
symmetryS S

Article

Symmetry and Symmetry Breaking in Physics: From Geometry
to Topology

Luciano Boi

����������
�������

Citation: Boi, L. Symmetry and

Symmetry Breaking in Physics: From

Geometry to Topology. Symmetry

2021, 13, 2100. https://doi.org/

10.3390/sym13112100

Academic Editors: Ignazio Licata and

Roberto Passante

Received: 24 September 2021

Accepted: 20 October 2021

Published: 5 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

École des Hautes Études en Sciences Sociales, Centre de Mathématique (CAMS), 54, bd Raspail,
75006 Paris, France; boi.luciano@ehess.fr

Abstract: Symmetry (and group theory) is a fundamental principle of theoretical physics. Finite
symmetries, continuous symmetries of compact groups, and infinite-dimensional representations
of noncompact Lie groups are at the core of solid physics, particle physics, and quantum physics,
respectively. The latter groups now play an important role in many branches of mathematics.
In more recent years, we have been faced with the impact of topological quantum field theory
(TQFT). Topology and symmetry have deep connections, but topology is inherently broader and
more complex. While the presence of symmetry in physical phenomena imposes strong constraints,
topology seems to be related to low-energy states and is very likely to provide information about
the different dynamical trajectories and patterns that particles can follow. For example, regarding
the relationship of topology to low-energy states, Hodge’s theory of harmonic forms shows that the
zero-energy states (for differential forms) correspond to the cohomology. Regarding the relationship
of topology to particle trajectories, a topological knot can be seen as an orbit with complex properties
in spacetime. The various deformations or embeddings of the knot, performed in low or high
dimensions, allow defining different equivalence classes or topological types, and interestingly, it
is possible from these types to study the symmetries associated with the deformations and their
changes. More specifically, in the present work, we address two issues: first, that quantum geometry
deforms classical geometry, and that this topological deformation may produce physical effects that
are specific to the quantum physics scale; and second, that mirror symmetry and the phenomenon of
topological change are closely related. This paper was aimed at understanding the conceptual and
physical significance of this connection.

Keywords: symmetry; breaking symmetry; geometry; topology; physics; spacetime; deformation;
dynamics

1. Introductory Remarks

“The history of physics is not only a sequence of experimental discoveries and ob-
servations, followed by their mathematical description; it is also a history of concepts.”
W. Heisenberg.

The concept of symmetry has attracted philosophers and mathematicians since the
ancient time [1]. The contributions of Plato [2] and Kepler have been extremely fruitful,
and their ideas concerning the key function of symmetry in the ordering of the real world
are still relevant today. The work of Kepler deserves special comment. He searched for the
constitution of physical world. He indubitably believed that the architecture of the cosmos
must fulfill certain symmetries. The key to this architecture resided not in numbers but
in geometry. Whereas for Galilei, elliptical orbits broke the symmetry of the cosmos [3],
for Kepler, the consideration of these orbits paved the way to the discovery of “hidden”
deeper symmetries. For him, the veracity of elliptical orbits was a consequence of necessary
physical conditions and of laws of harmony [4,5]. With the scientific revolution in the sixth
century, the concept of symmetry became the core of a new vision of the universe and
of nature [6–9]. This conception strengthened even more with the discovery of relativity
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theory, both special and general, at the beginning of the twentieth century. However, later
on, the fundamental role played by the phenomenon of spontaneous symmetry breaking
(SSB) in the organization and evolution of natural and living phenomena was recognized
(we refer to [10–17] for a detailed presentation of the subject).

A physical system is symmetric if the system remains unchanged when some transfor-
mations are applied to it. The key concept behind the fundamental equations of physics
is conservation, as defined in the “conservation laws”. For an isolated or quasi-isolated
system (i.e., in absence of external forces), the most basic physical conserved quantities
are energy (which transforms remaining constants), linear momentum (i.e., the product of
mass and vector velocity), angular momentum (of an object in circular motion), and electric
charge (a very important property of matter when affected by an electromagnetic field). It
must be specified, however, that the momentum for a massless particle, like photon, is not
the product of the mass and the velocity (which is 0). This is quite relevant for the theory
of special relativity, wherein the concept of relative mass (defined by Einstein in 1905) and
the related mass–energy equivalence explain why gravity may have an influence on light
(photons). Special relativity proved that a photon does have relativistic mass proportional
to its momentum. Furthermore, De Broglie’s relation, concerning quantum theoretical
wave–particle duality, yields (assuming that m is relativistic mass) the important result that
photons have mass inversely proportional to their wavelength.

The symmetry principle plays a fundamental role in mathematics and in the natural
sciences, particularly in physics. According to this principle, the group of symmetries
governing the causes of a physical system form a subgroup belonging to the group of
symmetries resulting from the effects. Differently stated, the effects can have a larger
group of symmetries than the causes. However, these principles, in many situations, are
contradicted by the phenomenon of “spontaneous symmetry breaking”, which means that
there are physical systems where the effects simply have less symmetry than the cause. In
other words, the actual physical world is less symmetric than the fundamental equations
of physics. Mathematically, this can be expressed by saying that the symmetries that these
equations obey are more general than the symmetries of the physical solutions of the
equations when spontaneous symmetry breaking occurs. This claim should, however, be
completed by saying that the spontaneous breaking symmetry mechanism is often strictly
connected with the dynamical rearrangement of symmetry. For example, in quantum field
theory, the symmetry at level of asymptotic fields is the group contraction of the symmetry
at level of interacting fields (same number of generators). For more details, see [18–21].

Spontaneous symmetry breaking occurs in superconductivity, the electroweak interac-
tion, early universe formation (as predicted by inflationary cosmology), and many other
physical contexts. Well-known examples of this mechanism of breaking-symmetry are the
phase transition from a liquid to a crystal and the violation by the “standard model” of the
symmetry between matter and antimatter.

2. The Groups of Minkowskian and Einsteinian Spacetimes

Let us now present the most important conceptions of space–time by comparing them
with respect to their respective groups of symmetries. The relation between Minkowskian
and Einsteinian spacetimes mirrors that between Galilean and Newtonian spacetimes
(see [22–24]). Thus, Minkowskian spacetime has a unique description (for example, its
geodesic structure is the same as that of R4, the set of time-like geodesics corresponding to
geodesics in R4 making an angle less than 45◦ with some fixed direction), and it does not
describe gravitation. It has a ten-parameter transitive symmetry group of motion, namely,
the Poincaré (i.e., the inhomogeneous Lorentz) group. According to Stachel [25], “Any
set of dynamical variables must form a representation of this group and obey dynamical
equations that transform appropriately under it. More precisely, the set of dynamical
variables at each point must form a representation space of the homogeneous Lorentz
group. For fields, the dynamical equations must guarantee that these representations
together form a representation of the inhomogeneous Lorentz (Poincaré) group. Theories
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obeying these constraints are said to be Lorentz- or Poincaré-invariant” (for a detailed
presentation see [26]).

On the other hand, many Einsteinian spacetimes exist, corresponding to the various
inequivalent gravitational fields (see [27]). As with the Newtonian spacetime, it is the
tidal gravitational force that has physical significance, this being present when there is a
gradient of the “gravitational acceleration field”. This tidal force is described in terms of
deviations of the intrinsic geodesic structure from that of Minkowskian spacetime, that
is to say, by the curvature of the Riemann–Einstein spacetime. Einstein’s field equations
then described how this spacetime curvature is related to the density of matter—that is, of
stress–energy–momentum (see below). Finally, the metric of spacetime must differ, in a
gravitational field, from the ordinary flat spacetime form. In general relativity, one is led
to look for a theory which agrees locally (approximately) with special relativity, but has,
instead of the integrable, affine connection of Minkowski spacetime, a nonintegrable linear
connection with curvature capable of representing the combined inertial–gravitational
field.

The central feature of general relativity is that it furnished, for the first time, a unified
description (and explanation) of space, time, and gravitation that is essentially geometrical
in nature. Indeed, the gravitational field is represented by a (symmetric) connection Γ
(which is a geometrical object), and the equations relating the gravitational field to its
material source (i.e., to matter) can be expressed as a relation between the contracted
curvature tensor Rl

ijk of Γ, so that the second law of dynamics can be formulated in terms
of a covariant derivative with respect to Γ. Resulting from the first, another central feature
of general relativity is the principle of general covariance, a constraint on the dynamical
equations permitted by the theory. The symmetry group acting (locally) on the four-
dimensional spacetime manifold, on which all physical fields are defined, consists of all
diffeomorphisms (sufficiently smooth point transformations of the manifold); this group
leaves invariant a general quadratic form (the metric) characterizing the manifold.

The influence of general relativity in twentieth-century mathematics has been very
relevant. It gave a considerable boost to the growth of differential geometry as a mathemat-
ical subject, which developed into one of the most fruitful branches of mathematics, with
applications in many other areas [28]. These developments immediately led, beginning in
the 1920s, to generalizations by Levi-Civita, Schouten, Veblen, E. Cartan, and Eisenhart. It
soon became clear that in the applications of Riemannian geometry to relativity, Levi-Civita
parallelism and not the Riemann metric itself plays the crucial role. In his famous book
Raum, Zeit, Materie, published in 1918, H. Weyl introduced the notion of an affine connec-
tion. This is a structure, not necessarily Riemannian, for which parallelism and covariant
differentiation are defined with the desired properties. Weyl’s affine connections are sym-
metric, or without torsion. A definitive treatment of affine connections, together with a
generalization to connections with torsion, was given by Elie Cartan in his fundamental
paper, “Sur les variétés à connexion affine et la théorie de la relativité générale” ([29]; see
also [30]).

On this subject, the theoretical physicist Tullio Regge made the interesting following
remarks [31]: “There is no difficulty in writing the modern (gauge) form of electromag-
netism (with the compact group SO(1) or U(1)) on a Riemannian manifold and it is possible
to write, à la Cartan, general relativity as a SO(3, 1) gauge theory. Besides, it may be useful
to recall that Cartan was largely responsible for the introduction of the concept of torsion in
Physics (see [30,32]). Torsion remain a very interesting idea. We need to use it, even by just
declaring it to vanish, if we want to write general relativity as a gauge theory in which all
fields and not only the spin connection appears as gauge potentials. The interesting feature
of general relativity is that the associate curvature of the vierbein, i.e., torsion, vanishes as
a consequence of the variational principle of Hilbert–Einstein–Cartan. And in fact, the
Lagrangian density is not invariant under all gauge transformations of the Poincaré group
but only under those of the Lorentz subgroup. Although nature has prepared the gauge
potentials for the full group it ends up by requiring invariance under a subgroup only. A
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world with torsion would appear inescapable if we have around enough density of high
spin particles which acts as sources, but this density seems at the moment well below the
limit of observability. Regards the kind of space in which torsion is supposed to appear,
one can remark that it would not be any more a Riemannian manifold or, rather, none of the
Riemannian structures existing on the manifold would be directly related to Physics and
the theory would not be a geometrical theory in the sense envisaged by Einstein. One could
yet consider general relativity as GL(4, R) theory with the Christoffel connection playing
the role of a Yang–Mills potential. If the torsion vanishes it follows that the Christoffel
symbol is symmetrical into the 2 lower indices whose role is however quite different. The
first index is a GL(4, R) gauge index, the second labels instead the differentials of spacetime.
We may relate them because of the accidental and marvelous fact that the Jacobian group
of derivatives on a differentiable manifold is isomorphic to GL(4, R) and that we use the
same indexing for differentials and vectors in GL(4, R). Once the symmetry is established
the theory becomes almost by definition geometrical. If there is no symmetry but we can
control torsion by introducing suitable norms as bounds then we may still speak of an
almost geometrical theory whose exact mathematical definition is still lacking.”

Let us recall that, geometrically, an affine connection is a family of affine spaces, the
fibers parametrized by a space, the base space, such that the family is locally trivial and
that there is a law of “development” of the fibers along the curves of the base space that
preserves the latter’s linear properties. In the same vein, we can take Klein spaces as fibers
and replace the general linear group with a Lie group acting on the Klein space, with a
corresponding law of development. This structure was called by Cartan a generalized space
(“espace généralisé”). In general, the connection is nonholonomic; that is, the development
depends on the curve in the base space. In other words, the space does not return to its
original position after being developed along a closed curve; the measure of the deviation
is given by the curvature of the connection. Clearly, a Klein space is itself a generalized
space, with curvature identically zero. From Cartan’s viewpoint, Riemannian space is
a generalized space with Euclidean spaces as fibers and provided with the Levi-Civita
connection (this is one of the fundamental features of physical space according to general
relativity). This settled a foundational issue in differential geometry, as we have now a
notion that includes Klein spaces, Riemannian spaces, and generalization of both.

The development in what is commonly described as non-Riemannian geometry was
accompanied by parallel development in general relativity. With special relativity for the
electromagnetic field and general relativity for the gravitational field, there was clearly a
need for a unified field theory in which the two could be combined. The first significant
step toward this theory was taken by H. Weyl in 1918 [33] in his gauge theory. Weyl
introduced a generalized space having as a group the group of homothetic transformations.
It was found to be physically untenable in any non-quantum mechanics framework. It is
now understood that his gauge group should not be the noncompact group of homothetic
transformations but the compact circle group. Weyl’s theory is in fact based on the geometry
of a circle bundle over a Lorentzian manifold. Therefore, the linear differential form ϕ,
subject to the gauge transformation, can be interpreted as defining a connection in the circle
bundle, and the quadratic form ds2 can remain unaltered. In other words, Weyl’s quantum
gauge theory deals with a circle bundle or a U(1)-bundle, that is, a complex Hermitian
bundle of dimension one (for more details we refer to [34–37]).

According to Yang–Mills theory, the physical isotopic spin can be regarded essentially
as a mathematical object, namely a connection on an SU(2)-bundle [38]. Thus, we have
the first example of a gauge theory for which the group is non-Abelian (i.e., noncommuta-
tive) [17,39]. To a connection can be associated an “action” of the gauge group (see [40]).
The action taking a minimum over an SU(2)-bundle is called an instanton. An instanton
corresponds to a self-dual curvature FA (physically, the field strength tensor of gauge
theory) of a principal bundle with connection A (physically, the gauge potential). Self-dual
instantons provide a solution of the Yang–Mills equation. Let the four-dimensional sphere
S4 be the compactified model of the space R4; then there exists a topological quantum
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number k (an integer), which determine up to an isomorphism the SU(2)-bundle. Let M be a
compact oriented four-dimensional Riemannian manifold, and G a compact semisimple Lie
group; then Atiyah, Hitchin, and Singer (1978) proved that there exist principal G-bundles
P → M that admit smooth, irreducible self-dual connections over S4. Let P → S4 be a
principal G-bundle. A principal over S4 with simple connected structure group is classified
by an integer k, called the Pontrjagin index (for more details we refer to [41]).

In physical terms, this is the dimension of the space of instantons with topological
quantum number k > 0. Atiyah and Ward observed that the self-dual Yang–Mills fields fit
well into the Penrose twistor program. They were able to translate the problem of finding
all self-dual solutions into a problem of algebraic geometry: classifying holomorphic vector
bundles on the projective 3-space. Using results related to such classification, it has been
shown that one can then find all self-dual solutions. There is a relationship between general
relativity and instantons, which can be explained as follows. The special orthogonal group
SO(4) is locally isomorphic to the product SU(2) × SU(2). In this way, connections over
the SU(2)-bundle are uniquely determined through projection by a Riemannian metric
defined on a four-dimensional manifold (M, g). If connections are self-dual (P − FA = 0) or
anti-self-dual (P + FA = 0), we have an Einstein manifold. Every self-dual connection is a
Yang–Mills connection (for a complete treatment of the subject see [42]).

3. Some Mathematical Facts and Results

The concept of Riemannian structure presupposes that of tangent bundles over smooth
manifolds. What is needed is to start with is a definition of tangent vectors at a point
x ∈ Rn (tangent vectors are simply ordinary vectors attached to x). However, to make the
definition applicable to any manifold (using local coordinates), it is better to change it by
considering all possible maps and defining the equivalence of two such maps if and only if
the first derivatives of the corresponding functions are equal (the derivatives along local
coordinates x1, . . . , xn in Rn can serve as a coordinate system in the tangent space). Thus,
an equivalence class with respect to this equivalence relation is called a tangent vector (at
the point x). The set of all tangent vectors at a point x is called the tangent space at this
point. It turns out that the operations in the tangent space do not depend on the choice of
coordinates in Rn. The tangent space to a manifold M at a point x is defined similarly using
an arbitrary local coordinate system and is denoted by TxM. For a smooth manifold Mn,
consider the set TMn consisting of all tangent vectors at all points of Mn, i.e., elements of
TMn are pairs (x, v) such that where x ∈Mn, v ∈ TxMn. There is a natural way to introduce
a topological space (and even a smooth manifold) structure on TMn. Consider a cover
of Mn by charts Vα. For each chart, the homeomorphism ϕα: Vα→ Uα ⊂ Rn determines
a one-to-one correspondence between TVα and TUα. But TUα = Uα × Rn, since tangent
spaces at distinct points of Rn are identified by means of parallel translations. There is
a natural structure of a smooth manifold on the set TUα = Uα × Rn (and, therefore, a
topological space structure). This structure descends to TVα. On the intersections of charts
TUα, the maps are compatible (i.e., the union of these charts is a smooth atlas on TMn). The
space TMn, endowed with the natural projection TMn →Mn, is called the tangent bundle.
Each fiber of this bundle is endowed with an n-dimensional vector space structure.

Definition 1. A Riemannian metric (or Riemannian structure) on Mn is a smooth function g:
TMn → R (of class C∞) such that its restriction to any fiber TxMn is a positive definite quadratic
form (see [43,44]).

Any such form defines a symmetric bilinear form; therefore, any Riemannian structure
defines an inner product on the tangent space at any point x ∈ Mn. A quadratic form
allows one to define the length of any tangent vector; namely, the length ‖vx‖ of a vector
vx ∈ TxMn is equal to √g(vx).

Theorem 1. There is a Riemannian structure on any smooth manifold (for the proof, we refer the
reader to [44,45]).
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We need here to recall another important fact of Riemannian geometry. Any Rieman-
nian n-manifold has a Riemann curvature tensor Rijkl (working in an orthonormal basis for
the tangent space at a point). This is skew symmetric in the indices (ij) and (kl) and satisfies
the Bianchi identity:

Rijkl + Riklj + Riljk = 0 (1)

The Riemann curvature tensor R satisfies the following properties:

(a) (Symmetry) Rijkl = −Rjikl, Riljk = −Rijkl, Rijkl = Rklij;
(b) (first Bianchi identity) the sum of Rijkl over the cyclic permutation of any three indices

vanishes;
(c) (second Bianchi identity) Rijkl,h + Rijlh,k + Rijhk,l = 0, where Rijkl,h = (∇∂h R)ijkl.

(For more details on this subject and further development, we refer to [46–48]).

4. The Geometric Sources of Gauge Theory: From Weyl to Yang–Mills

In developing the theory of gravitation, Einstein started with the problem of account-
ing for the equality of inertial and gravitational mass. In order to answer to this question, it
was necessary to admit nonlinear transformations of the four coordinates of spacetime. In
Einstein’s theory of gravitation, the laws of nature obey transformations (forming a con-
tinuous group) that occur regardless of the equations governing these laws. Neighboring
points have the same coordinates, which fact corresponds to a topological order of points
in space. General relativity rests upon this fundamental principle (see [49,50]). The relation
between neighboring spacetime points in four dimensions must, in accordance with the
principle of general relativity, admit certain arbitrary continuous transformations of the
coordinates. The relation thus assumes the general form:

ds2 = gij dxi dxj where (gij = gji) (2)

gij are the functions of the coordinates xi such that g = |gij| 6= 0. They transform in a
definite way if a continuous coordinate transformation is applied. The quadratic differential
form (2) is called the Riemannian metric for n-dimensional Riemannian space, and gij is
called the metric tensor, which is a symmetric two-tensor obtained by symmetrizing the
covariant derivative of the Riemannian space.

More extensively: Let M be a manifold, and let p be a point of M. Then, TM denotes
the tangent bundle of M, and TpM is the tangent space at p. Similarly, T*M denotes the
cotangent bundle of M and T*pM is the cotangent space at p. For any vector bundle V
over M, Γ(V) denotes the vector space of smooth sections of V . A Riemannian metric on a
smooth manifold M is defined as a covariant symmetric two-tensor (. , .)p, p ∈M—a section
of the symmetrized second tensor power of the tangent bundle—such that (v, v)p > 0 for all
v Tp(M). Differently stated, a Riemannian metric is a collection of (positive) inner products
on each of the tangent spaces Tp(M) such that if X, Y are (smooth) vector fields, the function
(X, Y): M→ R, defined by taking the inner product at each point, is smooth.

According to the principle of equivalence between inertial and gravitational fields,
the gij functions describe a particular kind of gravitational field. It should be stressed
that these functions also describe the topological and metrical structural properties of the
manifold. Thus, according to general relativity, spacetime must be thought as a structural
quality of the field. gij satisfy a particular law of transformation. Mathematically speaking,
they are the components of a tensor (the Riemannian metric tensor) with the property of
symmetry, which is preserved in all transformations. It is straightforward to show that
these components of the symmetrical tensor describe the gravitational field. The system of
differential equations that can be postulated as field law for gij must confirm that the Ricci
tensor must be flat. Equation (3) holds only in vacuum. In other words, when dealing with
the vacuum case, the Einstein field equations reduce to the Ricci tensor Rij = 0.

Rij = 0, (3)
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However, the fact that there might (and in fact do) exist other fields with different
masses and other physical properties cannot be explained by symmetrical gij fields or
gravitational fields. Actually, not even the fact that only positive gravitational masses
exist can be deduced from this theory (see [31,51–53]). Therefore, a complete relativistic
field theory must be based on a field of a more complex nature, that is, a generalization
of the symmetrical tensor field, and hence of Riemannian geometry. Einstein put in a
great deal of effort in order to find concepts and general principles that would provide
a unitary explanation of the physical world. However, “Einstein never succeeded in
constructing a complete system of theoretical physics. The right path, which has led to a
more complete unification of physical forces, arose from Hermann Weyl. The main idea of
Weyl, that of gauge invariance, was of essential geometrical character. It is clear now that
its development allowed a major step in the movement of geometrization of physics, and
a deeper comprehension of the mathematical as well physical nature of spacetime” [37].
We now give an overview of this theory (see [34,35,40,54–56]) for a detailed historical and
mathematical presentation).

As aforementioned, a new advance in the search for an explication of physical forces,
essentially of geometrical nature, was accomplished by Hermann Weyl. In 1918–1919
(see [57,58]) he outlined what he called a “purely infinitesimal geometry”, “which should
know a transfer principle for length measurements between infinitely close points only,
and which should admit a conformal structure. The allusion is of course to Levi-Civita’s
parallel displacement principle in a Riemannian manifold embedded in a sufficiently
high-dimensional Euclidean space, locally given by:

ξ ′i= ξi − Γijk ξjdxk, (4)

with the dxi to be interpreted as the coordinate representation of a displacement vector
between two infinitesimally close points so that the direction vector ξi has been transferred
to ξ ′i. According to Weyl, one has to separate logically the concept of parallel displacement
from the metrics and to introduce what he called an affine connection Γ on a (differentiable)
manifold as a linear torsion-free connection. Thus, Weyl proposes a generalization of Rie-
mannian geometry which seemed to be the most natural mathematical framework for the
construction of a unified theory of gravitational and electromagnetic forces (see [40,59,60]).
This generalized Riemannian metric, a Weylian metric on a differentiable manifold M, is
given by: (i) a conformal structure on M, i.e., a class of (semi-)Riemannian metrics [g] in local
coordinates given by gij(x) or gij(x) = λ(x)gij(x), with multiplication by λ(x) > 0 (real valued)
representing what Weyl considered to be a gauge transformation of the representative of
[g], and (ii) a length connection on M, i.e., a class of differential forms ϕ in local coordinates
represented by ϕidxi, ϕidxi − d log λ—representing the gauge transformation of the repre-
sentative of j” [41]. This new infinitesimal geometry enfolded, in fact, the first formulation
of a gauge theory. The idea of gauge was introduced by Weyl in a very influential paper in
1918 [33]).

5. Symmetry as a Guiding Principle of Spacetime Geometry and Dynamics

The principle of symmetry states that the laws of nature remain invariant when some
transformation is applied to them [61]. For example, with his special principle of relativity
(1905), Einstein demonstrated that observers moving with any constant velocity perceive
the laws of nature to be the same. There are other spacetime symmetries that tell us that
the laws of nature look the same when we rotate or translate our laboratory or reset our
clocks. The “standard model” (which corresponds to the group SU(3) × SU(2) × U(1)) is
based on a set of symmetry principles, including these symmetries of spacetime and other
symmetries that require that the laws of nature take the same form when certain changes
are made in the ways that the fields of the theory are labelled (see [62,63]). The concept
of renormalizability arose from the effort in the late 1940s to make sense of the infinite
energies and reaction rates that appeared when calculations in quantum electrodynamics
were pushed beyond the first approximation (see [64,65]). Renormalization is a procedure
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in quantum field theory by which infinite or divergent parts of the theory can be changed
into a finite number of parameters, such as masses and electric charges. This procedure
is effective for weak and strong interactions in the standard model. However, it fails for
gravity because of the nonlinearities appearing in equations of general relativity.

The difference between Einstein’s special theory of relativity (1905) and Lorentz’s
theory of electrons (1909) can be expressed as follows. The goal of Lorentz’s theory of
electrons was to show the impossibility of detecting experimentally any motion relative to
an immobile æther (in other words, the impossibility of detecting the effects of the motion
of matter on the speed of light). Einstein, in contrast, took as a fundamental axiom that the
speed of light is the same to all observers. From a modern point of view, what Einstein did
was introduce a principle of symmetry—the invariance of laws of nature under changes
in the velocity of the observer—as one of the fundamental laws of nature (see [66]). Since
Einstein’s time, we have become more and more familiar with the idea that symmetry
principles of various sorts are legitimate fundamental hypotheses [67]. The “standard
model” (which achieved the unification of weak and electromagnetic interactions) is largely
based on a set of assumed symmetry principles, and string theory can also be viewed in
this way (see [68,69]). However, in the days of Lorentz and Einstein, symmetries were
generally regarded as mathematical curiosities, of great value to crystallographers but
hardly worthy to be included among the fundamental laws of nature. It is not surprising
that Lorentz was uncomfortable with Einstein’s hypothesis of the principle of relativity.

This is a very important scientific and philosophical point as well, which led to most
fundamental developments in past and current attempts to understand the structures
of spacetime as well as the ways in which these structures are embodied in physical
phenomena.

In Einstein’s general relativity theory, the principle of equivalence, a principle of local
symmetry (the invariance of the laws of nature under local changes of the spacetime coordi-
nates), dictated the dynamics of gravity, of spacetime itself. As far as the conservation laws
are concerned, their significance became evident when, as a result of the interest of Bohr’s
atomic model, the angular momentum conservation theorem became all-important. How-
ever, already in the early 1900s was established the connection between the conservation
laws and the fundamental symmetries of space and time (see [67]).

Since the turn of the twentieth century, the connection between conservation laws
and invariance principles has been generally accepted. The geometrical principles of
invariance were recognized by Poincaré first in 1906 [70], so it seemed natural to call the
group formed by these invariant properties the Poincaré group. In its generality, the relation
between symmetries and conservation laws was established by the German mathematician
Emmy Nother (see [71]). Nother’s theorem states that any symmetry of the Lagrangian
corresponds to a conserved law, and thus, there is a quantity that is constant. For example,
if the Lagrangian is independent of the location of the origin of physical system, then that
system conserves linear momentum; if it is independent of the base time, then energy is
conserved; and if it is independent of the angle of measurement, then angular momentum
is conserved.

The true physical meaning and importance of these principles were brought out only
by Einstein in his special theory of relativity (as mentioned before). Since displacements in
space and time are contained in the group, it can be said that events are correlated, which
means that they have the same form independently of where and when they occur; more
generally, the laws of nature are similar at any point and at any time in the physical world.
In a series of papers on atomic structure and molecular spectra written between 1926 and
1928, E. Wigner laid the foundation both for the application of group theory to quantum
mechanics and for the role of symmetry principles in quantum mechanics. Toward the
end of the 1930s, he turned his attention to time-dependent symmetries, invariance groups
that include time-translation invariance. He considered the Poincaré group [72], which
had not been seriously studied previously by either mathematicians or physicists, and
posed the question: what are the unitary representations of the Poincaré group, and what
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is their physical significance? The answer to these questions consisted in showing that
in relativistic quantum mechanics, Poincaré transformations were represented by faithful
representations of their covering groups, ISL(2, C); this allowed him to give a complete
classification and an explicit construction of all the irreducible representations. He then
provided a definition of an elementary particle, which according to Wigner should be
identified as an irreducible representation of the Poincaré group (see [73,74]).

The great physicist C. N. Yang [75] stressed the fact that the forces between particles
fulfill almost all of the macroscopic symmetry principles that hold for the electromagnetic
interactions. However, weak interactions violate some of these symmetries. Moreover,
some new interactions have found that govern the complex pattern of the mutual interac-
tion between the particles. Closely following Yang (see also [76]), we can group all these
symmetries into the following four classes:

(a) First, there are the spacetime symmetries, which include symmetries resulting from
relativistic invariance and symmetries resulting from reflection invariance and time-
reversal invariance. These symmetries possess a direct geometrical significance,
and they are thoroughly incorporated into the theoretical scheme that describes the
elementary particles. Nevertheless, we must take into account the possibility of
deviations from the spacetime continuum structure.

(b) Second, we have charge conjugation symmetry, which states roughly that a particle
and its antiparticle have the same mass as one another but opposite electric charge
and differences in internal quantum number (for a more precise definition, see [77]).
This is a purely quantum mechanical concept, and no geometrical concepts such
as rotational invariance enters its definition. It is related to the Dirac theory of the
electron, which can be viewed as a logical consequence of the fusion of quantum
theory with the requirement of relativistic invariance.

(c) Third, we have local internal symmetries. Currently, several conserved charges are
recognized, but isospin is not among them. Contrarily to global spacetime symmetries,
internal symmetries are invariant only in a certain region of spacetime. An internal
symmetry is a transformation acting only on the fields, therefore not transforming
spacetime points and leaving the Lagrangian and the physical results invariant [78,79].
Example of such symmetries are the U(1) gauge symmetry of Maxwell theory and the
SU(3) color symmetry of quantum electrodynamics [80].

(d) Finally, we have a class that comprises the symmetry between identical particles and
a type of symmetry called crossing symmetry that associates the reaction rates of two
processes (for instance, the relations between the amplitudes for the probability of
some collisions).

a + b→ c + d
a + d→ c + b

According to some physicists [67,75], this kind of symmetry forms a transition between
the geometrical and dynamical principles.

To complete this section, let us quote an important passage of [81]: “We notice that as
the domain of physics expands, while symmetry principles increase in number, the increase
does seem to follow interdependent and related lines. To understand the relationship and
the conceptual unification between them is a major challenge. It seems that three related
questions in this pattern of symmetry laws are particularly worth studying. The first is
that of the symmetry principle that gives rise to isotopic spin conservation. It is not clear
at all whether the isotopic spin conservation is a consequence of an isotopic spin space
rotation, or if the isotopic spin space must rather be deduced from the conservation law
itself. Another fundamental question relates to the violation of some of the symmetry
laws in the weaker interactions. It was found in the early sixties that violation of parity
conservation, which represents a spacetime symmetry concept, occurs rather generally
among the weak interactions. However, this does not explain why weak interactions are
less symmetrical than the stronger one. Finally, if we represent CP (charge conjugation plus
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space inversion) as the operation that corresponds to space inversion, we thus conclude
that all interactions satisfy all space and time symmetries properties, i.e., proper Lorentz
invariance, space inversion and time reversal invariance.”

CP (charge conjugation and space inversion) is no longer considered an exact sym-
metry; it is violated in the quark component of the Standard Model [82]. This violation
can be experimentally observed in decay and oscillations of K and B mesons and is in
broad consistency violated with the Cabibbo–Kobayashi–Maskawa (CKM) mechanism (the
quark-mixing matrix). Moreover, the CPT theorem implies the violation of time reversal
symmetry (T), which has also been experimentally verified (for more details, see [76]).

6. Nonhomogeneous Cartan’s Geometries and Lie Groups

We now return to the important question of the connection between geometry and
groups, or more precisely, between nonhomogeneous geometries and group theory. After
Riemann’s (and Clifford’s) work, mathematicians developed inhomogeneous geometries, in
which one assumes that curvature may change from place to place and that fundamentally
local symmetries of space exist. Nonetheless, the Lie group still played an important
role at the infinitesimal level, because we can assign Euclidean coordinates to the tangent
space (see [83]). In the tangent space, infinitesimally, one must compare different points
in different places, and this allows for handling different Lie groups. This theory was
developed by Elie Cartan (1927) [84], and it represents the basis of modern differential
geometry. It was also the mathematical framework on which Einstein’s theory of general
relativity is based. In the twentieth century, the global level and properties of Lie groups
and differential geometry became the most prominent. This really was a fundamental
feature of mathematics, and especially of geometry and topology, in the twentieth century.
A major development realized by the work of many mathematicians gave information
about so-called “characteristic classes” (see [85]), topological invariants combining together
three key parts: Lie groups, differential geometry and topology, and of course, the algebra
associated with the group itself.

As we already mentioned, E. Cartan introduced the notion of generalized Riemannian
geometry, or new geometries, which played with respect to the different Klein geometries
the same role that Riemannian geometries play with respect to Euclidean space. One
profound philosophical motivation that lay behind the development by Cartan of more
general spaces or geometries may have been the fact that the universe appears to be a subtle
mixture of homogeneity and nonhomogeneity, of continuity and discreteness. At almost
any location and scale, one is likely to see nothing (i.e., homogeneity) except for some
concentrations (“lumps”) of something at some great distance. If we move to the center of
one of these concentrations, the nonhomogeneity may become more apparent; but if we
then change our scale, the nonhomogeneity disappears, and we are left with virtual (or
illusory) homogeneity again. In a broad sense, this is the fractal (and fuzzy) nature of the
universe. Human life on Earth is quite exceptional in this regard. We appear to be located at
a position and scale where the nonhomogeneity (and discreteness) of phenomena are quite
manifest. Nevertheless, we were not so completely drowned in nonhomogeneity that we
were prevented from discovering Euclidean geometry, a totally homogeneous idealization
of our situation. Until the middle of nineteenth century, physics was generally regarded as
the study of events in the arena (as it were) of Euclidean geometry. Thanks to Einstein’s
theory of general relativity and gauge theories of electroweak and strong interactions,
physics has undergone a new significant movement of geometrization, characterized by the
appearance of inhomogeneous and nonlinear geometries. This view is still more apparent
in the structures and predictions of superstring theories. In all these theories, geometry
sheds its passive appearance as backdrop and assumes increasingly the role of an actor.
Indeed, the question arises: “Is geometry in its various forms the only actor?” (on this
subject, see [86,87]).

Cartan’s new conceptions of space and its further generalizations contributed in a
very fundamental way to the clarification of this question, which is at the core of any
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understanding of reality. If Klein geometries represent perfect homogeneity, then Cartan
geometries represent a perfect mixture of homogeneity and nonhomogeneity. Riemannian
geometry can be regarded as a nonhomogeneous version of Euclidean space. From the
viewpoint of physics, Cartan adds “lumps” to the Klein geometries and more fundamental
structures to the Riemannian one. For the description and understanding of a nonhomo-
geneous universe, this conceptual change in the geometric theory turned out to be very
important. In fact, gauge theories describe fermions (“matter’s particles”) as complex-
valued functions on a principal bundle over spacetime and bosons (“forces” allowing for
interactions between particles) as connections on this principal bundle [88] (see below for
more details).

There are, in fact, two forms of Cartan geometries, the local form and the global form.
The two forms are equivalent only when the model Klein geometry is effective. However,
although this is a very important case, it does not exhaust the interesting possibilities.
For example, spin geometries are based on ineffective models. The first definition is of
local character, and its analytical (and physical) aspect is more apparent. The second
definition is global and is called the principal bundle definition. Roughly speaking, it presents
a Cartan geometry as a deformation of a Lie group that fixes the cosets of a closed subgroup
(see [89]).

In giving the following mathematical results we follow closely our previous work
([90] see also [60]).

Definition 2. A model geometry for a Cartan geometry consists of (i) an effective infinitesimal
Klein geometry (g, h), (ii) a Lie group H realizing h, and (iii) a representation, denoted by Ad: H→
GlLie(g), extending Adh: H→ GlLie(h).

The kernel K of the representation Ad: H → GlLie(g) is called the kernel of the model
geometry. If K is trivial, the model geometry is called effective. A model geometry is called
primitive if the subalgebra h is a maximal subalgebra of g. It is called reductive if there is an
H module decomposition g = h ⊕ p.

Definition 3. Consider a model geometry (g, h) with group H. A Cartan gauge with this model on
a smooth manifold M is a pair (U, θU), where U is an open set of M and θU is a g-valued 1-form on
U satisfying the regularity condition that

1 
 

 
(5)

is a linear isomorphism for each u ∈ U.

Definition 4. If M is a smooth manifold, then a Cartan atlas on M is a collection A = {(Uα, θα)} of
Cartan gauges with model (g, h) and group H such that: (i) (covering) the Uαs form an open cover
of M; (ii) (compatibility) if (U, θU), (V, θV) ∈ A, then there exists a smooth map k: U ∩ V→ H
such that θV = Ad(k−1), θU + k · ωH on U ∩ V.

One of Cartan’s fundamental insights is that for any “Cartan gauge” (U, θU), the
g-valued 2-form ΘU = dθU + 1/2[θU, θU] on U need not vanish. In fact, ΘU is a measure of
the nonhomogeneity—the lumpiness—of a Cartan geometry.

Definition 5. The form ΘU = dθU + 1
2 [θU, θU] on U associated to a Cartan gauge (θ, U) is called

the curvature with respect to this gauge.

Of course, like the gauge θU, the curvature is not intrinsically defined. Let us see how
it transforms as we alter the gauge.
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Lemma 1. Suppose that (θi, U) are Cartan gauges on U for i = 1, 2. Then:

θ1 ⇒ h θ2 implies Θ2 = Ad(h−1)Θ1. (6)

A simple consequence of this is that the vanishing of the curvature is an intrinsic
condition, independent of the choice of the gauge.

Definition 6. A Cartan geometry is said to be flat if its curvature vanishes at every point.

A local Klein geometry is an example of a Cartan geometry. A smooth Klein geometry
can be defined as a manifold Y endowed with a Lie group G of symmetries acting tran-
sitively, such that there is at least one g ∈ G displacing an object from any point in Y to
any other point. Let Γ be a subgroup of G. The manifold Y can be identified with the coset
space G/H, referred to as a Klein geometry. Now it can be said that Γ acts on G/H by left
multiplication as a group of covering transformations. The transformations in Γ act as geo-
metric isomorphisms on G/H. Recall that if M is a manifold of the same dimension as the
Klein geometry G/H, then the Cartan geometry on M fulfills two important requirements:
(i) a principal bundle P→M can be defined on it, and (ii) P has a g-valued 1-form, i.e., the
Cartan connection (see [91]).

Finally, let us define the notion of a gauge symmetry of a Cartan atlas.

Definition 7. Suppose that A = {(Uα, θα)|α ∈ A} is a maximal atlas for a Cartan geometry on the
manifold M. A gauge symmetry of the Cartan geometry is a permutation b: A→ A such that (i)
Ub(α), and (ii) b satisfies the compatibility condition: if Uα = Uβ and θα ⇒ h θβ, then θb(α) ⇒ θb(β).

7. Some Mathematical Fundamentals about Compact Lie Groups and Clifford
Geometric Algebras

In this section, we introduce some fundamental facts about the concept of Lie orthogo-
nal groups. This should allow for a better understanding of the notion of spin structures
and of the essential geometric character of the link between Clifford algebras and compact
Lie groups [89,92]. We then highlight the geometric interpretation of Clifford algebra in
terms of its quaternionic and spinorial representations. In fact, such an interpretation is
connected with the topology of spheres (see [93]) and to the mathematical structure of
quantum field theories and especially to supersymmetry (see [94]). Orthogonal groups and
the more general Lie groups have many fundamental relationships with physics. As we
have already seen, the rotation and Lorentz groups allow for a deep mathematical descrip-
tion of the special relativity theory. Spinors, which in their most general mathematical form
were discovered in 1913 by E. Cartan in his investigations on the linear representations of
simple Lie groups and the simple representations of all simple Lie algebras, have played a
very important role in the attempts by physicists (especially [95–97]) to elucidate the deep
structures of quantum mechanics. Spinors are elements on which the new representation of
the orthogonal Lie algebra g operates and that cannot be obtained from representation on
the vectors on which g operates by the classical operations of constructing tensor products
and decomposing them into simple (or irreducible) representation spaces. The simplest
case of a spin representation is that for the orthogonal Lie algebra in three variables; this Lie
algebra is well known to be isomorphic to the special unitary Lie algebra on two variables,
which shows that it has a faithful representation of degree 2: this is its spin representation.
In other words, according to Cartan, spinors provide a linear representation of the group of
rotations in a space with any number n of dimensions, each spinor having 2v components,
where n = 2v + 1 or 2v. Moreover, there is a profound relationship between the geometric
origin of spinors, the use of matrices in quantum mechanics, and the property possessed
by Clifford algebras of representing rotations in space having any number of dimensions.
For the moment, let us remark that the unit quaternions form the group SU(2), which is the
double cover of the rotation group SO(3). This makes them suited to the study of rotations
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and angular momentum, particularly in the context of quantum mechanics. In fact, this
phenomenon is a special case of the theory of Clifford algebras.

On the contrary, the relevance to geometry of the octanions was quite obscure until
1925, when E. Cartan described “triality”—the symmetry between vectors and spinors in
eight-dimensional Euclidean space. There is also a close connection between the principle
of triality on the one hand and, on the other hand, the exceptional Jordan algebra of
dimension 27 and the five exceptional Lie groups. However, attempts by P. Jordan, J.
von Neumann, and E. Wigner in the 1930s to apply octanionic quantum mechanics to
nuclear and particles physics were rather ineffective. Only recently, around the 1980s, was
it realized that the octanions explain some peculiar features of string theory (see [98]). The
Lagrangian for the classical superstring involves a relationship between vectors and spinors
in Minkowski spacetime that holds only in 3, 4, 6, and 10 dimensions. Note that these
numbers are two more than the dimensions of the spaces of R, C, H, and O. As Baez and
Muniain have remarked (1994) [99], this fact is likely no coincidence, for the isomorphisms
sl (2, R) ∼= so (2, 1), sl (2, C) ∼= so (3,1), sl (2, H) ∼= so (5, 1), and sl (2, O) ∼= so (9,1) allow
treating a spinor in one of these dimensions as a pair of elements of the corresponding
division algebra. It is interesting that of these Lagrangians, the 10-dimensional octanionic
one provides the most promising framework for a realistic theory of fundamental physics.

8. Topology and Quantum Field Theory

Beyond the single cylindric hole or flux tube of the Aharonov–Bohm experiment,
we can consider a complicated knotted configuration of tubes (see [100]). The study
and classification of such knots is a typical and difficult problem in topology. The more
elaborate the knot, the more intricate the structure of the external vacuum is. In fact, over
the past twenty years, we have come to see that the topology of knots is intimately related
to physics—both macroscopic and microscopic (see [65,101–110])—and that the formal
apparatus of quantum field theory can be used to solve difficult topological problems
in the theory of knots. These developments strongly suggest that topological aspects of
three-dimensional space, as manifested by knots, should play some fundamental role in
quantum physics. Moreover, this role should involve the basic physical framework prior to
the introduction of matter or force, in other words, “the vacuum”. The relation between the
topology of knots and quantum field theory was elaborated in the late 1980s ([42,85,104];
see also [99]), and the different theories accounting for this relation can be described
generically as “topological quantum field theories.” The essential characteristic of such
theories is that they have the formal structure of a quantum theory (e.g., dealing with
discrete spaces and probabilities), but the information they produce is purely topological
(e.g., information about the nature of a knot). Differently stated, a topological field theory
is independent of the metric gµν of the manifold on which it is defined (see [105]). There is
no measurement or genuine dynamics in such theories; they deal with nature at a more
primordial level. At a later stage, one can imagine superimposing a more conventional
physical theory onto the topological background (see, for example, [106]).

The point of departure in Witten’s work was the beautiful results by Vaughan Jones
(1987) [107], who found many new invariants of knots. Essentially, Jones first drew the knot
in the plane as the closure of a braid. To compute the invariants, he applied a complicated
formula that depended on the precise form of the braid. The result was an invariant for
knots. The key point was that a knot is the closure of many different braids. Jones’s
formula depended on choosing an arbitrary braid to represent the knot. Thus, the formulae
were really formulae for braids that happened to yield the same answer on all braids
representing the same knot. It is therefore difficult to see which properties of the knot itself
are actually expressed by these formulae.

For several years, finding an intrinsic, geometric definition of the Jones polynomials,
without referring to braids, was an unsolved problem. This problem was resolved by
Witten, who described a quantum field theory for a 3-manifold embracing knots. The
theory had no unnecessary ingredients; only the ambient 3-manifold and an oriented
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collection of knots were given. Witten then produced many significant invariants, all
resulting from a path integral over fields. Conformal field theory allows for a careful
analysis of the properties of such integrals, and Witten showed that the invariants should
coincide with the Jones polynomials. Because Witten’s theory was intrinsic, it lent itself to
generalizations. Probably the most profound of these generalizations was that he could
define invariants for knots in arbitrary 3-manifolds, where the concept of the braid is not in
play.

Another (actually the first) topological quantum field theory was not that related to
knots in three-dimensional spaces, but a more intricate one related to the deep mathemat-
ical results of Simon Donaldson (1983) [41] on four-dimensional geometry, the physical
significance of which Was then elucidated by Witten. The Donaldson–Witten theory en-
tailed vacuum solutions. To begin our discussion of four-dimensional space, let us pick a
four-dimensional manifold X bearing a metric. Instead of looking at Maxwell fields, we
look for gauge fields on X that satisfy the Yang–Mills equations. The Yang–Mills equations
are analogous to the Maxwell equations in cases where one studies gauge fields describing
the weak or strong interaction. Such fields on X are called vacuum solutions, much in the
spirit of the classical vacuum discussed above. A vacuum solution has a quantized charge
k = 0, 1, . . . , n. If we fix the charge, we find a complicated space of solutions called the
Yang–Mills moduli space. Because this space depends on X and the metric on X, it is not
yet a topological invariant of X. The moduli space presents all kinds of loops and holes.
Some holes in this space disappear if we vary the metric on X, while others persist. Clearly,
the holes that persist must be (differential) topological invariants of X.

Donaldson’s remarkable observation (1983) [41] was that such invariant loops do exist,
and that they contain deep information about the 4-manifold. Donaldson’s theory used
classical vacuum to say something about pure space. It is a very powerful theory that
shows, for example, that even on good old four-dimensional Euclidean space, there are
infinitely many inequivalent ways of defining the differentiability of functions; that is, the
differential topology of four-dimensional vector spaces is highly nontrivial.

Witten developed a complicated supersymmetric quantum field theory such that the
expectation values of certain observables give the relevant information about persisting
loops. Witten’s quantum field theory, in its original version, depended on a metric on X,
just as Donaldson’s theory does. He showed that his expectation values do not change if
we vary the metric, thereby demonstrating that they are topological invariants—that is,
invariants of pure space. However, his theory is full of all kinds of fields and superfields.
So again, a nonvacuous theory gives information about the ultimate vacuum, pure space.

In gauge theory, the issue is to find anti-self-dual connections on some bundle over
the 4-manifold X. These are precisely the connections in which the self-dual part of the
curvature vanishes. Thus, we are looking for zeroes of a function s defined on the space
A of connections; the function assigns to a connection the self-dual part of its curvature,
which is an element of an infinite-dimensional vector space V. Gauge invariance enters the
picture in the following way. If we apply a gauge transformation to the connection, then
the self-dual part of the curvature is conjugated by this gauge transformation. Thus, the
function s does not descend to a function on the quotient space A/G of connection modulo
gauge transformations, since its values get twisted in V. Instead, the function becomes
a section of a vector bundle W over A/G. Looking for anti-self-dual connection modulo
gauge transformations amounts to looking for the zeroes of a section of this bundle.

We now assume that there are only finitely many zeroes in these sections. In practice,
this situation is not always met, but it does happen in interesting situations. Donaldson’s
invariant now obtained simply by counting the number of zeroes, that is, the number
of anti-self-dual connections, counted with signs. As indicated below (Figure 1), the
nontriviality of a bundle can force a section to have zeros. Generally, the number of zeroes
of a section of a bundle E over a compact manifold M is an invariant of E, called the Euler
number. Notably, it is independent of that section. The Euler number can be computed in
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various ways, and this is precisely the distinction between Donaldson’s theory and the
Witten–Donaldson theory.
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First of all, one can simply compute the number of zeros in a section; in the case at
hand, this amounts to solving the self-dual Yang–Mills equations. A more sophisticated
approach is to integrate a differential form over the total space of E. The form is the square
of the Thom class of the bundle. In the Yang–Mills case, we integrate the square of the
Thom class over the infinite-dimensional bundle W over an infinite-dimensional space
A/G. Such integrals are normally called Feynman path integrals [108]. This is more or less
what Witten did to compute Donaldson’s polynomial invariants.

We would like to make another remark relating to recent works on the connection
between knot topology and quantum chromodynamics in vacuum. First, we remind the
reader that the non-Abelian gauge theory is well known to have a nontrivial topology.
In particular, the theory offers infinitely many topologically distinct vacua that can be
connected by vacuum tunneling through the instantons (see [106]). The existence of both
topologically distinct vacua and vacuum tunneling has played a very important role in
quantum chromodynamics (QCD) (see [109,111]). Concerning the relation between vac-
uum and nontrivial topologies, it is here worth mentioning the so-called “boson method”
(see [112–115]]). The boson transformation method describes how, when spontaneous sym-
metry breaking occurs, topological defects can emerge after an inhomogeneous Goldstone-
boson condensation on quantum vacuum [116,117]. In other words, these defects emerge as
macroscopic objects (inhomogeneous condensate) from quantum dynamics. An important
result states that only massless bosons are subjected to the boson transformation function
bearing topological singularities (for a very good account, see [118]).

The Skyrme theory states that there exists a knot that is topologically stable. In fluid
mechanics, this knot behaves as a twisted magnetic vortex ring composed of helical baby
skyrmion, which can be understood in terms of topological solitons in a (2 + 1)-dimensional
field theory. Very interestingly, this knot has been shown to describe topologically distinct
QCD vacua. This finding is puzzling, because the knot is a physical object that carries a
nonvanishing energy. It may appear strange that the knot can be related to a QCD vacuum,
but the Skyrme theory itself is closely related to QCD, and both the knot and the QCD
vacuum are described by the same topology π3(S3) [119]). As was stressed by [120], “In this
circumstance, one needs to know in exactly what sense the QCD vacuum can be identified
as the knot. Since there exists one knot solution for each topological quantum number (up
to the trivial spacetime translation and the global SU(3) rotation), one might suspect that
the knot equation could be viewed as a gauge condition for the topologically equivalent
vacua.”

In fact, it has been suggested that the knot equation can be viewed as a nonlocal
gauge condition that describes the maximal Abelian gauge in SU(2) QCD [121]. More
recently, it has been shown that the knot equation is nothing but a generalized Lorentz
gauge condition that selects one representative vacuum for each class of topologically
equivalent QCD vacua.



Symmetry 2021, 13, 2100 16 of 20

This conclusion allows interpreting the knot as a complex vector field that couples
to an Abelian gauge field and the knot equation as an Abelian gauge condition for the
complex vector field (Cho 2007). One of the most important results obtained by Cho
was using the Abelian Chern–Simons index of the magnetic potential Cµ to give the knot
quantum number through the expression:

Q = g2/32π2
∫

εijkCiHikd3x, (7)

which describes the nontrivial topology of the Hopf mapping π3(S2) defined by nˆ (in the
SU(2) QCD, nˆi(i = 1, 2, 3) is a righthanded local orthonormal frame).

The preimage of the mapping from the compactified space S3 to the target space S2

defined by nˆ forms a closed circle, and two preimages of the mapping are linked together
when π3(S2)is nontrivial. This linking number is given by the Abelian Chern–Simons index.
It is possible to show that the same description applies to the QCD vacuum. In particular,
this means that with the same index, the QCD vacuum can also be classified by an Abelian
gauge potential. Conversely, with the vacuum equation:

Dµων − Dνωµ = 0, Hµν = ∂µCν − ∂νCµ = ig(ωµ ∗ ων − ων ∗ ωµ) (8)

where Dµ is the vacuum potential and ωµ is a complex vector field), one can transform the
knot quantum number above to a non-Abelian form:

Q = g2/32π2
∫

εijkCiHikd3x, = −g2/32π2
∫

εabcCi
aCj

bCk
cd3x. (9)

This proves that the knot quantum number can be interpreted in terms of a non-
Abelian Chern–Simons index. More meaningfully, this tells that the Abelian and non-
Abelian Chern–Simons indexes can essentially be deemed mathematically and physically
similar.

9. Conclusions

Let us conclude with a few general philosophical remarks and then some more specific
reflections. It is well known that in field theory dealing with forces such as gravitation
or electromagnetism, empty space—the vacuum—alters its nature in the presence of the
relevant force. This alteration takes the form of a geometrical distortion that changes the
trajectory of any material object that enters the appropriate position of space. This is what
we might call the classical theory of the vacuum, classical in the sense of pre-quantum theory.
However, as we already stressed, quantum theory requires that we modify our physical
ideas in a profound way, and we must inevitably start by reexamining the classical vacuum
(see [55,122,123]). Quantum field theory attempts to deal with the classical force-fields in
a quantum-mechanical way, and the quantum vacuum that emerges from this theory is a
complex and mysterious structure that stretches mathematics to its utmost limits (see [88]).
Quantum fields fluctuate and convert themselves into particles in a bewildering manner,
indicating in particular the fact that the conventional separation between force and matter
cannot be maintained (see [124,125]). Still more important (and more surprising) is the
fact that the quantum vacuum does have interesting geometrical features, but these relate
not to the traditional geometry of Euclid, Riemann, etc., involving measurement, but to
that modern branch of the subject known as topology, which is concerned with qualitative
properties of space. Unlike measurement, which can be conducted on a small, local scale,
topological features are visible only on a “global” scale (see [126]).

Finally, let us mention the idea developed recently by different authors that even
neutrino mixing could originate from a topologically nontrivial spacetime (D0 branes
in string theory). This produces a nontrivial vacuum structure (flavor vacuum) and the
spontaneous symmetry breaking (SSB) of Poincaré symmetry (see [127–131]).
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This relation between topology and the quantum fields has been recognized quite
recently, and the full implications of this relationship have been explored in just the last four
decades. It is clear that a deeper understanding of the universe rests on the possibility of
further elucidating the profound connection between geometry and physics. Let us briefly
mention three examples that illustrate how topology deeply relates to quantum theory: (1)
the Aharonov–Bohm effect (1959) shows that, even in a force-free region, there are physical
effects that are quantum mechanical, inasmuch as they correspond to phase shifts in the
wave function of the electron, and they are topological in origin, since there is a cylindrical
hole in the force-free region; (2) Dirac’s theoretical prediction of the magnetic monopole
necessarily implies that both electric and magnetic charges are quantized ([96]; see also [132]
for a recent and detailed presentation); (3) entangled topological phases of matter in low
dimensions might be deeply related to time-reversal symmetries (see [55,133]).

It is likely that in the near future, many other phenomena at the macroscopic (large-
scale), mesoscopic (supramolecular), and microscopic (quantum-mechanical) levels of the
physical world will be understood as emerging from geometrical properties and topological
effects. This might lead to discovering new types of symmetries combining local and global
rules of transformations and invariance.
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