
Phys. Fluids 34, 083113 (2022); https://doi.org/10.1063/5.0101621 34, 083113

© 2022 Author(s).

Transport across thin membranes: Effective
solute flux jump
Cite as: Phys. Fluids 34, 083113 (2022); https://doi.org/10.1063/5.0101621
Submitted: 02 June 2022 • Accepted: 04 August 2022 • Accepted Manuscript Online: 05 August 2022 •
Published Online: 30 August 2022

Published open access through an agreement with EPFL

 Giuseppe Antonio Zampogna,  Pier Giuseppe Ledda and  François Gallaire

ARTICLES YOU MAY BE INTERESTED IN

Transient electro-osmotic flow in rotating soft microchannel
Physics of Fluids 34, 082023 (2022); https://doi.org/10.1063/5.0101218

A rapid method for prediction of airborne disease infection risks in an intercity bus
Physics of Fluids 34, 083323 (2022); https://doi.org/10.1063/5.0107895

On the effect of a penetrating recirculation region on the bifurcations of the flow past a
permeable sphere
Physics of Fluids 33, 124103 (2021); https://doi.org/10.1063/5.0075244

https://publishing.aip.org/publications/journals/special-topics/phf/shock-waves/?utm_source=scitation&utm_medium=banner&utm_campaign=POF_Shock+Waves_CFP_Jan+2023
https://doi.org/10.1063/5.0101621
https://doi.org/10.1063/5.0101621
https://orcid.org/0000-0001-7570-9135
https://aip.scitation.org/author/Zampogna%2C+Giuseppe+Antonio
https://orcid.org/0000-0003-4435-8613
https://aip.scitation.org/author/Ledda%2C+Pier+Giuseppe
https://orcid.org/0000-0002-3029-1457
https://aip.scitation.org/author/Gallaire%2C+Fran%C3%A7ois
https://doi.org/10.1063/5.0101621
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0101621
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0101621&domain=aip.scitation.org&date_stamp=2022-08-30
https://aip.scitation.org/doi/10.1063/5.0101218
https://doi.org/10.1063/5.0101218
https://aip.scitation.org/doi/10.1063/5.0107895
https://doi.org/10.1063/5.0107895
https://aip.scitation.org/doi/10.1063/5.0075244
https://aip.scitation.org/doi/10.1063/5.0075244
https://doi.org/10.1063/5.0075244


Transport across thin membranes:
Effective solute flux jump

Cite as: Phys. Fluids 34, 083113 (2022); doi: 10.1063/5.0101621
Submitted: 2 June 2022 . Accepted: 4 August 2022 .
Published Online: 30 August 2022

Giuseppe Antonio Zampogna,1,a) Pier Giuseppe Ledda,1,2,b) and François Gallaire1,c)

AFFILIATIONS
1Laboratory of Fluid Mechanics and Instabilities, �Ecole Polytechnique F�ed�erale de Lausanne, CH-1015 Lausanne, Switzerland
2DICAAR, Universit�a degli Studi di Cagliari, 09123 Cagliari, Italy

a)Author to whom correspondence should be addressed: giuseppe.zampogna@epfl.ch
b)Electronic mail: pier.ledda@epfl.ch
c)Electronic mail: francois.gallaire@epfl.ch

ABSTRACT

A model to describe the transport across membranes of chemical species dissolved in an incompressible flow is developed via
homogenization. The asymptotic matching between the microscopic and macroscopic solute concentration fields leads to a solute flux jump
across the membrane, quantified through the solution of diffusion problems at the microscale. The predictive model, written in a closed
form, covers a wide range of membrane behaviors, in the limit of negligible Reynolds and P�eclet numbers inside the membrane. The closure
problem at the microscale, found via homogenization, allows one to link the membrane microstructure to its effective macroscopic
properties, such as solvent permeability and solute diffusivity. After a validation of the model through comparison with the corresponding
full-scale solution, an immediate application is provided, where the membrane behavior is a priori predicted through an analysis of its micro-
scopic properties. The introduced tools and considerations may find applications in the design of thin microstructured membranes.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101621

I. INTRODUCTION

Transport phenomena across porous membranes, defined as thin
microstructured permeable surfaces, are massively exploited in indus-
try. These flows play a crucial role in a wide range of industrial proce-
dures, such as desalination, sterile filtration, food processing,
petroleum refining, and other medical and environmental applications
(cf. Mohanty and Purkait1 for a review). To give an example, fog water
harvesting systems are largely employed in arid climates and are usu-
ally composed of nets2 or harps.3 The interplay between the aerody-
namic flow of such permeable structures4 and the capture of water
drops is a crucial issue in these systems.5 Membranes are ubiquitous in
the biological world. Some unicellular organisms use thin permeable
structures in their displacement and feeding strategies,6 or plants use
them to spread their seeds.7,8 Solvent (water) and solute (sugar) trans-
location across aquaporin porous channels constellating the cellular
membranes is a primary process for the good performance of organ-
isms, spanning from plants9,10 to animals.11 Serious genetic diseases
are directly linked to mutations of aquaporin channels.12 Each above-
mentioned filtration process and the related transport phenomenon
are characterized by at least two length scales, the macroscopic size of
the membrane itself and the characteristic length of the pores of the

membrane, which spans from the nanometer13 to the millimeter14–16

scale. The interplay between these two intrinsically different length
scales renders the description of this phenomenon extremely complex,
while their deep understanding and predictive modeling are of great
interest for engineering applications and medical progress. In particu-
lar, from the industrial viewpoint, separation processes constitute
10%–15% of the world energy consumption,17,18 thus highlighting the
necessity of a better understanding of these mechanisms. Several
attempts to address this issue are proposed in the literature in the case
of classical porous media whose dimension along the filtration direc-
tion is comparable to the macroscopic length at play (called here thick
membranes). For thick membranes, two principal approaches used to
analyze the solute–solvent flow across membranes are identified. The
first approach relies on the employment of macroscopic models to
mimic the presence of the solid skeleton of the membrane through a
set of equivalent equations modeling the behavior of the coupled
solute–solvent flow through the membrane. These formulations are
based on the so-called Darcy law19 or its Brinkmann extension,20 cou-
pled with a solute transport equation. The advective and diffusion
terms are properly modified to account for the presence of the micro-
structure of the pores.21 A critical issue of these models stems from
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their weak predictive power since, in the macroscopic equations, some
local properties of the porous medium are treated as free parameters
and, thus, ad hoc calibrated for the physical configuration studied or
supported by experimental measurements.22

An alternative to the Darcy or Brinkman approaches consists of
the massive and consuming task of resolving the full-scale physics
through continuous first principles, e.g., the Navier–Stokes equations
for the fluid solvent and the advection–diffusion equation for the
transported solute.23 In this case, despite the high level of detail in the
solution at the pore-scale, the global physics underlying the phenome-
non remains hidden by the particular geometry considered.

Multi-scale techniques treat the microscopic andmacroscopic view-
points in a unified framework and provide the tools to upscale the micro-
scopic behavior of the membrane to local quantities (permeability and
effective diffusivity) employed in the macroscopic model. Among these
techniques, volume averaging24–29 and homogenization methods30,31 are
extensively employed for the analysis of the pure solvent and solute–
solvent transport through porous media32–42,59 (cf. Davit et al.43 for a
cross-comparative analysis between these two methods).

Recent patents on ultra-thin carbon-based membranes have
increased the interest also in the quasi-two-dimensional, so-called
thin, membranes.44 While these classical approaches used to analyze
porous media are suitable to model fluid flows across thick mem-
branes, this is not the case for thin membranes, whose literature is
more limited45–47 and suffers of little generality in terms of flow con-
figurations and membrane geometry. Macroscopic models for thin
membranes semipermeable to the solute are commonly based on the
so-called Kedem and Kaltchasky empirical law,48 which qualitatively
describes the average solute and solvent flux due to osmosis. On the
other extreme of the spectrum, molecular dynamics simulations across
Angstrom-sized pores are widely employed,49 but still incur computa-
tional and conceptual limitations, not allowing to link them to a
continuum-mechanics approach. Links between these two approaches
are still in a developmental phase, e.g., in Bacchin50 or Cardoso and
Cartwright,51 where the microscopic characterization of the solvent–-
solute behavior was included in a continuum macroscopic model via
the introduction of a parameter found via kinetic theory.

Homogenization showed great potential in describing the flow at
the interface between a free-fluid region and a porous medium35 or
the flow in the vicinity of a rough surface,52 through a Navier slip con-
dition which recovers the stress-jump at the interface, similar to the
pioneering studies of Beavers and Joseph.53 Zampogna and Gallaire54

developed a homogenization-based model to describe solvent flows
across microstructured thin membranes, which provides a predictive
and explicit link between the microscopic geometry of the membrane
and their permeability and slip properties. The so-called effective stress
jump model expresses the proportionality between the velocity and the
stress-jump across the membrane and already showed potential in the
optimization-based design of membranes to build full-scale geometries
satisfying a given macroscopic hydrodynamic objective.55

In the present paper, we study the effects of the microstructured
surface on the concentration field for thin membranes fully permeable
to both solute and solvent. While, in Ref. 54, only the hydrodynamics
of the fluid across the membrane was considered, here, we extend this
solvent model to the passive transport of a dilute solute through a
microstructured permeable surface characterized by different physi-
cal–chemical behaviors. The paper is structured as follows. In Sec. II,

we introduce the first principles governing the solvent and solute flow.
Sections III and IV are devoted to the derivation of the equivalent
model and the effective equations describing the solute concentration
flow, for different behaviors of the membrane. The microscopic prob-
lems associated with the macroscopic properties of the membrane are
solved in Sec. V for a particular geometry. Once the microscopic solu-
tion is known, the macroscopic model is validated in Sec. VI through
comparisons with the full-scale solution in some representative config-
urations. In Sec. VII, we conclude by proposing an analysis of the
microscopic results for a given fractal-like micro-structure, with the
aim of understanding the macroscopic physical–chemical properties
of the membrane and in the perspective of limiting the trial-and-error
procedure which often rules these tasks.

II. EFFECTIVE CONCENTRATION JUMP MODEL

We consider a solute of molecular diffusivity D transported by a
flow of an incompressible Newtonian fluid, denoted as the solvent, of
constant density q and viscosity l. We neglect variations of the solvent
properties due to the concentration of the solute. The solute–solvent
flows across a microstructured permeable surface (from now on a
membrane, cf. Fig. 1) formed by a periodic repetition of a given solid
inclusion so that a microscopic elementary cell [highlighted by the
dashed rectangles in Figs. 1(b) and 1(c)] can be identified. A separation
of scales related to this transport phenomenon subsists, i.e., l� L;
where l denotes the characteristic thickness of the membrane and L
the characteristic length of the flow, thus leading to the definition of
an infinitesimally small separation of scales parameter

� ¼ l
L
: (1)

The membrane is fully permeable to the solute. In the case of negligible
inertia, the solvent velocity and pressure ðûi; p̂Þ and solute concentra-
tion ĉ are governed by the Stokes and advection–diffusion equations,56

valid in the whole fluid domain (cf. Fig. 1). Exploiting the Einstein
summation convention, these equations can be written as

@̂ jR̂ ij ¼ 0; @iûi ¼ 0; (2)

and

@t̂ ĉ þ @̂ iF̂ i ¼ 0; (3)

where Rij and F̂ i denote the stress tensor and concentration flux, i.e.,

R̂ ij ¼ �p̂dij þ lð@̂ iûj þ @̂ jûiÞ and F̂ i ¼ ûiĉ � D@̂ i ĉ: (4)

The differential equations describing the solute–solvent flow past
the membrane M (cf. Fig. 1) are closed by specifying the boundary
conditions on @M, i.e., the walls of the microscopic structure forming
the membrane. The solvent velocity satisfies the no-slip condition

ûi ¼ 0 on @M; (5)

while the solute concentration satisfies a generic boundary condition
of the form

aF̂ in̂i ¼ bĵĉ þ cĵĈw on @M: (6)

In Eq. (6), n̂i denotes the outward normal to the membrane walls @M

[cf. Fig. 1(c)], ĵ the adsorption/desorption coefficient, and Ĉw an
eventual constant value of concentration imposed at the membrane.
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The coefficients a, b, and c allow one to change the boundary condi-
tion imposed on @M, i.e., homogeneous and non-homogeneous
Neumann, Dirichlet, and Robin conditions. Some combination of a, b,
and c corresponds to precise chemical–physical interactions between
the solute molecules and the membrane walls, thus describing a variety
of operative conditions of the membrane walls and their effect on the
solute concentration, spanning from non-reactive walls (homogeneous
Neumann, a ¼ 1 and b ¼ c ¼ 0),40 to chemostats (Dirichlet, a ¼ 0
and b ¼ c ¼ 1),57 through partially absorbing/desorbing materials
(Robin, a ¼ b ¼ 1 and c¼ 0).58

The interplay between the characteristic length of the pores l and
the macroscopic length scale L defined by Eq. (1) indicates the multi-
scale nature of the phenomenon. Here, we propose a simple macro-
scopic model which faithfully reproduces the flow behavior without
the requirement of representing the full-scale geometry. A
homogenization-based procedure has been developed in Zampogna
and Gallaire54 and applied to Eq. (2), leading to the following solvent
velocity conditions:

ûi jC ¼ ûi jCþ ¼ ûi jC� ; (7)

Mijk R̂ jkjC� þ Nijk R̂jkjCþ ¼ ûi jC; (8)

where the bar over the variables represents the spatial average which,
for a generic function f, is defined as

�f ¼ 1
jCFj

ð
CF

f d̂t d̂s: (9)

In the above equation, jCFj is the surface area of the fluid part of C

and ð̂t ; ŝÞ are the tangential-to-the-surface coordinates, as indicated

in Fig. 1. All variables in Eqs. (7) and (8) are purely macroscopic, i.e.,
averaged exploiting Eq. (9). While Eq. (7) imposes the continuity of
the solvent velocity across the membrane, Eq. (8) describes a jump in
the fluid stress due to the presence of the membrane, which depends
on the macroscopic solvent velocity and on the tensors Mijk and Nijk.
The stress-jump, thus, states that the average velocity embeds the mac-
roscopic effect of the microscopic viscous stresses at the solid walls,
similar to the flow through a porous medium,32 at the interface of a
porous medium35 or on a rough wall.52 These proportionality tensors
are calculated via Stokes problems within the microscopic domain F

deduced via homogenization. They are, respectively, called upward
and downward Navier tensors. Their non-zero components represent
the ability of the flow to permeate across or slip over the membrane.
We refer to Zampogna and Gallaire and Ledda et al.54,55 for further
insights on the solvent model. In the following, we develop a macro-
scopic boundary condition for the solute flow, in analogy with Eqs. (7)
and (8).

III. PREAMBLE

Before applying the homogenization technique to the advec-
tion–diffusion problem, we perform a preliminary step. We focus on
the region of space in the vicinity of the membrane, and we consider a
control volume whose size corresponds to that of the microscopic ele-
mentary cell defined in Fig. 1. In the absence of unsteady near-
membrane phenomena, upon employment of Gauss’ theorem and
enforcing periodicity in the membrane directions, the integration of
Eq. (3) over the control volume gives

DF̂ in̂ijUD ¼
ð
@M

F̂ in̂i dA; (10)

FIG. 1. Overview of the problem analyzed. Panel (a): macroscopic representation of a homogeneous membrane C (corresponding to the coordinates n̂ ¼ 0) of characteristic
size L invested by a solvent flow whose characteristic velocity is U, carrying a solute whose concentration is denoted by c, identified by the dark gray cloud crossing the mem-
brane. A magnification of the membrane to visualize its real, microscopic structure on the planes ðŝ; t̂Þ and ðŝ; n̂Þ is depicted in panels (b) and (c), respectively. The micro-
scopic elementary cell of typical length l is highlighted by the two dashed rectangles in the same panels. Within this cell, the unknown fields are supposed periodic over
S1; S2; T1, and T2, while they satisfy natural unperturbed flow conditions on the sides U and D, placed in the far-field, infinitely far from the microscopic solid inclusions.
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where DF̂ in̂ijUD ¼
Ð

U
F̂ ini dA�

Ð
D

F̂ ini dA represents the difference
of fluxes between the upward and downward side of the control vol-
ume, U and D. Substituting Eq. (6) in the RHS, we obtain

aDF̂ in̂ijUD ¼ ĵ bĥci þ cj@MjĈw

� �
; (11)

where h�i denotes the surface average over @M, i.e.,

ĥci ¼
ð
@M

ĉ dA: (12)

If the diffusive regime is dominant in the vicinity of the membrane,
i.e., when variations of ĉ in F are negligible, the following relation
holds

ĥci � j@Mĵc : (13)

In this case, Eq. (11) is rewritten as

aDF̂ in̂ijUD ¼ ĵeff bĉ þ cĈw

� �
(14)

with ĵeff ¼ ĵj@Mj. Equation (14) can be used together with model
(7) and (8) to calculate a reference value of concentration Ĉ0 at the
macroscopic membrane, which depends on the values of a, b, and c.
While in the case of Neumann and Robin condition the value of Ĉ0 is
not known a priori, for the case of Dirichlet Ĉ0 assumes the constant
value of Ĉw on the membrane.

Figure 2 shows a comparison between the solution of Eq. (11)
and full-scale simulations for a test flow configuration73 where a linear
membrane formed by ten solid square inclusions splits a two-
dimensional channel of height L ¼ 10�3 m. The channel ideally
represents a portion of a microfluidic device, freely inspired by high-
performance computer refrigeration systems, and is filled by water at
20 �C (q ¼ 103 kg=m3 and l ¼ 10�6 m2=s) and ethylene glycol
(D ¼ 10�9 m2=s), resulting in one of the most common coolant solu-
tions.59 The membrane therein represents a micro-structured baffle,
i.e., a solid structure which favors heat exchange.60 The velocity profile

and solute concentration are constant at the inlet L (u1 ¼ 10�6 m=s
and c ¼ 1mol=m3). With these values, the P�eclet number associated
with the channel, defined as u1L=D, is unitary, while viscous diffusion
is faster than mass diffusivity since the Schmidt number Sc ¼ �=D is
equal to 103. The top and bottom walls of the channel, T and B, are
made of aluminum alloy 3003 (Ref. 61) and react with ethylene glycol.
The macroscopic observable of this reaction is an adsorption condition
@̂nĉ ¼ �ĵĉ with ĵ ¼ 0:01mol=m2. At the outlet R, a zero-normal
solvent stress and solute flux have been imposed. Panels (b) and (c)
show the values of solute concentration over the centerline of the
membrane, C, for the chemostat-like (a ¼ 0;b ¼ c ¼ 1 with
Ĉw ¼ 0:2mol=m3) and insulating case (a ¼ 1;b ¼ c ¼ 0), respec-
tively. In panel (b), the solid inclusions of the membrane have side
equal to 10�6 m, while in panel (c), their side is 9:9� 10�5. In both
cases, the membrane thickness corresponds to the side of the solid
inclusions. The discrepancies between the macroscopic model and the
averaged full-scale results can be relatively important, depending on
the case. Interestingly, the case of constant concentration on the solid
inclusions does not give a constant concentration profile, but such
value of concentration varies along the membrane.

To improve this first estimate, a formal interface condition for
the passive transport of species across micro-structured membranes is
developed via a homogenization-based procedure. This procedure is
applied to c� ¼ ĉ � Ĉ0, which still satisfies the advection–diffusion
problem (3), while the boundary condition (6) on @M is rewritten as

aF�i n̂i ¼ bĵc� þ ðb� cÞĵĈ0: (15)

IV. HOMOGENIZATION PROCEDURE

In the vicinity of the membrane, variations of the quantities occur
at the scale l � L. We refer to this problem as the microscopic or
inner problem, defined within the microscopic elementary cell, in
opposition to the macroscopic or outer problem, far from the mem-
brane, where the effects of the microscale are not present. The flow

FIG. 2. Overview of the flow configuration used to test Eq. (11). Panel (a): channel flow in a two-dimensional channel vertically split by a microstructured membrane whose
geometry is shown in the circular red inset of the same panel. The velocity profile and solute concentration are constant at the inlet L (û1 ¼ 10�6 m=s; û3 ¼ 0m=s and
ĉ ¼ 1mol=m3). The top and bottom walls of the channel, T and B, adsorb the solute with an adsorption coefficient ĵ ¼ 0:01 mol=m2, i.e., @̂ nĉ ¼ �0:01ĉ , while at the outlet
R, a zero-normal solvent stress and solute flux condition has been imposed. Panel (b): solute concentration on C evaluated via Eq. (11) (red solid line) or by solving the full-
scale problem (black lines) where the presence of each inclusion is taken into account in the computational domain (one of them, denoted with M, is sketched in real scale
within the figure at x3 ¼ �0:25). Blue stars represent the average (9) of the black profiles. The boundary condition (6) is imposed on @M with a ¼ 0; b ¼ c ¼ 1, and
Ĉw ¼ 0:2. The red dashed line is the solution of the homogenization-based model obtained in Sec. IV. Panel (c): same as in panel (b) with a ¼ 1;b ¼ c ¼ 0. The gray
square denoted with M represents one solid inclusion forming the membrane. The inset in this panel shows the full-scale profile of concentration within one single pore at the
centerline of the membrane.
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equations are normalized by employing the typical inner and outer
scales. A multiple scale decomposition of the normalized inner prob-
lem is then performed taking into account the far-field conditions on
U and D (see Fig. 1 for their definition), which ensure the asymptotic
matching between the inner and outer problems. The successive step
consists of the spatial average of the microscopic quantities to obtain a
homogenized macroscopic model that describes the microscopic
behavior of the membrane. The result of this procedure is a set of
purely macroscopic interface conditions for the outer problem defined
over the macroscopic homogeneous membrane C, where the fluid
region F and the solid region M are indistinct.

A. Outer problem

We focus on the problem far from the membrane, in the outer
upward and downward regions, whose variables are denoted with the
apex �O. The reference scales for the outer quantities are

c� ¼ DCOcO; t̂ ¼ TtO ¼ L2tO

D
; x̂ ¼ LxO; û ¼ UOuO;

(16)

where DCO ¼ Ĉ
O � Ĉ0 and Ĉ

O
is a reference value for the concen-

tration, defined by the macroscopic, far from the membrane, problem.
The outer Peclet number is defined as

PeO ¼ UOL
D

: (17)

The non-dimensional governing equation in the outer upward and
downward region is

@tc
O þ @iF

O
i ¼ 0; FO

i ¼ PeOuO
i cO � @ic

O: (18)

B. Inner problem

The inner problem is valid in the microscopic domain F identi-
fied in Figs. 1(b) and 1(c) by the dashed rectangles. Variables within
the inner domain are denoted with the superscript �I. The boundaries
of the microscopic domain S1; S2 and T1; T2 are characterized by
periodicity owing to the repeated microstructure of the membrane.
We non-dimensionalize Eq. (3) using the following relations:

c� ¼ DCIcI ¼ �DCOcI; t̂ ¼ TtI ¼ L2tI

D
; x̂ ¼ lxI; û ¼ UIuI;

(19)

where DCI is set by the balance of diffusive fluxes between the inner
and outer domain, i.e.,

DCI

l
¼ DCO

L
; (20)

while UI is the inner solvent velocity and l is the microscopic length
scale defined in Fig. 1(b). With these normalizations, Eq. (3) is dimen-
sionalized as follows:

�2@tc
I þ @iF

I
i ¼ 0 (21)

with the non-dimensional solute flux defined as

FI
i ¼ �

UI

UO
PeOuI

i cI � @ic
I: (22)

The non-dimensional version of the boundary condition on @M

introduced in Eq. (6) is

aFI
i ni ¼ b

ĵl
D

cI þ ðb� cÞ ĵl
D

C0 ¼ bjcI þ ðb� cÞjC0: (23)

To formally develop the macroscopic model, we assume that
j ¼ Oð�Þ, i.e., the membrane can absorb/desorb a Oð1Þ quantity of
solute over a length equal to L [cf. Dalwadi et al.37 and Chernyavsky
et al.62 where it is shown that, for bulk porous media, a value of j
larger than Oð�Þ implies an order 1=� effect on the solute flux with a
subsequent breakdown of the asymptotic expansion adopted to
develop the model].

C. Matching conditions between the inner and outer
problem

The problem introduced in Sec. IVB is well defined only upon
the specification of the boundary conditions on U and D. These
boundary conditions are deduced by the matching between the inner
and outer problems, given by the following dimensional equations:

û�i ¼ ûþi ; (24)

c�� ¼ c�þ; (25)

and

F��i ni ¼ F�þi ni; (26)

where the superscripts �þ and �� denote the inner and outer side of U

and D, according to Fig. 1(c). Equations (24)–(26) represent the
continuity of solvent velocity, solute concentration, and normal-to-
the-membrane solute flux, respectively. Using the reference scales
introduced in Secs. IVB and IVA, the non-dimensional version of
interface conditions (25) and (26) reads

�cI ¼ cO onU andD (27)

and

FI
i ni ¼ FO

i ni onU andD: (28)

In Eq. (28), the continuity of the advective part of the flux uO
i cOni is

ensured by the continuity of the solute concentration and solvent
velocity fields across the membrane. Hence, Eq. (28) reduces actually
to

@ic
Ini ¼ @ic

Oni on U andD: (29)

While always considering that the actual contribution to the flux jump
is given by the diffusive contribution, we pursue our analysis with the
complete flux interface condition (28) to preserve the conservative
structure of the governing equations.

D. Multiple scale decomposition

Since the structure of the membrane allows one to uniquely iden-
tify the separation of scales parameter �� 1 introduced in Eq. (1),
we decompose the inner unknown fields with a multiple scale
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expansion. We introduce the fast (microscopic) and slow (macro-
scopic) variables

x ¼ ðx1; x2; x3Þ and X ¼ �x; (30)

together with the expansion

cI ¼
Xþ1
n¼0

�ncI;ðnÞðx;X; tÞ: (31)

The spatial derivatives are transformed following the rule

@i ! @i þ �@I ; (32)

where capital indices denote derivation with respect to Xi.
Assuming the inner Peclet number � UI

UO PeO to be of order �, i.e.,

PeO ¼ O UO

UI

� �
, we obtain the following leading order set of equations:

@iF
I;ð0Þ
i ¼ 0; (33)

with

FI;ð0Þ
i ¼ �@ic

I;ð0Þ: (34)

The flux interface condition at the outer boundaries of the microscopic
domain U and D assumes the form

FI;ð0Þ
i ni ¼ FO

i jU;Dni: (35)

The boundary condition on @M can be finally written as

aFI;ð0Þ
i ni ¼ ccI;ð0Þ; (36)

where the terms multiplied by j disappear at the leading order since
j 	 �, and the RHS has been accordingly modified to treat the three
types of boundary conditions in a compact form.

E. Solution of the leading-order problem

We now proceed to the solution of the leading-order problem.
Since FO

i jU and FO
i jD are source terms for the set of linear equations

(33)–(36) and do not depend on the integration variable xi, they form
a basis for the space of the solutions. As a consequence, the solution is
formally written as

cI;ð0Þ ¼ TiF
O
i jU þ YiF

O
i jD: (37)

Substituting Eq. (37) in the set of Eqs. (33)–(36), the quantities Ti and
Yi satisfy the microscopic problems

@2iiTj ¼ 0 in F;

a@iTjni ¼ cTj on @M;

@iTjni ¼ nj on U;

a Tj þ jC�Djnj
� �

¼ c@iTjni on D

8>>>>><
>>>>>:

(38)

and

@2iiYj ¼ 0 in F;

a@iYjni ¼ cYj on @M;

a Yj þ jC�Ujnj
� �

¼ c@iYjni on U;

@iYjni ¼ nj on D:

8>>>><
>>>>:

(39)

Each problem above is a diffusion problem enforced by non-
homogeneous Neumann boundary conditions on U; D and with
periodic boundary conditions over S1; S2 and T1; T2. Note that the
two problems are formally analogous in the bulk domain since they
differ only for the inversion of the boundary conditions between U

and D.

F. Retrieval of the final macroscopic solution

Applying the spatial average defined in Eq. (9) to the solution
(37) of the leading-order problem, we write the macroscopic concen-
tration field at the membrane as

cI;ð0Þ ¼ �T i@IcOjC� þ �Y i@I cOjCþ ; (40)

where, in the outer fluxes FO
i jU;D, only the diffusive part counts

because of continuity of velocity and concentration fields. Rearranging
Eq. (40) for the original, dimensional concentration field ĉ, we obtain

ĉjC ¼ Ĉ0 þ � �T i@̂ i ĉjC� þ �Y i@̂ i ĉjCþ
� �

: (41)

Equation (41) states the existence of a jump in the diffusive flux across
the membrane, and thus, the presence of the membrane changes the
slope of the solute concentration profile. Condition (41) is also remi-
niscent of the stress-jump condition for the solvent flow derived in
Zampogna and Gallaire,54 in which the velocity was proportional to
the stress-jump (which represents the flux for the Navier–Stokes equa-
tions) weighted by so-called upward and downward Navier slip ten-
sors. The vectors Ti and Yi can be interpreted as effective diffusion
vectors of the equivalent membrane, which measure the modifications
of the membrane-normal diffusion due to the presence of the solid
inclusions.

Both solvent and solute interface conditions are hence perfectly
in line with previous homogenization-based results, such as the case
of the Navier slip condition on a rough wall,52 where the velocity at
the wall was proportional to the stress via a slip tensor. In the partic-
ular case of an impermeable rough surface, condition (41) reads
ĉjC � Ĉ0 ¼ ��T n@N cOjC� . The vector component �T n is, therefore,
interpreted as a chemical slip, which quantifies the deviations of the
solute concentration from the case in which the membrane corre-
sponds to a smooth, single-scale impermeable surface.

The macroscopic interface condition is based on the average of
the solution of the microscopic problems (38) and (39). After this step,
their averages are used in Eq. (41), together with the continuity of the
concentration field over the interface C across the membrane, i.e.,

ĉjC� ¼ ĉjC ¼ ĉjCþ : (42)

V. EFFECTIVE DIFFUSION VECTORS

In this section, problems (38) and (39) are numerically solved to
deduce the components of the effective diffusion vectors for the differ-
ent values of a and c. The values assumed by these parameters have
been discussed after their introduction in Eq. (6). Since during the
homogenization procedure the parameter b is dropped [cf. Eq. (36)],
only two different sets of values for a and c are meaningful; the couple
ða ¼ 1; c ¼ 0Þ represents insulating and adsorbing membranes,
while ða ¼ 0; c ¼ 1Þ corresponds to chemostat-like membranes.
The numerical solution relies on a weak form implementation in the
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finite-element solver COMSOL Multiphysics. The spatial discretiza-
tion is based on cubic triangular elements.74

As a test case, two-dimensional square parametric inclusions are
considered. The microscopic problems (38) and (39) are solved in the
frame of reference of the membrane denoted with (s, n), where spatial
variables are normalized with respect to the microscopic length l.
Figures 3(a) and 3(b) show the microscopic solution for the non-zero
component of the vector T and Y, denoted with Tn and Yn, in the case
of a ¼ 1; c ¼ 0 (panel a, insulating/adsorbing membranes) and a
¼ 0; c ¼ 1 (panel b, chemostat-like membranes). As shown in Fig. 3,
the following relation is satisfied in the considered case:

Ynðs; nÞ ¼ �Tnðs;�nÞ: (43)

For this reason, we restrict our analysis to Tn, while similar consider-
ations apply for Yn using the geometrical argument represented by Eq.
(43). To apply the macroscopic model described by Eq. (40), the spa-
tial average defined in (9) is computed.

The size of the microscopic domain along the normal-to-the-
membrane direction, jU�Dj, is not specified in the inner problem
since, in principle, these boundaries are located at an infinite distance
from the membrane to correctly match the inner and outer solutions.
Table I shows that the values of �T n and �Y n reach an asymptotic value

for jU�Dj tending to infinity, assessing the well-posedness of the
problem.

In Fig. 3(c), the values of �T n are shown in the case of square
inclusions as a function of the fluid-to-total ratio along C, i.e.,
# ¼ jCFj=jCF [CMj, in the range of 0:01 < # < 0:99. The blue
curve corresponds to the insulating/adsorbing case (a ¼ 1; c ¼ 0),
while the orange one to the chemostat case (a ¼ 0; c ¼ 1). In the case
of a ¼ 1; c ¼ 0; �T n has a diverging behavior approaching # ¼ 0, and
hence, it can be interpreted as a measure of the deviation of the con-
centration field with respect to the case when the inclusions are not
present. In the absence of inclusions, one can write

lim
#!1

ĉjC ¼ lim
#!1

Ĉ0 þ � �T i@̂ i ĉjC� þ �Y i@̂ i ĉjCþ
� �

¼ Ĉ0; (44)

meaning that the concentration field and its normal-to-the-membrane
flux are continuous or, in other words, the membrane is not present
anymore. On the contrary, the normal component of the vector �T for
a ¼ 0; c ¼ 1, i.e., when the membrane acts as a chemostat, tends to 0
for # tending to zero. In this case, �T n measures the deviation of the
concentration from the values imposed on the solid inclusions, which
increases with the fluid-to-total ratio, confirming the analogy with the
Navier slip condition52 outlined in Sec. IV.

FIG. 3. Overview on the solution of the
microscopic problems (38) and (39) for a
two-dimensional configuration where the
solid inclusion is a square. Panel (a): the
only non-zero, normal-to-the-membrane
component of the vector T is shown within
the microscopic domain for the case of
a ¼ 1; c ¼ 0 (left) and a ¼ 0; c ¼ 1
(right). Panel (b): same as in panel (a) for
the microscopic vector Y. Panels (c) and
(d): average of Tn and values of jeff for
varying the porosity #.

TABLE I. Values of �T n and �Y n for different values of jU�Dj for a square inclusion of side 0:5l and for the possible membrane behaviors considered in the present work.

jU�Dj ¼ 2l jU�Dj ¼ 4l jU�Dj ¼ 8l jU�Dj ¼ 16l

�T n; a ¼ 1; c ¼ 0 0.187 440 65 0.187 445 67 0.187 445 69 0.187 445 69
�T n; a ¼ 0; c ¼ 1 0.008 188 97 0.008 188 56 0.008 188 55 0.008 188 55
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The coefficient jeff=j ¼ j@Mj in Fig. 3(d) is equal to the perime-
ter of the inclusion M and represents the main contribution of the
effective adsorption rate of the membrane. As shown in Sec. VII, jeff

is of fundamental importance in the design of efficient adsorbing/
desorbing membranes.

In this section, we showed the results of the microscopic calcu-
lations for a particular geometry of the inclusions, i.e., squares. The
validation of the homogenized model requires its comparison with
full-scale simulations. In the following, we, thus, investigate different
macroscopic configurations to validate the microscopic model pro-
posed for the membrane.

VI. MACROSCOPIC VALIDATION OF THE EQUIVALENT
MODEL

In Sec. VI, we proceed with the validation of the equivalent mac-
roscopic model by means of comparisons with full-scale simulations
of the coupled solvent–solute flow. For the sake of conciseness, we will
focus on the solute flux since the solvent flow has been already exten-
sively validated in Zampogna and Gallaire and Ledda et al.54,55 The
solvent–solute flow configurations chosen as testing benches are
sketched in Fig. 4, while in Table II, conditions on top (T), bottom
(B), left (L), and right (R) boundaries of the macroscopic computa-
tional domain are listed. The results presented in this section have
been rendered non-dimensional using the macroscopic outer reference
scales for the solvent velocity and pressure, the solute concentration,
and the lengths. With such normalization, the knowledge of the inner
representative quantities introduced in Sec. IV is not needed to apply
the macroscopic model. In particular, the outer macroscopic reference
concentration has been defined, for both cases considered, as

DCO ¼ ĉjL � ĉmin; (45)

where ĉjL is the value of concentration imposed at the inlet L of the
macroscopic domain, while ĉmin is the minimum value of concentra-
tion which tends to zero as x1 ! þ1 since the boundaries T and B

adsorb the concentration at a given constant rate j. The approxima-
tion of the solute transport up toOð�Þ requires the knowledge of both
C0 and cI;ð0Þ. The mathematical solution of the macroscopic problem,
thus, relies on two steps. The first step consists of the solution of the
non-dimensional version of Eq. (3)

@tcþ @iFi ¼ 0; Fi ¼ PeOuic� @ic (46)

together with interface conditions (14) and (42). In the second step,
Eq. (46) is solved together with the interface conditions (40) and (42)
where the solution of the first step is employed. The Stokes equations
satisfied by the solvent flow, once non-dimensionalized, assume the
form

@t ûi � @jRij ¼ 0; Rij ¼ �pdij þ ð@iuj þ @juiÞ; (47)

together with the continuity of velocities across C and the normalized
stress jump condition

ujC ¼ � �M ijkRjkjC� þ ��N ijkRjkjCþ : (48)

All equations mentioned above are numerically implemented via their
weak formulation in the finite element solver COMSOL Multiphysics,
using a domain decomposition method63 to couple the upward and
downward solvent flow and solute fluxes. In this framework,

macroscopic models (42) and (40) and (7) and (8) are interface condi-
tions between two domains, respectively. To exchange information
from the upward to the downward domain, the stress jump and con-
centration flux conditions are implemented by exploiting the interface
integral emerging from the weak formulation of the corresponding
governing equations, while, to exchange information from the

FIG. 4. Macroscopic configurations used to validate the model. The inset in the bot-
tom right is a magnification over the homogeneous macroscopic membrane C for
every configuration, showing the full-scale structure of the membrane.

TABLE II. Overview of the boundary conditions for c and u used for configurations
C1 and C2.

c T B L R

C1 Fini ¼ �jc Fini ¼ �jc c ¼ 1 Fini ¼ 0
C2 Fini ¼ �jc Fini ¼ �jc c ¼ 1 for� 0:5 < x3 < 0:5 Fini ¼ 0

u T B L R

C1 ui ¼ 0 uini ¼ 0 u1 ¼ 1� 4x23=L2; v ¼ 0 Rijnj ¼ 0
C2 Rijnj ¼ 0 Rijnj ¼ 0 u1 ¼ 1; u3 ¼ 0 Rijnj ¼ 0
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downward to the upward domain, the continuity of velocity and con-
centration is imposed via a Dirichlet boundary condition. The spatial
discretization is based on the Taylor–Hood (P2-P1) triangular ele-
ments for the solvent flow solution and cubic triangular elements for
the solute concentration solution.75

A. Configuration C1

In Sec. VIA, we verify the accuracy of the model (40) in the case
of configuration C1. A channel flow is considered. The channel is split
by a membrane placed on the line x1 ¼ 0, whose microscopic struc-
ture (represented in the red circular inset of Fig. 4) is made of square
inclusions such that the porosity is # ¼ 0:3 and the separation of
scales parameter � is equal to 0.1. With these geometrical parameters,
�T ¼ ��Y ¼ ð1:0870; 0; 0Þ for a ¼ 1; c ¼ 0 and �T ¼ ��Y
¼ ð0:0012; 0; 0Þ for a ¼ 0; c ¼ 1, while the only non-zero compo-
nents of the tensors �M and �N are �M111 ¼ ��N 111 ¼ �0:0499 and
�M331 ¼ ��N 331 ¼ 0:0013. The fluid, flowing in a Stokes regime from
left to right thanks to a fully developed Poiseuille imposed velocity
profile on the side L of the domain, is carrying the solute whose con-
centration is indicated with c and has a constant value at the inlet of
the channel L. The top and bottom walls of the channel, T and B, are
adsorbing the solute at a fixed rate j ¼ � via the non-conservative flux
boundary condition listed in Table II. The Peclet number based on the
macroscopic velocity and length scales is Pe¼ 1. A first qualitative and
quantitative insight of the concentration field within the channel is
given in Figs. 5(a), 5(c), and 5(e), which show the solution for the
chemostat-like (a ¼ 0; b ¼ c ¼ 1), insulating (a ¼ 1; b ¼ c ¼ 0),

and adsorbing behaviors (a ¼ b ¼ 1; c ¼ 0), respectively. In the pre-
sent case, for the chemostat-like membrane, the value of the concen-
tration field C0 ¼ Cw on @M has been set equal to 0.2 while, for the
absorbing case, the value of the absorption rate j on @M is �. In each
frame, the colored and grayscale isocontours are referred to as the full-
scale solutions, while the red corresponding isolevels refer to the solu-
tion of macroscopic model (40). We notice that the grayscale in frames
(a) and (e) has been adopted to appreciate the small variations of con-
centration in the downward region, which is rendered almost constant
by the presence of the membrane. In the lower half-part of each frame,
the solvent flow streamlines have been sketched to have a global idea
of the coupled solvent–solute flow behavior. The comparison between
isocontours and isolevels is satisfactory in all cases shown. A quantita-
tive comparative analysis between the full-scale solution and the mac-
roscopic model depicted in Figs. 5(b), 5(d), and 5(f) confirms the good
agreement. In Fig. 5(b), the concentration field is sampled over C, cor-
responding to the vertical line x1 ¼ 0 in the fluid domain. For each
membrane behavior indicated in the graph, black curves represent the
full-scale concentration profile, the colored curves correspond to the
macroscopic solution, and the blue stars the full-scale profile averaged
using definition (9). In the remaining two frames, Figs. 5(d) and 5(f),
the concentration c and its gradient @1c along the normal-to-the mem-
brane direction have been sampled on the horizontal line x3 ¼ 0
depicted by a dashed black line in the left frames of Fig. 5. The macro-
scopic solution in color well reproduces the full-scale profiles in black.
Besides, the simulations confirm that the membrane produces a jump
in the normal-to-the-membrane direction that can be estimated via
the effective flux jump condition. We finally focus on the correction

FIG. 5. Overview of the solute concentration behavior in configuration C1 and comparison between the full-scale and the macroscopic solution [Eq. (40)]. Panels ðaÞ; ðcÞ, and
(e): isocontours of the full-scale concentration field (in colors and gray scale) and isolevels of the equivalent, macroscopic fields in red for the membrane behaviors indicated in
the title. The grayscale in frame (a) and (e) has been adopted to appreciate the small variations of concentration in the downward region, which is rendered almost constant by
the presence of the membrane. Solvent flow streamlines are represented in the lower half-part of each frame. Panels ðbÞ; ðdÞ, and (f): quantitative comparison between mac-
roscopic (colored continuous lines) and full-scale quantities (black lines). In panels (b) and (d), the concentration is sampled along C (line x1 ¼ 0 and x3 ¼ 0, respectively),
while in panel (f), the concentration horizontal flux is sampled over the line x3 ¼ 0. Blue stars represent the average of the full-scale solution using definition (9).
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given by the homogenization-based condition (40) to the value of con-
centration C0 estimated via Eq. (14). For the insulating case, the solu-
tion C0 has a precision similar to C0 þ �cI;ð0Þ, with a very small
difference with the full-scale solution. In the other cases, we observe a
larger relative difference between C0 and C0 þ �cI;ð0Þ, which appears
to be of the same order of �. A remarkable conceptual improvement
given by Eq. (40) can be noticed for chemostat-like membranes
(a ¼ 0; b ¼ c ¼ 1) since it is able to reproduce the macroscopic vari-
ability of the concentration profile along C, poorly predicted to a con-
stant value by C0 (Fig. 6).

B. Configuration C2

A free uniform flow of a solvent past a vertical membrane posi-
tioned at x1 ¼ 0 and for �0:5 < x3 < 0:5 is considered, carrying a
solute whose concentration is maintained constantly equal to 1 on L

for �0:5 < x3 < 0:5, and it is adsorbed at a rate j ¼ � on T and B

(cf. Table II). The membrane, whose structure is sketched in the red
circular inset of Fig. 4, is characterized by # ¼ 0:5 and � ¼ 0:02.
With these geometrical parameters, �T ¼ ��Y ¼ ð0:3749; 0; 0Þ for the
insulating/absorbing membrane (a ¼ 1; c ¼ 0) and �T ¼ ��Y
¼ ð0:016 38; 0; 0Þ for the chemostat-like membrane (a ¼ 0; c ¼ 1),
while the only non-zero components of the tensors �M and �N
are �M111 ¼ ��N 111 ¼ �0:0120 and �M331 ¼ ��N 331 ¼ 0:0015. A
substantial change with respect to configuration C1 is introduced in
configuration C2 since the fluid is not constrained to pass through
the membrane. As a consequence, the inner Peclet number,
PeI ¼ � UI

UO PeO, is �2 times lower than the outer Peclet. We can, thus,
test the model in a dominant advective regime since, here, we push the
Peclet number up to ��1, being still within the constraint PeI ¼ Oð�Þ.
In analogy with the previous case, a comparative qualitative overview
of the solution is given in Figs. 7(a), 7(c), and 7(e) for different
membrane behaviors, showing a good agreement. The quantitative
comparison between the full-scale solution (black curves) and the
macroscopic solution (colored curves) shown in the right column of
Fig. 7 for c on C [Fig. 7(b)], along x3 ¼ 0 [Fig. 7(d)] and for @1c along
x3 ¼ 0 [Fig. 7(f)], confirms the reliability of the model. The compari-
son between C0 and C0 þ �cI;ð0Þ is shown also for this configuration in
Fig. 8, exhibiting the same order of precision as in configuration C1,
with a very small relative difference for the insulating case and a rela-
tive error of orderOð�Þ for the chemostat-like and adsorbing cases.

VII. AN APPLICATION OF THE MACROSCOPIC
MODEL: SNOWFLAKES-SHAPED ZIG-ZAG
BAFFLES IN MICRO-CHANNELS

In Secs. I–VI, we derived a homogenized boundary condition
that accounts for the solute behavior through the membrane, validated
against full-scale simulations. In the following, we propose a simple
and immediate application, the adsorption of membranes composed
of recursive, fractal-like structures, which reveals the potential of the
homogenized model in terms of numerical efficiency and physical
interpretation. We consider the solvent–solute flow in a channel as
sketched in Fig. 9(a). The concentration field c is carried by the fluid
from left to right as in configuration C1 presented in Sec. VIA. In the
present case, the membrane has a zig-zag shape of length 3L. Each seg-
ment forming the membrane is rotated 30� clockwise or counterclock-
wise with respect to the central longitudinal axis of the channel. In Sec.
VI, we considered solely membranes whose normal direction is con-
stant in the Cartesian frame of reference and parallel to the flow direc-
tion. Here, the particular macroscopic setup chosen allows us to
validate the model also in the case of arbitrarily oriented and shaped
membranes. The microscopic structure of the membrane is sketched
in Fig. 9(b). Each solid inclusion forming the membrane has a snow-
flake shape built applying the von Koch geometrical construction to
each side of an equilateral triangle.64 The number R, called here recur-
sion number, indicates how many times the geometrical axiom has
been applied and, hence, the recursion level of the solid inclusions.
The side of the triangle representing the base shape from which the
snowflakes have been built is equal to 0:5l, implying that the porosity
of the membrane is equal to 2/3 for each R. Ten different configura-
tions have been considered, for R 2 ½1;…; 10
, with fixed separation
of scales parameter � ¼ 0:01. In the following, we (i) evaluate the
microscopic quantities associated with these fractal-like inclusions
varying the recursion number and (ii) exploit the macroscopic model
to efficiently solve the configuration introduced in Fig. 9 and study the
effects of the microscopic structure on the solute and solvent flow.

A. Microscopic insights about fractal-like solid
inclusions

The macroscopic model (42) and (40) requires the knowledge of
the quantities jeff ; �T and �Y. Additionally, also the components of the
third-order tensor �M and �N are needed to macroscopically solve the

FIG. 6. Comparison between C0 and C0 þ �cI;ð0Þ over C for the three membrane behaviors considered in the present work [frame ðaÞ a ¼ 1; b ¼ c ¼ 0, frame
ðbÞ a ¼ 0; b ¼ c ¼ 1, and frame ðcÞ a ¼ b ¼ 1; c ¼ 0] and for configuration C1. Blue stars have been calculated applying definition (9) to the full-scale solution.
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solvent flow via the model introduced in Eqs. (7) and (8). Similar to
Sec. V, the microscopic quantities are calculated in the local frame of
reference of the membrane so that the subscripts refer to the tangential
(s) and normal-to-the-surface (n) components. Figure 10 shows the
values of the non-zero entries of the effective microscopic vectors and
tensors for each N. The vector �Y and the tensor �N are not considered
here since they can be deduced from �T and �M by geometrical argu-
ments, as explained in Sec. V and in Zampogna and Gallaire.54 The
quantities �T n; �M nnn, and �M ssn reach an asymptotic value after a few

recursions of the von Koch curve (as already noticed in Alinovi et al.65

for rough, impermeable fractal-like surfaces). Indeed, the relative dif-
ferences between two consecutive recursion levels are smaller than �2

already at R¼ 4. In opposition, jeff is proportional to the perimeter of
the inclusions which, for this particular kind of fractal-like structures,
grows as ð4=3ÞR. From these simple considerations obtained from
the solution of the microscopic problems, we deduce that the drag
coefficient CD of the macroscopic flow through the membrane remains
constant as R increases. This can be easily seen by writing explicitly

FIG. 8. Comparison between C0 and C0 þ �cI;ð0Þ over C for the three membrane behaviors considered in the present work [frame ðaÞ a ¼ 1; b ¼ c ¼ 0, frame
ðbÞ a ¼ 0; b ¼ c ¼ 1, and frame ðcÞ a ¼ b ¼ 1; c ¼ 0] and for configuration C2. Blue stars have been calculated applying definition (9) to the full-scale solution.

FIG. 7. Overview of the solute concentration behavior in configuration C2 and comparison between the full-scale and the macroscopic solution [Eq. (40)]. Panels ðaÞ; ðcÞ, and
(e): isocontours of the full-scale concentration field (in colors) and isolevels of the equivalent, macroscopic fields in red for the membrane behaviors indicated in the title.
Solvent flow streamlines are represented in the lower half-part of each frame. Panels ðbÞ; ðdÞ, and (f) quantitative comparison between macroscopic (colored continuous lines)
and full-scale quantities (black lines). In panels (b) and (d), the concentration is sampled along x1 ¼ 0 and x3 ¼ 0, respectively, while in panel (f), the concentration horizontal
flux is sampled over the line x3 ¼ 0. Blue stars represent the average of the full-scale solution using definition (9).
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the effective stress jump condition introduced in Eq. (8) for the solvent
flow and collecting the difference between the stresses on the two sides
of the equivalent membrane, i.e.,

CD /
ð

C

RijjCþ � RijjC�
� �

Njd1i dX ¼
ð

C

M�1
ij uijCNj dX; (49)

where M�1
ij is the inverse of the matrix Mij ¼ �M nnnNiNj

þ �M ssnSiSj.
54,55 On the contrary, the adsorption of the membrane

increases with R since it depends on the effective adsorption coefficient
jeff , which is proportional to the perimeter of each solid inclusions. In
Sec. VIIB, we carry out macroscopic solutions of the homogenized
model for membranes with fractal-like solid inclusions to confirm our
a priori deductions on the membrane behavior for varying R.

B. Macroscopic evidence of the membrane adsorption

The behavior of the adsorbing membrane (j ¼ � ¼ 0:01) is now
investigated via the macroscopic solution of the solvent–solute flow
configuration of Fig. 9. Figure 11(a) provides a qualitative description
of the solvent flow behavior via isocontours of pressure (in colors) and
flow streamlines (solid black lines). The equivalent membrane is
highlighted by the solid red line. Frames (b) and (c) in the same figure
represent the isocontours of the solute concentration field for R¼ 1
and R¼ 10, respectively, showing relevant quantitative differences.
The differences can be better quantified by sampling the concentration

field on the membrane for each value of R [cf. Fig. 12(a) where each
curve represents a different value of R as indicated in the associated
colorbar]. Two quantities of interest DCD and g are defined, which
measure the increase in drag with respect to the case R¼ 1 and the
ability to adsorb the solution in the vicinity of the membrane

DCDðRÞ ¼
CDð1Þ � CDðRÞ

CDð1Þ
;

g ¼

ð
L

c dX=jLj �
ð

C

c dX=jCj
ð

L

c dX=jLj

(50)

with CDðRÞ is the drag coefficient associated with the membrane
whose solid inclusions have a recursion number R. The coefficient
DCDðRÞ shows variations of less than 0.2% from R¼ 1 to R¼ 10.
Figure 12(b) shows the behavior of g with R, concluding that a negligi-
ble increase of the drag corresponds to an increase in the adsorbing
ability of the membrane from 40% to 95%, without changing the
chemical properties of the material forming the solid inclusions, but
only changing their shape.

These results confirm the reliability of the model in predicting
the behavior of a membrane by a simple analysis of its microscopic
properties that can be precisely deduced through homogenization.
Beyond the immediacy of the physical interpretation, we note another

FIG. 9. Channel flow configuration ana-
lyzed in Sec. VII. Panel (a): sketch of the
computational domain. The boundary con-
ditions on LR; T, and B are the same
as in configuration C1. A zig-zag shaped
membrane is placed longitudinally along
the central axis of the channel and is
denoted with C. Panel (b): microscopic
inclusions forming the membrane for the
first four values of R.

FIG. 10. Microscopic quantities associ-
ated with the fractal-like inclusions. Non-
zero component of the vector �T, scalar
coefficient jeff [panel (a)] and non-zero
components of the third-order tensor �M
[panel (b)] relating the macroscopic sol-
vent velocity to the macroscopic solvent
stresses in Eq. (8), for varying R.
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remarkable strength of the macroscopic model consisting of a huge
gain in computational resources obtained by using the macroscopic
model. Since the membrane considered here is formed by fractal inclu-
sions, an increase of R dramatically increases the computational time
needed for a well spatially resolved full-scale simulation. The full-scale
solution is, hence, computed only for the recursion case R¼ 1, needing
about 3.5 CPU h to obtain spatially converged results. The estimated
adsorption ability is identified in Fig. 12(b) by a yellow star, while the
difference in CD with respect to the equivalent macroscopic case is
equal to 0.21%, in agreement with the accuracy of the model, esti-
mated to be of order 1% for the chosen value of �. Similar accuracy is
observed from the introduction of a local relative error f between the
average of the full-scale concentration and its macroscopic analogous,

evaluated over the macroscopic equivalent membrane C. Such f,
which within the membrane is of order �2, reaches values up to �
when approaching the edges of the equivalent macroscopic membrane
C. This behavior of the local relative error f has to be traced back to
the fact that, in the vicinity of the edges, the microscopic periodicity
assumption fails. In opposition, the time needed to carry out the
homogenized solution increasing the fractal number can be calculated
by the sum of two contributions: (i) the one of the macroscopic simu-
lation, which is constant with R and (ii) the time needed to estimate
the tensors from the microscopic geometry. Hence, the CPU hours
needed to obtain the macroscopic solution range from 0.0083 for
R¼ 1 to 0.0333 for R¼ 10, hundreds times faster than the cheapest
full-scale case (R¼ 1).

FIG. 11. Overview of the macroscopic
solution exploited to assess the immedi-
acy of the physical interpretation of the
membrane behavior starting from its
microscopic properties. Panel (a): isocon-
tours of the solvent pressure (colors) and
solvent flow streamlines (black) for R¼ 1.
Panel (b): isocontours of the solute con-
centration field around the membrane
(sketched in red) for R¼ 1. Panel (c):
same as in panel (b) for R¼ 10.

FIG. 12. Effect of the recursion number on the solute concentration and solvent flow field. Panel (a): concentration sampled over C. Each color denotes a different value of R
as indicated in the colorbar. The parameter r represents the curvilinear coordinate along the membrane. Panel (b): increase in the adsorption ability of the membrane by means
of the definitions in Eq. (50) for varying R. The yellow pentagram corresponds to the same quantity evaluated from the full-scale solution for R¼ 1. Panel (c): local relative error
f for the solute concentration in the case of R¼ 1, over the macroscopic membrane C.
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VIII. CONCLUSION

In this work, we developed a homogenization-based macroscopic
model for the transport of a dispersed solute in the incompressible
flow of a Newtonian fluid (solvent) across thin microstructured fully
permeable membranes. The macroscopic feedback of the micro-
structure on the transport phenomenon is obtained through a macro-
scopic condition, derived by matching inner and outer asymptotic
expansions.54 The macroscopic condition covers a wide range of
chemical–physical behaviors of the membrane, from constant solute
concentration to the non-reactive, insulating case, passing through
partially adsorbing membranes. The model developed, exact up to first
order in the separation-of-scales parameter, assesses the continuity of
the concentration field across the membrane and the existence of a
jump in the normal-to-the-membrane flux of the solute concentration,
for the cases mentioned above. The concentration flux jump is quanti-
fied via the spatial average of the solutions of microscopic problems
derived from the homogenization procedure, which represents the
solvability conditions for the final macroscopic equations. The param-
eters quantifying the flux jump are (i) the effective adsorption coeffi-
cient jeff ¼ j@Mjj and (ii) the upward and downward slip or
effective diffusion vectors, �T and �Y. These quantities decouple the
microscopic geometry from its macroscopic effect on the flow, estab-
lishing a precise link between the microscopic shape of the membrane
and its diffusion and transport properties. The numerical solution of
the macroscopic model was validated through comparisons against
the corresponding full-scale solutions. In the last part of the work, we
proposed a simple design of microstructured membranes through an
analysis of the microscopic quantities associated with fractal-like
inclusions.

The model developed allows one to treat a multi-scale problem
through simple and physically meaningful macroscopic interface con-
ditions. It can be generalized to three-dimensional structures and non-
periodic microstructures and constitutes a powerful tool in the design
of membranes,55 together with the effective stress jump model for the
solvent.54 As shown in Ledda et al.,55 the optimization procedure of
such micro-structures is dramatically simplified by the reduction of
the degrees of freedom describing the solid inclusions. These degrees
of freedom, in the homogenized model, are represented by the entries
of the Navier tensors and effective diffusion vectors. A direct and prac-
tical application of the model in its actual state is the optimization of
micro-fluidic devices,66 while its extension toward inertial and high-
P�eclet flows may find applications in the development and optimiza-
tion of chaotic micro-mixers.67 This work represents a first step
toward the definition of the right balance between selectivity and filter-
ability in membrane design.18 It completes the effective stress jump54

for the solvent flow adding a one-way solvent-to-solute coupling.
Hence, two direct extensions of the model can be identified. The first
one consists of substituting the one-way coupling considered here
with a two-way coupling, where the solute concentration is able to
modify the density of the solvent and, hence, its flow. The second one
comes from one relevant limitation of the model, i.e., its ability to treat
semi-permeable membranes (and, hence, osmosis-related phenomena)
by a modification of the spatial average used in this work, which
intrinsically renders every solute and solvent field continuous. These
two extensions of the model may lead one to the development of a rig-
orous and closed form of the Kedem–Katchalsky law for thin mem-
branes.48 Besides, an emerging field in membrane science consists of

2D membranes, solid structures formed by a single atomic layer along
the filtration direction.44 Several techniques exist to drill nano-holes
on these structures68 and, nowadays, are possible to control the geom-
etry of the pores.69 The model developed in the present work enables
to a predictive analysis of these structures and may constitute a pre-
processing tool in their synthesis. To fulfill this objective, the Stokes
equations valid in the pores must be replaced by a continuum model
which takes into account for the confinement of the flow within the
nanopores70 or by a molecular description of the transport at the
nanoscale.49 We finally notice that the model developed here opens to
the description of complex phenomena such as concentration polari-
zation71 or membrane fouling,41 via the introduction of a time-
dependent value of a, b, and c which may depend on a supplementary
surface concentration field.72
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