
ing and highlights the need to consider optimal timing for courses to maximize student
engagement.

Our work opens up several avenues for future research. Firstly, we plan to expand our
analysis by incorporating additional data, including chat interactions, student reactions,
and raised hands. This will provide a more comprehensive understanding of student
behavior and engagement during synchronous online learning. Furthermore, we aim to
compare the participation patterns observed in synchronous online courses with those
of face-to-face courses prior to the pandemic. This comparison will help assess the simi-
larities and di�erences in student behavior across di�erent modes of instruction. Lastly,
our �ndings have practical implications for teachers, as they provide insights into stu-
dents’ participation levels during lessons. Teachers can utilize this information to gauge
student attendance and engagement, which can inform their instructional strategies and
interventions.

In conclusion, our study contributes to the understanding of student behavior in syn-
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chronous online learning and highlights the importance of adaptive interventions and
tailored teaching strategies. Through further research and analysis, we can continue
to enhance the e�ectiveness of synchronous online learning and support the success of
students in this educational modality.

4.2 Error Analysis on Course Attendance Modelling

In this section, we focus on predicting the attendance of students in synchronous on-
line courses using machine learning techniques. By analyzing student participation logs
and extracting relevant features, we aim to develop models that can predict the level
of student attendance throughout the course. The prediction of course attendance can
provide valuable insights for instructors and course managers, allowing them to iden-
tify students at risk of disengagement and implement timely interventions to improve
attendance and overall student success.

4.2.1 Introduction

Context. With the increasing adoption of digital technologies, many universities have
expanded their o�erings to include synchronous online courses, where participants en-
gage in real-time, instructor-led learning experiences. Synchronous learning provides a
dynamic environmentwhere students can actively participate, ask questions, and receive
immediate feedback [102]. As such, it has become a widely adopted teaching modality
in higher education institutions. Numerous studies have explored the e�ectiveness and
engagement levels of students in synchronous online lectures, comparing them to tra-
ditional face-to-face formats [103, 104, 106, 107].

Ensuring the attendance and quality of instruction in synchronous courses is cru-
cial for supporting higher education systems in meeting emerging needs and challenges
while prioritizing student quali�cations and experience [125]. Universities employ peri-
odic evaluation processes to improve educational quality and increase attendance. These
processes often form part of a formal quality assurance model, incorporating internal
procedures and external checks from third-party agencies. As higher education con-
tinues to evolve, it requires a student-centered approach, �exible learning paths, and
continuous re�nement of courses to meet diverse expectations [126].

Open Issues. Monitoring course attendance and quality is an important yet challenging
task. Traditional processes rely on end-of-semester questionnaires to gather students’
opinions. The collected answers are then analyzed by didactic managers and discussed
with individual instructors and the board of instructors of the respective degree program.
However, this evaluation process occurs after the semester has ended, resulting in a time
gap between data collection and feedback provision. Consequently, instructors have
limited opportunities to make interventions during the current semester and can only
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apply improvements for subsequent iterations. Ideally, these procedures should provide
timely insights to support instructors in re�ning their teaching methods and enhancing
student learning outcomes.

To ensure that students in the current iteration receive the necessary support, moni-
toring course quality and attendance throughout the semester is essential. However, fre-
quent collection of attendance forms and quality questionnaires from students, as well
as the subsequent analysis by didactic managers and instructors, is time-consuming and
not scalable. To address this limitation, recent research has explored the use of machine
learning techniques for predicting course quality and attendance. Initial steps have been
taken in this direction [127, 128, 129]. For example, one study modeled student behavior
through attendance records from a large university [130]. However, these approaches
have focused on a narrow set of courses and relied on video interaction logs that are not
available for synchronous courses. Therefore, there is still ample room for research on
synchronous course attendance and quality prediction.

Our Contribution. In this paper, we investigate whether student attendance patterns
up to a certain lecture can predict the quality and future attendance of synchronous
courses within an online real-time classroom scenario. To accomplish this, we prepro-
cess both the student participation logs for all the courses provided by a public univer-
sity and the quality indicators provided by students in the �nal questionnaires for those
courses. We then extract predictive features from the behavioral patterns of student
participation and employ a machine learning approach to predict future attendance and
quality indicators based on these features. Finally, we discuss our results and the main
implications for course attendance and quality prediction.

4.2.2 Methodology
Our methodology aims to assess the predictive power of machine learning models

for early course attendance and quality prediction, utilizing patterns extracted from past
attendance logs. We implemented a supervised classi�cation pipeline to accomplish this
task.

Firstly, we collected student participation logs from the online learning platform
Adobe Connect, which was used for delivering synchronous courses in our context.
These logs included information such as the course ID, lesson ID, student ID, and the
timestamps indicating the entry and exit times of students from each lecture. Next, we
extracted a range of relevant features from these attendance records to capture vari-
ous aspects of student participation behavior. These features encompassed course-level
properties, such as the time of day the lectures were delivered, as well as lecture-level
characteristics, including the average time spent by students in a particular lecture and
the proportion of the lecture attended by each student. Additionally, student-level fea-
tures were considered, such as the number of courses a student was attending and their
tendency to join lectures late or leave early. Subsequently, we trained and evaluated
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Fig. 4.5: Methodology overview: Collecting student participation logs, extracting rele-
vant features, and training classi�ers for predicting course attendance and quality.

classi�ers separately for predicting future course attendance and quality indicators. Our
classi�cation models were trained using the extracted features as input and the corre-
sponding attendance or quality indicator as the target variable. We employed a variety
of machine learning algorithms, including Random Forest, to train the classi�ers. The
evaluation process involved a nested strati�ed 10-fold cross-validation, and we utilized
the balanced accuracy metric to assess the performance of the models.

The overall framework of our methodology is illustrated in Figure 4.5, which provides
a visual representation of the various stages involved in the process, from data collec-
tion to model training and evaluation. By leveraging this approach, we aim to gain
insights into the early prediction of course attendance and quality, enabling instruc-
tors and course managers to make informed decisions and interventions to enhance the
overall educational experience for students.

Data Collection

For our study, we collected student attendance logs from a large public university
encompassing over 25,000 students, 6 faculties, 89 degree programs, and 1,230 courses.
The data collection process adhered to strict privacy and ethical considerations, ensuring
the anonymity and con�dentiality of the participants.
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Table 4.2: Schema of the data structure and �elds leveraged in this study.

Entity List of Attributes #Records

Degree Degree id, level (BSc, MSc). 89

Course Course id, year, degree id. 1,230

Lessons Lesson id, teaching id, date, start time, end time. 13,000

Accesses Lesson id, student id, access time, exit time. 525,000

Students Student id, year of attendance, course id. 25,000

Indicators Teaching id, question category, question criterion, overall grade. 3,500

In this university, each lecture of a course was delivered synchronously in a virtual
room, facilitated by an online learning platform. Students enrolled in a course could log
in to the virtual room and access the speci�c virtual room associatedwith the lecture they
were required to attend. Throughout an entire semester, we tracked the entry and exit
times of students from the virtual room for each lecture. This information was recorded
in the attendance logs, which included the course ID, lecture ID, student ID, entry times-
tamp, and exit timestamp. It is important to note that similar attendance logs can also
be collected for in-person face-to-face lectures, albeit with di�erent mechanisms.

Table 4.2 provides a comprehensive overview of the collected data, including the num-
ber of students, faculties, degree programs, and courses involved in our study.

The availability of this comprehensive dataset allows us to analyze and evaluate stu-
dent attendance patterns and their predictive power for course quality indicators, provid-
ing valuable insights for educational stakeholders to improve the teaching and learning
experience.

We also collected the quality indicators for all degree programs o�ered during the
semester. These indicators were computed based on the students’ responses to the uni-
versity questionnaire, which evaluated various aspects of course quality. However, for
privacy reasons, we were unable to access the speci�c quality indicators computed for
individual courses within each degree program.

As a result, our study focused on predicting the overall quality of degree programs
rather than individual courses. For each degree program, we computed 14 course qual-
ity indicators that covered various stages of the course, including pre-course, in-course,
and post-course indicators. These indicators encompassed aspects such as prelimi-
nary knowledge, study workload, course material, examination method, content nov-
elty, punctuality, motivation, clarity, tutoring activities, syllabus coherence, availability,
lecture interest, overall satisfaction, and online satisfaction. Each quality indicator was
measured on a scale ranging from AA to F, as shown in Table 4.3. To facilitate our pre-
liminary experiments, we binarized the indicator values by assigning a label of 0 to a
degree program if the indicator value fell below the average value across all degree pro-
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Table 4.3: Levels scale for each considered quality indicator.

Level Description

AA Very positive
A Overall positive, situation to be consolidated
B Su�ciently positive, situation with room for improvement
C Slightly positive, situation with considerable room for improvement
D Slightly critical, attention required
DD Critical, intervention is required
E Very critical, intervention is particularly required
F Extremely critical, structural intervention required

grams. Conversely, a label of 1 was assigned if the indicator value exceeded the average.
By categorizing the quality indicators in this manner, we aimed to explore the predic-
tive power of student attendance patterns in relation to the overall quality of degree
programs.

Feature Extraction

The relationship between students’ behavioral aspects and academic achievement
has been widely studied [131, 62, 63]. Important dimensions of learning behavior in-
clude persistence, e�ective time management, self-awareness, and careful examination
of course materials. Previous studies, such as [132], have proposed various sets of fea-
tures based on these dimensions. However, these studies focused on asynchronous
courses that utilized pre-recorded microlearning videos. In our study, we aimed to de-
rive features with a similar rationale but adapted to the available logs and synchronous
learning scenarios.

We extracted a range of features for each course, as shown in Table 4.4. These fea-
tures capture di�erent levels of the learning environment. Course-level features include
properties that may in�uence students’ perceived quality of the course, such as the time
of day the course lectures were delivered and the distribution of the number of students
attending the lectures. Lecture-level features capture students’ participation behavior
within each lecture, including the average time spent by students in the lecture, the av-
erage proportion of the lecture followed by students, and the number of students who
attended the lecture. Student-level features are related to individual student character-
istics that can in�uence their attendance, such as the number of courses the student is
attending and their tendency to join late or leave early during a lecture.

These features were extracted from the raw participation logs. Since we only had
access to quality indicators at the degree program level, when predicting course quality
indicators, we averaged the features of all students and lectures within a course. Simi-
larly, we averaged the features of all courses within a degree program to obtain a single
feature vector per degree program.
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Table 4.4: Features extracted from attendance logs in our study.

Dimension Feature Name Description

Student level Late The student logged in after class time
Hasty The student logged out earlier than the average time of the exits

Lecture level

Attendance rate Percentage of the lesson attended
Avg jump Average of "jumps" related to the access time between one lesson and the previous one
Average time access The average time spent per lesson
Standard deviation The standard deviation of the time spent in each lesson
Max and min time The highest and lowest access time of a student
Daily lessons Number of lessons attended on the same day
Lessons per day Number of daily lessons taken by a student over time using Kurtosis and Skewness
Lesson time Average time of attended lessons

Course level Teaching participation Measurement of the level of participation through Kurtosis and Skewness
Attended courses The number of courses attended by the student in the same period

Model Creation

In our study, we considered a variety of machine learning models that have shown
high accuracy in education-related scenarios, even though our focus was on a di�erent
prediction task. The following models were included in our analysis:

• AdaBoost Classi�er: An adaptive classi�er that can improve the performance of
other learning algorithms. It is commonly used for binary classi�cation but can
be extended to multiple classes or limited ranges on the real number line.

• Gradient Boosting Classi�er: This classi�er combines the AdaBoost method
with minimization techniques to minimize the di�erence between the actual and
expected class values in the training examples.

• Support Vector Machines (SVM): A classi�cation technique originally designed
for binary classi�cation but can be extended to handle multi-class problems by
decomposing them into a series of binary sub-problems.

• Logistic RegressionClassi�er: It uses a logistic function tomodel the dependent
variable, making it suitable for binary data classi�cation tasks.

• Decision Tree Classi�er: This technique represents a set of classi�cation rules
in a tree structure using the "if-then" format.

• Random Forest Classi�er: An ensemble technique that combines multiple de-
cision trees to create a forest, reducing over�tting and improving the predictive
accuracy.

While we explored various models, for the sake of conciseness, we will primarily
report the performance of the Random Forest Classi�er. This model has often demon-
strated a good balance between prediction accuracy and interpretability of the results.
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Model Evaluation

To evaluate the performance of our models, we employed a nested strati�ed 10-fold
cross-validation approach. The purpose of this approach was to ensure that the folds
were divided by course/degree, maintaining the integrity of the data structure. We ap-
plied the same folds for all experiments across the models. During the evaluation pro-
cess, we optimized the hyperparameters using grid search. In each iteration of the outer
cross-validation loop, we performed an inner 10-fold cross-validation on the training
set. This allowed us to select the combination of hyperparameter values that yielded the
highest accuracy on the inner cross-validation.

To assess the validity of the models, we computed the Area under the ROC Curve
(AUC) on the training and validation sets. This measure provided insights into the mod-
els’ performance on both the training and unseen validation data. Additionally, we eval-
uated the generalizability of the models by computing the AUC on the test set. It’s
important to note that our models were trained on a per-lecture basis. This means that
the model for a speci�c lecture l of a given course was trained using features extracted
from data collected up to and including lecture l. This approach allowed us to capture
the temporal dynamics of student behavior and make predictions based on the available
information up to a given point in time.

4.2.3 Experimental Results
In this subsection, we present the experimental results of our study on course atten-

dance and quality prediction using attendance records. The models, evaluation results,
and source code are available for replication on GitHub. Our methodology is �exible and
can be adapted to analyze various perspectives, but we primarily focused on addressing
the following research questions:

• RQ1: Can we accurately and early predict course quality indicators given by stu-
dents to a degree program?

• RQ2: To what extent are our extracted features and models predictive of whether
a student will attend the next lecture of a course?

• RQ3: Can we early predict whether a student will attend a certain number of the
subsequent lectures?

By exploring these research questions, we gained insights into the predictive power
of attendance records and extracted features in relation to course quality indicators and
student attendance behavior.

Course Quality Prediction (RQ1)

In our initial analysis, we examined whether student participation features could pre-
dict the aggregated quality indicators of a degree program early in the course. Figure
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Fig. 4.6: Models performance (AUC) on the course quality prediction task (RQ1).

4.6 illustrates the performance of the Random Forest Classi�er trained on attendance
records up to the fourth and sixth lecture (gray bars), as well as the model trained on
all lectures (blue bars). The results showed that when using the full course data, the
prediction performance varied across di�erent quality indicators. The Area under the
ROC Curve (AUC) ranged from 52% for the examination method indicator to 76% for
the study workload indicator. Notably, overall satisfaction, including online activities,
exhibited reasonable predictability.

Indicators related to the course content, such as study workload, course material, and
clarity, along with instructor-related indicators like punctuality, motivation, and avail-
ability, demonstrated relatively good predictability. However, content novelty, punctual-
ity, and availability could only be predicted with reasonably good accuracy when using
the full course data. Interestingly, the prediction of lecture interest performed better af-
ter four lectures compared to the full course. These �ndings suggest that not all quality
indicators can be accurately predicted with a reasonably good accuracy, even when us-
ing the full course data. However, for six out of the nine indicators that were predictably
accurate with the full course data, reasonably good predictions could be made as early as
after six lectures, which corresponds to a fewweeks of the course. It is worth noting that
the attendance records may not provide su�cient information to predict indicators that
involve more complex aspects. Future work should consider incorporating �ne-grained
logs of activities and interactions during lectures to enhance themonitoring and tracking
of learning in synchronous courses.

Findings RQ1. Not all indicators could be predicted with a reasonably good accu-
racy of at least 63-65%, even when the full data was available. However, indicators
that exhibited predictability, even after six lectures, showed performance close to
that of models trained on all lectures.
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Fig. 4.7: Models performance (AUC) on the next lesson participation task (RQ2).

Predicting Attendance to the Next Lecture (RQ2)

In our second analysis, we investigated the predictive capability of di�erent models
to determine whether a student would attend the next lecture based on their behavior
up to a certain lecture. The AUC scores for all models, using features extracted until the
fourth, sixth, and eighth lecture, are presented in Figure 4.7.

The Random Forest Classi�er demonstrated the highest performance among themod-
els. After only four lectures, this classi�er achieved an AUC of 84%. The AUC score
further increased to 89% after six and eight lectures. The Gradient Boosting Classi�er
was the second most accurate model, with AUC scores of 85% after four and six lectures,
and 87% after eight lectures. Notably, the performance gap between the Random Forest
Classi�er and the Gradient Boosting Classi�er was relatively small. However, the Sup-
port Vector Machines model performed the worst, with AUC scores ranging between
56% and 58% after four, six, and eight lectures, respectively.

Overall, with the exception of the Support Vector Machines model, all other models
demonstrated reasonably accurate predictions regarding student attendance to the next
lecture. The Random Forest Classi�er exhibited the highest accuracy in this study. Al-
though performance was already high after only four lectures, models trained after six
and eight lectures showed more stable behavior.

Findings RQ2. With the exception of the Support Vector Machines model, all
models provided reasonably accurate predictions regarding student attendance to
the next course lecture. The Random Forest Classi�er demonstrated the highest
accuracy in this study.
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Fig. 4.8: Percentage of students for whom the course attendance requirement prediction
was not trivial (RQ3).

Predicting Attendance to a Certain Percentage of Course Lectures (RQ3)

In our third analysis, we aimed to investigate whether it is possible to predict, using
machine learning models, whether a student will meet the course attendance require-
ment typically imposed by universities. Many universities require students to attend at
least a certain percentage of the course in order to be eligible to take the �nal exam. In
our experiments, we set the threshold at 70% of course lectures.

Before training models for this task, we performed an exploratory analysis to deter-
mine the number of students for whom the prediction task would be non-trivial. For
instance, if a student missed the �rst four lectures of a 10-lecture course, it would be
obvious that they would not meet the attendance requirement. Therefore, we excluded
those students from our analysis. Figure 4.8 illustrates the percentage of students for

Fig. 4.9: Performance in terms of AUC for the course requirement task (RQ3).
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whom predicting their participation in at least 70% of the lectures was not trivial. After
four lectures, all students were included in the analysis. However, there was a 3% de-
crease after six lectures, and by the eighth lecture, the percentage of students considered
dropped to 89%. For the remaining students, we trained the models and evaluated their
performance in terms of AUC, as shown in Figure 4.9. Each model exhibited distinct
performance patterns. The Random Forest Classi�er demonstrated stable performance
across lectures, with only a marginal increase in AUC. After four lectures, the AUC
reached 89%, and it increased to 90% and 91% after six and eight lectures, respectively.
This model proved to be e�ective for predicting whether a student would meet the at-
tendance requirement. The Ada Boost Classi�er exhibited consistent performance, with
AUC scores ranging from 75% to 77% across all settings. Although reasonably high, the
AUC scores for this model were lower than those of the Random Forest Classi�er. The
Gradient Boosting variant performed better, with AUC scores ranging from 83% to 84%.
This model outperformed the others after four, six, and eight lectures. It is important
to note that Gradient Boosting is more e�cient than Random Forest and should be pre-
ferred for large datasets or when computational resources are limited. On the other
hand, Support Vector Machines reported the lowest AUC performance, ranging from
58% to 62%. These scores were close to the AUC value of 50%, which indicates random
prediction. Therefore, Support Vector Machines are not suitable for this prediction task.
Logistic Regression andDecision Trees exhibited similar and relatively low performance,
with AUC values ranging from 67% to 72%.

Findings RQ3. Not all models were able to accurately predict whether a student
would meet the course attendance requirement of participating in at least 70% of
the course lectures. The Random Forest Classi�er demonstrated the best perfor-
mance in terms of AUC, followed by Gradient Boosting. The other classi�ers did
not yield reasonably high performance estimates for this task.

4.2.4 Findings and Recommendations

In this study, we utilized a machine-learning pipeline to predict course quality and
student attendance based on student participation data. Our approach o�ered a scalable
and transparent alternative to manual practices that rely on questionnaires. We exam-
ined various dimensions of student participation across a diverse range of courses in a
public university.

Our �ndings demonstrate the predictive power of student attendance behavior and
patterns. By analyzing the data collected from the �rst four lectures, we were able to ac-
curately predict several quality indicators, the likelihood of attending the next lecture,
and the probability of attending at least 70% of the lectures. This information can be
valuable for instructors to improve their course delivery and take proactive measures to
enhance students’ academic experience from the early stages of the course. For example,
instructors can plan activities based on the expected number of attendees for the next lec-
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ture. Ourmodels empower instructors to identify and address low class participation and
course quality issues. Furthermore, our models can be applied to both online distance
education and face-to-face settings where digital entry and exit systems are in place.
However, it is essential to conduct user studies involving students and instructors to as-
sess the e�ectiveness of the system in real-world scenarios. This feedback will inform
future improvements and enhancements to the implementation of the system, ensuring
its accuracy and reliability. Moving forward, we plan to extend our analysis to predict
course quality at the individual course level, as our current predictions are limited to de-
gree program level due to privacy constraints. We also aim to explore di�erent contexts,
such as other universities, and investigate alternative features and predictive models.
Additionally, if the system predicts low class participation for a signi�cant number of
students in a particular course or degree program, it could inform the implementation
of speci�c support services, such as supplementary courses or personalized guidance.

By continuously collecting and analyzing data in a systematic and consistent manner,
we envision the development of a comprehensive tool that integrates predictive models
and provides valuable insights to stakeholders. We intend to further examine the predic-
tiveness across di�erent faculties, study levels, and teaching modalities and incorporate
model predictions into interactive dashboards. This holistic approach will contribute
to the enhancement of course quality and student engagement in higher education set-
tings.





Chapter 5

Analyses of Algorithmic Perfor-
mance in Asynchronous Learning

In Chapter 4, we ventured into synchronous learning environments, examining al-
gorithmic performance and predictions. Now, in this Chapter, our focus shifts to asyn-
chronous learning environments. This chapter delves deep into the analysis of student
behavior, exploring participation patterns and their implications. Our primary aim is to
identify trends and insights that can inform and improve teaching strategies, optimize
technological infrastructures, and enhance overall student learning outcomes.

5.1 Error Analysis on Student Success Prediction

5.1.1 Introduction

Context and Objective. Learning analytics has emerged as a promising �eld that lever-
ages data and analytical studies to understand factors in�uencing student success and
provide recommendations for improving the learning process [133]. Predictive mod-
els have been developed to forecast student outcomes based on various indicators such
as engagement, regularity, critical thinking, metacognition, and socio-emotional well-
being [131, 134, 135, 136, 137, 138, 139, 140, 141]. These models have proven useful for
personalized interventions, adaptive content delivery, and understanding the learning
process in instructional strategies like blended learning and online learning [142, 143].
However, the adoption of these predictive models also introduces risks for both stu-
dents and instructors. Users of these models may not be accustomed to reasoning about
model uncertainty, which can lead to misunderstandings or mistrust in the predictions
[144, 145, 146]. Trust is crucial for the acceptance of these models in educational set-
tings. Therefore, it is important to investigate the weak spots of student success models
and understand the circumstances under which these models should (not) be trusted.

Open Problem. One particular weak spot that has not been extensively explored in
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Fig. 5.1: Motivating Example for the Unknown Unknowns Problem.

student success models is the presence of "unknown unknowns" [147]. Unknown un-
knowns refer to instances where the model is highly con�dent in its prediction despite
being incorrect. These instances arise when the model lacks knowledge of the correct
labels (model knowledge) and is not aware of its own incorrect predictions (model aware-
ness). Unknown unknowns can be attributed to various factors such as unmodeled data
biases, data distribution shifts, or hidden factors not captured by the model, such as stu-
dents’ prior knowledge. While e�orts have been made to analyze unknown unknowns
in �elds outside of education, their impact on student success prediction models remains
unexplored [148, 149, 150].

Motivating Example. To illustrate the unknown unknowns problem, consider the fol-
lowing example depicted in Figure 5.1. On the left, we see a student success model
highly con�dent, but actually wrong, on predictions for students A and H (unknown un-
knowns), both highly con�dent and correct on students B and G (known knowns), and
only slightly con�dent of its predictions on students C, D, E, and F (known unknowns).
On the right, we assume that students’ prior knowledge was a variable the model was
not aware of. In particular, a �rst-year university student, referred to as Student A,
failed a Math course taught in a �ipped format. During the course, students had access
to a platform for pre-class activities, including watching videos and doing exercises.
A machine-learning model was employed to identify students in need of intervention
based on their pre-class behavior. The model, trained on historical data, demonstrated
high accuracy but was unaware of the majority of students’ high prior knowledge in
Math. Consequently, the model erroneously associated a low time spent on videos with
success, as the content was often con�rmatory knowledge. Student A struggled with
the course and did not spend much time on videos. Despite being at risk, the model pre-
dicted that Student A would likely pass the course. Due to limited teaching resources,
no intervention was provided to Student A, who eventually failed the course. In this
case, unknown unknowns resulted from students’ prior knowledge that the model was
unaware of. We illustrate that not only students’ behavior (visible to the model), but also
students’ prior knowledge (outside of the scope of the model) was relevant for success.
Student A exhibited a typical passing behavior, but had a low prior knowledge. On the
contrary, Student H exhibited a typical failing behavior, but had a high prior knowledge.
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Our Contribution. In this work, we aim to uncover and characterize unknown un-
knowns in student success predictions. We investigate the existence of unknown un-
knowns in student success prediction models and explore their variations across dif-
ferent instructional settings, such as �ipped courses and Massive Open Online Courses
(MOOCs). Furthermore, we propose a computational framework to identify and charac-
terize unknown unknowns, and we assess its e�ectiveness, informativeness, and cost-
e�ciency using state-of-the-art student success prediction models. Our analysis is based
on data collected from six courses, including three �ipped classroom courses and three
MOOCs. Through our experiment, we investigate three key aspects:

1. We examine the existence of unknown unknowns in student success prediction
and explore how their prevalence and types vary across di�erent learning envi-
ronments, such as �ipped courses and MOOCs.

2. We explore the feasibility of characterizing unknown unknowns in student success
prediction models, shedding light on the factors contributing to their emergence.

3. We assess the impact of providing instructors with information about unknown
unknowns on their perception of the student success model, aiming to understand
how this knowledge in�uences instructional practices.

Our results reveal that unknown unknowns pose a signi�cant challenge for student suc-
cess models, underscoring the importance of our framework in identifying and under-
standing these elusive cases across various experimental conditions. This work con-
tributes to the �eld by shedding light on the complexities of student success predic-
tion and highlights the need for more nuanced approaches that consider unknown un-
knowns.

Fig. 5.2: Methodology steps for detecting and characterizing students performance
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5.1.2 Methodology

In this subsection, we outline the methodology employed in our study, including
the educational scenario, data collection process, behavioral indicators, student success
models, and the overall analysis framework. Figure 5.2 provides an overview of the dif-
ferent steps involved in our framework. We collected log data from �ipped courses and
MOOCs (Step 1) and extracted behavioral indicators of control, e�ort, proactivity, and
regularity (Step 2). We built a random forest classi�er and a bidirectional LSTM classi-
�er, both returning a con�dence score and a predicted label (Step 3). We then grouped
students into known knowns, known unknowns, and unknown unknowns based on the
con�dence score, predicted label, and original true label (Step 4). The three groups were
characterized to identify (dis)similarities (Step 5). Finally, we asked instructors for their
opinion and support on unknown unknowns detection (Step 6).

Learning Data Collection - Step 1/6

Our study speci�cally focused on two teaching strategies implemented in courses
at a European university: �ipped classroom courses and Massive Open Online Courses
(MOOCs). These teaching scenarioswere chosen as they represent distinct approaches to
instruction within an online-based learning environment. In �ipped classroom courses,
students engage in pre-class activities, such as watching instructional videos, reading
materials, or completing assignments, before attending face-to-face sessions. The pre-
class activities aim to provide students with foundational knowledge and prepare them
for in-person discussions and collaborative activities. MOOCs, on the other hand, are
fully online courses that are accessible to a large number of participants. They typically
consist of video lectures, interactive exercises, quizzes, and discussion forums. MOOCs
often attract a diverse range of learners from around the world and o�er �exible learn-
ing opportunities. For both �ipped classroom courses and MOOCs, we collected data
on various aspects of student engagement and behavior, including the duration of video
views, completion rates of pre-class activities or course modules, participation in dis-
cussion forums, and performance on quizzes or assignments. These data points were
instrumental in understanding the learning patterns and behaviors of students within
these di�erent instructional contexts. By focusing on these two teaching strategies, we
aimed to capture a wide range of learning activities and behaviors that could potentially
in�uence student success and contribute to the identi�cation of unknown unknowns in
student success prediction.

Learning through Flipped Classroom Courses. Our analysis focused on three
semester-long university courses that followed the principles of learning science out-
lined in [152]. These courses were mandatory for students pursuing Bachelor’s degrees
in Computer Science and Communication Systems at the European university under
study. The details of these courses are provided in Table 5.1. The instructional for-
mat of these �ipped classroom courses included a combination of lectures and recita-
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Table 5.1: Detailed information about the courses.
Course Title ID Field1 Setting Students2 Level Language Weeks Failing Rate Quizzes

Linear Algebra FC-LA Math Flipped 292 BSc English 14 40.00% 179
Functional Programming FC-FP CS Flipped 216 BSc French 18 38.53% 0
Parallelism and Concurrency FP-PC CS Flipped 147 MSc French 16 37.16% 0
Digital Signal Processing MOOC-DSP CS MOOC 15,394 MSc English 10 75.71% 38
Household Water Treatment and Storage MOOC-HWTS NS MOOC 2,423 BSc French 6 47.36% 10
Functional Programming Principles in Scala MOOC-FP CS MOOC 18,702 BSc French 8 42.15% 3

1 Field: CS: Computer Science; Math: Mathematics; NS: Natural Science. 2 Students: for MOOCs, number of students obtained
after removing early-dropout students [151].

tion or exercise sessions on a weekly basis. In-class activities involved quizzes, short
problem-solving exercises, and structured proof-type problems. Additionally, students
were expected to spend a few hours each week on individual study as part of their pre-
class activities. One week prior to each class, students received instructions regarding
the preparatory work, which consisted of a list of sections from a Massive Open Online
Course (MOOC) containing video lectures and online quizzes. The quizzes in the MOOC
allowed students to self-assess their learning progress. Data pertaining to student pre-
class activities were collected by the MOOC platform for all three �ipped courses. The
logged entries included information such as the user ID, speci�c activity (e.g., playing a
video), and timestamp (e.g., date and time of the activity). In addition to activity data,
demographic attributes of the students, including gender, geographic origin, and high
school diploma, were also recorded. However, no data was collected on in-class activ-
ities. To assess student achievement, the �nal exam grades were used, with a passing
grade de�ned as 4 or higher on a scale of 1 to 6. The study received ethical approval from
the university’s ethics committee (HREC 058-2020/10.09.2020, 096-2020/09.04.2020).

Learning through Massive Open Online Courses. To complement our analysis, we
included three Massive Open Online Courses (MOOCs) taught by three di�erent in-
structors from the same European university on the Coursera platform (as shown in
Table 5.1, last three rows). These courses were accessible to learners worldwide. The
MOOCs followed a weekly release format, where new lecture content was made avail-
able each week. Students were expected to dedicate several hours per week to complete
the course materials. Each week, the courses consisted of short video lectures, typically
ranging from 10 to 15 minutes, introducing key concepts, followed by quizzes for self-
assessment. Additionally, students were required to complete graded assignments on a
weekly basis. The instructor used these assignment scores to evaluate student achieve-
ment. The �nal course grade was calculated by weighting the scores from the weekly
assignments and the �nal exam, with a passing grade requiring a minimum of 60 points
on a scale of 0 to 100. For the MOOCs, we collected a total of over 145,640 log en-
tries, which included information such as the user ID, speci�c activity, and timestamp.
The format of the log entries was consistent with that of the �ipped courses. Students’
gender and geographic origin were also attached to the log data when voluntarily pro-
vided by the students. The collected data encompassed all the activities performed by
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the students on the MOOC platform, representing a substantial portion of their learning
experience (excluding o�ine activities such as video watching). In the MOOC setting,
our study focused on scenarios where student success models were built using the entire
activity data available on the platform, which was not visible to the instructors. Student
achievement in the MOOCs was measured based on the �nal course grade.

Behavioral Indicators Extraction - Step 2 / 6

Previous studies have highlighted the signi�cant association between academic
achievement and various aspects of self-regulated learning (SRL), such as e�ort regula-
tion, time management, metacognition, critical thinking, and help-seeking [131, 62, 63].
These aspects have been the focus of di�erent learning indicator sets proposed in the
literature. The e�ectiveness of these indicators in modeling learning success has been
compared by [132], who identi�ed the most important ones in both �ipped courses and
MOOCs. Empirical evidence of their importance across MOOCs was also provided by
[151]. In our study, we built our models based on the indicators proven to be impor-
tant in previous work, speci�cally focusing on the dimensions of e�ort regulation, time
management, and metacognition. The granularity and comprehensiveness of the col-
lected log data allowed us to consider these dimensions. However, it is important to
note that critical thinking and help-seeking could not be directly measured in our study.
The learning indicators we considered can be categorized into the following dimensions:

Control: This dimension includes indicators related to in-video and cross-video behav-
ior, which serve as proxies for a student’s ability to control the cognitive load during
video lectures and demonstrate metacognitive skills. Examples of indicators in this di-
mension include the proportion of videos watched, re-watched, or interrupted, re�ecting
the �ow of learning and the student’s ability to segment their learning process [138, 139].

E�ort: The e�ort dimension focuses on monitoring the level and frequency of student
engagement with the course content, including both videos and quizzes, as it has been
proven to be fundamental for learning success [131, 134]. Indicators in this dimension
include the total number of student clicks on weekends and weekdays, as well as the
total number of study sessions.

Proactivity: This dimension aims to measure the extent to which students are proactive
and stay on schedule, which has shown to be predictive of performance, especially in
MOOCs [132]. The indicators in this dimension are related to the completion of videos
and quizzes, based on the scheduled week of the course. Example features include the
number of scheduled videos watched for a given week and the number of quizzes passed
on the �rst try.

Regularity: The regularity dimension is associatedwith timemanagement and captures
patterns of student engagement within a week and throughout the day. These indicators
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Fig. 5.3: Student Success Models Performance

re�ect whether a student consistently engages on speci�c weekdays or at speci�c times
of the day, which has been shown to be predictive of student success in MOOCs and
�ipped classrooms [135, 136]. Since the scores of the indicators can vary, we performed
min-max normalization for each feature across all students and weeks. While the se-
lected indicators fall into four dimensions and include several measures per dimension,
we acknowledge that other relevant dimensions and measures may be bene�cial for stu-
dent success modeling. Our study can be easily extended to include a di�erent (and
larger) set of behavioral indicators.

Student Success Modelling - Step 3 / 6

A wide range of student success models have been proposed so far in the literature
[153]. To align with prior work, since our study does not aim to propose a novel model,
we considered two models reporting a high accuracy while providing a certain level of
interpretability. Random Forest (RF) classi�ers have achieved this in both �ipped and
MOOC contexts, when fed with behavioral features [154, 132]. Recent neural network
classi�ers based on BiLSTMs including attention layers, sigmoid activation, and a cross
entropy loss function, have resulted in higher accuracy [151] and good interpretability
as well [155]. Again, we based our decision on the similarity of the underlying context
and logging system. We acknowledge that other models, e.g., Linear Regression and
Support Vector Machines, have been used in prior works (e.g., [135]), but we left their
analysis as a future work, using RFs as a representative of this class of models.

For each course and model, we applied a nested student-strati�ed 10-fold cross-
validation. The same folds were used for all experiments across models, and hyper-
parameters were optimized using grid search. In each iteration, an inner student-
strati�ed 10-fold cross-validation was performed on the training set to select the combi-
nation of hyper-parameter values that yielded the highest accuracy on the inner cross-
validation.

A total of 200 models per course were obtained (2 architectures × 10 outer folds × 10
inner folds). The balanced accuracy was computed on the training and validation sets to
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assess model validity and on the test set to evaluate model generalizability. The averaged
balanced accuracy on the three sets for each course and architecture combination is
shown in Figure 5.3. The models performed well on both �ipped courses and MOOCs,
with slightly higher accuracy observed for models predicting on MOOCs. The error
bars represent the average, maximum, and minimum balanced accuracy achieved by the
random forest and bidirectional LSTM models through a nested 10-fold cross-validation
for each course included in our study.

The models were able to predict the probability (p) that a student would fail the
course. A decision threshold of 0.5 was used to obtain the �nal predicted label: ỹ = 0
if p < 0.50 (predicted pass) and ỹ = 1 if p > 0.50 (predicted failure). This threshold is
commonly used in machine learning and prior education-related works.

The model con�dence (c) was determined by measuring the proximity of the pre-
dicted probability (p) to the decision threshold. The model con�dence value (c) is calcu-
lated as |p - 0.50|, ranging between 0 and 0.50. Higher values indicate a higher level of
con�dence in the prediction.

Prediction Student Grouping - Step 4 / 6

The practice of obtaining a trained student success model and computing importance
scores for each indicator to link them to successful patterns has been commonly observed
in the literature for both RFs [132] and linear regression models [135]. Recent work has
also utilized explainability methods to extract these scores [155]. However, these ap-
proaches assume that the model accurately captures the relationships between learning
and students’ success, which may not be true for a signi�cant portion of students. It
is crucial to consider this portion of students to ensure that no student is negatively
impacted by the model.

Figure 5.4 illustrates an emerging issue related to model con�dence. Each plot shows
the predicted probability distribution for students in the training, validation, and test
sets, with 200 pass and 200 failing students randomly selected. In the case of �ipped
courses, BiLSTM models often exhibit high con�dence in their predictions, as indicated
by the skewed distribution towards the two extremes. However, their balanced accuracy
on �ipped courses is not high, as shown in Figure 5.3. In the case of MOOCs, the same
models demonstrate high con�dence, and their accuracy is also high. Interestingly, RF
models on �ipped courses exhibit high uncertainty in predictions for unseen validation
and test students. These results raise concerns about the possibility of the model be-
ing highly con�dent but incorrect, which can have serious consequences when models
are used in real-world applications and in�uence human understanding of the learning
process.

Given these observations, it becomes essential to investigate the relationship between
the correctness of predicted labels and the model con�dence. Let us assume a hypothet-
ical trust level � 2 (0, 0.50) that users have while using model predictions. Predictions
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Fig. 5.4: Student Success Predicted Probabilities.

with a con�dence c > � would be considered more trustworthy, while predictions with
c < � would be considered less trustworthy. Based on the true label y and the predicted
label ỹ with con�dence c for a given student, the student can be assigned to one of the
following groups:

• Known Knowns (g = 0): Students for whom the model is highly con�dent (c >
�) and the predictions (ỹ) correctly re�ect the true success or failure (ỹ = y). These
are ideal cases where the model is correctly optimistic, providing high-con�dence
predictions that align with the true outcome.

• KnownUnknowns (g = 1): Students for whom the model is not sure (c < �) and
any predicted label (ỹ). These cases require extra caution before using the predic-
tions to take actions in the real world. The concept of known unknowns accounts
for errors expected based on the probability estimates of the classi�cation.

• UnknownUnknowns (g = 2): Students for whom themodel is con�dent (c > �)
but the predictions (ỹ) are actually incorrect (ỹ 6= y). Intuitively, these examples
are far from the decision boundary but have been labeled incorrectly. Although
these examples may be rare, their non-negligible prevalence poses a risk.

For convenience, we used a trust level � = 0.25 in our study, and analysis under
other trust levels is left as future work. It is important to note that this threshold can be
adjusted according to the model’s accuracy and the requirements of the �nal system. In
our study, we considered the same threshold for bothmodels to ensure a fair comparison.
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Prediction Group Characterization - Step 5 / 6

To address unknown unknowns, one might consider classifying future students into
the category of unknown unknowns. This could involve training a second model to
predict whether a student belongs to this category and taking appropriate action based
on the prediction. However, this solution has several weaknesses, including increased
complexity, potential biases, and limited data availability. Instead, it is more e�ective
to make stakeholders aware of unknown unknown cases and provide them with infor-
mation about typical archetypes of unknown unknowns. Instructors can then use this
information to improve data collection and processing. The choice of variables used to
explain unknown unknown cases is a crucial aspect in this scenario.

There are two complementary approaches to selecting these variables [156]. In con-
�rmatory research, the potential impact of di�erent variables is hypothesized based on
existing theories. In an exploration-driven approach, variables are selected when there
is a lack of theories or when generalizing across domains. Given the recent awareness
of unknown unknowns, exploration research can generate new hypotheses to be later
evaluated by experts, such as instructors, in their courses.

To characterize unknown unknowns from the model’s perspective, we examined the
relationship between (i) model con�dence and predicted label correctness based on the
student groups identi�ed in the previous step, and (ii) a range of variables known to the
model, namely the behavioral indicators used for training. To provide context, we also
considered certain demographic variables that were not included in the model training
for ethical reasons but may be available as contextual variables. Formally, the indepen-
dent variables for our characterization were represented by a vector v for each student,
including the averaged values of the 45 behavioral indicators across course weeks, as
well as the gender and provenience attributes. The dependent variable was the group
label g computed in the previous section.

Our goal was to identify variables that have a statistically signi�cant relationshipwith
the dependent variable. We employed multiple regression analysis, �tting the model
with the input vectors v and the corresponding group labels g. Formally, the equation
was y = ✏ + �0 +

P
j �j · vj, where y represents the dependent variable, �j denotes

the regression coe�cient, and vj represents the value of the j-th variable. The coe�-
cients � 2 � provide insights into the extent to which changes in a given variable, while
holding all others constant, lead to changes in the group membership. By conducting
the multiple regression analysis, we tested the null hypothesis that all coe�cients � 2 �
are zero, against the alternative hypothesis that at least one coe�cient �j is nonzero.
We hypothesize that variables with nonzero statistically signi�cant coe�cients can be
considered important for explaining membership in the unknown unknown group.
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Table 5.2: Content of the questionnaire provided to instructors.

ID Question on Demographics

Q01 Which type of organization are you based in?
Q02 Which role do you have in your organization?
Q03 (Q04) Which continent (country) are you based in?
Q05 Which age group are you in?
Q06 With which gender identity do you most identify?
Q07 How many courses were you teaching assistant for?
Q08 How many courses were you an instructor for?

ID Question on Student Success Models

Q09.1 (Q10.1) Be (less) con�dent about using model predictions.
Q09.2 (Q10.2) Feel assisted (more) in diagnosing students’ di�culties.
Q09.3 (Q10.3) Trust (less) using model predictions in your classroom.
Q09.4 (Q10.4) Feel (more) successful in using model predictions.
Q09.5 (Q10.5) See as (less) transparent how model predictions are made.

Q09.6 (Q10.6) Rely on model predictions at least as much as you rely on
a recommendation from a colleague.

Instructors’ Opinion Collection - Step 6 / 6

Finally, we aimed to understand how instructors’ perception of student success mod-
els would change when they become aware of unknown unknowns. To achieve this, we
designed a questionnaire 1 divided into two main sections (see Table 5.2), following prior
work on trust in arti�cial intelligence for education [146], including two main sections
(see Table 5.2): one on demographic information, whereas the other was focused on a
use case on unknown unknowns in student success modelling.

In the �rst part, we were interested in knowing who the experts were, including the
type of their organization (e.g., academia, industry), their role in the organization (e.g.,
full professor, researcher), the continent and country they are based in, the age group (in
a speci�c range), and the gender identity. In addition, we asked participants how many
courses they acted as an assistant (e.g., tutor) and as an instructor (e.g., full professor,
associate professor) in.

In the second part, we described a use case with student success predictions presented
to the instructor while investigating which students would require assistance. This use
casewas accompanied by a provocative user interfacewhichwould require them to think
about the in�uence of student success models on the instructor2. First, we asked experts
to rate their perceived con�dence, assistance, success, trust, transparency, humanity

1The full questionnaire is available at the following webpage: https://shorturl.at/qvX47.
2The user interface was on purpose limited to a rudimentary pass/fail setting, without any con�dence level, to stimulate instructors’ critical thinking and reduce the impact

of other user interface elements on the unknown unknowns perception.

https://shorturl.at/qvX47
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with respect to this case. This decision let us understand the original perception of in-
structors towards student success models in general to better contextualize our results.
We then explained the concept of unknown unknowns and envisioned a simple addition
to the user interface, indicating students at risk of being unknown unknowns via alerts
and explanations. This information would trigger instructors to question the provided
prediction and investigate the corresponding students’ behavior more thoroughly. We
then asked the extent to which their perception of the student success model changed
relatively to their original perception (e.g., more or less trust). In both series of questions,
each participant was allowed to select among four possible answers, from "strongly dis-
agree" to "strongly agree". No neutral question was introduced; hence, answers should
be interpreted as what the instructors would answer in case they were forced to make a
decision. As a �nal �eld, we asked if they identi�ed any (dis)advantages raised by being
aware of unknown unknowns.

Following [10]’s protocol, we e-mailed the questionnaire to experts with a paper ac-
cepted in a top conference in education in 2021 (AIED, EAAI, EC-TEL, EDM, ICALT, ITS,
LAK, L@S). Out of 1,721 people, 112 (6,51%) completed the questionnaire. This choice
was made to include people who are both educators and experts in the �eld. Though we
acknowledge that future work will need to focus also on the perception of a generic in-
structor, unknown unknowns analysis is still at early stages and our feedback can make
more mature our understanding before involving them.

5.1.3 Experimental Results
Although our methodology can be used to analyze several perspectives, we focused

on the following research questions:

• RQ1: Do unknown unknowns exist in success prediction? How do they vary
across �ipped courses and MOOCs?

• RQ2: Canwe characterize common unknown unknowns in the considered student
success prediction models?

• RQ3: How does providing instructors with signals about unknown unknowns
impact their perception of the model?

By investigating these questions, we sought to gain insights into the presence and
characteristics of unknown unknowns in student success prediction models, as well as
the potential in�uence of providing instructors with information about these unknown
unknowns.

RQ1: (Un)known Unknown Prevalence

In our �rst analysis, we aimed to investigate the existence of unknown unknowns
in the student success models we developed. We also wanted to explore whether there
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(a) Flipped courses

(b) MOOCs

Fig. 5.5: Prediction Student Groups: AVG percentage of students in train, val and test.

were any di�erences in the prevalence of unknown unknowns between courses of the
same type and across di�erent course types.

Figure 5.5 provides insights into the average percentage of students belonging to the
known unknown and unknown unknown groups in the in the training, validation, and
test sets being a known unknown (left) and unknown unknown (right). Solid (dashed)
bars indicate students who passed (failed) but were predicted as failing (passing). As
expected, based on the model performance depicted in Figure 5.3, we observed a higher
presence of unknown unknowns in �ipped courses compared to MOOCs. To gain a
better understanding, we analyzed the patterns in detail for each course type.

For �ipped courses, we found that RF and BiLSTM models exhibited di�erent be-
haviors regarding known unknowns and unknown unknowns. RF models were more
conservative, resulting in a higher percentage of known unknowns. This suggests that
RF models require instructors to consciously inspect students for whom the model is not
con�dent in its predictions. On the other hand, BiLSTM models displayed higher con�-
dence overall, but this con�dence often led to incorrect predictions, resulting in a higher
percentage of unknown unknowns. In �ipped courses, the distribution of unknown un-
knowns was roughly equal between false failing and false passing predictions. These
patterns were consistent across the �ipped courses, indicating that the model’s impact
was more signi�cant than the speci�c characteristics of the course itself.
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Similar patterns were observed in students attending MOOCs, although it is worth
noting that MOOCs typically had larger student populations. For instance, in the case
of the OC-DSPMOOC, a 2% prevalence of unknown unknowns would involve over 300
students. Similarly, a 4% prevalence in the OC-HWTS MOOC would a�ect more than
100 students.

Findings RQ1. Unknown unknowns non-negligible prevalence was observed in
both course types. Flipped courses were more prone to unknown unknowns than
MOOCs. Given their comparable accuracy, RF models led to less unknown risks
than BiLSTM models. Furthermore, the distribution of unknown risks was similar
between false failing and false passing predictions.

RQ2: Unknown Unknowns Characterization

In our second analysis, we aimed to characterize the unknown unknowns in the stu-
dent success prediction models. We employed the explanatory framework for each com-
bination of models and courses.

Figure 5.6a presents the average R2 scores, which indicate the proportion of variance
in the dependent variable (unknown unknownmembership) that can be explained by the
independent variables (behavioral indicators). We observed that the variance was more

(a) R2 scores

(b) Highest coe�cients on �ipped courses (c) Highest coe�cients on
MOOCs

Fig. 5.6: R2 score of the linear regression models and AVG coe�cients
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predictable in RFmodels than in BiLSTMmodels, andMOOCs had a higher predictability
compared to �ipped courses. Interestingly, none of the models achieved a reasonably
high R2 score for the OC-FP course, indicating that the variance in unknown unknown
membership was not well explained by the selected indicators. This �nding con�rmed
our hypothesis that training a supplementarymodel speci�cally for unknown unknowns
detection would not be a viable solution.

To further analyze the behavioral indicators important for predicting unknown un-
knowns, we examined the regression coe�cients. Figures 5.6b and 5.6c summarize the
indicators with the highest coe�cients for each course type. For conciseness, we focused
on indicators whose coe�cients had an average value higher than 1 across courses of
the same type. See Table 5.3 for a description of the indicators.

For �ipped courses, we identi�ed ten important behavioral indicators for explaining
unknown unknowns. The indicators primarily belonged to the control dimension, with
indicators related to engagement and proactivity playing a less prominent role. For ex-
ample, indicators such as the frequency of play (F10), stop (F11), and speed events (F15),
as well as the total number of video (F29) and problem clicks (F30), exhibited a high posi-
tive weight for being classi�ed as unknown unknowns. We observed that the majority of
students who passed the course tended to perform these actions frequently. The model
struggled to determine whether these actions were indicative of students’ struggles or
their engagement and re�ection on the content. As a result, the model often classi�ed
struggling students as passing with high con�dence. Other indicators, such as the fre-
quency of stop events (F12) and alignment with the schedule (F38), showed a very low
negative weight. Being unaligned with the schedule did not necessarily imply that a
student would fail the course. For instance, a student might have consistently learned
o�ine, which the model was unaware of, leading to unknown unknowns.

In the case of MOOCs, our explanatory analysis revealed three relevant indicators,
all related to proactivity. Notably, there was no overlap in the selected regression coe�-
cients between �ipped courses and MOOCs. Content anticipation, in particular, showed
a strong association with a high regression coe�cient. For students who were eager to
learn, anticipating course content was seen as a positive attitude toward passing. How-
ever, for other students who were merely interested in previewing future content, inter-
acting with the content in advance of the schedule might not be indicative of success.
Additional information would be required for the model to distinguish between these
cases.

Comparing the two model types within the same course, we found that di�erent be-
havioral indicators in�uenced the models’ predictions in the FC-LA course. While the
BiLSTM and RF models agreed on a few indicators, such as F02, F10, F11, and F38, they
strongly disagreed on the remaining six indicators. The two models showed more sim-
ilar weightings for the behavioral indicators in the other two �ipped courses. Similar
patterns were observed for the regression coe�cients in MOOCs. Interestingly, none
of the considered demographic attributes were found to be important, highlighting the
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Table 5.3: Behavioral Indicators of Unknown Unknowns.
Dimension Indicator ID Description

Control

AvgWatchedWeeklyProp F02 The ratio of videos watched over the number of videos available.
FrequencyEventPlay F10 The frequency between every Video.Play action and the following action.
FrequencyEventPause F11 The frequency between every Video.Pause action and the following action.
FrequencyEventStop F12 The frequency between every Video.Stop action and the following action.
FrequencyEventSeekBackward F13 The frequency between every Video.SeekBackward action and the following action.
FrequencyEventSeekForward F14 The frequency between every Video.SeekForward action and the following action.
FrequencyEventSpeedChange F15 The frequency between every Video.SpeedChange action and the following action.

Engagement TotalClicksProblem F29 The number of clicks that a student has made on problems this week.
TotalClicksVideo F30 The number of clicks that a student has made on videos this week.

Proactivity

CompetencyAlignment F36 The number of problems this week that the student has passed.
CompetencyAnticipation F37 The extent to which the student approaches a quiz provided in subsequent weeks.
ContentAlignment F38 The number of videos this week that have been watched by the student.
ContentAnticipation F39 The number of videos covered by the student from those that are in subsequent weeks.

need for additional contextual variables that are often not recorded in the log data or the
university’s database.

Findings RQ2. Unknown unknowns membership was connected with certain
behavioral indicators. Control (more), engagement and proactivity (less) charac-
terized them in �ipped courses. Concerning MOOCs, proactivity was shown to be
the main dimension indicative of the models’ unknown unknowns, regardless of
the MOOC.

RQ3: Unknown Unknowns Perception by Instructors

In our �nal analysis, we aimed to understand the instructors’ perception of student
success models when they were made aware of unknown unknowns. We distributed the
questionnaire and collected responses from experts worldwide. Figure 5.7 summarizes
the results obtained from the questionnaire.

Figure 5.7a provides an overview of the demographic distribution of our sample. The
majority of participants worked in an academic context (92%), with a relatively balanced
distribution among di�erent roles, including associate professors, PhD students, and re-
searchers. Our sample also exhibited a balanced distribution across age groups, with a
slight predominance of individuals in the 31-40 age group. In terms of gender identity,
the responses were predominantly frommen (58%). Regarding teaching experience (Fig-
ure 5.7b), we found that 19.6% of participants had no experience as tutors or instructors,
while 46.4% had served in more than �ve courses as a leading instructor or teaching as-
sistant. The remaining participants reported teaching experience ranging from two to
�ve courses. Overall, our sample displayed a good level of diversity in terms of demo-
graphics and teaching experience.

In the second section of the questionnaire, we focused on the instructors’ perception
of an example student success model (Q09). Figure 5.7c shows the results, indicating
that a high percentage of participants expressed concerns about the model. The major-
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(a) Demographic distribution (b) Teaching experience distribution

(c) Initial instructors’ perception (d) Change in Perception with UU Awareness

(e) Tutoring-wise relative change (f) Instructor-wise relative change

Fig. 5.7: Instructors’ Perception.

ity strongly disagreed or disagreed with statements related to con�dence in the model
predictions (74%), trust in using the predictions in the classroom (73.2%), perceived suc-
cess in using the predictions (73.2%), transparency of the model predictions (81.25%),
and reliability compared to a recommendation from a human colleague (67.86%). No-
tably, instructors felt more assisted by the model, as indicated by the lower percentage
of participants who disagreed with the statement. It is important to note that our goal
was to collect a baseline perception and not to assess the instructors’ perception of stu-
dent success models in general. This baseline perception served as a reference point for
comparing the impact of unknown unknowns awareness.

In Figure 5.7d, we present the instructors’ perception after they were provided with
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signals and explanations about unknown unknowns in the user interface. To facilitate
comparison, we asked participants to indicate the relative change in their perception
across the six perspectives by alternating between positive (more) and negative (less)
statements. The results showed that a high percentage of participants felt more con�-
dent (76.79% strongly disagreed or disagreed with the negative statement). They men-
tioned that the additional signals and explanations helped them understand the reason-
ing behind the predictions and increased their con�dence in the model. Participants
also felt more assisted (82.14% strongly agreed or agreed with the positive statement)
and mentioned that the information provided allowed them to gain more insight into
the model’s predictions. Trust in the model’s predictions improved as well, with 78.57%
of participants strongly disagreeing or disagreeing with the negative statement. Instruc-
tors also reported feelingmore successful in using themodel predictions (60.71% strongly
agreed or agreedwith the positive statement). The perception of transparency improved,
as 71.43% of participants strongly disagreed or disagreed with the negative statement.
However, instructors still did not fully rely on the model predictions (61.61%) compared
to human recommendations. Participants emphasized that while the additional alerts
and explanations added valuable context, they would not completely rely on the model
predictions but rather use them as an aid to identify students requiring attention. To
provide a more detailed analysis, we cross-referenced these values with di�erent demo-
graphic elements in Figures 5.7e and 5.7f. Interestingly, the �ndings showed that the ad-
ditional alerts and explanations provided by unknown unknowns information improved
instructors’ perception by adding context and helping them assess and study students’
learning behavior. Participants expressed that this would enhance the usability of the
model.

Findings RQ3. Being made aware of unknown unknowns information, instruc-
tors feel a higher con�dence, assistance, trust, success, transparency. Though their
perception slightly improved, instructors still did not truly rely on model predic-
tions as much as human recommendation.

5.1.4 Findings and Recommendations

With our experiments, we showed that unknown unknowns exist and vary in number
and type across courses (RQ1). We then characterized unknown unknowns under the
speci�c use cases (RQ2). Finally, we found that making instructors aware of unknown
unknowns had a positive impact (RQ3). Our �ndings led to multiple implications.

Scienti�c Implications. The collected data is usually partial and does not provide the
global picture of students’ behavior, skills, and needs. Many other variables can be hardly
collected for being included in the model reasoning. For instance, a student might work
a lot o�ine and still get very good exam grades. Being the predictions dependent on the
data, there is the high risk that at the moment no enough data for the model is collected.
Our study therefore calls for a more extensive data collection aimed to bridge the gap
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between what the models knows and what should know.

Our study has shown that, BiLSTM models were often very con�dent about their
predictions, but completely wrong in several cases. When possible, model uncertainty
would be preferred to avoid misleading instructors, as in RF models. Understanding
what is the source of such model confusion and how this knowledge can be induced
into the model is urging. Another implication is therefore the need of student success
models that reduce unknown unknown cases.

Notably, we proved that assessing model performance solely based on accuracy may
introduce unknown risks. When a student success model is delivered, evidence on its
unknown unknowns should be provided. This evidence could be both quantitative, by
reporting for instance the percentage of unseen students resulting as (un)known un-
knowns, but also qualitative, by characterizing the cases where the model is less con�-
dent but incorrect.

Instructors will be likely to use success models as a complementary support to their
personal perception. Human-in-the-loop approaches can be used to let the instructor
and the model help each other while identifying students that require assistance. Un-
known unknowns represent examples the instructor should re�ect on while using pre-
dictions.

Technological Implications. Our study has proven that con�dence levels are not
enough to prevent undesired behavior like unknown unknowns. Signals of their pres-
ence, though helpful, would just be triggers for further analysis of certain students. In-
deed, pass/fail predictions alone would not be enough and more insights about learner
behavior will be needed. Behavioral patterns (e.g., late submissions) can then indicate
how to counsel students.

In our work, we adopted BiLSTM models, with sigmoid and cross entropy. that could
tend to push predictions towards the two sides, 0 and 1. Our �ndings show that this
practice creates more unknown unknowns (more risks). Future work should carefully
consider this aspect while selecting model parameters to reduce unknown risks.

Once unknown unknowns patterns are identi�ed, it will be important to understand
how information about them should be presented. Having signals and explanations has
led in our study to an increase of trust in the model prediction. Rather than a signal,
showing a null state when a prediction is potentially risky would be another solution.
Instructors might feel that the model did not have enough data to learn the likely out-
come for some of the students yet.

Besides being used for learning understanding, student success models can fuel tools
to recommend instructors student requiring assistance (especially in large classes). It
could be also important to have grouped predictions, along with individual predictions,
based on similarities. Reducing unknown risks will be even more important in these
settings.
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Social Implications. In our results, we showed that raising awareness of unknown
unknowns led to higher con�dence, feeling of assistance, trust, and transparency. Being
trustworthiness a complex challenge in this�eld, our study introduces another source for
improvement, complementary for instance to explanations. Furthermore, such models
could be harmful by creating false expectations. Being aware of unknown unknowns
can help to prevent such situations.

Finally, predicting whether a student is going to pass or fail a course is of practical
utility if it is done early. Once all of the data is collected over the course end, the mod-
els’ purpose might be just to detect at-risk students who might bene�t from remedial
sessions between the course end and the �nal exam. Nevertheless, we believe that the
unknown unknowns might be even more evident in very early predictions, which we
plan to investigate in future work.

Scienti�c, technological, and social shifts in education often go hand-in-hand. Coun-
tering unknown unknown issues will be essential to further strengthen the reliability of
emerging student success models in real-world education.

5.2 Model-Human Comparison on Student Success
Prediction

5.2.1 Introduction
Educational institutions have embraced various modes of instruction that combine

or replace face-to-face lectures with online activities. Examples include �ipped learning
[142] and distance learning [143], which di�er in the sequencing of face-to-face and
online sessions. However, when education partially or fully transitions online, teachers
face challenges in monitoring and adapting their teaching practices to ensure that every
learner receives adequate support [157, 158].

To support teachers in identifying and assisting learners in need, strategies utilizing
learning analytics methods have gained prominence [133]. One common approach is
the use of visualizations and dashboards to provide insights into the learning process
[159]. In more advanced cases, automated models can predict whether learners are at
risk of not achieving their expected learning goals [160]. Student success prediction
models, in particular, have emerged as a valuable tool for creating personalized learning
experiences by modeling student performance.

However, the process of identifying learners in need of support is complex for both
teachers and models. Visualizations can sometimes overwhelm teachers, making it chal-
lenging for them to determine where to focus their attention and what is most important
[161]. Models, on the other hand, can develop weaknesses due to unknown informa-
tion, unmodeled biases in the data, shifts in data distribution, or suboptimal algorithmic
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choices [162, 10], resulting in low trust from teachers. This lack of knowledge can lead
both teachers and models to be con�dent in their predictions but ultimately incorrect
[13]. While e�orts have been made to explore unknown unknowns in other domains,
such as medical diagnosis [163], work�ows [150], and �nancial services [164], to the best
of our knowledge, we are the �rst to uncover unknown unknowns issues in education
[13]. Unfortunately, no research study exists that addresses the gap between teacher
and model predictions, hindering the development of strategies to mitigate the impact
of unknown unknowns in student modeling.

In this work, we investigate the dissonance between teacher and model predictions
regarding learners in need, based on their behavior [14]. Teachers, being human, may
be better equipped to handle abstract and subjective tasks, while models struggle with
such nuances. We aim to examine whether teachers consistently outperform models
in making decisions related to educational tasks, speci�cally the prediction of at-risk
learners in a �ipped course based on their behavior in pre-class sessions. Our work is
guided by three research questions:

• RQ1: How do teachers, compared to a well-known model, determine whether a
learner is at risk?

• RQ2: Is there a relationship between the con�dence of teachers/models and the
correctness of their decisions?

• RQ3: What additional knowledge and intervention needs do teachers identify?

To address these research questions, we employ a crowdsourcing approach with 360
human intelligence tasks from 60 university teachers. We provide teachers with visual-
izations related to various dimensions of self-regulating behavior for each learner and
ask them to predict the probability of the learner failing the course. We also gather
information about the rationale behind their decisions, their level of con�dence, and
any additional knowledge or intervention needs they may have. By comparing teacher
and model decisions in terms of correctness and con�dence, and analyzing the teachers’
rationale and needs, we gain insights into the dissonance between human and model
decision-making processes. Our results provide valuable insights on how to responsibly
use predictions from student performance models to build personalized student models
based on performance, highlighting (dis)agreements between machine-learning models
and teachers as well as weaknesses in their accuracy.

5.2.2 Methodology

In this section, we describe the educational context and the approach we adopted to
gather both model and teacher predictions and their reasoning. Figure 5.8 provides an
overview of all the steps of our methodology.
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Fig. 5.8: Methodology steps for human understanding.

Model Understanding

In a �rst stage, we describe themachine learning pipeline adopted to gather themodel
understanding, including the learning data collection, the behavioral indicators extrac-
tion, and the model creation and prediction.

Learning Data Collection. Our study focuses on a Linear Algebra course delivered in
a �ipped format in a European university to 292 learners. Speci�cally, we focus our anal-
ysis on a semester-long Bachelor course with a 14 weeks schedule composed of lectures
and sessions of recitation or exercises [152]. In-class activities included short problem-
solving exercises and structured proof-type problems. In addition, learners were ex-
pected to spend some hours per week on individual study (a list of sections from aMOOC
with video lectures and online quizzes) as a preparation for class (pre-class activities).
Instructions on preparatory work were sent to learners a week in advance. In total, 179
quizzes, normally multiple-choice questions, allowed learners to self-evaluate their own
learning at home. The MOOC platform collected data on learners’ pre-class activities.
Log entries reported the user (e.g., user 0), activity (e.g., user 0 play video x), and times-
tamp (02-05-2022 11:03:00). In total, we considered more than 145,640 log entries. There
was no data recorded on in-class activities. Learner performance was measured accord-
ing to the exam grade (failing rate 40%). The study was approved by the university’s
ethics committee (HREC No. 058-2020/10.09.2020).

Behavioral Indicators Extraction Prior work has found signi�cant association with
academic achievement for self-regulated learning (SRL) aspects [63, 131, 165], including
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e�ort regulation (persistence in learning), time management (ability to plan study time),
metacognition (awareness and control of thoughts), critical thinking (ability to carefully
examine material), and help-seeking (obtaining assistance if needed). A variety of learn-
ing indicators’ set have been proposed in the literature accordingly. Their power for
modeling learning success has been compared by [166]. This work identi�ed the most
important ones in both �ipped courses and MOOCs. In our study, we followed a similar
logging policy and experimental scenario as the aforementioned work. Therefore, we
built our models based on the indicators that were found to be important in their study.
The granularity and comprehensiveness of the collected log data allowed the studies
mentioned above, as well as ours, to consider e�ort regulation (e�ort), time manage-
ment (regularity and proactivity), and metacognition (control, assessment) dimensions.
Speci�cally, we considered the following indicators.

The indicator control (22 indicators per learner per week) models in- and cross-video
behavior as a proxy of learner ability to control cognitive load through weeks (metacog-
nition). For instance, in-video �ow, manageable through the platform functionalities
(e.g., pause button), could include regular pauses to segment learning [138, 139]. Among
others, this feature’s set consists of the proportion of videos watched, re-watched, or
interrupted. E�ort (13 indicators per learner per week) aims at monitoring how much
and how frequently learners engage with the course content (both videos and quizzes)
and is proven to be fundamental for learning success [131, 134]. These features included
indicators such as the total number of learner clicks on weekends and on weekdays, and
the total number of sessions. Proactivity (7 indicators per learner per week) attempts to
measure the extent to which learners are on time or ahead of the schedule and is demon-
strated to predict performance especially in MOOCs [166]. These features are related to
completion of videos and quizzes, according to the week of the course they are schedule
in. Example features included the number of scheduled videos watched for that week
and the number of quizzes passed on the �rst try. Regularity (3 indicators per learner per
week) is also associated with time management. It estimates the intra-week and intra-
day time management patterns (i.e., capturing whether a learner regularly engages on
speci�c weekdays or day times), proven to be predictive of learner success [135]. Fi-
nally, the assessment dimension (3 indicators per learner per week) assumes that there
is a relation between learner performance in voluntary non-graded online quizzes and
the �nal course grade (e.g., [166]).

Since indicator scores vary in their range, we performed amin-max normalization per
feature across all learners and weeks for that feature. While the selected indicators cover
�ve dimensions and include multiple measures within each dimension, we acknowledge
that there may be other relevant dimensions and measures that could be bene�cial for
modeling learner success. The choice of indicators was based on prior research and their
proven signi�cance in predicting learning outcomes. However, it is important to con-
tinuously explore and evaluate additional dimensions and measures that could enhance
the accuracy and e�ectiveness of success modeling in the educational context.
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Model Prediction Awide range of learner success models have been proposed so far in
the literature [66]. Since our study does not aim to o�er a novel model, to alignwith prior
work, we considered a model reporting a good accuracy while providing a certain level
of interpretability. To predict learner success, we utilized a neural network classi�er
based on BiLSTMs with attention layers, sigmoid activation, and a cross entropy loss
function. This choice was motivated by the model’s good accuracy and interpretability,
as demonstrated in prior work [167, 155]. Additionally, we considered the similarity
of the educational context and logging system to ensure relevance and comparability
with existing studies. We acknowledge that other models have been used in prior works
(e.g., [135]), but we postponed their analysis as a future work. In order to train models,
we applied a nested learner-strati�ed (i.e., dividing the folds by learners) 10-fold cross
validation. In each iteration, we ran an inner learner-strati�ed 10-fold cross-validation
on the training set, and selected the combination of hyper-parameter values yielding the
highest accuracy on the inner cross-validation. We then evaluated it on learners in the
test fold to show reproducibility in the same context. Balanced accuracy varied between
68% and 75%, depending on the fold, with an average of 73%.

Teacher Understanding

To understand the teacher understanding of learner success and compare it to the
model’s predictions, we employed a crowd sourcing approach that involved the follow-
ing main steps: learner sampling, creation of visualizations, and delivery of the ques-
tionnaire.

Learner-to-Prediction-GroupMappingTo gather the teacher understanding, the �rst
aspect to consider is related to which learners should be paired to the teacher. In our
work, we decided to group learners based on the correctness and con�dence of the
model’s predictions and then uniformly sample them from the corresponding groups.
This design choice allowed us to o�er teachers examples where the model performance
varies, thus we have investigated whether the teacher performance is (dis)similar. Let
us consider a learner known to have a true label y and a model that predicts a label ỹ
with a con�dence c. With a decision threshold of 0.50, values of c 2 [0.25, 0.50) and
c 2 [0.50, 0.75) would be considered as low con�dence for passing and failing, respec-
tively. Conversely, values of c 2 [0.00, 0.25) and c 2 [0.75, 1.00) would be considered as
high con�dence for passing and failing, respectively.

Based on the assumptions above, we assigned learners to one of the six groups in
Table 5.4. In the �rst row, we reported two groups of learners for whom the model was
con�dent, either c 2 [0.00, 0.25) or c 2 [0.75, 1.00), and the prediction correctly re�ected
their true success or failure. These were the ideal cases where the model was correctly
and con�dently optimistic, i.e., the model reported high con�dence and correct label for
the examples in this category. In the general machine learning �eld, examples belonging
to this category are usually referred to as Known Knowns (KK). As a convention for this
work, learners who actually passed the course (ỹ = y = Pass) are referred to as KK
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Table 5.4: Model Prediction Groups.
True passing learners True failing learners

group y ỹ c group y ỹ c
KK Pass Pass Pass High [0.00,0.25) KK Fail Fail Fail High [0.75,1.00)
KU Pass Pass Fail Low [0.50,0.75) KU Fail Fail Pass Low [0.25,0.50)
UU Pass Pass Fail High [0.75,1.00) UU Fail Fail Pass High [0.00,0.25)

Pass. On the other hand, learners who actually failed the course (ỹ = y = Fail) are
referred to as KK Fail. In the second row, we considered two groups of learners for
whom the model was unsure, either c 2 [0.25, 0.50) or c 2 [0.50, 0.75), and the predic-
tions would require extra care before being used. This concept mapped cases for which
errors were expected based on the con�dence of the model classi�cation, being close to
the decision threshold. In machine learning, examples belonging to this category are
referred to as Known Unknowns (KU). Learners in this category who actually passed
the course (ỹ = y = Pass) are referred to as KU Pass; whereas, learners who actually
failed the course (ỹ = y = Fail) are referred to as KU Fail. Finally, the third row in-
dicates two groups of learners for whom the model was con�dent, either c 2 [0.00, 0.25)
or c 2 [0.75, 1.00), but its predictions are actually wrong. Intuitively, these are exam-
ples distant from the decision boundary yet labeled incorrectly. These examples, usually
named Unknown Unknowns (UU), may be rare to be detected, but their non-negligible
prevalence makes learners at risk. Learners in this category who actually passed the
course (ỹ <> y = Pass) are referred to as UU Pass; whereas, learners who actually
failed the course (ỹ <> y = Fail) are referred to as UU Fail. For details on this
process, we refer the reader to [13].

Behavioral Indicators Visualization To communicate indicators to teachers regard-
ing learners, we aimed for our study to resume a practical real-world situation. Machine-
learningmodels have access to a large amount of data, to a potentially very large number
of indicators, while teachers only have access to a subset of these indicators, due to well-
known human characteristics about information processing and memory capabilities.
This aspect has been highlighted in prior work in education in the context of learning
dashboards [155]. To align our study with the real world, we fed the model with indi-
cators relevant in prior work [168]. We based our selection on those that investigated
such indicators’ importance [63], concerning those to be shown to the teachers.

It was indeed impractical to show all of the over 40 indicators to each teacher in the
form of visualizations. We instead opted for one representative of each SRL dimension
(e�ort regulation, time management, metacognition, and assessment), found relevant in
prior work [63], except for regularity3. Moreover, discarding regularity indicators was
motivated by two reasons. First, prior work found that regularity is more predictive of
success in MOOCs rather than �ipped courses [166]. Second, indicators of regularity are

3We fully acknowledge that what and how we show information importantly in�uence the teacher reasoning and understanding. Therefore, we invite the reader to take this
into account throughout the rest of the paper, especially while analyzing the results. Our �ndings open to future research on how the content of visualizations might in�uence
both the correctness and con�dence of teacher decisions.
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usually hard to interpret by non-technical people, being based on complex mathematical
functions such as Fourier transforms.

We selected four indicators among those provided to the model [166]. In terms of ef-
fort regulation, we included the total time spent online. This indicator was computed by
summing the session durations in a given week, measured in minutes. For time manage-
ment, we provided the teacher with an indicator pertaining to proactivity, i.e., content
anticipation. It monitors the extent to which learners are on time or ahead of sched-
ule, measuring it as the fraction of videos watched before the scheduled due date. The
pause frequency was considered as the indicator of metacognition. Concretely, it was
measured as the mean number of pauses, divided by the time spent watching a video,
averaged across videos. Finally, for the assessment dimension, we considered the learn-
ers’ competency strength, computed as the highest grade achieved on a quiz, divided by
the number of attempts, averaged across quizzes.

Subsequently, we designed visualizations of the identi�ed indicators according to the
nature of the data aswell as prior work on visual designs in education [159]. Being the in-
dicators measured per week, they could be naturally represented as a time series. Hence,
we adapted the most informative designs from [63]. To support reasoning, visualizations
enabled teachers to compare the indicators of the current learner and those of the aver-
age passing and failing learner. Please refer to the survey at https://shorturl.at/bnGOU
for an example student’s visualizations presented to a teacher.

Teacher Prediction To assess teachers’ understanding, we conducted a survey with 60
participants. We allowed individuals to participate in case they served as a lecturer in
at least one university course. We recruited a balanced sample in terms of gender (45%
identi�ed as female) through Proli�c, �ltering those �uent in English. The most repre-
sented age group was 31-40 (41,67%). 68% of the participants came from Europe. They
served as lecturers in one course (30%), two/three courses (33,33%), and more than �ve
courses (28,33%). They were well-distributed across full professors (21,67%), associate
professors (31,66%), and researchers (26,66%).

Our survey was organized into six sections, including 39 items (demographics: 5
items; data literacy: 4 items; visualization: 5 items x 6 students). In the �rst section, we
explained the purpose of the survey, emphasized the target audience, and asked to agree
with terms and conditions. Then, in the second section, we asked participants to provide
demographic attributes (gender, age, country, teaching experience, role) to contextualize
their answers. In the third section, participants were given the scenario of teaching a
large university �ipped course for over 300 Bachelor learners. They were told that they
had taught the entire course and would be shown visualizations of their learners’ SRL
behavior to potentially identify intervention needs during the exam preparation period.
In the fourth section, to assess participants’ data literacy, we asked them to interpret vi-
sualizations of an example learner and answer to four understanding questions. In par-
ticular, for each visualization, we reported the de�nition of the corresponding indicator

https://shorturl.at/bnGOU
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and the interpretation of its value in a certain week. Based on this information, we asked
the participant to answer to a simple question related to the plot, giving three possible
answers ("yes", "no", or "I don’t know"). The �fth key section included the visualiza-
tion items grouped by learner, showing to the teacher one learner from each prediction
group (six learners in total). For each student prediction group among the six described
in Section 2.2.1 (see Table 1), we uniformly sampled four representative students for that
group to be included in the student pool in the questionnaire, according to the model
con�dence in the respecting prediction. This choice allowed us to cover a more �ne-
grained level of cases that vary in the way the model behaves. While generating the
questionnaire for a teacher, the student of a given group to be shown to the teacher
was randomly sampled from the created student pool for that group. This choice was
made to facilitate the questionnaire delivery and make the analysis easier to interpret.
For each learner, teachers were asked to interpret the graphs by (1) making a passing or
failing decision, (2) providing the rationale behind their decision, (3) their con�dence in
the decision, (4) any other information they would have known to re�ne their decision,
and (5) any intervention they would have made in that case (the full survey is available
at https://shorturl.at/bnGOU).

5.2.3 Experimental Results
To compare model and teacher decisions (RQ1), identify the relationships between

con�dence and correctness (RQ2), and emphasize any additional knowledge and inter-
vention need (RQ3), we analyzed teacher answers to our survey.

RQ1: Teacher-Model Correctness Agreement

In a �rst analysis, we investigated how teachers compare to the considered model
in determining whether a learner is at risk. We analyzed teacher predictions both at
prediction group- and learner-level as well as their reasoning.

Group-level Correctness Fig. 5.9 collects the teacher decisions for each prediction
group. We created two separate plots, one for the decisions on truly passing learners
(Fig. 4a) and one for those on truly failing learners (Fig. 4b).

Fig. 4 collects the teachers’ accuracy for each prediction group, created according
to the considered machine-learning model performance. For convenience, we created
two separate plots, one for the decisions on truly passing learners (Fig. 4a) and another
one for those on truly failing learners (Fig. 4b). Each plot includes three bars repre-
senting teacher performance on the three respective prediction groups. Given a bar,
the blue portion indicates the percentage of the teachers who predicted the student’s
outcome correctly, while the red portion refers to those who predicted the student’s
outcome incorrectly. To enable a more detailed understanding, for each blue / red por-
tion of a bar, the solid sub-portion refers to teacher predictions that were unsure ("very
likely"), whereas the dotted sub-portion refers to teacher predictions that weremore sure

https://shorturl.at/bnGOU
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Fig. 5.9: Distribution of teacher prediction (RQ1)

("likely"). Teacher accuracy (blue portions) is calculated as the percentage of teachers
providing the correct student outcome for each prediction group. As an example, the
left most bar refers to teacher performance on truly passing learners where the model
predicts with a high con�dence that they pass (KK Pass). In this case, 20% of the teach-
ers correctly made the predictions that learners are very likely to pass (solid blue bar),
38% said again correctly that learners are likely to pass (dotted blue bar). 40% wrongly
predicted the learners are likely to fail (dotted red bar), and 2% of them incorrectly pre-
dicted that learners are very likely to fail (solid red bar). For the sake of comparisons
with the machine-learning model, in the x-axis labels, we reported the machine-learning
model performance on students belonging to that prediction group (which is, as per our
de�nition, 100% on known-known students, and 0% for the known unknowns and the
unknown unknowns students). In the plot title, we reported the overall teacher accuracy
and model accuracy, measured by averaging the accuracy values across the correspond-
ing three prediction groups in the plot. For example, in Fig. 4a, we have amodel accuracy
of 0.33, obtained by averaging its 100% of accuracy in KKPass students, and the two accu-
racy values of 0% for KUPass and UUPass students. The same rationale has been applied
to organize results in Fig. 4b.

Considering the left plot (truly passing learners), it can be observed that the teacher
decisions diverged consistently from those of the model. Speci�cally, the left most bar
shows that the teachers did not �nd as easy as the model to make correct decisions on
KK Pass learners. While the model was 100% accurate and highly con�dent about
that group of learners, the accuracy of teacher decisions was slightly below 60% (left
most blue bar). Regarding the other two groups of learners (mid and right bars), the
teachers were more accurate than the model (0% of accuracy). Surprisingly, teachers
were overall very good at detecting truly passing learners among those the model was
wrong and highly con�dent (right blue bar). Unknown unknown risks for the model
would be prevented once indicators are shown to the teacher. We believe that this is a
positive outcome, given the huge amount of unknown unknowns that accurate neural
networks applied to educational data tend to produce [13].

Observing the decisions made by teachers on the truly failing learners (right plot), it
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Fig. 5.10: Percentage of teacher decision (RQ1)

conversely emerged that the model and the teacher decisions were more similar. To ap-
preciate this phenomenon, we invite the reader to note the decreasing percentage of cor-
rect answers from left to right (blue bars). Both the teachers (79%) and the model (100%)
were very accurate on model’s known knowns (left bar). On the other hand, teach-
ers predicted well to a good extent (60%) on the learners where the model was wrong
and slightly con�dent (KU Fail). Teachers’ accuracy (only 40%) further decreased on
model’s unknown unknowns (model accuracy 0%). Such circumstance is alarming, since
both teachers and the model tend to incorrectly predict that a learner would not need
an intervention.

Learner-level Correctness We investigated whether the observed patterns re�ect a
general di�culty of teachers in making correct decisions on learners in that prediction
group or emerge solely from individual learners. Fig. 5.10 shows the percentage of
correct predictions made by teachers on each learner of each prediction group, referring
to truly passing learners (left) and truly failing learners (right). As an example, the top
left most cell in the left heatmap indicates that 31% of teachers correctly predicted that
the learner with ID 0 in the KK Pass group would pass the course. For convenience,
we again distinguish patterns between truly passing and failing learners.

From the left heatmap, it emerged that the teacher performance within a prediction
group substantially varied across learners. This means that teachers did not generally
align with the model. In the �rst row (KK Pass), only learner 1 was characterized by a
94% accuracy, close to that of themodel (100%), thus easier to detect for both teachers and
the model. On the other hand, teachers found it hard to detect the other truly passing
learners (learners 0, 2, and 3). Similar observations can be made on passing known
unknowns (KU Pass). It should be noted that the model was not able to correctly
detect that all those learners would have passed the course. Despite of being under-
performing, teachers were overall better than model. Both teachers and model found it
challenging to detect that learner 3 would pass. On passing unknown unknowns (UU
Pass), teachers were remarkably successful about all learners (from 56% to 83%).

Experimental results on truly failing learners (right heatmap) showed again a di�erent
behavior. Teachers were overall able to correctly detect learners likely to fail for model’s
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Fig. 5.11: Distribution of teachers’ con�dence for their prediction (RQ2)

known knowns (KK Fail) and known unknowns (KU Fail). In each cases, there
was a single exception, i.e., learner 2 and learner 3 respectively. Unknown unknowns
(UU Fail) showed all an accuracy between 40% and 60%, except for learner 1. In the
latter group, it was evidently very di�cult to identify failures for teachers. Both the
teachers and the model incorrectly predicted a passing.

Teachers’ Reasoning The barely low performance of teachers on certain learners mo-
tivated us to analyze their reasoning. For conciseness, we provide observations on key
learners associated to the low accuracy for teachers4.

For instance, considering theKK Pass group, teachers whomade thewrong predic-
tion on learner 0 were generally in�uenced by the decreasing trend in all the indicators
across weeks. For instance, teachers said that it, "Seems like he had the course already
passed by the end so he relaxed", "I believe that a strong �nish is more important than a
strong start", "They seem to have lost motivation towards the end of the course when they
should be working towards a �nal push.". Teachers who correctly predict a pass for learner
0 were instead driven by the general estimates, saying, "This student seems to always be
above average at most times". Another key learner is represented by learner 3 in the
KU Pass group - only 7.7% of teachers correctly identi�ed them as a passing learner.
Teachers who found it challenging to make the right prediction gave equal importance
to all indicators and to their up and downs. A teacher reported that, "The progress bar
seems generally similar to students who failed for all/most aspects, except proactivity. Yet
the pick up on proactivity might suggest the student has checked what’s coming and that
has further decreased their engagement with the course.". Another teacher said that, "He
has had ups and downs related to e�ort and it seems he/she doesn’t have a routine of study.

4The corresponding visualizations for all learners are reported at shorturl.at/FHINT.

https://shorturl.at/FHINT
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And as it is for assessment, he/she hasn’t practiced at all during the course. Either he/she is
very lucky on the exam or the lack of work will make him/her fail". A teacher who made
the right prediction for learner 3 instead reported that, "The student is engaged and ahead
of schedule, absorbs the material without using the pause button and can’t be bothered do-
ing the non-compulsory quizzes. I guess that the student has a lot of self-con�dence and
�nds the course easy".

There were key learners associated to low teacher accuracy also in prediction groups
including true failing learners. In the groupKU Fail, teachers were under-performing
on learner 3 particularly. Incorrect predictions were often motivated by the learners’
indicator pertaining to assessment, which was showing very low values ("The results of
the students in the assessment is the main factor that made me decide to estimate that the
student is likely to pass. The di�erence between the average passing and the average failing
student on the other factors is too small for me to use them to make a decision about the
student" and "His strong �nish in assessment in the �nal week also means that he seems to
be in good shape and that there is no decrease in motivation over time"). Similar comments
were made also on learner 1 within the UU Fail group. All teachers made the wrong
prediction, reporting, "He wasn’t very good with control, but most of the weeks he was
above average on the remaining 3 categories"", and "Seem to be working hard towards the
end".

Findings RQ1. Teachers were overall more accurate in detecting struggling
learners. Teachers and model decisions diverged on learners who passed the course.
About those who actually failed, teachers were more accurate than the model, but
both found the same learners hard to predict. Reasoning aspects that di�erentiated
teachers’ correct and incorrect predictions often referred to the importance given
to the indicators and the way decreasing/increasing trends were judged.

RQ2: Correctness-Con�dence Relationship

We were then interested in investigating teachers’ con�dence in their predictions at
prediction group- and learner-level.

Group-level Relationship Fig. 5.11 collects the percentage of answers given by teach-
ers under each con�dence level. We grouped them according to the answers’ correctness.
The three bar plots in the top (bottom) row refer to the prediction groups including truly
passing (failing) learners. Blue (red) bars refer to teachers who answered correctly (in-
correctly). Solid (dotted) bars refer to teacher decisions with "very likely" ("likely"). Bars
of the same type sum to 1. As an example, in the top left most bar plot (KK Pass group),
62% of the teachers who said the learner would be very likely to pass had a con�dence
in [80%, 100%) (solid blue bar on the right).

Concerning truly passing learners where the model is correct and con�dent (KK
Pass), it can be observed that teachers’ con�dence estimates were high as well. Unfor-
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Fig. 5.12: Percentage of teachers showing a con�dence (RQ2)

tunately, such high estimates were observed for both correct (blue bars) and incorrect
(red bars) predictions, meaning that being con�dent in their predictions did not imply
correctness. We observed a relationship between con�dence and correctness for learn-
ers in KU Pass (top mid bar plot). It emerged that correct predictions were associated
to higher con�dence (blue bars higher on the right). Incorrect predictions were instead
made with a lower con�dence. It follows that learners in this group are known un-
knowns for both the model and the subset of teachers who made the wrong prediction.
Similar patterns were reported for learners in UU Pass. Except for a small portion of
teachers (solid red bar under the 80% - 100% con�dence level), incorrect predictions were
accompanied by a lower con�dence. Being such learners unknown unknowns for the
model, we believe this to be a positive outcome of our analysis. Teachers’ analysis can
help to reduce the cases of learners on which teachers would unnecessarily intervene
on, which is important under low teaching resources.

Moving to truly failing learners (bottom row), the left most plot collects con�dence
distributions on learners the model was both right and con�dent (KK Fail). It can be
observed that teachers were very con�dent regardless of the correctness of their predic-
tions. Compared to truly passing learners, the con�dence of teachers in case of a wrong
prediction was higher. This observation highlights a high variance across teachers, de-
spite of being presented with the same information for that learner. Overall, although
the model found easy to detect failure, this does not apply to teachers - often they were
con�dent but wrong. For KU Fail and UU Fail, there were no remarkable di�er-
ences in con�dence between wrong and right predictions. This observation is especially
alarming for the latter case, where both the model and the teachers whomade the wrong
prediction were very con�dent. Consequently, neither the model nor a signi�cant por-
tion of teachers would have con�dently identi�ed the need for intervention for those
learners.

Learner-level Relationship We were again interested in understanding the extent to
which the con�dence estimates depend on the prediction group in general or on peculiar
individual learners. Fig. 5.12 collects the percentage of teachers who reported a con�-
dence higher than 80% for each learner within each prediction group. Lower values (so
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Table 5.5: Teachers’ Knowledge and Interventions.
Topic Examples KK Pass KU Pass UU Pass KK Fail KU Fail UU Fail Sum Percentage

Performances in class In-class participation and performance, attempts in in-class exercises etc. 7 7 11 14 9 8 56 14.78

Students background Demographics, past grades, academic path etc. 9 10 9 10 8 8 54 14.25

Personal life circumstances Check with the learner what happened in a speci�c week 6 6 7 3 4 8 34 8.97

Communication with the learner Reaching out to the learner via a meeting, email, chat etc. 14 16 17 25 21 13 106 27.97

Additional support provisioning Extended tutoring, personalized engagement activities and feedback etc. 12 9 12 12 12 12 69 18.20

Revision recommendation Inviting learners to revise a speci�c lesson or topic 2 1 1 1 1 2 8 2.11

Learner motivation support Finding ways to motivate learners to perform better 1 8 5 1 5 7 27 7.12

darker cells) indicate learners where teachers were particularly unsure. As an example,
in the left heatmap, the left most cell in the �rst row (KK Pass group, learner 0) shows
that only 12% of teachers had a con�dence higher than 80%.

Considering the truly passing learners (left heatmap), the average percentage of very
con�dent teachers was barely low (30% at most for KU Pass). It is interesting to see
that the model and the teachers showed an opposite pattern in con�dence. Speci�cally,
the learners were the model showed a lower con�dence (mid row) were those on which
the teachers reported the highest con�dence, and viceversa. Within each prediction
group, there was a non negligible variance learners. It follows that, although a general
trend within each prediction group emerged, there might be peculiar learners who left
teachers particularly unsure. Learners in the UU Pass group (bottom row) were those
where the teachers reported overall the highest accuracy but were not so con�dent about
them.

Teacher predictions on truly failing learners (right heatmap) again led to di�erent ob-
servations. Con�dent predictions were consistently made on the groups KK Fail and
KU Fail. It follows that the teachers and the model were similar on the former group
and opposite on the latter group, in terms of con�dence. Di�erently from the model,
although being both often wrong, teachers would be aware of the fact that predictions
on KU Fail learners would require extra care. Such aspect is bene�cial to avoid cases
of learners missing an intervention actually needed.

Findings RQ2. Teachers and the model were characterized by a di�erent behav-
ior concerning their con�dence in predictions. Teachers tended to be more con�-
dent in predicting on truly failing learners than truly passing learners. Overall,
on learners where the model was both wrong and con�dent, teachers showed a low
con�dence.

RQ3: Knowledge and Intervention Needs

In a later stage, we conducted an a�nity diagramming analysis to complement our
�ndings on correctness and con�dence. The aim was to identify any signi�cant needs
highlighted by teachers in order to make more informed decisions and determine the
actions they would take to address these needs. We delved deeper into the responses
provided by teachers to the last two questions in the questionnaire for each learner.
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Table 5.5 provides a quantitative summary, and the following are extended examples of
their comments.

Considering the KK Pass group, some teachers showed particular interest on the as-
sessment estimates - "it would be relevant to know the speci�c grades and attempts that
student made in the assessment graph" and the criteria to compute the �nal grade "I would
like to know how their �nal grade would be calculated". Another teacher was interested
in knowing more about the learner’s life. In particular, they reported that "It would be
good to know a little about the learners private circumstances to understand what might be
in�uencing the sudden drop in engagement". A teacher also unexpectedly asked for demo-
graphic attributes like the gender ("I would have liked to know the gender of the student").
As possible interventions, a large group of teachers agreed that it is necessary to talk
to the learners, for instance to "ask to the student if he/she is con�dent, as he/she stopped
practicing with the quizzes". Others agreed that it is necessary to an take an individual
meeting, i.e. "saying them they need to watch the videos intently and really be clear and
precise with the material so pausing and re-watching is very helpful for this and then their
assessments should go up".

In the KU Pass group, teachers were in agreement on the need of "The background of
the student grades on related courses (the fact that the student spend less time online, can be
connected with they previous knowledge on the topic and on they ability to learn easily the
content of the course)". Some teachers asked themselves several questions, such as "Is the
student pausing a lot because he is taking notes or because he is struggling?" and "How the
student has performed in previous courses?". Some teachers made a similar consideration
regarding the fact that they should encourage the learner to engage more with the online
content, e.g., "ask the student to not skip any voluntary quiz" and "e-mail them to check".

Regarding the UU Pass group, teachers agreed with the importance of having grades,
such as "It’s important to know the results of tests that count to the grade during the course".
Another important common view is the importance of knowing the learners personally,
i.e. "If I knew the student more personally I would perhaps have a better guess or at least feel
more con�dent in my guess" and knowing extra information, "Maybe if I knew how the
student did in other courses with the same data that is being presented here I would know
if the student usually passes with ease or is just having some trouble with this course".
Teachers thought that it is also important to make comparisons of data taken a year
before to see the increase or decline in the students performance. An important way to
intervene is to "discuss with the student to watch the videos properly with no distractions
and have them check in explaining what was happening".

In theKK Fail group, teachers agreed that "Knowing the student performance in class,
such as results in graded exams and previous years grades would help". A common idea
is that the more you know about learners’ background, the more you will be able to help
them, i.e. "To know if any family or personal considerations have in�uenced the perfor-
mance" and "If the student had any learning di�culties or trouble working with technology
such as computers". Another teacher suggest that "It would be good to know if they at-



Chapter 5. Analyses of Algorithmic Performance in Asynchronous Learning 87

tended the class and attempting the quizzes where the student scored zero. This would
rule out the student already being competent in this course". Knowing more about per-
formance is a crucial key, i.e. "I think it would be good to know how they are performing
during ’in-class’ as they may have natural ability which is not picked up by the analysis of
the ’pre-class’ tasks". Talking with the student is another common idea.

In the KU Fail group, di�erent teachers were interested in knowing more about per-
sonal student life, i.e. "know psycho-social aspects about their lack of interest", or "How is
the student’s home life, who do they live with?". An important observation was related
to the latter part of the course, which can clearly be challenging, "In future I would per-
haps forewarn all the students about it before the beginning of the course, and open some
discussion channels they can post questions outside of class. I would also arrange for more
practice material". Sometimes it can be necessary to o�er individual plan for the student,
i.e. "if they are not interested in the course, maybe a di�erent teaching/learning approach
might help, if they are advanced, further development might provide stimulation and keep
them interested".

Finally, in the UU Fail group, some teachers agreed that "I should have known the
academic path of the student". Others thought that it is necessary tomotivate the learners,
e.g., "try to motivate they by discussing what might be interesting aspects of the course, and
o�er some form of tutoring" and to support them, "I would o�er them some tutor sessions
so they can get back on track", "Suggest the student to be more constant", and "I would
encourage them to demonstrate their understanding during class and o�er interventions if
it was weak".

Findings RQ3. Despite the variety of the considered learners and of the teachers
population, teachers overall highlighted similar aspects. The level of participa-
tion and of the performances in class emerged as very important for teachers. In
addition, knowledge about the learners’ life and prior courses performance were
deemed as important.

5.2.4 Findings and Recommendations
The results presented in Section 5.2.3 (RQ1) demonstrate that teachers are overall

more accurate in detecting struggling learners. Tasks in education still represent a chal-
lenge for machines. Education therefore di�er from other �elds like computer vision,
where models surpassed humans in performance under several tasks, e.g., [169]. Fur-
thermore, teachers and model decisions diverged on learners who passed the course. It
means that they found di�cult to correctly estimate that learners would pass the course
on highly disjoint populations. We therefore found that our observations agree with
those of other studies in the neuroscience �eld attempting to investigate how humans
and models di�er in perception [170]. Future work should investigate novel methods to
let both teachers and the model giving/receiving feedback from each other and adapting
their predictions accordingly. This line of research has been just recently experimented
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in education, with the creation of explainable models. On learners who actually failed,
both teachers and model found, on average, the same learners hard to predict. It follows
that both of them had the tendency to over-estimate learners’ capabilities of passing the
course and therefore potentially miss actually needed interventions. For some teachers,
additional contextual information would be needed to better inform their decisions, in
agreement with studies like [166]. Future work should be devoted to devising tracking
methods for in-class activities and modelling behavioral indicators on top. Prior work
has found that models close to human understanding also generalise better [171]. We
believe that the overall low performance of both this tasks might be also present in other
courses, therefore requiring further investigation. However, future work should extend
this study to several courses of di�erent types, to better investigate the reproducibility
power of the results in larger contexts. The second research question (RQ2) was de-
signed to investigate relationships between correctness and con�dence in predictions.
Decision con�dence generally re�ects teachers’ ability to evaluate the quality of deci-
sions and guides subsequent behavior. The results presented in Section 5.2.3 suggest that
teachers and the model were characterized by a di�erent con�dence behavior. Teachers
tended to have a limited con�dence in their decisions regardless of the prediction group,
except for cases concerning truly failing learners. Performance con�dence in humans
is complex and in�uenced also by physical properties of the stimulus that a decision
is based on. For example, the quality of evidence favoring a decision has been shown
to a�ect con�dence [172]. We therefore conjecture that the observed low con�dence
estimates might be in�uenced by the generally low con�dence of teachers in using tech-
nologies [173]. Building on our �ndings, future work should go deeper in understanding
the interdependencies between teachers’ con�dence and factors such as the displayed
graphs (e.g., their type), the selected indicators, the teacher capability in interpreting
graphs and so on. Overall, con�dence and correctness in decisions tended to be more
aligned in teachers than the model. Future research from the machine learning perspec-
tive should therefore devise novel methods to prevent the risk of unknown unknowns
[13].

Finally, the results presented in Section 5.2.3 provide evidence to answer the third
research question (RQ3). They highlighted that, despite the variety of learners consid-
ered, teachers overall pointed out to similar aspects. One key element emerged from
our study is that learning indicators in the current course should be accompanied by a
short summary of the learner’ pro�le. It emerged that such pro�le description should
include, as examples, performance in prior courses, demographic information, and any
current personal issue. However, collecting and reporting information on the above sub-
jects opens to key privacy issues which might not often justify their �nal scope [174].
It becomes therefore urgent to devise privacy-aware methods that allow to better con-
textualize the learning situation and clarify the cause-e�ect links that led to passing or
failing a course, without a�ecting learners’ privacy. Indeed, being not aware of certain
information, it is one of the key factors that lead both the teacher and the model to face
unknown risks. Future work should also therefore investigate which currently hidden
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variables caused the reported wrong predictions.

Our study investigates how close machine-learned models are to teachers at pre-
dicting learners at risk. Student success prediction models are an essential part of the
methodology that enables the creation of a student model, being performance a major
factor that allows a platform to personalize the student learning experience. Our results
in this paper can be useful to be considered when building student models with this aim.
In particular, the results highlight some potential (dis)agreements in the predictions be-
tween machine-learning models and teachers and uncover issues that can arise in case
such models are used to build better student models. Our �ndings therefore make it ev-
ident the urgent need of re-considering the use of student success prediction models for
student model creation, since the underlying performance especially on unknown un-
known students might lead to undesired and wrong personalization strategies according
to the resulting student model. Future work will also embrace the current limitations to
show generalization of our �ndings on a larger set of models and courses. Our �ndings
showcase the potential of making teachers and models collaborate for detecting learners
at risk, serving as an important point for e�ective augmented intelligence in personal-
ized education. In order to design future works, it should be considered that teachers
may lack information about students, since these are not their students, and the visu-
alizations they need to analyze might lack important data (e.g. in some cases lines for
average passing and and average failing students almost coincide). However, it should
be considered that the students shown to teachers are actually those where the model
might lead to undesired outcomes (they are hard cases). Even though teachers do not
always decide to intervene only based on plots, there are several contexts where they
have a limited view of the students’ learning process and, therefore, such diagrams and
predictions are the main source to rely on.





Chapter 6

Conclusions

In this thesis, we addressed the critical issue of responsibility in AI-enabled educa-
tional systems and its impact on student learning experiences. We began by investigating
the challenges and needs faced by the educational community in integrating responsi-
bility into AI applications. Moreover, we explored algorithmic disparities in both syn-
chronous and asynchronous learning environments. Additionally, we delved into stu-
dent success prediction and the presence of unknown unknowns in educational models,
shedding light on the limitations and complexities of student success prediction.

6.1 Contribution Summary

Throughout this doctoral thesis, we havemade signi�cant contributions to the �eld of
AI in education, with a speci�c focus on responsibility, inclusivity, and improved learn-
ing experiences for all students. Our research aimed to address the challenges and needs
in developing responsible AI-enabled educational systems by investigating various as-
pects of algorithmic disparities and student behavior analysis.

Firstly, we conducted an in-depth exploration of expert views on responsibility in
AI for education. Through a survey and semi-structured interviews with educational
researchers and practitioners, we gained valuable insights into their perspectives, chal-
lenges, and priorities regarding responsible-aware practices. This comprehensive under-
standing of experts’ opinions served as a solid foundation for our subsequent research.

Secondly, we delved into the analysis of algorithmic disparities in synchronous and
asynchronous learning environments. We employed clustering techniques to identify
participation patterns in synchronous learning, shedding light on how student behav-
ior impacts learning outcomes. Additionally, we investigated the presence of "unknown
unknowns" in student success prediction models, uncovering the complexities and lim-
itations of these models in predicting student outcomes accurately.
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6.2 Take-home Messages

Throughout this research journey, several key take-home messages emerged, guid-
ing the future development of responsible AI-powered educational systems. Firstly, the
integration of responsible-aware practices should be prioritized when designing and de-
ploying AI applications in the educational landscape. Domain-speci�c resources, met-
rics, and processes are essential to address the unique challenges that emerge in various
educational contexts. Secondly, the analysis of student behavior in both synchronous
and asynchronous learning modes holds profound implications for optimizing teaching
strategies, enhancing student engagement, preventing disengagement, and predicting
learning outcomes. This analysis represents a crucial stepping stone towards personal-
izing education and tailoring interventions to meet individual student needs. Thirdly,
acknowledging and addressing unknown unknowns in student success prediction mod-
els are paramount to ensure the accuracy, reliability, and ethical responsibility of AI
interventions in education. Embracing uncertainties and model limitations will lead to
more e�ective and trustworthy predictive models.

6.3 Future Research Directions

This doctoral thesis has opened up several promising avenues for future research in
the �eld of AI in education. As we move forward, the following research directions are
worth exploring:

• Context-speci�c Fairness. Investigating fairness considerations in diverse ed-
ucational contexts, such as di�erent grade levels, subject domains, and cultural
backgrounds, to ensure that fairness-aware practices are adaptable and e�ective
in various settings.

• Human-in-the-loop Decision-making. Exploring the integration of human
decision-making with AI predictions to address uncertainties and unknowns. A
collaborative approach that combines human expertise with machine intelligence
can lead to more robust and reliable educational AI systems.

• Enhanced Student Success PredictionModels. Advancing student success pre-
diction models by incorporating additional factors, such as students’ prior knowl-
edge, socio-economic backgrounds, and metacognitive skills, to improve their ac-
curacy and predictive power.

• Longitudinal Analysis. Conducting longitudinal studies to gain a deeper under-
standing of how student behavior evolves over time and how it impacts long-term
educational outcomes.

• Ethical Frameworks for AI in Education. Developing ethical frameworks and
guidelines for the responsible design, deployment, and evaluation of AI-enabled
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educational systems, ensuring that the potential risks and bene�ts are carefully
considered and balanced.

• Integration ofChatGPTandMetaverse in Education. Recognizing the emerg-
ing trends in technology, it is important to consider the potential impact of chat-
based AI systems, such as ChatGPT, and immersive technologies like the Meta-
verse in the realm of education. While the primary focus of this thesis has been
on speci�c aspects of AI in education, future research could explore the integra-
tion of ChatGPT for personalized learning experiences, interactive tutoring, and
student engagement. Additionally, the utilization of the Metaverse as a platform
for collaborative and immersive educational environments deserves attention.

In conclusion, this thesis represents a signi�cant stride towards promoting responsi-
bility, inclusivity, and ethical responsibility in AI-powered educational systems. By ad-
dressing the challenges and needs of the educational community, analyzing algorithmic
disparities in learning environments, and unraveling the intricacies of student success
prediction, we establish a strong foundation for future research endeavors. As we con-
tinue to push the boundaries of AI in education, it is crucial to prioritize responsibility,
transparency, and the human aspect of learning to create a transformative and equitable
educational landscape for all students.
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