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A B S T R A C T

We present two models in adversarial machine learning, focussing on the Support Vector
Machine framework. In particular, we consider both an evasion and a poisoning problem. The
first model is aimed at constructing effective sparse perturbation of the dataset samples, while
the objective of the second is to induce a substantial rotation of the hyperplane defining the
classifier. The two models are formulated as Difference of Convex nonsmooth optimization
problems. Numerical results on both synthetic and real life datasets are reported.

1. Introduction

Adversarial machine learning (AML) is a research area that has experienced a dramatic development in the last two decades.
It is concerned with the malicious data manipulation, considered under two conflicting points of view, that of the defender, whose
objective is to protect the correct behaviour of any learning mechanism, and that of the attacker, whose aim is to mislead the same
mechanism.

The research in AML has stemmed from application areas of crucial importance, such as image processing, spam filtering and
malware detection [1]. In particular most of the research has been stimulated by the vulnerability evidence of many Machine
Learning models, mainly in deep network applications [2,3]. In addition, it is worth noting that machine learning applications
are the weakest link in the security chain of complex information-communication systems [4]. Consequently, protection of such
applications is a crucial issue in cyber-security.

The AML literature is extremely rich and we cite here, on the attacker side, papers like [5,6], which provide classification of
problems and methods as well as useful historical details. On the defender side we mention, in particular, [7].

In this paper we focus on adversarial attacks in the framework of supervised binary classification, a relevant chapter of machine
learning.

Supervised binary classification is a decision-making technique whose objective is to assign exactly one of two possible classes
to each sample in a population. The number of applications is practically infinite. A sample can be a patient and the decision is
whether he/she belongs either to the class of people affected by a certain pathology or to that of the not-affected ones. Analogously,
a sample can be a mail message and the decision is about being it a spam or a not-spam message.

Each sample is represented by a vector containing the numerical values of several attributes (features). The supervised binary
classification process primarily needs a dataset of labelled samples whose class membership is known (the training set). On the base
of such an information, the classifier is built as a mathematical tool able to predict the class membership of any newly incoming
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sample. A distinct set of labelled samples, which play no role in the construction of the classifier, is finally employed to check the
quality of the designed classifier. Such set is usually referred to as the testing one.

Construction of the classifier requires in general the solution of a numerical optimization problem to detect an ‘‘optimal’’ surface
o separate the two classes of samples in the space of the attributes. We recall here the pioneering works [8–10]. An interesting
verview is provided in [11].

Most of the classification methods are based on the use of a hyperplane as the separating surface and belong to the well known
amily of Support Vector Machine (SVM) models [12,13]. On the other hand, separation by a variety of nonlinear surfaces has been
xtensively discussed in the literature (see [14–20] and the references therein).

As for the adversarial classification, two types of attacks are commonly considered, the evasion and the poisoning ones, according
o their timing, either at the testing or at the training phase, respectively. Such types of attacks are related to attacker’s ability to
anipulate either the testing or the training set. A significant distinction among the types of attack is in fact connected to the quality

f the classification system knowledge at attacker’s disposal, which can range from being perfect to black-box.
In this paper we consider the SVM model. As previously mentioned, SVM is about separation of two discrete point-sets in R𝑛

the labelled samples) by means of a hyperplane with an associate separation margin.
As for the impact of adversarial attacks on SVM systems, the literature offers a wide body of research results, according to the

ifferent objective pursued, the assumptions on the specific framework at hand and the available methodologies.
On the defender side, the studies on SVM robustness provide a significant contribution [21,22], while defence against label noise

s analysed in [23].
In the area of the attack models we recall [24], where the objective (the evasion) is to transform a malicious sample into a

egitimate one by means of a bounded perturbation, while trying to avoid that the perturbed sample falls into low density legitimate
reas.

Poisoning attacks are considered in [25], on the basis of the distinction between free-range and restrained attacks. The problem
ackled in [26] is to design a sample point whose insertion into the dataset produces the maximal deterioration of the classification
ccuracy.

In the following we consider both the evasion and the poisoning problems in SVM systems.
As for the evasion, we focus on sparse perturbations, thus we model effective adversarial attacks acting on the smallest number

f sample features.
Sparse attacks have been considered in [27], where the use of 𝓁1 regularization is suggested for defence purposes. In our

pproach, instead, we take inspiration from the literature on the Feature Selection [28] and we enforce perturbation sparsity by
sing the 𝓁0 pseudo-norm. We recall that the 𝓁0 pseudo-norm [29] (denoted as ‖.‖0) counts the number of non-zero components of

any vector.
Summing up, we come out with a novel sparse optimization problem which is tackled by adopting the 𝑘-norm representation of

the 𝓁0 pseudo-norm [30–34].
As for the poisoning problem, we consider the case where the Attacker tries to deteriorate the accuracy of a given SVM classifier

by acting on a subset of the dataset. The objective is to induce the SVM model to choose a fairly different separation hyperplane w.r.t.
the original one. The novelty of our approach is in introducing a measure of the hyperplane rotation produced by the perturbation.

Both our evasion and poisoning models require the solution of a nonconvex nonsmooth optimization problem of the Difference of
Convex (DC) type. DC problems have been intensively studied from both the theoretical and the numerical point ov view in [35–39].
In our implementation we adopt the Descent–Ascent algorithm (DADC) described in [40].

Throughout the paper, we consider a standard SVM framework for binary classification. In particular we suppose that two point-
sets in R𝑛,  = {𝑎𝑖}, 𝑖 ∈ 𝐼 = {1,… , 𝑚𝑎} and  = {𝑏𝑙}, 𝑙 ∈ 𝐿 = {1,… , 𝑚𝑏}, are given. We indicate by  the entire dataset ( = ∪)
and by 𝑚 = 𝑚𝑎+𝑚𝑏 its cardinality; consequently 𝑥𝑗 , 𝑗 = 1,… , 𝑚, is any element of the dataset, independently of its class membership.

The Defender constructs the classifier (see [12,13]) by stating the following problem:

|

|

|

|

|

|

|

|

|

|

|

|

|

min
𝑤,𝛾,𝜉,𝜁

1
2𝑤

⊤𝑤 + 𝐶
(

∑

𝑖∈𝐼
𝜉𝑖 +

∑

𝑙∈𝐿
𝜁𝑙
)

𝑠.𝑡. 𝑎⊤𝑖 𝑤 − 𝛾 + 1 ≤ 𝜉𝑖 𝑖 ∈ 𝐼
− 𝑏⊤𝑙 𝑤 + 𝛾 + 1 ≤ 𝜁𝑙 , 𝑙 ∈ 𝐿
𝜉𝑖 ≥ 0, 𝑖 ∈ 𝐼
𝜁𝑙 ≥ 0, 𝑙 ∈ 𝐿

(1)

where a separating hyperplane, defined by the couple (𝑤 ∈ R𝑛, 𝛾 ∈ R), is calculated in view of minimizing the sum of the
classification errors 𝜉𝑖, 𝑖 ∈ 𝐼 and 𝜁𝑙 , 𝑙 ∈ 𝐿 for the two sets  and , respectively, while maximizing the separation margin, thanks
to the quadratic term in the objective function. The (tunable) parameter 𝐶 > 0 represents the trade-off between the two objectives.
Observe that the above quadratic problem can be reformulated in the following way as an unconstrained convex nonsmooth
optimization problem:

min
𝑤,𝛾

1
2
𝑤⊤𝑤 + 𝐶

(
∑

𝑖∈𝐼
max{0, 𝑎⊤𝑖 𝑤 − 𝛾 + 1} +

∑

𝑙∈𝐿
max{0,−𝑏⊤𝑙 𝑤 + 𝛾 + 1}

)

(2)

Fig. 1 shows an example of a separating hyperplane obtained via SVM.
The paper is organized as follows. We describe in Section 2 our sparse evasion strategy. The poisoning model is treated in

ection 3, while the results of some numerical experiments are reported in Section 4.
2
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Fig. 1. An example of a separating hyperplane having classification errors obtained as a solution to the SVM problem (1).

2. The sparse evasion model

Suppose that the problem (1) has been solved at the Defender site and let the hyperplane 𝐻 associated to the optimal couple
(𝑤′, 𝛾 ′) be

𝐻 =
{

𝑥 ∈ R𝑛
|𝑤

′⊤𝑥 = 𝛾 ′
}

,

In the sequel 𝑤′ will be referred to as the normal to the separating hyperplane 𝐻 . We assume also that the Attacker has complete
knowledge of the classifier. Now let 𝑎𝑖 (𝑏𝑙) be any correctly classified point of  () which the Attacker is willing to perturb to
evade the classifier. Since the inequality 𝑎′⊤𝑖 𝑤

′ ≤ 𝛾 ′ − 1 (𝑏⊤𝑙 𝑤
′ ≥ 𝛾 ′ + 1) holds, any perturbation 𝛿𝑖 ∈ 𝑅𝑛 (𝛿𝑙 ∈ 𝑅𝑛) makes point 𝑎𝑖(𝑏𝑙)

misclassified, provided the inequality (𝑎𝑖 + 𝛿𝑖)⊤𝑤′ > 𝛾 ′ − 1 ((𝑏𝑙 + 𝛿𝑙)⊤𝑤′ < 𝛾 ′ + 1) is satisfied. Such inequalities can be rewritten as:

𝑤
′⊤𝛿𝑖 > 𝜌𝑖 = −𝑎⊤𝑖 𝑤

′ + 𝛾 ′ − 1 ≥ 0, 𝑖 ∈ 𝐼 (3)

and

𝑤
′⊤𝛿𝑙 < 𝜌𝑙 = −𝑏⊤𝑙 𝑤

′ + 𝛾 ′ + 1 ≤ 0, 𝑙 ∈ 𝐿 (4)

As usual in SVM formulation, we assign the label 1 to the samples in  and −1 to those in . Thus, letting 𝑥𝑗 be any well
classified sample either in  or , with label 𝑦𝑗 = 1 if 𝑥𝑗 ∈  and 𝑦𝑗 = −1 otherwise, the condition on perturbation 𝛿𝑗 ensuring
evasion of sample 𝑥𝑗 ∈  can be written in the form

𝑦𝑗 (𝑤
′⊤𝛿𝑗 ) ≥ 𝑦𝑗𝜌𝑗 ,

where 𝜌𝑗 takes the form indicated in formula (3) or (4) according to the fact that sample 𝑥𝑗 is in  or in .
The rationale of our sparse approach is to minimize the norm of 𝛿𝑗 (we adopt the 𝓁∞ norm), while keeping the number of

perturbed components of 𝑥𝑗 below a fixed threshold. Finally, we come out with the following sparsity constrained nonlinear program
(𝑃𝑗 ):

|

|

|

|

|

|

|

|

min
𝛿𝑗

‖𝛿𝑗‖∞

𝑠.𝑡. 𝑦𝑗𝑤
′⊤𝛿𝑗 ≥ 𝑦𝑗𝜌𝑗

‖𝛿𝑗‖0 ≤ 𝑘

(5)

for an appropriately selected value of 𝑘, 1 ≤ 𝑘 ≤ 𝑛.
In order to treat the cardinality constraint ‖𝛿𝑗‖0 ≤ 𝑘, we resort to a 𝑘-norm-based reformulation. We recall (see [30,31]) that

the 𝑘-norm of any vector 𝑥 ∈ R𝑛, indicated by ‖𝑥‖[𝑘], is the sum of 𝑘 maximal components (in modulus) of 𝑥, 𝑘 = 1,… , 𝑛.
The 𝑘-norm enjoys the following properties:

(i) lower semi-continuity;
(ii) ‖𝑥‖∞ = ‖𝑥‖[1] ≤ ⋯ ≤ ‖𝑥‖[𝑘] ≤ ⋯ ‖𝑥‖[𝑛] = ‖𝑥‖1;

(iii) ‖𝑥‖0 ≤ 𝑘 ⇒ ‖𝑥‖1 − ‖𝑥‖[𝑠] = 0, 𝑘 ≤ 𝑠 ≤ 𝑛.

In our approach we exploit the fundamental equivalence holding for any 𝑘 = 1,… , 𝑛:

‖𝑥‖ ≤ 𝑘 ⇔ ‖𝑥‖ − ‖𝑥‖ = 0,
3

0 1 [𝑘]
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which allows us to reformulate problem (5) as:
|

|

|

|

|

|

|

|

min
𝛿𝑗

‖𝛿𝑗‖∞

𝑠.𝑡. 𝑦𝑗𝑤
′⊤𝛿𝑗 ≥ 𝑦𝑗𝜌𝑗

‖𝛿𝑗‖1 − ‖𝛿𝑗‖[𝑘] ≤ 0

(6)

We observe that the original sparsity constraint ‖𝛿𝑗‖0 ≤ 𝑘 has been substituted by the nonconvex, nonsmooth constraint of the DC
type ‖𝛿𝑗‖1 − ‖𝛿𝑗‖[𝑘] ≤ 0.

In the sequel we will refer to the constraints 𝑦𝑗𝑤
′⊤𝛿𝑗 ≥ 𝑦𝑗𝜌𝑗 and ‖𝛿𝑗‖1−‖𝛿𝑗‖[𝑘] ≤ 0 of problem (6) as the classification and 𝑘-norm

constraints, respectively.
In the numerical treatment of the above problem, we adopt a penalty function approach, by introducing the penalty parameter

𝜎 > 0. We come out with the following DC problem,
|

|

|

|

|

|

min
𝛿𝑗

‖𝛿𝑗‖∞ + 𝜎(‖𝛿𝑗‖1 − ‖𝛿𝑗‖[𝑘])

𝑠.𝑡. 𝑦𝑗𝑤
′⊤𝛿𝑗 ≥ 𝑦𝑗𝜌𝑗 ,

(7)

which we treat by applying the Descent–Ascent DC algorithm (DADC) introduced in [40].

3. The poisoning model

In our poisoning model we consider the same framework as in previous Section, thus we assume that the Defender has found
the optimal separating hyperplane 𝐻 associated to the couple (𝑤′, 𝛾 ′). The Attacker is able to modify the attributes of a subset of
samples, taken both from  and , corresponding to the index sets 𝐼𝑀 ⊂ 𝐼 and 𝐿𝑀 ⊂ 𝐿, respectively. Thus Attacker’s objective is
to induce the maximal deterioration of the classification accuracy acting on the samples at hand. Such an objective is pursued by
pushing the SVM model to choose a hyperplane whose normal 𝑤 is as much as possible different from the original one 𝑤′. In other
words, the objective is to significantly rotate the normal of the separating hyperplane.

Such an objective can be expressed in terms of minimization of the modulus of the cosine between the new normal 𝑤 and the
original 𝑤′. The decision variables, together with the couple (𝑤, 𝛾), are the perturbations 𝛿𝑖, 𝑖 ∈ 𝐼𝑀 and 𝛿𝑙, 𝑙 ∈ 𝐿𝑀 . Keeping in mind
the SVM nonsmooth formulation (2), we state the following problem, where minimization of the modulus of the scalar product
between the normal 𝑤 to the perturbed hyperplane and 𝑤′ is aimed at maximizing the poisoning effect. The positive parameters 𝜃𝑖
and 𝜃𝑙 provide the bounds on the 𝓁2 norm of the perturbations.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

min
𝑤,𝛾,𝛿

1
2𝑤

⊤𝑤 + 𝐶1|𝑤⊤𝑤′
| + 𝐶2

(
∑

𝑖∈𝐼⧵𝐼𝑀

max{0, 𝑎⊤𝑖 𝑤 − 𝛾 + 1}

+
∑

𝑙∈𝐿⧵𝐿𝑀

max{0,−𝑏⊤𝑙 𝑤 + 𝛾 + 1} +
∑

𝑖∈𝐼𝑀

max{0, (𝑎𝑖 + 𝛿𝑖)⊤𝑤 − 𝛾 + 1}

+
∑

𝑙∈𝐿𝑀

max{0,−(𝑏𝑙 + 𝛿𝑙)⊤𝑤 + 𝛾 + 1}
)

𝑠.𝑡.
‖𝛿𝑖‖22 ≤ 𝜃𝑖, 𝑖 ∈ 𝐼𝑀
‖𝛿𝑙‖22 ≤ 𝜃𝑙 , 𝑙 ∈ 𝐿𝑀

(8)

Remark 1. Note that the objective function is nonsmooth and nonconvex. In particular the term |𝑤⊤𝑤′
| is convex and nonsmooth,

while the bilinear terms 𝛿⊤𝑖 𝑤 and 𝛿⊤𝑙 𝑤 under the max operator result in nonsmoothness and non convexity. The latter can be however
put in DC form by observing that any function 𝑓 (𝑥, 𝑦) = max{0, 𝑥⊤𝑦} can be rewritten as

𝑓 (𝑥, 𝑦) = max{0, 1
4
(‖𝑥 + 𝑦‖2 − ‖𝑥 − 𝑦‖2)} = 1

4
max{‖𝑥 + 𝑦‖2, ‖𝑥 − 𝑦‖2} − ‖𝑥 − 𝑦‖2

Remark 2. To calculate a possible indicator of the effectiveness of our poisoning strategy, we proceed as follows. After a solution
(𝑤∗, 𝛾∗, 𝛿∗) of (8) is obtained, we then train a standard SVM model using the dataset ̃ = {𝑎𝑖, 𝑖 ∈ 𝐼 ⧵ 𝐼𝑀} ∪ {𝑎𝑖 + 𝛿𝑖, 𝑖 ∈ 𝐼𝑀} ∪ {𝑏𝑙 , 𝑙 ∈
𝐿 ⧵ 𝐿𝑀} ∪ {𝑏𝑙 + 𝛿𝑙 , 𝑙 ∈ 𝐿𝑀} to obtain a new separating hyperplane (�̃�, �̃�) which we use to have a quantitative evaluation of the
accuracy deterioration on the non manipulated points.

4. Numerical experiments

In this section we report the numerical experiments for the problems described in Sections 2 and 3. We have tested the two
models for both synthetic and real datasets on a IMac 2019 with a 3.7 GHz 6-core Intel Core i5 with 16 GB RAM. The synthetic
datasets have been generated using the Python package scikit-learn [41] which allows to generate 𝑚 random points in R𝑛 inside a
hyper-cube whose size is determined by the parameter class_sep (higher values correspond to an easier classification task on the
dataset). The real datasets have been taken from the LIBSVM repository [42].

For each dataset, either synthetic or real, we have first applied the linear SVM classifier implemented in the scikit-learn package of
Python, equipped with a 10-fold cross validation grid-search aimed at model selection. This has allowed us to obtain the appropriate
4
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n

p

Table 1
Details on the synthetic datasets used to test the sparse evasion model.
Dataset class_sep 𝑚 𝑛 ‖𝑤′

‖0 wellc misc

1 0.5 150 10 10 131 19
2 0.5 150 30 30 129 21
3 0.5 300 10 10 224 76
4 0.5 300 30 30 241 59
5 1.0 150 10 10 146 4
6 1.0 150 30 30 144 6
7 1.0 300 10 10 273 27
8 1.0 300 30 30 282 18

Table 2
Details on the real datasets used to test the sparse perturbation model.
Dataset 𝑚 𝑛 ‖𝑤′

‖0 wellc misc

australian 690 14 12 593 97
breast 683 10 10 660 23
diabetes 768 8 8 596 172
heart 270 13 13 230 40
ionosphere 351 34 33 319 32
sonar 208 60 60 190 18
splice 1000 60 60 818 182

value of the hyper-parameter 𝐶, which in turn has been utilized on each entire dataset, giving us the separating hyperplane with
ormal 𝑤′ ∈ R𝑛 as well as the list of well-classified and misclassified points.

For both models (7) and (8) we have adopted the DCDA algorithm proposed in [40], which is designed for unconstrained DC
roblems. Therefore, both of them have been reformulated as unconstrained problems by constraints penalization.

In calculating the 𝓁0 pseudo-norm of any vector 𝑥, we assume equal to zero any component 𝑥𝑖 satisfying the condition:
|𝑥𝑖|
‖𝑥‖1

< 10−4. (9)

4.1. Numerical results for the sparse evasion model

In this subsection we report the numerical results obtained by applying the sparse perturbation model (7) on the synthetic and
real datasets.

In Tables 1 and 2 are reported the dimension of both the synthetic and real datasets, together with the 𝓁0 pseudo-norm of 𝑤′,
the total number of well-classified points (wellc) and misclassified points (misc) by the linear SVM. For the synthetic datasets the
indicator (class_sep) is reported too.

For each dataset we have applied the sparse perturbation model (7) to each well-classified sample in  . We have adopted
different values of 𝑘, the target number of sample components to be perturbed, letting 𝑘 range between 50% and 100% of 𝑛. As
mentioned before, we have penalized also the linear constraint 𝑦𝑗𝑤⊤𝛿𝑗 ≥ 𝑦𝑗𝜌𝑗 , by introducing the penalty parameter 𝛽 > 0, ∀𝑖. We
have considered a tuning grid for both 𝛽 and 𝜎, in particular 𝛽 ∈ {1, 1.5,… , 20} and 𝜎 ∈ {0.05, 0.1} ∪ {0.5, 1,… , 5}. For evaluation
purposes we have considered the following indexes:

- the average ratio of the 𝓁∞ norm of the optimal perturbation 𝛿∗𝑗 and that of the sample, ‖𝑥𝑗‖∞:

1
𝗐𝖾𝗅𝗅𝖼

∑

𝑗

‖𝛿∗𝑗 ‖∞
‖𝑥𝑗‖∞

, (10)

which shows how small the perturbation is, on average, w.r.t the perturbed sample;
- the average 𝓁0 pseudo-norm of 𝛿∗𝑗 , calculated according to (9), to evaluate how much the 𝓁0 pseudo-norm of the perturbation

differs from the target value 𝑘;
- the average relative violation of both the classification and the 𝑘-norm constraints of problem (6), indicated as 𝑠(1)𝑗 and 𝑠(2)𝑗 ,

respectively. This indicator is useful to evaluate the effectiveness of our penalty approach to problem (6). For the classification
constraints 𝑦𝑗𝑤⊤𝛿𝑗 ≥ 𝑦𝑗𝜌𝑗 we report also 𝑠(1)𝑚𝑎𝑥, the maximum value of the violation.

For each dataset we have selected the best setting of the tuning parameters 𝛽 and 𝜎. The results are reported in Tables 3 and 4,
for the synthetic and the LIBSVM datasets, respectively.

To evaluate the results, we observe first that the average percentage classification error 𝑠(1)𝑗 is below 1% in 79 out of a total of
89 cases (both synthetic and real datasets). As for 𝑠(2)𝑗 , the average percentage error in the 𝑘-norm constraints, we observe that in
general, as expected, it decreases when 𝑘 increases. In fact this phenomenon accounts for the tradeoff between small perturbations
and severe sparsity constraints, associated to small values of 𝑘.

The results indicate the effectiveness of the 𝓁0 pseudo-norm approach to ensure sparse adversarial perturbations. As expected,
the more restrictive is the sparsity requirement, the bigger is the infinity norm of the perturbation.
5
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Table 3
Results obtained by the sparse perturbation model on synthetic datasets generated using the scikit-learn package
for Python.

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑘 Avg. ‖𝛿∗𝑗 ‖∞
‖𝑥𝑗‖∞

Avg. ‖𝛿∗𝑗 ‖0 Avg. 𝑠(1)𝑗 (%) max 𝑠(1)𝑗 (%) Avg. 𝑠(2)𝑗 (%)

1
5 0.89 4.98 0.00015 0.00370 0.0
6 0.82 5.93 0.00203 0.14909 0.03
7 0.68 7.02 0.00037 0.02838 0.02

𝛽 = 5 8 0.67 7.88 0.00452 0.54300 0.04
𝜎 = 1 9 0.63 8.58 0.00133 0.15409 0.03

10 0.61 9.29 0.00272 0.27751 0.0

2
15 0.45 16.25 0.08187 1.70317 6.05
18 0.37 20.05 0.04667 1.86666 5.81
21 0.35 21.43 0.55308 11.58854 3.41

𝛽 = 5 24 0.38 24.55 2.79404 29.86817 3.21
𝜎 = 0.5 27 0.42 25.80 4.00520 49.43933 1.27

30 0.49 25.04 3.22775 65.55182 0.0

3
5 0.65 5.04 0.00460 0.68758 0.03
6 0.59 6.00 0.00315 0.09290 0.03
7 0.52 6.88 0.00176 0.08784 0.02

𝛽 = 5 8 0.48 7.80 0.00448 0.55922 0.01
𝜎 = 1 9 0.45 8.79 0.00381 0.67791 0.0

10 0.42 9.46 0.00109 0.17895 0.0

4
15 0.40 16.86 0.06208 2.64140 5.90
18 0.33 20.16 0.27654 9.89262 5.73
21 0.30 21.88 0.20773 10.40370 3.59

𝛽 = 5 24 0.26 25.64 0.32443 13.79725 3.40
𝜎 = 0.5 27 0.26 27.48 0.58900 15.33243 1.27

30 0.27 29.39 0.86579 17.16624 0.0

5
5 0.82 5.01 0.01299 0.58852 0.05
6 0.74 5.99 0.00245 0.09832 0.02
7 0.69 6.85 0.00207 0.09623 0.03

𝛽 = 5 8 0.58 7.79 0.00053 0.03778 0.01
𝜎 = 1.5 9 0.57 8.62 0.00141 0.08188 0.03

10 0.56 8.97 0.00304 0.37367 0.0

6
15 0.53 16.05 0.06267 2.02768 4.78
18 0.51 20.36 0.06299 4.55998 5.83
21 0.41 21.85 0.06613 2.03794 3.55

𝛽 = 5 24 0.45 25.24 0.85427 24.51329 3.29
𝜎 = 0.5 27 0.44 26.25 1.00030 19.52448 1.48

30 0.56 26.68 2.50319 54.62499 0.0

7
5 0.77 4.91 0.00209 0.13033 0.03
6 0.70 5.75 0.00272 0.15844 0.02
7 0.65 6.67 0.00293 0.35313 0.02

𝛽 = 5 8 0.58 7.55 0.00119 0.16090 0.01
𝜎 = 1 9 0.58 8.22 0.01430 0.80727 0.01

10 0.56 8.73 0.00145 0.18044 0.0

8
15 0.44 14.89 0.09823 1.80670 3.98
18 0.43 18.59 0.55711 10.30213 4.60
21 0.42 21.99 1.65538 20.95362 4.52

𝛽 = 5 24 0.37 24.86 2.63614 20.07741 3.02
𝜎 = 0.5 27 0.36 26.65 4.18073 25.68798 1.42

30 0.35 26.48 3.73799 28.19092 0.0

4.2. Numerical results for the poisoning model

In this subsection we report the numerical results obtained by applying the classifier perturbation model (8) to the synthetic and
eal datasets described in Tables 1 and 2.

Each dataset has been randomly split into manipulated and non manipulated samples. The percentage of the former ones is
etermined by the parameter 𝑝 selected in the range {0.1, 0.3, 0.5}. In order to use the DCDA software [40], we have penalized the

norm-constraints ‖𝛿𝑖‖2 ≤ 𝜃𝑖 and ‖𝛿𝑙‖2 ≤ 𝜃𝑙 using the same penalty parameter 𝜀. Moreover, for all 𝑖 ∈ 𝐼𝑀 and 𝑙 ∈ 𝐿𝑀 , we have
chosen 𝜃𝑖 and 𝜃𝑙 as

𝜃𝑖 = 𝜃‖𝑎𝑖‖
2
2, 𝜃𝑙 = 𝜃‖𝑏𝑙‖

2
2

lso in this case we have adopted a parameter grid. In particular we have taken

• 𝐶 ∈ {10−2, 10−1, 101, 102},
6
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Table 4
Results obtained by the sparse perturbation model on real datasets taken from the LIBSVM repository.

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑘 Avg. ‖𝛿∗𝑗 ‖∞
‖𝑥𝑗‖∞

Avg. ‖𝛿∗𝑗 ‖0 Avg. 𝑠(1)𝑗 (%) max 𝑠(1)𝑗 (%) Avg. 𝑠(2)𝑗 (%)

australian
7 7.16 8.00 0.00010 0.00025 6.55
8 6.95 9.00 0.0 0.0 5.72
10 6.31 11.00 0.0 0.0 5.02

𝛽 = 5 11 6.81 12.00 0.0 0.0 4.60
𝜎 = 0.05 13 6.43 13.52 0.00043 0.00964 2.09

14 5.68 14.00 0.00186 0.08016 0.0

breast
5 2.76 4.87 0.02008 6.27529 0.05
6 2.67 5.52 0.09136 4.67346 0.05
7 2.21 6.86 0.01806 5.64580 0.05

𝛽 = 8 8 2.29 7.55 0.02266 0.94199 0.06
𝜎 = 5 9 2.60 8.07 0.00815 2.39941 0.04

10 1.25 9.34 0.70987 23.45253 0.0

diabetes 4 1.01 4.04 0.01188 3.53105 0.03
5 1.55 5.07 0.00288 1.30048 0.03

𝛽 = 10 6 1.26 6.00 0.00125 0.76304 0.02
𝜎 = 5 7 0.97 6.97 0.01063 1.68377 0.0

8 0.84 7.98 0.00287 0.73366 0.0

heart
6 2.96 6.12 0.00420 0.34518 0.09
8 2.51 8.17 0.00148 0.14296 0.17
9 2.35 8.93 0.00090 0.11371 0.07

𝛽 = 5 10 2.29 9.50 0.00020 0.02716 0.06
𝜎 = 0.5 12 1.98 11.76 0.00019 0.01428 0.03

13 1.84 12.54 0.00099 0.20321 0.0

ionosphere
17 2.92 20.75 0.33392 14.71793 6.86
20 2.63 22.82 0.15472 21.14294 4.93
24 2.42 25.84 0.00619 0.58580 1.27

𝛽 = 10 27 2.65 28.25 0.0 0.0 0.60
𝜎 = 3 31 2.37 31.13 0.0 0.0 0.10

34 2.22 33.95 0.0 0.0 0.0

sonar
30 2.38 31.55 0.03283 0.85168 2.77
36 2.67 36.73 0.07780 15.65649 2.09
42 2.30 42.17 0.07780 15.65649 0.61

𝛽 = 20 48 2.30 48.13 0.07780 15.65649 0.77
𝜎 = 5 54 2.30 54.01 0.0 0.0 0.11

60 1.43 60.00 0.01831 0.52649 0.0

splice
30 1.84 40.67 3.79595 39.45041 18.88
36 1.63 37.09 0.10904 22.65131 2.88
42 1.50 42.61 0.00026 0.25964 1.88

𝛽 = 4.5 48 1.41 48.96 0.30414 12.83523 1.57
𝜎 = 1 54 1.42 55.01 0.67063 11.42268 1.11

60 1.43 59.30 0.65001 10.18288 0.0

• 𝐶2 ∈ {10−1, 101, 102} ∪ {1, 3, 5, 30, 50, 80},
• 𝜃 ∈ {10−2, 10−1, 101, 102},
• 𝜀 ∈ {10−2, 10−1, 101, 102}.

We have considered the following indexes involving the original hyperplane (𝑤′, 𝛾 ′) and the solution (𝑤∗, 𝛾∗) to problem (8)
hich shows the quality of the solution to the optimization problem:

- the absolute value of the scalar product of the optimal normal 𝑤∗ and that of the original hyperplane 𝑤′ (∣ 𝑤∗ ⋅𝑤′ ∣);
- the cosine of the angle 𝜑 between 𝑤∗ and 𝑤′ (cos(𝜑));
- The average relative violation of the constraints of problem (8), indicated with 𝐴𝑣𝑔 𝑠𝑖 and 𝐴𝑣𝑔 𝑠𝑙, respectively.

The first two indexes provide information on the position of the poisoned hyperplane 𝑤∗ with respect to the original hyperplane
′.

The following indexes, instead, are defined by considering also the hyperplane (�̃�, �̃�) obtained by training SVM on the dataset
̃ which allow to estimate the effectiveness of our poisoning strategy:

- the classification accuracies (in percentage) obtained on the non manipulated points with respect to the original hyperplane
𝑤′ (𝐴𝑐𝑐𝑛𝑚𝑤′ ) and the hyperplane �̃� (𝐴𝑐𝑐𝑛𝑚�̃� ) obtained by training SVM on the dataset ̃ ;

- the euclidean norm of the difference between �̃� and 𝑤∗ (‖�̃� − 𝑤∗
‖), which measures the variation between the hyperplane

̃ ∗
7
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Table 5
Results obtained by the classifier perturbation model on synthetic datasets generated using the scikit-learn package
for Python.
Dataset 𝑝 |𝑤∗ ⋅𝑤′

| cos(𝜑) Avg. 𝑠𝐼 Avg. 𝑠𝐿 𝐴𝑐𝑐𝑛𝑚𝑤′ 𝐴𝑐𝑐𝑛𝑚�̃� ‖�̃� −𝑤∗
‖

1
0.05 0.0 0.0 0.0 0.0 100.00 71.40 0.266
0.10 0.0 −0.0 0.0 0.0 93.30 73.30 1.141
0.15 0.0 0.0 0.0 0.0 95.50 81.80 0.828

2
0.05 0.0 0.0 0.0 0.0 85.70 71.40 0.534
0.10 0.0 −0.0 0.0 0.0 86.70 86.70 0.878
0.15 0.0 −0.0 0.0 0.0 90.90 72.70 0.564

3
0.05 0.0 0.0 0.185 0.133 80.00 80.00 0.706
0.10 0.0 −0.001 0.004 0.0 80.00 56.69 0.809
0.15 0.0 −0.001 0.0 0.0 82.19 64.40 0.555

4
0.05 0.001 −0.002 0.0 0.0 86.70 60.00 0.470
0.10 0.0 0.0 0.0 0.0 80.00 63.30 0.665
0.15 0.0 −0.0 0.0 0.0 77.80 66.70 0.818

5
0.05 0.0 0.0 0.0 0.0 100.00 71.40 0.375
0.10 0.0 −0.0 0.0 0.0 100.00 80.00 0.829
0.15 0.0 −0.001 0.0 0.0 100.00 81.80 0.536

6
0.05 0.0 0.001 0.0 0.016 100.00 71.40 0.754
0.10 0.0 0.0 0.0 0.0 100.00 66.70 1.385
0.15 0.0 0.0 0.0 0.0 100.00 77.30 0.612

7
0.05 0.0 0.0 0.0 0.0 93.30 80.00 0.689
0.1 0.0 0.0 0.0 0.0 90.00 73.30 0.584
0.15 0.0 0.001 0.0 0.0 93.30 77.80 1.056

8
0.05 0.0 0.0 0.0 0.0 93.30 66.70 0.561
0.1 0.0 −0.001 0.0 0.0 93.30 73.30 0.632
0.15 0.0 −0.0 0.0 0.008 91.10 68.89 0.915

Table 6
Results obtained by the classifier perturbation model on real datasets taken from the LIBSVM repository.
Dataset 𝑝 |𝑤∗ ⋅𝑤′

| cos(𝜑) Avg. 𝑠𝐼 Avg. 𝑠𝐿 𝐴𝑐𝑐𝑛𝑚𝑤′ 𝐴𝑐𝑐𝑛𝑚�̃� ‖�̃� −𝑤∗
‖

australian
0.05 0.003 −0.001 0.0 0.0 76.50 52.90 1.376
0.10 0.004 −0.005 0.0 0.0 81.20 50.70 0.298
0.15 0.002 −0.003 0.0 0.0 78.60 53.40 0.248

breast
0.05 0.0 −0.001 0.0 0.006 91.20 64.70 0.252
0.10 0.0 −0.0 0.001 0.005 94.10 61.80 0.311
0.15 0.0 0.0 0.0 0.0 96.10 62.70 0.231

diabetes
0.05 0.001 −0.0 1.582 1.624 81.60 63.20 1.184
0.10 0.0 0.0 31.150 43.990 80.30 69.69 1.456
0.15 0.003 0.001 1.831 1.801 79.10 67.80 0.772

heart
0.05 0.0 −0.0 0.0 0.0 92.30 53.80 0.774
0.10 0.0 −0.0 0.042 0.060 92.60 59.30 0.438
0.15 0.0 0.0 0.0 0.0 92.50 57.49 0.597

ionosphere
0.05 0.001 0.0 0.024 0.010 94.10 64.70 0.634
0.10 0.0 −0.0 0.0 0.0 91.40 74.30 0.430
0.15 0.0 0.0 0.380 0.151 94.19 88.50 3.059

sonar
0.05 0.001 −0.0 0.0 0.0 100.00 50.00 0.305
0.10 0.0 0.0 0.002 0.0 100.00 85.00 1.304
0.15 0.0 −0.0 0.012 0.003 100.00 48.40 0.431

splice
0.05 0.0 −0.0 0.0 0.0 86.00 54.00 0.354
0.10 0.001 −0.001 0.146 0.0 86.00 53.00 1.470
0.15 0.001 0.001 0.193 0.216 86.70 55.30 0.701

The results are reported in Tables 5 and 6 and in Tables 7 and 8 we have reported the optimal values for the hyper-parameters
1, 𝐶2, 𝜃 and 𝜀 used for each dataset.

The Tables 5 and 6 show that, for both synthetic and real datasets, the constraint violation is negligible (apart from the Diabetes
ataset). The new separating hyperplane is almost orthogonal to the one provided by the SVM model. Moreover, the accuracy
btained on the non manipulated points with respect to the new hyperplane (�̃�, �̃�) is significantly lower than the one obtained with

respect to the hyperplane (𝑤′, 𝛾 ′). Such poisoning effect, as expected, grows with 𝑝, the percentage of manipulated points. In Table 9,
finally, we have reported, for the synthetic datasets, the average accuracy loss (in percentage) on the non manipulated points for
every value of the parameter 𝑝 we have considered. This table shows that, on average for the synthetic datasets, there is a loss in
accuracy for the non manipulated points between 17% and 20%.
8
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Table 7
Optimal hyper-parameters found for the classifier perturbation model on synthetic datasets.
Dataset 𝑝 𝐶1 𝐶2 𝜃 𝜀

1
0.05 0.01 1.0 0.10 0.10
0.10 0.01 100.0 0.10 0.10
0.15 0.01 100.0 0.10 0.10

2
0.05 0.01 3.0 0.10 0.10
0.10 0.01 30.0 100.00 0.01
0.15 0.01 50.0 10.00 0.01

3
0.05 0.01 5.0 0.01 0.01
0.10 0.01 80.0 0.10 0.01
0.15 0.01 3.0 0.10 0.10

4
0.05 0.01 80.0 10.00 0.01
0.10 0.01 50.0 0.01 0.10
0.15 0.01 100.0 0.10 0.10

5
0.05 0.01 50.0 0.01 0.10
0.10 0.01 50.0 0.01 0.10
0.15 0.01 30.0 0.10 0.10

6
0.05 0.01 80.0 0.01 0.01
0.10 0.01 50.0 10.00 0.10
0.15 0.01 80.0 0.10 0.01

7
0.05 0.01 80.0 0.10 0.01
0.10 0.01 30.0 0.10 0.10
0.15 0.01 100.0 10.00 0.01

8
0.05 0.01 80.0 10.00 0.01
0.10 0.01 80.0 0.10 0.10
0.15 0.01 30.0 0.01 0.01

Table 8
Optimal hyper-parameters found for the classifier perturbation model on real datasets.
Dataset 𝑝 𝐶1 𝐶2 𝜃 𝜀

australian
0.05 0.01 80.0 10.00 0.01
0.10 0.01 80.0 0.10 0.10
0.15 0.01 80.0 0.10 0.10

breast
0.05 0.01 100.0 0.01 0.10
0.10 0.01 100.0 0.01 0.10
0.15 0.01 100.0 100.00 0.01

diabetes
0.05 0.01 3.0 0.10 0.01
0.10 0.10 80.0 0.01 0.01
0.15 0.01 80.0 0.10 0.01

heart
0.05 0.01 100.0 0.10 0.10
0.10 0.01 100.0 0.10 0.01
0.15 0.01 5.0 10.00 0.01

ionosphere
0.05 0.01 30.0 0.01 0.10
0.10 0.01 80.0 10.00 0.01
0.15 0.01 50.0 0.10 0.01

sonar
0.05 0.01 50.0 10.00 0.01
0.10 0.01 100.0 0.10 0.01
0.15 0.01 100.0 0.10 0.01

splice
0.05 0.01 100.0 0.10 0.01
0.10 0.10 30.0 0.10 0.01
0.15 0.01 30.0 0.01 0.01

Table 9
Average accuracy loss on non manipulated points for every value
of 𝑝.
𝑝 Avg. Accuracy loss

0.05 20.83
0.10 18.75
0.15 17.42
9
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Table 10
Details on the large real datasets we have considered.
Dataset 𝑚 𝑛 ‖𝑤′

‖0 wellc misc

MP_carcinoma 36 7457 6863 36 0
MP_DLBCL 77 7129 6864 77 0
MP_tumor1 60 7129 6936 53 7

Table 11
Results obtained by the classifier perturbation model on large real datasets.
Dataset 𝑝 |𝑤∗ ⋅𝑤′

| cos(𝜑) Avg. 𝑠𝐼 Avg. 𝑠𝐿 𝐴𝑐𝑐𝑛𝑚𝑤′ 𝐴𝑐𝑐𝑛𝑚�̃� ‖�̃� −𝑤∗
‖

MP_carcinoma
0.05 0.0 −0.001 0.0 0.0 100.00 0.0 0.843
0.10 0.0 −0.006 0.0 0.0 100.00 66.70 0.549
0.15 0.0 −0.005 0.0 0.0 100.00 60.00 0.665

MP_DLBCL
0.05 0.0 0.0 0.0 0.0 100.00 66.70 1.779
0.10 0.002 −0.002 0.0 0.0 100.00 57.09 3.163
0.15 0.009 0.016 0.0 0.0 100.00 54.50 2.397

MP_tumor1
0.05 0.0 0.001 0.0 0.0 100.00 100.00 0.416
0.10 0.0 0.0 0.0 0.0 100.00 66.70 0.581
0.15 0.0 0.001 0.0 0.0 100.00 66.70 0.457

Table 12
Optimal hyper-parameters found for the classifier perturbation model on large real datasets.
Dataset 𝑝 𝐶1 𝐶2 𝜃 𝜀

MP_carcinoma
0.05 0.01 10.0 10.0 0.01
0.10 0.01 100.0 10.0 0.10
0.15 0.01 80.0 0.1 0.10

MP_DLBCL
0.05 0.01 80.0 100.0 0.10
0.10 0.01 5.0 10.0 0.01
0.15 0.01 3.0 100.0 0.10

MP_tumor1
0.05 10.00 3.0 0.1 0.01
0.10 0.01 30.0 10.0 0.10
0.15 0.01 5.0 10.0 0.10

4.3. Some results on large datasets

We have tested our adversarial approach also on some high dimension benchmark datasets (large number of features and
elatively small number of samples) [31,43]. The details are given in Table 10.

We have focussed only on the poisoning model. In fact the sparse evasion model is not very much significant for the datasets
nder consideration, where the separating hyperplane in the SVM model is naturally sparse [31,43].

We report the results in Table 11, while in Table 12 the best hyper-parameters found after the grid-search phase are given.
The results obtained confirm those related to smaller dimension datasets The hyperplane 𝑤∗ is almost perpendicular to the initial

ne 𝑤′, the average constraints violation is zero and there is a significant decrease in the accuracy score on the non manipulated
oints.

. Conclusions

We have introduced two models (evasion and poisoning, respectively) for adversarial learning in the SVM framework. Both
odels require solution of nonconvex and nonsmooth optimization problems of the DC type. The results indicate that adversarial
odelling can benefit from the use of such advanced optimization techniques.

ata availability

The data used are open source.
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