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Chapter 1

Introduction

1.1 J/ψ production

The J/ψ meson has drawn great interest among the experimental and theoretical
communities since its simultaneous discovery in 1974, at the Brookhaven National
Laboratory (BNL) [1] and the Standford Linear Accelerator Center (SLAC) [2]. As a
consequence of its relatively light mass, it can be abundantly produced at all high-
energy electron-proton and proton-proton colliders. Moreover, it is a bound state
of a cc̄ pair with the same total angular-momentum, parity and charge-conjugation
quantum numbers of a photon (JPC = 1−−). Hence, the J/ψ decays into electron-
positron and muon-antimuon pairs with a significant branching ratio of about 6%
for each channel [3], making its detection less experimentally challenging compared
to other quarkonia. From a theoretical point of view, it is an excellent tool to probe
both the perturbative and nonperturbative aspects of QCD, as well as their interplay.
Since the charm mass mc is much larger than the QCD scale parameter ΛQCD, J/ψ
production involves the perturbative production of a cc̄ pair and its subsequent,
nonperturbative transition to the observed quarkonium state. Different frameworks
provide different descriptions of the latter hadronization process; see Refs. [4, 5] for
some reviews.

Among the various hadronization models, the present thesis will mainly focus
on the effective field theory approach of Non-Relativitic QCD (NRQCD) [6, 7]. This
framework takes into account the non-relativistic nature of the relative velocity v of
the heavy quark-antiquark pair, and uses it to perform an expansion, in addition to
the usual one with respect to (w.r.t.) the strong coupling constant αs. As a conse-
quence, the cc̄ pair at short distance can be produced in any Fock state n = 2S+1L(c)

J
with definite orbital angular momentum L, spin S, total angular momentum J and
color configuration c = 1, 8. NRQCD therefore predicts the existence of interme-
diate color-singlet (CS) and color-octet (CO) states, which subsequently evolve into
physical, CS quarkonia by the emission of soft gluons. This transition is encoded
in proper long-distance matrix elements (LDMEs), that depend on the considered
quarkonium and the Fock-state from which it is generated. In the specific case of
J/ψ production, the leading-order contribution in the v expansion originates from
the 3S(1)

1 CS state, while the leading relativistic corrections to the order O(v4) are
given by the CO states 1S(8)

0 , 3S(8)
1 , and 3P(8)

J with J = 0, 1, 2.
For S-wave quarkonia like the J/ψ charmonium, the traditional Color Singlet

Model (CSM) is recovered in the limit v → 0. In the CSM, the cc̄ pair is therefore
produced at short distances directly with the quantum numbers of the observed S-
wave quarkonium state. It is worth mentioning that this model cannot be considered
as a complete theory, since at the next-to-leading order (NLO) P-wave quarkonia
are affected by uncancelled infrared singularities, which are properly removed in
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NRQCD. We would like to emphasize, however, that a purely CS approach is not a
synonym of a poor description. Although the CSM predictions systematically un-
dershot J/ψ and ψ(2S) production data at

√
s = 1.8 TeV [8, 9], it has been recently

shown that higher order corrections in αs to the CSM can improve the agreement
between experimental data and theory estimates. For example, in Refs. [10, 11], the
effects of higher order contributions at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory (BNL) are shown to play an important role, while
in Ref. [12, 13] they discussed the same topic for HERA experiments (and poten-
tially at the new Electron-Ion Collider). Furthermore, the values of the CO LDMEs
extracted from different fits to data on J/ψ and Υ yields [14–18] are not compatible
with each other, even within large uncertainties [4, 5, 19], illustrating that the role of
the CO contributions has still to be clarified.

For completeness, we mention also a third model with historical relevance, as
it was one of the first developed, and is still used nowadays: the Color Evapora-
tion Model (CEM) [20–23]. This approach considers the production of the unbound
heavy quark-antiquark pair with an invariant mass m in a specific range. In the case
of J/ψ, this region is limited by the production of the cc̄ pair (2mc) and the open
production of the lightest D meson (2MD). Despite this, even if it is intuitive and
successful in the explanation of some J/ψ production data, the model still has some
drawbacks. Firstly, predictions from CEM were poor compared to other models; in
Ref. [24] CEM and NRQCD were both compared with J/ψ production data from
FermiLab (FNAL), finding a better χ2 agreement within the NRQCD approach. In
addition, the CEM is based on too strong and limited assumptions that are not sup-
ported by data. Recently, an improved version of this model, called improved CEM
(iCEM), has been developed [25]. In this case, they explicitly identify the soft glu-
ons exchanged (with other color sources) and emitted (which eventually evolve in
experimentally observable particles), addressing the latter problem.

It is then clear that the quarkonium hadronization mechanism has not yet been
fully understood and is still a puzzling issue. In spite of that, it is extremely im-
portant to identify a "golden" model that can provide reliable predictions. Thus, we
need to study observables with the potential to discern among different hadroniza-
tion models and frameworks. In this sense, the study of J/ψ polarization can be
extremely powerful. Indeed, since the angular parameters associated to this observ-
able are defined as ratios of helicity matrix elements, model and theoretical uncer-
tainties are naturally suppressed. Hence, such a study can represent an invaluable
tool to shed light on the quarkonium hadronization process.

1.2 Theoretical description of the Semi-Inclusive DIS pro-
cess

In principle, it is more robust to develop formal and phenomenological analyses
considering processes for which QCD factorization holds, or where there are argu-
ments supporting it. A remarkable process is J/ψ production in Semi-Inclusive DIS
(SIDIS), namely e p → e′ J/ψ + X. When performing SIDIS-related studies, we are
generally interested in the PT distribution, where PT is the J/ψ transverse momen-
tum in the centre-of-mass (cm) frame of the photon-proton system. Since different
scales are present in SIDIS, we can identify different regions that depend on the
value of PT w.r.t. such scales. In particular, we have a hard scale µ, which could be a
combination of the large scales of the specific process, namely the J/ψ mass Mψ and
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the photon virtuality Q, as well as a soft scale, like the typical nonperturbative QCD
scale ΛQCD or the proton mass.

If PT ≫ ΛQCD, we identify a region where usual collinear factorization holds.
Explicitly, in this region, we can separate the hard (perturbative) term from the non-
perturbative quantities, which are described by collinear (i.e. integrated over trans-
verse momentum) parton distribution functions (PDFs) and the usual LDMEs, if we
assume the validity of NRQCD as well.

Considering instead PT ≪ µ, we expect that a correct factorization should in-
volve quantities that also include the transverse momentum dependence. In the
specific case of quarkonium production, however, transverse momentum depen-
dent (TMD) factorization is not formally proven. Nevertheless, it has been exten-
sively studied when a light-hadron h is produced in the final state, namely in e p →
e′ h + X; in this thesis we will refer to this process as the standard SIDIS. The stan-
dard SIDIS is one of the processes in which it is possible to define two well-separated
scales and for which TMD factorization is proven [26]. Note that the replacement of
the light hadron with a quarkonium in the final state does not modify the color flow,
which determines the gauge-link structure of the TMD correlator (see Ref. [27]). Fur-
thermore, this structure is not affected by the presence of the quarkonium mass or
its spin. Thus, it is reasonable to assume that no factorization breaking effects are
present in quarkonium production in SIDIS. Even if we expect TMD factorization to
be a valid and correct description of this process at low PT, the exact factorized form
of the observables is still unknown.

A common assumption is to write SIDIS observables in terms of a hard pertur-
bative term, combined with a TMD-PDF and the usual LDMEs. In particular, such
observables are sensitive to the almost unknown gluon TMDs, which can be singled
out by looking at different transverse momentum distributions and azimuthal asym-
metries [27]. Within basically the same framework, other proposals have been put
forward to use inclusive quarkonium production as a probe of gluon TMDs, both in
lepton-proton [28–30] and in proton-proton collisions [31–35].

More recently, it has been shown [36, 37] that a generalization of the CO LDMEs,
called TMD shape functions (TMDShFs), is required to obtain a proper TMD fac-
torization for the above-mentioned processes. These new objects describe the trans-
verse momentum smearing due to soft gluon interactions in the hadronization pro-
cess; this is in contrast to the collinear picture, where the J/ψ momentum has the
same direction as the cc̄-pair. We can then try to understand the role of these new
TMD quantities by comparing the TMD and collinear expressions in an overlapping
region given by ΛQCD ≪ PT ≪ µ.

Note that from an experimental point of view, both the J/ψ polarization and the
role of the TMDShFs can be explored by the future Electron-Ion Collider (EIC) [38–
40]. Thus, our aim will be to provide polarization estimates in kinematic regimes
that will be explored at this facility, including both high- and low-PT regimes. In
particular, the latter could be extremely useful to understand the gluon content of
protons, together with a correct parameterization of the TMDShF.

1.3 Single-Spin Asymmetries in J/ψ hadroproduction

J/ψ production studies in SIDIS processes, as investigated at the EIC, will certainly
be a great opportunity. At the same time, it is extremely interesting to explore
other possibilities. Although it is well known that TMD factorization has been
proven only for a limited class of processes, namely for standard SIDIS, Drell-Yan
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(h1 h2 → l+ l− + X) and almost back-to-back hadron production in e+ e− annihi-
lation processes, several hadron facilities provide a large amount of experimental
information, relevant in this context. For instance, the PHENIX experiment at RHIC
collected data for J/ψ production in proton-proton collisions, both for unpolarized
beams and for single transversely polarized protons [41, 42], namely p p → J/ψ + X
and p p↑ → J/ψ+X. The second process allows the study of a particular observable;
when one of the initial protons is transversely polarized, we can look at the left-right
asymmetry w.r.t. the direction of the proton polarization. This observable is the well-
known transverse Single-Spin Asymmetry (SSA), also denoted as AN . For inclusive
production, independently of the final hadron species, this observable cannot be un-
derstood within a collinear scheme at leading twist, as shown in Ref. [43]. On the
other hand, sizeable SSAs in inclusive pion production were observed at FNAL [44–
47]. To overcome this difficulty, two theoretical approaches were formulated.

One, formally proven, is based on higher-twist parton-hadron correlation func-
tions [48–51], and it is usually referred to as the twist-three formalism. Its formula-
tion was developed by Qiu and Sterman [49, 52], and independently proposed also
by Efremov and Teryaev, e.g. Ref. [48]. This formalism considers the interference be-
tween one active collinear parton with two collinear partons. The SSA is then given
in terms of new twist-3 quark-gluon correlation functions, defined as the expectation
values of three field operators between hadronic states, depending on two light-cone
momentum fractions. Even if they do not have a direct partonic interpretation, these
functions, convoluted with ordinary twist-2 distribution functions and perturbative
calculable hard scattering parts, are able to produce sizeable asymmetries, and to
describe SSA data. This success motivates several extensions and refinements [50,
51, 53–59]. For the latest updates and a recent global analysis of SSAs and azimuthal
asymmetries within this formalism, see Ref. [60].

A second one, more phenomenological and with a direct partonic interpretation,
is based on transverse momentum dependent parton distributions (shortly referred
to as TMDs) and it is usually called Generalized Parton Model (GPM) [61–63]. This
approach, easily formulated within the helicity formalism, see Ref. [64], was origi-
nally applied to SSAs for single-inclusive processes and still reveals very important
features. Indeed, several interesting phenomenological analysis with the GPM have
been carried out.

An astonishing result from BRAHMS, PHENIX and STAR Collaborations at RHIC,
operating at cm energies

√
s = 63, 200 and 500 GeV, is that even at such large en-

ergies the SSAs for inclusive pion production persist and are still sizeable [65–69].
This caused an increasing interest in the TMD formalism, which was then devel-
oped on more formal grounds for the three processes mentioned above [26, 70–75]
and adopted in phenomenological studies, e.g. Refs. [76–80]. An ambitious program
still underway consists in including, within the GPM approach, different processes
to perform a global analysis; see for example Refs. [77, 80, 81] for combined analyses
of the Sivers effect in SIDIS and p↑p collisions.

The study of SSAs, both in processes where TMD factorization is proven, e.g.
standard SIDIS, and where it is assumed on phenomenological grounds, e.g. inclu-
sive production in pp collisions, still drives phenomenological interest. In all cases,
the main result achieved so far is getting information on the quark contribution. On
the other hand, in order to have a more complete picture of the internal structure of
hadrons, this knowledge alone is not sufficient. As already shown a long time ago
by the European Muon Collaboration (EMC) experiment [82], the quark spin con-
tributes less than 1/3 to the total proton spin, invalidating the simple quark model
picture where the proton spin is given in terms of the valence quark spins. The
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missing contributions can then be ascribed both to the gluon spin and (as nowa-
days believed) to the partons (quark and gluon) orbital angular momentum. This
problem is indeed one of the open questions in hadron physics.

In order to access directly the gluon contribution, it is almost necessary, or at least
worth attempting, to go beyond the standard processes for which TMD factoriza-
tion is proven1, since these are mostly dominated by quark initial states. Indeed, the
aforementioned studies at RHIC, focusing on p p → J/ψ + X and p p↑ → J/ψ + X
processes, represent potential tools for extracting valuable information on gluon dis-
tributions. In particular, the study of SSAs in J/ψ production is crucial since these
asymmetries may give access to an important, still poorly known, gluon TMD distri-
bution, namely the Sivers function [83, 84]. Unfortunately, such phenomenological
study is very demanding, and the provided AN data are still too few and not precise
enough to draw any significant conclusions. On the other hand, upcoming experi-
ments are planned and can eventually provide sufficient number of data points to
perform more robust phenomenological analyses.

For these reasons, we will provide SSA estimates in different frameworks to un-
derstand their potential role in constraining the gluon Sivers function. More pre-
cisely, our estimates will be obtained, from the perspective of a coherent and more
complete analysis, by adopting the GPM phenomenological approach, but consid-
ering also the inclusion of initial- and final-state interactions (ISIs and FSIs). This
formal extension, with a close connection to the twist-three formalism, is referred
to as the Color-Gauge Invariant GPM [85]. This analysis will help us in deepening
our understanding on color TMD effects in the production and polarization of J/ψ
mesons in hadronic collisions.

1.4 Outline

This thesis is organized as follows:

• In Chapter 2 we present the formal and model independent derivation of the
cross section for polarized J/ψ production in SIDIS, expressed in terms of he-
licity structure functions. We then discuss how to evaluate these quantities
within the NQRCD and the CSM approaches in two domains, namely the high-
and low-transverse momentum regions. Moreover, estimates up to order α2

s in
the two mentioned regimes are provided for the EIC kinematics, allowing for
a comparison of NRQCD and CSM predictions.

• In Chapter 3 we consider the overlapping region between the TMD and collinear
frameworks in SIDIS to determine the perturbative tail of the TMDShFs. Both
unpolarized and polarized J/ψ production are discussed.

• In Chapter 4 we study the SSA observables in pp collision when in the final
state a J/ψ is produced. We introduce the key points of the phenomenolog-
ical GPM approach needed for the calculation of SSAs. We then show how
to include ISIs and FSIs according to the CGI-GPM. All estimates are evalu-
ated within both the GPM and CGI-GPM, while for the quarkonium formation
mechanism the CSM and NRQCD have been adopted. Results are shown for
different kinematics available at PHENIX, LHC fixed target, NICA SPD and
SpinQuest.

1Namely, the three processes: SIDIS, DY and e+e− annihilation.
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• Conclusions are drawn in Chapter 5, where also some perspectives for the fu-
ture are presented.

Finally, a number of useful relations and results are collected in the appendices.
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Chapter 2

J/ψ polarization in SIDIS

In this chapter we study the polarization of J/ψ mesons produced in SIDIS as a po-
tential tool to deepen our knowledge of the quarkonium formation mechanism, as
well as to probe the gluon content of the proton. The study of this process at finite
values of the exchanged photon virtuality Q2 has several theoretical and experimen-
tal advantages as compared to photoproduction. More specifically, as Q2 increases,
theoretical uncertainties decrease and resolved photon contributions are expected to
be negligible. Background from diffractive J/ψ production is also supposed to de-
crease with Q2 faster than the SIDIS cross section. From the experimental point of
view, the distinct signature of the scattered electron makes the process particularly
easy to detect. Clearly, cross sections are smaller than those relative to photopro-
duction; however, considering the achievable high luminosities, this study should
be feasible at the EIC.

The present chapter is organized as follows. In Sec. 2.1 we first consider the
theoretical description of SIDIS based on collinear factorization, and we derive the
cross section for unpolarized J/ψ production in terms of Lorentz-invariant structure
functions. We then move to the analysis of J/ψ polarization in Sec. 2.2, where we in-
troduce the helicity structure functions (Sec. 2.2.2). The J/ψ polarization parameters
are calculated within the NRQCD framework in the collinear regime in Sec. 2.2.3,
while in Sec. 2.2.4 we discuss the typical frames adopted to measure the J/ψ angu-
lar decay distributions. In particular, considering two of them, in Sec 2.3 we present
numerical estimates of the polarization parameter for the EIC kinematics. Finally, in
Sec. 2.4 we discuss the formal derivation of the polarization parameters in the TMD
approach.

2.1 SIDIS cross section

Before moving our focus to the study of the J/ψ polarization states, it is useful to
examine some formal aspects of the SIDIS process for unpolarized J/ψ production.
We consider a kinematic region where the photon virtuality Q is equal or greater
than the J/ψ mass Mψ, namely Q ≥ Mψ. More explicitly, we look at the reaction
(see Fig. 2.1)

e (le) + p (P) → e′ (le′) + J/ψ (Pψ) + X (PX), (2.1)

with X corresponding to a system of undetected hadrons, and where in the parenthe-
sis we provide the momenta of the corresponding particles. The process is mediated
by a virtual photon with momentum q, where

q = le − le′ , (2.2)

with Q2 ≡ −q2 > 0.
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FIGURE 2.1: This figure depicts the J/ψ unpolarized production in semi-inclusive DIS. The
orange circle corresponds to the hard term of the process, perturbative calculable. Instead,

the blue bubble describes the bound and hadronization of the cc̄ pair into the J/ψ.

The SIDIS cross section in its most differential form reads

dσ =
1

2S
d3PX

(2π)32P0
X

d3le′

(2π)32Ee′

d3Pψ

(2π)32Eψ
|M|2 (2π)4δ(4)

(
q + P − Pψ − PX

)
. (2.3)

The denominator 2S is the flux factor, where S = (le + P)2 ≈ 2 le · P. Instead, the
amplitude squared |M|2 corresponds to the perturbative part of the process, namely
it is related to the orange circle in Fig. 2.1. Even if we need a model to produce
estimates for the J/ψ yield and polarization (see Sec. 2.2.3), results in the following
discussion are completely model independent.

When studying SIDIS processes, it is convenient to introduce the following Lorentz-
invariant variables

xB =
Q2

2P · q
, y =

P · q
P · le

, z =
P · Pψ

P · q
, (2.4)

which fulfill the bounds 0 ≤ xB, y, z ≤ 1.
Finally, we note that in this section and in the following, the mass of the leptons,

light quarks and antiquarks will be ignored. We will neglect the proton mass mp as
well, unless otherwise stated.

2.1.1 Kinematics

In a reference frame where the virtual photon and the proton have no transverse mo-
mentum, we can choose two light-like four-vectors κ+ and κ−, with κ+ · κ− = 1, and
perform a Sudakov decomposition of the four-momenta of the particles involved in
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the process,

Pµ = κ
µ
−,

qµ =
Q2

2xB
κ

µ
+ − xBκ

µ
−,

Pµ
ψ = ẑ

Q2

2xB
κ

µ
+ +

M2
T

ẑ Q2 xBκ
µ
− + Pµ

⊥,

lµ
e =

1
y

[
Q2

2 xB
κ

µ
+ + (1 − y) xB κ

µ
− + Q

√
1 − y l̂µ

⊥

]
, (2.5)

with l̂2
⊥ = −1. We note that, within a more specific choice of the reference frame,

where the proton and the photon move along the Ẑ-axis and the azimuthal angles
of the leptons ϕe = ϕe′ = 0, le can still have a non-zero component in the transverse
direction, along the X̂-axis.

A different decomposition will be employed to study J/ψ polarization, since one
needs to move to the quarkonium rest frame, where the J/ψ transverse momentum
has to be zero.

Before going on with the study of the SIDIS cross section, it is convenient to
rewrite the phase space in Eq. (2.3) in terms of the typical Lorentz-invariant quanti-
ties, xB, y and z. In particular, in terms of the lepton energies Ee, Ee′ and the scattering
angle θe′ defined in the proton rest-frame, we have

xB =
Q2

2 mp (Ee − Ee′)
, y = 1 − Ee′

Ee
,

Q2 = 2 Ee Ee′ (1 − cos θe′), S = 2 mp Ee. (2.6)

From these expressions, we can write the Jacobian of the transformation from (xB, y)
to (Ee′ , cos θe′)

J =

∣∣∣∣∣
dxB
dEe′

dxB
d cos θe′

dy
dEe′

dy
d cos θe′

∣∣∣∣∣ =
∣∣∣∣∣ dxB

dEe′
− Ee′

mpy

− 1
Ee

0

∣∣∣∣∣ = 2Ee′

yS
. (2.7)

Hence, one obtains

d3le′

(2π)32Ee′
=

Ee′dEe′ d cos θe′ dφe′

2(2π)3

=
y S

4(2π)3 dxB dy dφe′ =
y S

4(2π)2 dxB dy, (2.8)

where in the last step we have integrated over the azimuthal angle φe′ of the final
electron in the proton rest frame.

Finally, the phase space for the J/ψ meson can be expressed as

d4Pψ ≡
d3Pψ

2Eψ
=

P⊥
2 z

dz dP⊥ dϕψ. (2.9)

2.1.2 Lorentz-invariant structure functions

In this section we present a model independent parameterization of the differential
cross section in terms of Lorentz-invariant structure functions. First of all, we sep-
arate the amplitude squared in Eq. (2.3) in the product of two tensors, one leptonic
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and the other one hadronic,

|M|2 =
Lµν Hµν

Q4 . (2.10)

The (unintegrated) hadronic tensor Hµν is defined as the product of current matrix
elements

Hµν = ⟨P|Jµ(0)|PX; Pψ⟩ ⟨PX; Pψ|Jν(0)|P⟩ . (2.11)

Moreover, we define Wµν as its integral over the phase space of the undetected sys-
tem

Wµν =
∫ d3PX

(2π)32P0
X

δ(4)(q + P − Pψ − PX)Hµν. (2.12)

Hence, from Eq. (2.3) the following differential cross section can be obtained

dσ

dxB dy d4Pψ
=

1
16π

y
Q4 LµνWµν, (2.13)

where the integration over the azimuthal angle of the scattered lepton e′ has been
performed.

The hadronic tensor Wµν depends on the momenta qµ, Pµ and Pµ
ψ , namely Wµν ≡

Wµν(q, P, Pψ). Furthermore, it has to fulfill the properties of hermeticity, parity and
gauge invariance.

Hermeticity:
From its definition we have that

Wµν(q, P, Pψ) = W∗
νµ(q, P, Pψ), (2.14)

which implies that the symmetric and antisymmetric parts are respectively real and
imaginary. Since we sum over the lepton spins, the lepton tensor is symmetric in the
indices (µ, ν) and only the symmetric part of the hadronic tensor contributes to the
cross section.

Parity:
If we define a vector and its parity transformed version respectively as vµ = (v0, v)
and v̄ ≡ vµ = (v0,−v), parity invariance of the electromagnetic and strong interac-
tions implies

Wµν(q, P, Pψ) = Wµν(q̄, P̄, P̄ψ). (2.15)

Gauge Invariance:
It is a consequence of the conservation of the hadronic current Jµ(0) and corresponds
to the Ward Identity

qµWµν(q, P, Pψ) = qνWµν(q, P, Pψ) = 0. (2.16)

Therefore the hadronic tensor has to be defined in a space orthogonal to qµ.
Since Wµν fulfills the Ward Identity, it is convenient to introduce the projections

of the four-momenta onto the space orthogonal to q, and use them to write the
hadron tensor. To perform this operation, we introduce the projector

η̂µν = ηµν +
qµqν

Q2 , (2.17)
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with ηµν being the Minkowski metric with signature (+,−,−,−). The tensor η̂µν

fulfills the relations qµη̂µν = qνη̂µν = 0. Hence, we construct the following vectors
orthogonal to q,

P̂µ = η̂µν Pν

mp
=

1
mp

(
Pµ +

P · q
Q2 qµ

)
,

P̂µ
ψ = η̂µν

Pψν

Mψ
=

1
Mψ

(
Pµ

ψ +
Pψ · q

Q2 qµ

)
. (2.18)

The hadronic tensor is then decomposed in terms of four independent structure
functions

Wµν(q, P, Pψ) = −W1η̂µν + W2P̂µP̂ν − 1
2

W3

(
P̂µP̂ν

ψ + P̂νP̂µ
ψ

)
+ W4P̂µ

ψ P̂ν
ψ, (2.19)

which are the only non-vanishing ones after applying the hermeticity and parity
conditions. The structure functions Wi are functions of the available Lorentz invari-
ant quantities.

On the other hand, the lepton tensor is related to the emission of the virtual
photon from the incoming electron and its symmetric part reads

Lµν = e2 [−ηµνQ2 + 2(lµ
e lν

e′ + lν
e lµ

e′)
]

= e2 Q2

y2

[
−
(
1 + (1 − y)2) η

µν
⊥ + 4(1 − y)ϵµ

ϵν

+ 4(1 − y)
(

l̂µ
T l̂ν

T +
1
2

η
µν
⊥

)
+ 2(2 − y)

√
1 − y

(
ϵ

µ l̂ν
T + ϵν l̂µ

T

) ]
,

(2.20)

where the average over the electron spin is taken into account, and we keep the de-
pendence on the azimuthal angle of the scattered electron. In the previous equation,
η

µν
⊥ is a tensor transverse w.r.t. the momenta P and q, defined as

η
µν
⊥ = ηµν − 1

P · q
(Pµqν + Pνqµ)− Q2

(P · q)2 PµPν, (2.21)

while ϵ is the longitudinal polarization vector

ϵ
µ
(q) =

1
Q

(
qµ +

Q2

P · q
Pµ

)
. (2.22)

Upon integration over the azimuthal angle of the scattered electron, the two terms
in the last row of Eq. (2.20) do not contribute to the amplitude squared. The lepton
tensor reduces then to the simpler form

Lµν = e2 Q2

y2

[
−
(
1 + (1 − y)2) η

µν
⊥ + 4(1 − y)ϵµ

ϵν
]

, (2.23)

as shown in Ref. [86] in the framework of dimensional regularization. The latter
expression for the lepton tensor is used also by Kniehl and Zwirner in Ref. [87]. In
this form, one can identify the first term as the emission of transversely polarized
photons, while the second corresponds to longitudinally polarized photons. In the
photoproduction limit, Q → 0, the second contribution, being proportional to Q,
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vanishes (see as example Appendix. B.2.3).
In the following, since in Eq. (2.13) the integration over ϕe′ has already been per-

formed, we consider the lepton tensor given in Eq. (2.23). Furthermore, due to the
gauge invariance of the hadron tensor, the terms in Eq. (2.13) proportional to qµ can
be dropped, too.

After contracting the lepton and hadron tensors, the SIDIS differential cross sec-
tion is parameterized as

dσ

dxB dy dz dP2
⊥

=
2π

z2
α

y Q2

[ (
1 + (1 − y)2) FUU,⊥ + (1 − y)FUU,

]
, (2.24)

where the contributions from the transversely and longitudinally polarized photons
are manifestly separated. We introduced the structure functions FUU,P , where
P =⊥, is the virtual photon polarization. The structure functions can be projected
out of the hadron tensor as follows

FUU,⊥ = − z
16

η
µν
⊥ Wµν,

FUU, =
z
4

ϵ
µ
ϵν Wµν, (2.25)

or after imposing gauge invariance

FUU,⊥ = − z
16

(
Wµ

µ −
Q2

(P · q)2 PµPνWµν

)
,

FUU, =
z
4

Q2

(P · q)2 PµPνWµν = 4 FUU,⊥ + z Wµ
µ. (2.26)

2.2 Formal aspects of quarkonium polarization in SIDIS

In the previous section we have discussed the production of unpolarized J/ψ mesons
in SIDIS. Here, we explicitly explain how to formally take into account its polariza-
tion. This can be accessed experimentally by looking at the angular distributions of
the J/ψ decay products, mostly e+ e− or µ+ µ− pairs with a branching ratio of about
6% for each channel [3]. For this reason, next to the SIDIS process we also study the
subsequent decay of the J/ψ meson into a lepton-antilepton pair,

J/ψ (Pψ) → ℓ+(l+) + ℓ−(l−). (2.27)

2.2.1 Kinematics

In Eq. (2.3), the phase space for the J/ψ meson has to be replaced by the one for the
final leptons. Hence, the differential cross section now reads

dσJ/ψ→ℓ+ℓ− ∝
1

2S
|M|2 (2π)4δ(4)

(
q + P − l+ − l− − PX

)
× d3PX

(2π)32P0
X

d3le′

(2π)32Ee′

d3l+

(2π)32E+

d3l−

(2π)32E− , (2.28)

where we omitted the branching ratio Bℓℓ, while we explicitly indicated that we are
looking at the J/ψ leptonic decay channel.

In the J/ψ rest frame, ℓ+ and ℓ− are produced back to back, therefore their en-
ergies are the same (E+ = E−). Moreover, by imposing momentum conservation in
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the decay process we find

d3l+

(2π)32E+

d3l−

(2π)32E− =
d3l+

(2π)32E+

d3l−

(2π)32E−

[
d4Pψ δ(4)(l+ + l− − Pψ)

]
=

d3l+

(2π)32E+

d4Pψ

(2π)32E− δ(E+ + E− − M2
ψ)

=
E+

E−
dE+dΩ
2(2π)3

d4Pψ

2(2π)3 δ(E+ + E− − M2
ψ)

=
dE+dΩ
2(2π)3

d4Pψ

2(2π)3 δ(2E+ − M2
ψ)

=
1

16π2

d4Pψ

(2π)3
dΩ
4π

. (2.29)

The solid angle Ω refers to the lepton ℓ+, and it depends on the choice of the frame,
more specifically on the Ẑ-axis. For more details, see Sec. 2.2.4.

Using the phase elements in Eqs. (2.8) and (2.29), together with the definition of
hadronic tensor in Eq. (2.12), the SIDIS differential cross section with the inclusion
of the J/ψ decay can be written as

dσJ/ψ→ℓ+ℓ−

dxB dy d4Pψ dΩ
∝

y
Q4 LµνWµν. (2.30)

In order to study its polarization, we choose a reference frame where the J/ψ
meson is at rest or it moves with no transverse momentum. In this case, in terms of
two light-like vectors nµ

+ and nµ
−, with n+ · n− = 1, the Sudakov decomposition of

the particle momenta is

Pµ =
1√
2

z Q2

xB Mψ
nµ
−,

qµ =
1√
2

(
Mψ

z
nµ
+ − z

Q2 + q2
T

Mψ
nµ
−

)
+ qµ

T,

Pµ
ψ =

Mψ√
2

(
nµ
+ + nµ

−
)

, (2.31)

where q2
T = −q2

T. The relation between the photon transverse momentum in this
frame and the J/ψ transverse momentum in the frame defined in Eq. (2.5) reads

|qT| =
|P⊥|

ẑ
. (2.32)

The momentum of the initial lepton now takes the form

lµ
e =

1√
2

Mψ

y

[(
1 − y − 2

√
1 − y

qT

Q
cos ϕe′ −

q2
T

Q2

)
z Q2

M2
ψ

nµ
+ +

1
z

nµ
−

]

+
Q
y

(
qµ

T
Q

+
√

1 − y l̂µ
T

)
, (2.33)
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with l̂2
T = −1 and l̂T · qT = qT cos ϕe′ . As a consequence, the lepton tensor can be

written as
Lµν = L(0)µν

+ L(1)µν
, (2.34)

where L(0)µν
is the same of Eq. (2.20) (with the replacement l⊥ → lT) and

L(1)µν
= −e2 Q2

y2

[
4(1 − y)

pa · q

(
q2

T
pa · q

cos2 ϕe′ pµ
a pν

a + qT cos ϕe′
(

pµ
a l̂ν

T + pν
a lµ

T

))
+ 2(2 − y)

√
1 − y

qT

Q
cos ϕe′

(
ϵ

µ
ϵν +

Q2

(pa · q)2 pµ
a pν

a −
qµqν

Q2

)
+

y2

pa · q

(
q2

T
pµ

a pν
a

pa · q
− pµ

a qν
T − pν

aqµ
T

)]
. (2.35)

Upon integration over the electron azimuthal angle, L(1)µν
vanishes, and the lep-

ton tensor reduces to the expression in Eq. (2.23). The differential cross section can
therefore be written as

dσJ/ψ→ℓ+ℓ−

dxB dy d4Pψ dΩ
∝

α

y Q2

[(
1 + (1 − y)2)W⊥ + (1 − y)W

]
. (2.36)

The structure functions W⊥ and W in the above equation are, respectively, the
analogous of FUU,⊥ and FUU, as defined in Eq. (2.26). The only difference is that W⊥

and W describe the decay process J/ψ → ℓ+ ℓ− in addition to J/ψ production.

2.2.2 Helicity structure functions

The structure functions WP introduced in Eq. (2.36) do not depend on the spin state
of the J/ψ meson. Information on both photon and J/ψ polarizations is encoded in
the frame-dependent helicity structure functions, which are defined as

WP
λλ′ = WP

αβ ϵα
λ(Pψ) ϵ∗

β
λ′(Pψ), (2.37)

where, as before, P =⊥, refers to the photon polarization, while ϵα
λ(Pψ) are the J/ψ

polarization vectors. The structure functions WP are then recovered by summing
over the J/ψ helicities

WP = ∑
λ,λ′

WP
αβ ϵα

λ(Pψ) ϵ∗
β
λ′(Pψ) δλλ′ = ∑

λ,λ′
WP

λλ′ δλλ′ . (2.38)

The constraints due to parity conservation and hermeticity imposed by QCD on
the hadronic tensor imply the following relations

WP
λλ′ = W∗P

λλ′ , WP
λλ′ = (−1)λ+λ′WP

−λ−λ′ . (2.39)

The polarization vectors can be defined w.r.t. a covariant set of coordinate axes
(Tµ, Xµ, Yµ, Zµ), normalized in such a way that T2 = 1 and X2 = Y2 = Z2 = −1.
The axes in turn can be expressed in terms of the particle momenta qµ, Pµ and Pµ

ψ

so that Xµ, Yµ, Zµ become three-vectors in the quarkonium rest frame. The choice is
not unique and depends, in particular, on how the Ẑ-axis direction is chosen. More
details on the most used reference frames and their connections can be found in
Sec. 2.2.4.
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Once the coordinate set is chosen, the J/ψ polarization vectors are given by

ϵ
µ
0 (Pψ) = Zµ = (0, 0, 0, 1), ϵ

µ
±1(Pψ) =

1√
2
(∓Xµ − iYµ) =

1√
2
(0,∓1,−i, 0),

(2.40)
and obey the completeness and orthogonality relations

∑
λ=−1,0,1

ϵ∗α
λ(Pψ) ϵ

β
λ(Pψ) = −ηαβ + TαTβ = −ηαβ +

Pα
ψPβ

ψ

M2 ,

ϵ∗α
λ(Pψ) ϵα

λ′(Pψ) = −δλλ′ . (2.41)

Using the definition of the polarization vectors in Eq. (2.40), the tensor WP
αβ in

Eq. (2.37) can be explicitly decomposed in terms of different helicity structure func-
tions

WP
αβ = WP

00 ZαZβ +
WP

11 +WP
−1−1

2
(
XαXβ + YαYβ

)
+

WP
1−1 +WP

−11

2
(
−XαXβ + YαYβ

)
+

WP
10 −WP

−10√
2

XαZβ +
WP

01 −WP
0−1√

2
ZαXβ − i

WP
11 −WP

−1−1

2
(
XαYβ − YαXβ

)
− i

WP
1−1 −WP

−11

2
(
XαYβ + YαXβ

)
− i

WP
10 +WP

−10√
2

YαZβ + i
WP

01 +WP
0−1√

2
ZαYβ

= WP
00 ZαZβ +WP

11
(
XαXβ + YαYβ

)
+WP

1−1
(
−XαXβ + YαYβ

)
+
√

2WP
10 XαZβ +

√
2WP

01 ZαXβ. (2.42)

Notice that, due to the parity constraint in Eq. (2.39), only the real terms survive.
Using the completeness relation, one can rewrite the YαYβ tensor in terms of the
other directions and the tensor ηαβ. Hence, we obtain

WP
αβ = −

(
WP

T +WP
∆∆

) (
ηαβ − TαTβ

)
+
(
WP

L −WP
T −WP

∆∆

)
ZαZβ

−WP
∆
(
XαZβ + ZαXβ

)
− 2WP

∆∆ XαXβ, (2.43)

where the eight independent helicity structure functions have been introduced

WP
T ≡ WP

11 = WP
−1−1,

WP
L ≡ WP

00,

WP
∆ ≡ 1√

2

(
WP

10 +WP
01

)
=

√
2 Re

[
WP

10

]
,

WP
∆∆ ≡ WP

1−1 = WP
−11. (2.44)

In the previous equation the subscripts T, L, ∆, ∆∆ refer to the J/ψ polarization.
More specifically, WP

T and WP
L denote the structure functions for transversely and

longitudinally polarized J/ψ meson, respectively. Moreover, WP
∆ are the single-

helicity flip structure functions and WP
∆∆ the double-helicity flip ones.

A further simplification occurs if one takes into account that the coupling be-
tween the J/ψ meson and the decaying leptons is electromagnetic, so helicity must
be conserved in the process. In the quarkonium rest frame, the leptons are produced
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back to back along a direction l+, identified by the three-component unit vector 1

l̂+ = (sin θ cos ϕ, sin θ sin ϕ, cos θ). (2.45)

The component along l̂+ of the total angular momentum of the dilepton system, and
therefore of the J/ψ meson, can be equal to +1 or −1, but not zero. If one chooses a
specific set of the J/ψ polarization vector ϵσ(Pψ), where σ is the quarkonium helicity
along the direction l+, the sum over helicities in Eq. (2.38) is limited to the values
σ = ±1,

WP = WP
αβ ∑

σ=±1
ϵα

σ(Pψ) ϵ∗β
σ(Pψ) = −WP

αβ ηl
αβ
⊥ , (2.46)

where we have introduced the transverse projector ηl⊥ w.r.t. the directions of the
four-vectors Pψ and l̂+,

ηl
αβ
⊥ = ηαβ −

l+αPβ
ψ + l+βPα

ψ

l+ · Pψ
+

M2

(l+ · Pψ)2 l+αl+β. (2.47)

By contracting the tensor above with the parameterization for WP
αβ in Eq. (2.43), one

obtains

WP = WP
T (1 + cos2 θ) +WP

L (1 − cos2 θ) +WP
∆ sin 2θ cos ϕ +WP

∆∆ sin2 θ cos 2ϕ.
(2.48)

This provides a common parameterization of the differential cross section

dσJ/ψ→ℓ+ℓ−

dxB dy d4Pψ dΩ
=

Bℓℓ

4
α

yQ2
3

8π

[
WT(1 + cos2 θ) +WL(1 − cos2 θ)

+W∆ sin 2θ cos ϕ +W∆∆ sin2 θ cos 2ϕ
]
, (2.49)

where
WΛ =

(
1 + (1 − y)2)W⊥

Λ + (1 − y)WΛ (2.50)

and Λ = T, L, ∆, ∆∆. The above expression, Eq. (2.49), is written such that the
integration over the solid angle correctly reproduces the (semi-)inclusive J/ψ pro-
duction, namely

dσJ/ψ→ℓ+ℓ−

dxB dy d4Pψ
= Bℓℓ

dσ

dxB dy d4Pψ
, (2.51)

where in the right-hand side we have the (total) differential cross section for J/ψ
production in SIDIS.

We remark that this angular structure of the cross section is typical for the decays
of spin-1 particles: it has been already derived, for instance, for J/ψ photoproduc-
tion in Ref. [88] and for the Drell-Yan processes in Refs. [89, 90].

2.2.3 J/ψ polarization in the NRQCD approach

The helicity structure functions WP
Λ introduced in Eq. (2.48) can be calculated ex-

plicitly once a model describing quarkonium hadronization is chosen. In the fol-
lowing we consider the high transverse momentum region (qT ≫ ΛQCD) and adopt
the NRQCD theoretical framework, assuming the validity of collinear factorization.

1The angles are defined with respect to a specific frame; more details in Sec. 2.2.4.
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Indeed, we can describe the J/ψ yield via the partonic subprocess

γ∗ (q) + a (pa) → cc̄ (Pψ) + a (p′a), (2.52)

which is the lowest perturbative order in the strong coupling constant αs, corre-
sponding to the order αα2

s diagrams in Appendix B.2. In the previous equation a can
be either a gluon or a quark/antiquark, with

pa ≈ ξP, 0 ≤ ξ ≤ 1. (2.53)

One needs to determine the partonic structure functions wP (a) for each of the
underlying hard scattering subprocesses in Eq. (2.52). If we denote the scattering
amplitudes for the process γ∗ a → J/ψ + X as Mµα(γ∗a → J/ψ X), the partonic
helicity structure functions are given by

wP (a)
λλ′ = ∑

λa

1
2

ϵ
µν
P Mµα(γ

∗a → J/ψ X)M∗
νβ(γ

∗a → J/ψ X) ϵα
λ(Pψ) ϵ

β
λ′(Pψ). (2.54)

The sum runs over the two possible helicity states of the initial parton a, i.e. a
quark, an antiquark, or a gluon. Moreover, the tensor ϵP , with P =⊥, , is given
by ϵ

µν
⊥ = −η

µν
⊥ in case of the photon transverse polarization, and ϵ

µν
= ϵ

µ
ϵν for the

longitudinal one. We note that ϵP has been used to parameterize the lepton tensor
in Eq. (2.23). The partonic helicity structure functions in Eq. (2.54) can be written in
terms of the Mandelstam variables ŝ, t̂ and û, defined as

ŝ = (pa + q)2 = −Q2 + 2 q · pa,

t̂ = (q − Pψ)
2 = M2

ψ − Q2 − 2 q · Pψ,

û = (pa − Pψ)
2 = M2

ψ − 2 pa · Pψ. (2.55)

By introducing the partonic Bjorken-x (x̂) and the partonic J/ψ energy fraction (ẑ),2

x̂ =
Q2

2pa · q
=

xB

ξ
,

ẑ =
pa · Pψ

pa · q
= z, (2.56)

we have that the Mandelstam variables assume the following explicit fomulae

ŝ =
1 − x̂

x̂
Q2,

t̂ = −(1 − ẑ)

(
Q2 +

M2
ψ

ẑ

)
+ ẑ q2

T,

û = M2
ψ − ẑ

x̂
Q2. (2.57)

Notice that ŝ, which is the cm energy squared of the partonic process, must be at
least equal to the J/ψ mass, in order to produce the particle, implying that

ŝ ≥ M2
ψ. (2.58)

2Note that the last equation relates them to the corresponding hadronic variables in Eq. (2.4).
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The equality ŝ = M2
ψ in Eq. (2.58) holds when the J/ψ meson is produced at rest,

from which we find that the maximal value of the partonic Bjorken-x is

x̂max =
Q2

M2
ψ + Q2

. (2.59)

Analogous kinematic constraints can also be found for the other Mandelstam vari-
ables (see Appendix C for more details).

Once the short-distance coefficients are perturbative evaluated, we can employ
the NRQCD factorization to obtain theoretical estimates for the helicity structure
functions. In particular, according to NRQCD, the J/ψ polarization state λ can be
reached from the cc̄-pairs produced in various orbital and spin angular momentum
states. We take into account the CS 3S(1)

1 state, as well those CO states that are rela-
tively suppressed at most by a factor v4 in the velocity parameter v with respect to
the CS one, namely 1S(8)

0 , 3S(8)
1 and 3P(8)

J , with J = 0, 1, 2.
When studying polarization, a simplification occurs due to charge and parity

conjugation, which forbids the presence of interference effects among states with
different orbital angular momentum L and spin S. Thus, the partonic helicity struc-
ture functions can be decomposed as (see also Refs. [88, 91–93])

wP (a)
λλ′ = wP (a)

λλ′

[
3S(1)

1

]
+ wP (a)

λλ′

[
1S(8)

0

]
+ wP (a)

λλ′

[
3S(8)

1

]
+ wP (a)

λλ′

[
{L = 1, S = 1}(8)

]
.

(2.60)
The 1S(8)

0 state is rotational invariant (since S = L = 0), leading to a random orien-
tation of the J/ψ spin. As a consequence, this state contributes evenly to all helicity
states with λ′ = λ; hence, its contribution corresponds precisely to 1/3 of the unpo-
larized cross section. Moving to the 3S(1,8)

1 states, for both color configurations the cc̄
pair has non-zero spin. Since the Sz quantum number does not vary in the nonper-
turbative evolution into the physical J/ψ meson, we have that Sz = λ. Finally, for
the last term in Eq. (2.60) it is necessary to take into account the interference among
states with different total angular momentum J, because they have the same values
of spin and orbital angular momentum (S = L = 1). Notice that, while the Sz value
is fixed by the J/ψ helicity as in the 3S1 case, LZ is free and therefore one should sum
over all its possible values,

wP (a)
λλ′

[
{L = 1, S = 1}(8)

]
∝ ∑

Lz, λa

1
2

ϵ
µν
P Mµα (γ

∗a → cc̄ [(1, Lz; 1, λ)] a)

×M∗
νβ

(
γ∗a → cc̄

[
(1, Lz; 1, λ′)

]
a
)

ϵα
λ(Pψ) ϵ

β
λ′(Pψ)

̸= ∑
J=0,1,2

wP (a)
λλ′ [ 3P(8)

J ], (2.61)

where the notation (L, Lz; S, Sz) is used for the quantum numbers of the cc̄ pair. In
the last equation we point out that this procedure is different from taking the sum
over all the intermediate states with total angular momentum J, as is done for the
calculation of the unpolarized cross section. The latter is recovered by performing a
trace over the helicity indices of wP (a)

λλ′ .
By further exploiting the symmetries of NRQCD it can be shown that the pertur-

bative and nonperturbative contributions to the partonic structure functions wP (a)
λλ′

factorize. The former are given by some short distance coefficients KP (a)
αβ written in

terms of the Mandelstam variables in Eq. (2.55), while the latter are encoded in the
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LDMEs. Therefore, the partonic structure functions can be written as [88])

wP (a)
λλ′ = ∑

n
wP (a)

λλ′ [n] ≡ ∑
n

KP (a)
αβ ϵα

λ(Pψ) ϵ
β
λ′(Pψ) ⟨O[n]⟩ , (2.62)

where the sum runs over the Fock states n = 1S(8)
0 , 3S(1)

1 , 3S(8)
1 , 3P(8)

0 , with the P-
wave contribution corresponding to the last term in Eq. (2.60).

Once the partonic structure functions are calculated, the hadronic ones are deter-
mined through a convolution,

(2π)3WP
λλ′ = ∑

a

∫ x̂max

xB

dx̂
x̂

∫ 1

z
dẑ f a

1

( xB

x̂
, µ2
)

wP (a)
λλ′ δ

(
ŝ + t̂ + û − M2

ψ + Q2
)

δ(ẑ− z),

(2.63)
where the upper limit of the integration over x̂, x̂max, is given in Eq. (2.59). In deriv-
ing the above formula, momentum conservation has been used to integrate over the
phase-space of the final parton, leading to a Dirac-delta function expressed in terms
of the Mandelstam variables,∫ d3 p′a

2Ea′
δ(4)(q + pa − Pψ − p′a) =

∫
d4 p′a δ(p′a

2
) δ(4)(q + pa − Pψ − p′a)

= δ
(
(q + pa − Pψ)

2
)
= δ(ŝ + t̂ + û − M2

ψ + Q2).

(2.64)

The explicit results for the wP (a)
Λ in the Gottfried-Jackson frame are presented in

Appendix B.2.3. Once the hadronic helicity structure functions WP
λλ′ are calculated

through Eq. (2.63), the WP
Λ , with Λ = L, T, ∆, ∆∆, can be obtained by means of

equations similar to Eqs. (2.44).

2.2.4 Reference frames

As already mentioned, the quarkonium rest frame is not unique. Several frames can
be identified, depending on the choice of Ẑ-axis, while the X̂ and Ŷ axes are fixed by
convention, see Ref. [88]. In all the frames, Tµ is taken to be

Tµ =
Pµ

ψ

Mψ
, (2.65)

while
Yµ = ϵµνρσXνZρTσ, (2.66)

where ϵ0123 = +1. Zµ and Xµ can be easily expressed as linear combinations of the
auxiliary four-vectors

q̃µ = qµ −
q · Pψ

M2
ψ

Pµ
ψ ,

P̃µ = Pµ −
P · Pψ

M2
ψ

Pµ
ψ , (2.67)
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FIGURE 2.2: Different choices of the Z direction corresponding to four typical frames in
which the J/ψ is at rest: Gottfried-Jackson (GJ), Collins-Soper (CS), Target (TF) and Helicity

(HX).

because q̃ · T = P̃ · T = 0. One starts by writing

Zµ = Az q̃µ + Bz P̃µ,

Xµ = Ax q̃µ + Bx P̃µ. (2.68)

The normalization conditions Z2 = −1 and X2 = −1 can be used to fix, for exam-
ple, the coefficients Az and Ax, respectively. Bx is determined by the orthogonality
relation X · Z = 0. The overall sign ambiguity for Ax and Bx is solved by requiring
that the three-vector Y points in the direction of q × (−P) in the J/ψ rest frame. The
choice of Bz specifies the four commonly used reference frames illustrated in Fig. 2.2
and described in the following.

Despite being model independent, we introduce the explicit forms of Zµ and
Xµ in the four reference frames after the adoption of the parton model. Indeed, we
found more convenient to write them in terms of the modified Mandelstam variables

s = ŝ + Q2, t = t̂, u = û + Q2, (2.69)

where ŝ, t̂, û are defined in Eq. (2.55) and s + t + u = M2
ψ + Q2. Moreover, in the fol-

lowing we assume collinear factorization, hence the parton momentum pµ
a is related

to its parent hadron momentum P, via Eq. (2.53), namely pa = ξP.
We remark that similar frames can also be identified in the study of the virtual

photon in Drell-Yan processes, Ref. [89].

Gottfried-Jackson frame (GJ). It is also known as u-channel, and it is defined by
selecting Ẑ in the same direction of the photon three-momentum, Z = q/|q|, from
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which one finds

Zµ
GJ =

1
Mψ NGJ

[
2M2

ψ qµ − (s + u − 2 Q2)Pµ
ψ

]
,

Xµ
GJ = − 1

NGJ
√

t(Q2t + s u)t

[ (
s (M2

ψ + Q2) + t (2Q2 − u)
)

qµ

+
(
4 Q2t + (s + u)2) pµ

a −
(

2 Q2t + s (s + u)
)

Pµ
ψ

]
,

(2.70)

with
NGJ =

√
4 Q2t + (s + u)2. (2.71)

Helicity frame (HX). It is also known as recoil frame, and in this case the Ẑ-axis
is chosen to be along the direction of the J/ψ three-momentum in the hadronic cm
frame, corresponding to Z = −(P + q)/|P + q|, and

Zµ
HX = − 1

Mψ NHX

[
2M2

ψ (ξ qµ + pµ
a )−

(
ξ(s + u − 2 Q2) + (s + t)

)
Pµ

ψ

]
,

Xµ
HX =

1
NHX

√
t(Q2t + s u)t

{[
ξ
(

s (M2
ψ + Q2) + t (2Q2 − u)

)
− (s + t)2

]
qµ

+
[
ξ
(
4 Q2t + (s + u)2)− (s (M2

ψ + Q2) + t (2 Q2 − u)
) ]

pµ
a

+
[
s (s + t)− ξ

(
2 Q2t + s (s + u)

) ]
Pµ

ψ

}
,

(2.72)

with

NHX =

√
ξ2 [4 Q2t + (s + u)2]− 2 ξ

[
s (M2

ψ + Q2) + t (2 Q2 − u)
]
+ (s + t)2. (2.73)

Target frame (TF). It is defined by choosing Ẑ in a such a way that it points in the
opposite direction of the proton momentum, i.e. Z = −P/|P|. Explicitly, we have

Zµ
TF =

1
MψNTF

[
− 2 M2

ψ pµ
a + (s + t)Pµ

ψ

]
,

Xµ
TF = − 1

NTF
√

t(Q2t + s u)t

×
[
(s + t)2qµ +

(
s (M2

ψ + Q2) + t (2 Q2 − u)
)

pµ
a − s(s + t)Pµ

ψ

]
, (2.74)

with
NTF = (s + t). (2.75)
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Collins-Soper frame (CS). It is defined choosing Ẑ as the bisect of the two beams,
i.e. Z = q/|q| − P/|P|, so

Zµ
CS =

1
NCS

[
(s + t)qµ − (s + u − 2 Q2)pµ

a

]
,

Xµ
CS = − 1

Mψ NCS
√

t(Q2t + s u)t

×
[

M2
ψ s (s + t) qµ + M2

ψ

(
s(s + u) + 2 Q2t

)
pµ

a − (s + t)
(

s(M2
ψ − t) + Q2t

)
Pµ

ψ

]
,

(2.76)

with

NCS =

√
(s + t)

[
s (M2

ψ − t) + Q2t
]
. (2.77)

Relations among different frames

Since all frames share the same X̂-Ẑ plane, a proper rotation around the Ŷ-axis con-
nects a starting frame F to a final frame F′, namely(

X
Z

)
F′
=

(
cos ψF→F′ − sin ψF→F′

sin ψF→F′ cos ψF→F′

)(
X
Z

)
F

. (2.78)

It is convenient to show the rotational angles from one specific frame to all the others,
since the other relations can be derived by a proper product of matrices. Considering
the Gottfried-Jackson as the starting frame, we have that:

• from GJ to HX:

cos ψGJ→HX =
s (M2

ψ + Q2) + t (2 Q2 − u)− ξ
(
4 Q2t + (s + u)2)

NHX NGJ
,

sin ψGJ→HX =
2 M2

ψ

√
t(Q2t + s u)

NHX NGJ
; (2.79)

• from GJ to CS:

cos ψGJ→CS =
Mψ

(
s (s + u) + 2 Q2t

)
NCS NGJ

,

sin ψGJ→CS =
(s + u − 2 Q2)

√
t(Q2t + s u)

NCS NGJ
; (2.80)

• from GJ to TF:

cos ψGJ→TF =
s (M2

ψ + Q2) + t (2 Q2 − u)
NTF NGJ

,

sin ψGJ→TF =
2 Mψ

√
t(Q2t + s u)

NTF NGJ
. (2.81)

By noticing that in Eq. (2.44) the helicity structure functions are defined in terms
of the J/ψ polarization vectors, which in turn are given as linear combination of the
four vectors Xµ, Yµ, Zµ in Eq. (2.40), one can easily evaluate the rotation matrix for
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WΛ
WT
WL
W∆
W∆∆


F′

=


1 − 1

2 sin2 ψ 1
2 sin2 ψ 1

2 sin 2ψ 1
2 sin2 ψ

sin2 ψ cos2 ψ − sin 2ψ − sin2 ψ

− 1
2 sin2 ψ 1

2 sin 2ψ cos 2ψ 1
2 sin 2ψ

1
2 sin2 ψ − 1

2 sin2 ψ − 1
2 sin 2ψ 1 − 1

2 sin2 ψ




WT
WL
W∆
W∆∆


F

.

(2.82)
In the previous, the explicit subscript remarking that the rotation is from F to F′ has
been omitted to simplify the notation.

2.3 Phenomenological predictions for the EIC

In this section, based on Ref. [94], we present a detailed phenomenological analysis
of J/ψ polarization at Electron-Ion Collider kinematics.

J/ψ polarization has been widely studied both in pp, e.g. at LHC by the AL-
ICE Collaboration [95] and ep collisions, e.g. at HERA, which provided data for
both photoproduction [96] and SIDIS [13]. In Ref. [87] the latter case was addressed
from a theoretical point of view, showing that the kinematic coverage and the preci-
sion reached by the experiment were not optimal to discern between the CSM and
NRQCD approaches. J/ψ polarization measured at HERA was also discussed in
Ref. [97], leading to similar conclusions.

The situation could certainly improve in the upcoming future with the advent
of the EIC. It is indeed expected that the luminosity reached by this facility is much
higher compared to HERA, even if no final decision has yet been made regarding
the detector. In this section, we will then remark the importance of the study of
J/ψ polarization, highlighting which frames and kinematic regions could be more
effective in this respect.

To collect more statistics, it is almost mandatory to evaluate both the unpolarized
cross section and the polarization parameters in a wide enough region of the phase
space. The angular distribution is given, at fixed kinematics, by

1
N

dN
dxB dy d4Pψ dΩ

=
3

8π

1
2WT +WL

[
WT

(
1 + cos2 θ

)
+WL

(
1 + cos2 θ

)
+W∆ sin 2θ cos ϕ +W∆∆ sin2 θ cos 2ϕ

]
, (2.83)

or equivalently

1
N

dN
dxB dy d4Pψ dΩ

=
3

4π

1
λ + 3

[
1 + λ cos2 θ + µ sin 2θ cos ϕ +

ν

2
sin2 θ cos 2ϕ

]
,

(2.84)
with

λ =
WT −WL

WT +WL
, µ =

W∆

WT +WL
, ν =

2W∆∆

WT +WL
. (2.85)

The parameterization in Eq. (2.84) is the standard one adopted in experimental anal-
ysis.
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These parameters can be related to the quantities dσλλ′ ≡ dσλλ′
dxBdyd4Pψ

(ultimately
related to the J/ψ helicity density matrix ρλλ′). In particular, we have

dσ1, 1 = dσ−1,−1 ∝
α

y Q2 WT,

dσ0, 0 ∝
α

y Q2 WL,

√
2 Re [dσ1, 0] ∝

α

y Q2 W∆,

dσ1,−1 ∝
α

y Q2 2W∆∆, (2.86)

from which

λ =
dσ1, 1 − dσ0, 0

dσ1, 1 + dσ0, 0
, µ =

√
2 Re [dσ1, 0]

dσ1, 1 + dσ0, 0
, ν =

dσ1,−1

dσ1, 1 + dσ0, 0
. (2.87)

To obtain the event distribution over a region of the phase space dPS, it is needed
to integrate separately each dσλλ′ . We define ⟨dσλ, λ′⟩ as the integrated dσλ, λ′ in a
region Γ of the phase space, namely

⟨dσλ, λ′⟩ =
∫

Γ

dσλλ′

dxB dy d4Pψ
dPS. (2.88)

From these we can compute the “integrated" polarization parameters as

⟨λ⟩ = ⟨dσ1, 1⟩ − ⟨dσ0, 0⟩
⟨dσ1, 1⟩+ ⟨dσ0, 0⟩

, ⟨µ⟩ =
√

2 Re [⟨dσ1, 0⟩]
⟨dσ1, 1⟩+ ⟨dσ0, 0⟩

, ⟨ν⟩ = ⟨dσ1,−1⟩
⟨dσ1, 1⟩+ ⟨dσ0, 0⟩

.

(2.89)
These quantities parameterize the integrated yield in the same way as Eq. (2.84).

More explicitly, by integration over the phase space dPS ≡ dxB dy d4Pψ, we have

1
N

dN
dΩ

=
3

4π

1
⟨λ⟩+ 3

[
1 + ⟨λ⟩ cos2 θ + ⟨µ⟩ sin 2θ cos ϕ +

⟨ν⟩
2

sin2 θ cos 2ϕ
]
. (2.90)

For simplicity, we will drop henceforth the bracket notation.
In next sections we will provide predictions for the angular parameters λ, ν and

µ, evaluated at fixed z, the J/ψ energy fraction, and P⊥, its transverse momentum
component.3 We will also show how to properly combine them to get rotational in-
variant quantities, extremely important from both the theoretical and experimental
points of view. Our estimates will be presented in a frame where the virtual pho-
ton and the proton are (anti-)collinear. Even if variables are usually labelled by the
superscript ∗ within this frame choice, corresponding to a so-called z frame [98], in
the following we will not adopt the same convention. Moreover, we mention that
in Ref. [98] the azimuthal dependence of the lepton tensor has been widely studied.
It has been found that, this dependence cannot be dropped from the tensor even
upon its integration, if observables are studied in frames such as the laboratory one.
Indeed, the Jacobian of the transformation from a variable in a z frame and the labo-
ratory one can depend on the azimuthal angle itself, providing residual contribution

3We recall that P⊥ is the J/ψ transverse momentum in a frame where the proton and the photon
are (anti)collinear.
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from it. Thus, considering the lepton defined in Eq. (2.23) in such cases leads to in-
correct results. This has also been numerically demonstrated in Ref. [99], where a
comparison with the expression in the laboratory frame provided by Ref. [87] has
been carried out. Since our estimates of the angular parameters are only given in the
aforementioned z frame, they will not be afflicted by the same issue. However, it is
important to stress that they are leading-order predictions. In Ref. [100] the authors
evaluated the J/ψ angular parameters λ and ν at next-to-leading order (NLO) in
photoproduction adopting both CSM and NRQCD, finding a significant deviation
from the corresponding leading-order estimates. Nevertheless, we expect that this
is less relevant in the large Q2 region.

Hence, it is extremely important to carry on studies on the angular parameters,
which can be used in combination with unpolarized data to shed light on the quarko-
nium hadronization mechanism. In particular, in Ref. [101] it has been shown that
the study of unpolarized J/ψ production at the EIC, and especially cos 2ϕψ mod-

ulation measurements, could be extremely vital to test the 1S(8)
0 dominance picture,

which is predicted in various phenomenological extractions (see also Appendix A.3).
In addition, by studying the small transverse momentum region where the TMD fac-
torization is applicable, in Ref. [102] it has been proposed to compare unpolarized
J/ψ production data with open-heavy quark ones to isolate the LDME dependence.
This is motivated by the fact that the ratio of the two differential cross sections is in-
dependent of the TMDs, at least at the leading order. Nevertheless, these proposals
mostly focus on the LDME related to the 1S(8)

0 wave and/or on the ratio between
⟨Oψ

8 [
1S0]⟩ and ⟨Oψ

8 [
3P0]⟩. At variance, the study of the J/ψ polarization states is less

dependent on ⟨Oψ
8 [

1S0]⟩, since this state is purely unpolarized and leads to a random
polarization of the J/ψ. Hence, the polarization parameter numerators are indepen-
dent of ⟨Oψ

8 [
1S0]⟩, giving a complementary description to the aforementioned, fully

unpolarized analyses proposed.
Before focusing on the angular parameters, we will present estimates for the un-

polarized cross section at the EIC kinematics. In the present study, for the unpolar-
ized parton distributions, we will adopt the CTEQ6L1 set [103]. Moreover, for each
case considered we will provide predictions both within the CSM and the NRQCD
approach, employing the following three different LDME sets: the BK11 [104] set,
extracted including also photoproduction data at low transverse momentum; the
C12 [15] set, obtained including polarization data in pp collisions; the G13 [105] set,
to be compared with the C12 set. More details can be found in Appendix A.3.

It is worth noticing that the use of different LDME sets, fundamental in the
quarkonium formation mechanism, allows to understand their impact also on its
polarization.

2.3.1 Unpolarized cross sections

In this section we present leading-order estimates for unpolarized cross sections,
both as functions of z and PT, adopting different frameworks. A more extensive
study on the unpolarized cross section at the EIC was done in Ref. [12], even if lim-
ited to the CSM and providing only differential cross sections as functions of the J/ψ
transverse momentum.

It is worth recalling that our main focus is on the angular/polarization parame-
ters (evaluated at LO), discussed in the next sections. Hence, it is useful to look at
the unpolarized cross sections at the same level of accuracy.
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FIGURE 2.3: Unpolarized differential cross section for the SIDIS process e p → e′ J/ψ + X
at EIC kinematics as a function of P⊥, at two cm energies and for different approaches and
LDME sets. The integration ranges are given in the boxes, red (on the left) for

√
S = 45 GeV

and blue (on the right) for
√

S = 140 GeV. The uncertainty bands are computed by varying

the factorization scale in the range µ0/2 < µF < 2µ0, with µ0 =
√

M2
ψ + Q2.

One of the opportunities offered by the EIC is the study of ep scattering processes
at high luminosity and at different energies. In particular, we will consider two cm
energies, corresponding to two extreme values potentially explored by the facility,
namely

√
S = 45 GeV and

√
S = 140 GeV.

In Fig. 2.3 we show our predictions for the unpolarized cross section vs. P⊥ at
two cm energies and for different approaches, while in Fig. 2.4 we show its z de-
pendence. The uncertainties bands are obtained by letting the factorization scale µF

vary in the range µ0/2 < µF < 2µ0, around the central value µ0 =
√

M2
ψ + Q2.

Moreover, in both cases we integrate over Q and W; the former is the photon virtu-
ality while the latter is the cm energy of the photon-proton system. We will adopt
different integration ranges for the two energies. For

√
S = 140 GeV, we perform the

integration in the intervals 3 GeV < Q < 10 GeV and 20 GeV < W < 100 GeV. The
Q range covers most of the high contributing virtuality region while, at the same
time, avoids the very small Q values, where photoproduction could play a role and
interfere; W integration covers instead almost half of its available region. For the
lower cm energy,

√
S = 45 GeV, we reduce the lower bound of the Q integration

to improve the statistics, taking 1.6 GeV < Q < 10 GeV. Consistently, the W inte-
gration range must be changed, to respect the physical kinematical limits; we then
choose 10 GeV < W < 40 GeV, covering almost its whole available region.

The P⊥ spectrum for P⊥ > 1 GeV, Fig. 2.3, is evaluated integrating the energy
fraction in the region 0.2 < z < 0.9. Notice that, in the low-P⊥ region, the TMD fac-
torization is supposed to be the correct description of the process. This means that
we are pushing our predictions down to P⊥ values that could belong to the over-
lapping region between the two frameworks (collinear and TMD), giving a hint on
what we could expect from the TMD sector. Similarly, in the study of the differential
cross section w.r.t. z, Fig. 2.4, we keep considering only P⊥ > 1 GeV.

From Fig. 2.3 we see that the differential cross sections drop as P⊥ increases. In
particular, the curves relative to the lower energy (red lines) drop faster compared to
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FIGURE 2.4: Same as in Fig. 2.3 but as a function of z.

the corresponding ones evaluated at higher energy (blue lines); at small P⊥ the size
in the two cases is similar due to the different Q integration range. Moreover, the
presence of CO waves increases the magnitude of NRQCD predictions compared to
the CSM ones, at both energies.

It is worth noticing that the main contribution, within the NRQCD framework,
comes from the 1S(8)

0 wave, followed by the CS one (P-wave) at low (high) P⊥. The
P⊥ values where the P-waves contribution becomes greater than the CS one differ
depending on the LDME set, but it is systematically lower at

√
S = 45 GeV. The 3S(8)

1
wave gives in all cases a subleading contribution.

Regarding the role of partons, at
√

S = 140 GeV we found that the 1S(8)
0 and

3P(8)
J waves are dominated by gluons, at least in the region shown in the plot; at

P⊥ > 10 GeV valence quarks become dominant, due to a less suppressed P⊥ dis-
tribution. At

√
S = 45 GeV, the quark channel dominates over gluons at lower P⊥,

with both 1S(8)
0 and 3P(8)

J waves being dominated by quark channels at P⊥ ≳ 5.5 GeV,
independently of the LDME set considered.

In Fig. 2.4 we observe the (well known) discrepancy between CSM and NRQCD
predictions [87, 106, 107], with the latter presenting a divergent behavior at high z.
This is related to the singularities of the 1S(8)

0 and 3P(8)
J waves when t̂ → 0, that can

potentially spoil the NRQCD factorization. More precisely, the full wave/parton
decomposition in NRQCD shows that the main CO contribution is the gluon 1S(8)

0

wave, followed by the gluon 3P(8)
J and the quark 1S(8)

0 waves. These are relevant at
high z, while NRQCD predictions at z ≲ 0.5 are mostly dominated by the CS-wave
at both energies.

In Refs. [108, 109], the authors tried to deal with this problem by introducing a
new set of objects, called shape functions. These allow to extend the convergence
of NRQCD in photoproduction up to 1 − z ∼ v2. Analogous quantities can be ex-
pected to play a role also in the electroproduction case. Moreover, a TMD version
of them, the TMD shape functions, were subsequently introduced in Refs. [36, 110]
for pp processes, to provide the correct TMD factorized expression. Finally, their
perturbative tails in SIDIS processes were firstly derived in Refs. [111, 112]. We will
revisit this last derivation in Chapter 3.
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FIGURE 2.5: LO estimates for λ at
√

S = 140 GeV as a function of z (left panels) and as
a function of P⊥ (right panels) for different models and LDME sets. Two reference frames
are considered: the Gottfried-Jackson (upper panels) and the Helicity (lower panels) frames.

Integration ranges are given in the blue legend box in the right panel.

While it is certainly important to address these issues, they will not be included
in the following discussion. Indeed, while smearing effects can play a significant role
in quarkonium production, we expect that their importance is markedly reduced
when considering the angular parameters [88], being ratios of cross sections. We
will anyway point out whenever they may affect our predictions.

2.3.2 The angular parameter λ

We now move to the angular parameters, starting with λ. This quantity is remark-
able, being the most experimentally investigated and with great potential from the
phenomenological point of view.

As done for the unpolarized cross section, we consider two cm energies, namely√
S = 140 GeV (Fig. 2.5) and

√
S = 45 GeV (Fig. 2.6). Moreover, we focus our

attention on two frames: the Gottfried-Jackson (GJ) and the Helicity (HX) ones; the
proper definition of these frames is given in Sec. 2.2.4. As will become clearer shortly,
the Gottfried-Jackson frame is a remarkable choice, since the predictions relative to
this frame are more sizeable compared to others, while at the same time they present
interesting features. As a complementary frame, we have found that the Helicity one
is more suitable. On the other hand, the Collins-Soper frame provides predictions in
general less sizeable (even close to zero) compared to the GJ ones, while the Target
frame predictions are almost overlapping with the HX ones. For these reasons, in
the following, we will not explicitly show the last two frames mentioned.

In the next figures we present our results as follows: in the upper panels we show
the predictions in the GJ frame, while in the lower panels we present the correspond-
ing ones in the HX frame; left panels refer to the energy fraction z dependence, while
right panels to the P⊥ dependence. We consider the same integration regions used
for the unpolarized cross section, as also given in the legend boxes in the figures.
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FIGURE 2.6: Same results as in Fig. 2.5 but at lower energy,
√

S = 45 GeV. The corresponding
integration regions are given in the red legend box on the left. The error bands for the CSM
predictions as a function of P⊥ correspond to the scale variation error, which is sizeable only

in this case.

Notice that the band relative to the factorization scale variation is not present, ex-
cept for some CSM predictions at

√
S = 45 GeV. Indeed, it has been found that this

variation is not sizeable enough to be appreciated.
As one can see, left panels of Fig. 2.5 (

√
S = 140 GeV), the magnitude of the

λ distribution with respect to z is relatively high. The separation among different
frameworks is however relatively small, being all curves very close to each other for
z < 0.6. High precise data would be required to disentangle them, which might not
even be possible at the EIC. The situation is slightly different in the high-z region
(z > 0.6). Especially in the GJ frame, the separation between the CSM and differ-
ent NRQCD predictions is relatively significant. Notice that this is the same region
where shape functions are expected to start playing a role in the unpolarized case;
data at these z values could be then used to understand if they are also required
when analyzing the J/ψ polarization.

On the other hand, from the right panels of Fig. 2.5 we can see what we could
expect from a P⊥ analysis. Indeed, the P⊥ distribution is a more powerful tool to
discern among different frameworks. In particular, precise enough data may be able
to discriminate among the predicted shapes of the estimates within the CSM and
NRQCD in the GJ frame, or their size in the HX one. Notice that these studies could
be performed at P⊥ values significantly far away from the TMD region, avoiding
any possible interference from the TMD sector.

Moving to the lower cm energy
√

S = 45 GeV, we present the corresponding
results in Fig. 2.6. We see that the distributions w.r.t. z (left panels) do not vary
significantly for z < 0.6, while at higher values (z > 0.6) the estimates are reduced.
In addition, we observe in the HX frame a rapid variation of all curves at z ∼ 0.1.
We remark that this is caused by an energy dependent factor, see Eq. (2.79); the
same variation should be observed in Fig. 2.5 but, happening at a lower z value, it is
outside the range shown.

CSM estimates as functions of P⊥ (right panels) present a more visible variation
w.r.t. those in the higher energy case. From the other side, NRQCD results are more
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stable in the two energies analysed. In particular, this is evident when considering
the λ distributions (w.r.t. P⊥) in HX frame, where the CSM prediction presents a sign
change at medium/high P⊥ (Fig. 2.6). Moreover, considering the GJ frame, the CSM
prediction at medium/high P⊥ is stable around the value λ ≈ 0.4, without dropping
to 0 as in Fig. 2.5. These differences are mostly caused by the lower bound used in
the Q2 integration at

√
S = 45 GeV. Namely, while within NRQCD the impact of

small virtualities (1.6 GeV ≲ Q ≲ 3 GeV) is not relevant, within the CSM two com-
petitive behaviors appear, causing the difference of the curves in the two figures. In
principle, a very similar result can be observed at the higher cm energy, performing
a proper binning of Q2.

We conclude the discussion on the λ parameter with the parton and/or wave
decomposition.

From the z analysis, the so close predictions in different frameworks can be
traced back to the fact that the numerators are dominated, at both energies, by the
(gluon) CS wave, over most of the z values. The subdominant contribution comes
from the gluon CO P-wave,4 which is also the cause of the separation among the
results at z > 0.6.

In contrast, the same analysis in P⊥ shows that the numerator gets a significant
contribution from both the gluon and the quark sectors. In particular, at

√
S =

140 GeV we find that the (gluon) CS contribution is the most relevant. Nevertheless,
at high P⊥ the full (quark+gluon) 3P(8)

J wave contribution to the numerator of λ is
bigger compared to the CSM term. In addition, for P⊥ → 1 GeV we find that the size
of the gluon P-wave is comparable to the CS one. Since the predictions at high z are
obtained by an integration over P⊥, mostly dominated by low-P⊥ values, different
3P(8)

J LDMEs drive the discrepancies observed at z > 0.6 for different frameworks.
Moving to the lower cm energy,

√
S = 45 GeV, it is worth separating the discus-

sion between the two frames. In the GJ frame we find similar conclusions as in the
higher cm energies, but where the role of quarks is magnified, making it the leading
term of the numerator at high P⊥. In the HX case, the contributions to the numerator
of λ from CSM and P-waves are highly suppressed at high P⊥, so the differences in
NRQCD are fully driven by the 3S(8)

1 quark wave.

2.3.3 The angular parameter ν

From the previous discussion, it is clear that the study of a single angular parameter
is not exhaustive, especially if limited to a single frame.

For this reason, we now focus on the parameter ν. Indeed, this parameter is very
intriguing by itself. As shown in the last section of this chapter (Sec. 2.4), ν is directly
related to the linearly polarized gluon TMD distribution within an unpolarized pro-
ton, h⊥ g

1 , with great theoretical and phenomenological relevance. Moreover, it is
possible to combine λ and ν to construct rotational invariant quantities, as discussed
in Sec. 2.3.5. We will then present our LO predictions for ν at the same cm energies
and with the same integration range choices, namely

√
S = 140 GeV (Fig. 2.7) and√

S = 45 GeV (Fig. 2.8).
We start the discussion from the distributions w.r.t. z at these two energies, left

panels of Figs. 2.7 and 2.8. As it has been previously found for λ, predictions within
the two hadronization models considered are very close (even overlapping) to each
other. Once again, although the parameter is sizeable, as in the Helicity frame, future
data will be hardly able to discriminate among different frameworks.

4Remember that 1S0 wave cannot contribute to the numerator.
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FIGURE 2.7: LO estimates for ν at
√

S = 140 GeV. Panelling order is the same as in Fig. 2.5,
with integration ranges given in the blue legend box on the left.
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variation.

The situation is more promising when considering the P⊥ dependence, at least
within the Gottfried-Jackson frame, where there is a significant separation between
CSM and NRQCD estimates and where we can still observe the different depen-
dence on the energy/Q-binning, left panels of Figs. 2.7 and 2.8. On the contrary,
the Helicity frame does not offer the same possibility. Therefore, if limited to the HX
frame and within the collinear region, the ν parameter is not able to provide any
valuable information by itself.

We remark, however, that the high-z/low-P⊥ regions are quite interesting, due
to their connection to the TMD framework, with the potential access to the h⊥ g

1
gluon TMD. Moreover, in the same region it is possible to study residual effects
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FIGURE 2.9: Estimates for the parameter µ at
√

S = 140 GeV. Panelling order is the same as
in Fig. 2.5. Integration ranges are given in the blue legend box.

from (TMD) shape functions, which could depend on quarkonium polarization. In
particular, this issue could be better studied at the lower cm energy (or with a proper
binning over small-Q values) which, as shown in Fig. 2.8, provides larger sizes. Nev-
ertheless, as discussed in the next Chapter, to properly study the perturbative tails
of the polarization dependent shape functions one needs a complete description at
the order α2α3

s within NRQCD factorization, which is still missing.
Let us now discuss the parton/wave decomposition of the numerator of ν, which

is directly related to the helicity structure function W∆∆.
First of all, we can say that its z dependence is dominated by the CS wave at√

S = 140 GeV, except for z → 0.9, where the CS contribution is negligible compared
to the CO P-wave one. Regarding the W∆∆ decomposition w.r.t. P⊥ at

√
S = 140 GeV,

we find that the contribution of the CS term is significant in the whole spectrum of
P⊥, together with the gluon P-wave. At variance with the λ parameter case, quark
contributions become relevant already at small-P⊥ values.

An analogous decomposition is also found for the lower cm energy, with the CO
P-wave (for both quarks and gluons) being enhanced, because of the lower photon
virtualities explored at

√
S = 45 GeV.

2.3.4 The angular parameter µ

We conclude the angular parameter section providing µ estimates in the two selected
frames, Gottfried-Jackson and Helicity, as a function of z and P⊥ at

√
S = 140 GeV,

Fig. 2.9, and
√

S = 45 GeV, Fig. 2.10.
We found that the Gottfried-Jackson frame is overall the best choice to discern

between the CSM and NRQCD approach. This conclusion is driven by the clear
separation among NRQCD and CSM predictions for z ≳ 0.5 and P⊥ ≳ 5 GeV at√

S = 140 GeV (Fig. 2.5). On the contrary, estimates in the Helicity frame are closer
to each other, and it is not foreseeable to come to any conclusion from it.

Even at
√

S = 45 GeV (Fig. 2.10), the Gottfried-Jackson has more interesting fea-
tures. Indeed, we see that CSM µ estimates vary significantly for z ≳ 0.5 and
P⊥ ≳ 5 GeV, compared to what happens at

√
S = 140 GeV. We remark that the
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FIGURE 2.10: Estimates for the parameter µ distribution predictions at
√

S = 45 GeV. Pan-
elling order is the same as in Fig. 2.5. Integration ranges are given in the red legend box.

same variation can be observed in the higher cm energy case (
√

S = 140 GeV) via a
proper binning in Q. Differently, estimates within the Helicity frame at lower ener-
gies (lower panels of Fig. 2.10) present a significant energy/Q-binning dependence
only for predictions w.r.t. P⊥. In particular, at this (lower) energy the CSM estimate
reaches values up to ∼ 0.20, while the corresponding one at

√
S = 140 GeV does not

exceed ∼ 0.13.
Again, we conclude the µ section discussing the wave/parton decomposition of

its numerator, directly related to the helicity function W∆. At the higher energy
(
√

S = 140 GeV) the main CO contribution comes from the P-wave term, more
specifically the gluon P-wave. Thus, the P-wave LDMEs are those that drive the
differences in the NRQCD estimates w.r.t. z (left panels of Fig. 2.9). Moreover, for
P⊥ ≲ 3 GeV and in the Gottfried-Jackson frame, the gluon P-wave provides a signif-
icant contribution to the NRQCD predictions (see upper-right panel of Fig. 2.9). In
addition, at high P⊥ and especially when considering the Helicity frame we have that
the quark P-wave channel is relevant, too. Moving to the decomposition at the lower
energy (

√
S = 45 GeV), the role of quarks is enhanced. This is particularly true for

the P⊥ dependence, since for P⊥ ≳ 6 GeV NRQCD predictions are mostly driven by
the quark P-wave. Furthermore, even the 3S(8)

1 quark wave is non-negligible in the
same high-P⊥ region.

2.3.5 Rotational invariant quantities

As clear from their definition and from the previous discussion, the polarization pa-
rameters (λ, µ and ν) are frame-dependent quantities. Nevertheless, as explained in
Sec. 2.2.4, the difference among the most used frames is computable, since it corre-
sponds to a rotation around the (common) Ŷ-axis. In particular, two frame F and F′

can be connected via a rotation of an angle ψ, and the rotational matrix that relates
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the angular parameters in these two frames is given by5

λ
µ
ν


F′

=
1

1 + ρ

1 − 3
2 sin2 ψ 3

2 sin 2ψ 3
4 sin2 ψ

− 1
2 sin 2ψ cos 2ψ 1

4 sin 2ψ

sin2 ψ − sin 2ψ 1 − 1
2 sin2 ψ

λ
µ
ν


F

, (2.91)

with

ρ =
sin2 ψ

2

(
λF −

νF

2

)
− sin 2ψ

µF

2
. (2.92)

Notice that the quantity ρ depends on the kinematics, since the rotation angle itself
depends on the Mandelstam variables (see Eqs. (2.79) - (2.81)).

From Eq. (2.91), it is possible to define auxiliary quantities that are frame inde-
pendent by construction. They can be considered as complementary and powerful
tools to study the J/ψ polarization, both from the experimental and phenomenolog-
ical points of view. A first group of rotational invariant quantities has been proposed
in Ref. [113], defined in terms of λ and ν. Indeed, by using the following relations

3 + λF′ =
1

1 + ρ
(3 + λF) , 1 − νF′

2
=

1
1 + ρ

(
1 − νF

2

)
, (2.93)

we define a class of invariant quantities

F{ci} =
c0(3 + λ) + c1(1 − ν/2)
c2(3 + λ) + c3(1 − ν/2)

, (2.94)

where ci are suitable free constants.
Among all possible, independent combinations, here we mention two of them

that received special attention [114–118]

F ≡ F(1,−2,1,0) =
1 + λ + ν

3 + λ
=

1
2

2 dσ1, 1 + dσ1,−1

2 dσ1, 1 + dσ0, 0
, (2.95)

and
λ̃ ≡ F(1,−3,0,1) =

2 λ + 3 ν

2 − ν
=

2 dσ1, 1 − 2 dσ0, 0 + 3 dσ1,−1

2 dσ1, 1 + 2 dσ0, 0 − dσ1,−1
, (2.96)

where in the last equalities we used Eq. (2.87) to write them in terms of helicity
differential cross sections.

Notice that similar invariants can be also defined in Drell-Yan. If the Lam-Tung
relation holds (1 − λ = 2 ν), they acquire constant values [89], namely FDY = 1/2
and λ̃DY = +1. This was also pointed out in Refs. [115, 118]. Nevertheless, the
constant behavior of these quantities arise from dynamics, and in the case of Drell-
Yan is a direct consequence of rotational invariance and helicity conservation [119].
Therefore, when moving to J/ψ polarization in SIDIS, the different coupling may
cause the breaking of thee Lam-Tung relation.

This can be observed in Fig. 2.11, where our LO predictions for the invariant
quantity F within the collinear framework are presented, as a function of z (left
panels) and P⊥ (righ panels). Upper panels refer to

√
S = 140 GeV and lower ones

to
√

S = 45 GeV. We adopt again the CSM and NRQCD (with different LDME sets),
and we consider the same integration ranges, as done before.

It is clear that in none of the kinematics explored F is constant, and it can deviate
significantly from the expected 1/2 value, as dictated by the Lam-Tung relation.

5Here µF stands for the µ parameter related to the frame F.
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Its value seems to depend on both z and P⊥ variables; notice that in principle its
behavior could appear constant for a certain combination of LDMEs, but this would
still be limited to a specific kinematic region. Another interesting aspect is that, while
the denominator of F is proportional to the unpolarized cross section, its numerator
is controlled by the relative size of the λ and ν parameters.

Apart from the previous family, it is possible to identify other rotational invariant
quantities, that involve all polarization parameters. To obtain them, one can exploit
another relation derived from Eq. (2.91)

(λF′ − νF′/2)2 + 4µ2
F′ =

(λF − νF/2)2 + 4µ2
F

(1 + ρ)2 , (2.97)

from which one can construct invariant quantities involving the polarization param-
eters squared, as first pointed in Ref. [120]. For example, we mention

λ̃′ =
(λ − ν/2)2 + 4µ2

(3 + λ)2 , (2.98)

as defined in Ref. [118].
While we are not aware of measurements on rotational invariant quantities for

J/ψ production in SIDIS, they have been explored in pp and heavy-ion processes,
e.g. in Refs. [95, 121]. In these studies, data are provided only for the first class of
invariants (Eq. (2.94)), confirming their expected invariance, but with poor signifi-
cance. Due to their nature, providing data relative to the second type of invariants,
as Eq. (2.98), could be an extremely difficult task.

Nevertheless, all the above invariant quantities have both theoretical and exper-
imental interest. First of all, they represent an important tool to learn on the J/ψ
polarization mechanism. Secondly, their expected equality in different frames is an
important check of experimental acceptances. In conclusion, even if not easy to be
accessed, we believe that their study could be extremely important for the upcoming
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EIC.

2.4 TMD framework

In this section we study J/ψ polarization in SIDIS in a frame where the J/ψ meson
has no transverse momentum and the transverse momentum of the exchanged vir-
tual photon qT is small, q2

T ≪ Q2. In this kinematic regime, TMD factorization is
expected to hold.

At leading order the quarkonium state is produced via the partonic process (di-
agram of order ααs in Appendix B.2)

γ∗ (q) + g (pa) → cc̄ (Pψ), (2.99)

where the parton has now a non-negligible transverse component

pµ
a =

1√
2

ẑ Q2

x̂ M2
ψ

nµ
− + pa

µ
T, (2.100)

with pa
2
T = −pa

2
T. All the other particle momenta are as in Eq. (2.31). We recall

that ẑ and x̂ are, respectively, the partonic version of the J/ψ energy fraction z and
of the Bjorken-x (xB), see Eq. (2.56). Furthermore, n− and n+ are the two light-cone
directions, defined in a frame where the proton and the J/ψ have no transverse
components.

For the time being, smearing effects are neglected in the final state. Being model
independent, the angular structure of the cross section is the same as in the collinear
framework,

dσJ/ψ→ℓ+ℓ−

dxB dy d4Pψ dΩ
=

Bℓℓ

4
α

yQ2
3

8π

[
W̃T(1 + cos2 θ) + W̃L(1 − cos2 θ)

+ W̃∆ sin 2θ cos ϕ + W̃∆∆ sin2 θ cos 2ϕ
]
, (2.101)

where W̃Λ are the structure functions in Eq. (2.49), but evaluated in the TMD ap-
proach.

Momentum conservation in the process in Eq. (2.99) allows us to write

δ(4)(q + pa − Pψ) = δ

(
Mψ√

2 ẑ
−

Mψ√
2

)
δ

(
ẑ Q2

√
2 x̂ Mψ

− ẑ
Q2 + q2

T√
2Mψ

−
Mψ√

2

)
δ(2)(paT + qT)

≈ 2
M2

ψ + Q2
δ

(
1 − x̂

x̂max

)
δ(1 − ẑ) δ(2)(paT + qT) , (2.102)

where the delta has been expanded in the different light-cone directions and, in the
last step, we have impose the condition qT ≪ Q2. It is clear from the above equation
that in the TMD regime both ẑ and x̂′ = x̂/x̂max are fixed and equal to 1. Further-
more, the partonic Mandelstam variables read

ŝ = M2
ψ, t̂ ≈ −q2

T, û = −Q2, (2.103)
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FIGURE 2.12: Estimates of the J/ψ polarization parameters λ and ν in SIDIS as a function
of Q and for different LDME sets. The solid (dashed) lines correspond to y = 0 (y = 1).
Estimates for ν are obtained saturating the positivity bound of h⊥ g

1 . The BK11 and G13
curves for the parameter ν are divided by 10.

as a consequence of the following scalar products

P2
ψ = (q + pa)

2 = M2
ψ, q · pa = Pψ · pa =

M2
ψ + Q2

2
, Pψ · q =

M2
ψ − Q2

2
. (2.104)

The gluon content of the proton is encoded in a correlation function, which, at
leading twist and for an unpolarized spin-1/2 hadron is given by [122–124]

Γµν
U (ξ, p2

T) =
1

2ξ

[
−gµν

T f1(ξ, p2
T) +

1
m2

p

(
pµ

T pν
T +

η
µν
⊥
2

p2
T

)
h⊥1 (ξ, p2

T)

]
, (2.105)

where we have omitted any dependence on the gauge links. The factor 1/2 is due
to the average over the spin. Moreover, mp is the proton mass, ξ is the light-cone
momentum fraction of the proton carried by the gluon, while pT is its transverse
momentum with respect to the proton one. In the above expression, f1(ξ, p2

T) is the
TMD unpolarized gluon distribution, while h⊥1 (ξ, p2

T) is the distribution of linearly
polarized gluons in an unpolarized proton.

Similarly to Eq. (2.63), the hadronic helicity structure functions can be written in
terms of the partonic ones as follows

W̃P
Λ =

∫
dξ
∫

dẑ
∫

d2 paT Γµν
U (ξ, p2

T) w̃P
Λ µν δ(4)(q + pa − Pψ)δ(ẑ − z)

=

[
w̃P ( f )

Λ f g
1 (xB/x̂max, q2

T; µ2)− q2
T

2 m2 w̃P (h)
Λ h⊥ g

1 (xB/x̂max, q2
T; µ2)

]
δ(1 − z).

(2.106)

Very interestingly, for a specific value of the J/ψ helicity and photon polarization,
respectively Λ and P , there is never a contribution from both w̃P ( f )

Λ and w̃P (h)
Λ .

Hence, the superscript corresponding to the specific TMD distribution function can
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be dropped in the explicit expressions of the partonic structure functions listed be-
low,

w̃⊥ ( f )
L ≡ w̃⊥

L = 2 (4π)2 ααse2
c

Mψ

(
M2

ψ + Q2
) [1

3
⟨O8(

1S0)⟩+
4

M2
ψ

⟨O8(
3P0)⟩

]
,

w̃⊥ ( f )
T ≡ w̃⊥

T = 2 (4π)2 ααse2
c

Mψ

(
M2

ψ + Q2
) [1

3
⟨O8(

1S0)⟩+
4

M2
ψ

3M4
ψ + Q4

(M2
ψ + Q2)2

⟨O8(
3P0)⟩

]
,

w̃⊥ (h)
∆∆ ≡ w̃⊥

∆∆ = −16 (4π)2 ααse2
c

Mψ

(
M2

ψ + Q2
)2 ⟨O8(

3P0)⟩ ,

w̃ ( f )
L ≡ w̃L = 128 (4π)2 ααse2

c Q2

Mψ

(
M2

ψ + Q2
)3 ⟨O8(

3P0)⟩ . (2.107)

While most of the helicity structure functions are directly connected to the unpo-
larized TMD distribution f g

1 , we have found that the double-helicity flip structure
function W̃∆∆ in the small qT-region could probe the linearly polarized gluon distri-
bution h⊥ g

1 , as well as the P-wave LDME. It is important to stress that the results in
Eq. (2.107), valid at leading twist and in the small-qT region, are the same in all the
four frames mentioned in Sec. 2.2.4.

We point out that in the above study within the TMD approach at order αs, we in-
clude those CO contributions that are relatively suppressed by a factor of v4 w.r.t. the
CS ones. Nevertheless, higher order corrections in αs but with an enhanced v scaling,
possibly with a different q2

T behavior, can be relevant and need to be investigated in
future studies.

From Eq. (2.107), we can now obtain an estimate of the polarization parameters
in the TMD region. To this aim, we saturate the positivity bound for the (unknown)
distribution h⊥ g

1 ,
p2

T
2 m2

p

∣∣∣h⊥ g
1 (ξ, p2

T)
∣∣∣ ≤ f g

1 (ξ, p2
T). (2.108)

The results are shown in Fig. 2.12, at fixed values of the inelasticity y and as a func-
tion of the virtuality Q. The parameter λ is shown in the upper panel, while ν is
presented in the lower one. The CO contribution is calculated using the same LDME
sets considered in Sec. 2.3. We clearly see that the results depend significantly on the
choice of the LDMEs, at least for the lower values of Q. This is particularly true for
ν: note that its results relative to BK11 and G13 sets are divided by 10. Data in this
kinematic region may therefore be extremely important to improve our knowledge
of the CO LDMEs. On the other hand, these results do not show a significant depen-
dence on the inelasticity variable y, as can be seen from the two curves presented for
each set: solid line for y = 0 and dashed line for y = 1.

While for the λ parameter we do not expect a significant dependence on the un-
polarized gluon TMD f g

1 , since it is present both in the numerator and denominator,
the situation can be very different for ν. More specifically, the correct parameteriza-
tion of h⊥ g

1 (ξ, p2
T), together with f g

1 , can cause a deviation with respect to our result.
In this sense, data at low transverse momentum are valuable to test phenomenolog-
ical models used to describe such distributions.

Finally, we observe again that in the study presented in this section we did not in-
clude any smearing effect in the final state. Such effects are encoded in the so-called
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TMD shape functions. In the next chapter we will analyse the matching between the
collinear and TMD results for the SIDIS cross section. In this way, we will be able
to determine the perturbative tail of the TMD shape functions for the J/ψ meson in
this process.
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Chapter 3

Matching high- and low-transverse
momentum in electron-proton
scattering

In this chapter we discuss the matching procedure between two different factor-
ization schemes, both of which are applicable to the theoretical description of J/ψ
production in SIDIS, in two complementary kinematical regions. These are the so-
called collinear and TMD factorization schemes. Their regions of validity are defined
according to the value of the transverse momentum of the exchanged virtual pho-
ton qT, in a frame where the J/ψ has no transverse momentum. More explicitly, in
the high-qT region, qT ≫ ΛQCD, collinear factorization holds. In the low-qT region,
qT ≪ µ, where µ is a hard scale of the process, we expect TMD factorization to be
valid, in analogy to light-hadron production in standard SIDIS [27] for which TMD
factorization has been rigorously proven [26]. Moreover, an intermediate region can
be identified, where ΛQCD ≪ qT ≪ µ. Here both descriptions are applicable and
results obtained within the two formalisms have to match if they describe the same
underlying mechanism. Such a feature has been proven for several observables for
which TMD factorization at the twist-two level has been rigorously established, like
the unpolarized cross sections for light hadron production in SIDIS [125], integrated
over the azimuthal angles of the final particles and differential in qT, as well as for
Drell-Yan dilepton production, p p → l l′ + X [126, 127].

While in the collinear description, adopting NRQCD [6], J/ψ production is de-
scribed in terms of PDFs and the common LDMEs, in Refs. [36, 37] it was found that
TMD factorization requires the convolution of TMD-PDFs with a generalization of
the LDMEs, the TMD shape functions (TMDShFs). These new objects describe trans-
verse momentum smearing due to soft gluon interactions in the hadronization pro-
cesses. This is at variance with the collinear picture, where the J/ψ momentum has
the same direction as the original cc̄ pair.

In this chapter we show how the perturbative tail of the TMDShFs can be de-
termined by looking at the SIDIS process. We start from the relation between the
TMDShFs and the collinear LDMEs based on the Operator Product Expansion [36],

∆[n] = ∑
i

(αs

π

)(i)
C(i)[n] ⟨O[n]⟩ , (3.1)

where C(i)[n] are perturbative calculable coefficients. The non-trivial, leading order
coefficients can be obtained by requiring that the observables calculated in the TMD
approach at the order α2αs correctly match, at high transverse momentum, with the
corresponding collinear factorization results at order α2α2

s .
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The chapter is organized as follows. Along the lines of Ref. [111], in Sec. 3.1 we
discuss the matching for the production of unpolarized J/ψ in SIDIS. More precisely,
in Sec. 3.1.1 we discuss the naive Dirac-delta expansion needed to obtain the small-
qT limit of the collinear expression of the structure functions, while in Sec. 3.1.2 we
analyse the pole structure of the cross section. Whilst in Ref. [111] these poles were
supposed to be negligible, they provide instead a significant contribution and are
therefore included in the present derivation. Thus, in Sec. 3.1.3 we present the low-qT
limit of the structure functions evaluated within the collinear factorization approach.
Finally, in Sec. 3.1.4 we present the high-qT limit of the same quantities evaluated
within the TMD factorization scheme, and we compare them in order to derive the
TMDShF perturbative tail. Lastly, in Sec. 3.2 we briefly discuss the same matching
procedure applied to polarized J/ψ production in SIDIS, which has been derived
first in Ref. [112].

3.1 Matching procedure for unpolarized J/ψ production in
SIDIS

We start our discussion focusing on unpolarized J/ψ production. In this section
we will follow the derivation presented in Ref. [111]. Notice that, at variance from
what discussed in Sec. 2.1, the dependence on the J/ψ azimuthal angle is kept ex-
plicitly. This implies that extra structure functions are present compared to those in
Eq. (2.24). In particular, in the high-qT region we have

dσ

dxB dy dz dq2
T dϕψ

=
α

y Q2

[(
1 + (1 − y)2

)
FUU,⊥ + (1 − y) FUU,

+ (2 − y)
√

1 − y cos ϕψ Fcos ϕψ

UU + (1 − y) cos 2ϕψ Fcos 2ϕψ

UU

]
,

(3.2)

where the first two structure functions have been also introduced in Eq. (2.24). We
note that the same notation as the one adopted for light-hadron production [125,
128] has been used. Namely, the subscripts UU always refer to initial particle polar-
izations, while in FUU,P , with P =⊥, , the last subscript denotes the photon polar-
ization. The superscripts in Fcos ϕψ

UU and Fcos 2ϕψ

UU refer to the relative modulations ac-
companying them in the differential cross section. The full expressions of the struc-
ture functions in the collinear regime are available in the literature, e.g. Ref. [125].
For completeness, in Appendix B.2 we present the unpolarized partonic structure
functions related to FUU,P . In this section, we focus on the small-qT limit of these
expressions, as presented in Sec. 3.1.3. Before carrying out that, we have to elabo-
rate on some relevant elements in this derivation, namely the Dirac-delta expansion
(Sec. 3.1.1) and the pole analysis (Sec. 3.1.2).

The small-qT limit of Eq. (3.2) has to match with the cross section calculated in
the TMD factorization approach, which reads

dσ

dxB dy dz dq2
T dϕψ

=
α

y Q2

[(
1 + (1 − y)2

)
FUU,⊥ + (1 − y)FUU,

+ (1 − y) cos 2ϕψ F cos 2ϕψ

UU

]
, (3.3)
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where the structure functions denoted with calligraphic F are the ones obtained
in the TMD framework. Their leading-order expressions will be explicitly given in
Sec. 3.1.4, together with their matching onto the corresponding collinear ones.

3.1.1 Dirac-delta expansion in the high transverse momentum expression

Following the same procedure as the one adopted for the helicity structure functions
WP in Eq. (2.63), it is possible to write the structure functions F in terms of partonic
quantities. Indeed, the differential cross section in Eq. (3.2) can be recast as

dσ

dy dxB dz dq2
T dϕψ

=
1

4 (4π)4 y z ∑
a

∑
n

∫ x̂max

xB

dx̂
x̂

∫ 1

z
dẑ f a

1

( xB

x̂
, µ2
)

×
LµνM(a)

µν [n]
Q2 δ

(
ŝ + t̂ + û − M2

h + Q2) δ(ẑ − z)

=
1

4 (4π)4 y z ∑
a

∑
n

∫ x̂max

xB

dx̂
x̂

∫ 1

z

dẑ
ẑ

f a
1

( xB

x̂
, µ2
)

×
LµνM(a)

µν [n]
Q6 δ

(
(1 − x̂)(1 − ẑ)

x̂ ẑ
− 1 − ẑ

ẑ2

M2
ψ

Q2 +
q2

T
Q2

)
δ(ẑ − z),

(3.4)

where M(a)
µν [n] is the amplitude squared for the process γ∗ a → cc̄[n] + a (built from

the operators presented in Appendix B.2), and the lepton tensor is given in Eq. (2.20).
In the second equation we have used the explicit form for the Mandelstam variables,
see Eq. (2.57), to rewrite the delta function in terms of the integration variables.

As done in Ref. [111], and based on previous works, e.g. Ref. [125], here we
re-derive the Dirac-delta expansion at small qT; this allows us to get the structure
functions in the same limit.

We consider the Dirac-delta function in the last line of Eq. (3.4), and apply it to
two continuous test functions

I =
∫ 1

0
dẑ

∫ x̂max

0
dx̂ g(ẑ) f (x̂) δ

(
(1 − x̂)(1 − ẑ)

x̂ ẑ
− 1 − ẑ

ẑ2

M2
ψ

Q2 +
q2

T
Q2

)
, (3.5)

where g and f incorporate the ẑ and the x̂ dependences, respectively. The continuity
of the functions will have important consequences in the final result.

We start noticing that the integration over x̂ in Eq. (3.5) is limited by the upper
value x̂max = Q2/(M2

ψ + Q2), as defined in Eq. (2.59). It is then convenient to intro-
duce a new variable x̂′, defined as

x̂′ =
x̂

x̂max
=

M2
ψ + Q2

2 pa · q
, (3.6)

so that 0 ≤ x̂′ ≤ 1. In the previous equation pa and q are the initial parton and
photon momenta.

After this change of variable in Eq. (3.5), we have

I = x̂max

∫ 1

0
dẑ

∫ 1

0
dx̂′ ẑ g(ẑ) f (x̂′) δ

(
(1 − x̂′)(1 − ẑ)− 1 − ẑ

ẑ
(x̂′ − ẑ)

M2
ψ

Q2 + x̂′ ẑ
q2

T
Q2

)
,

(3.7)
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and the integration over x̂′ can be performed using the Dirac-delta function, setting
its value at

x̂′0(ẑ) =
1

x̂max

(1 − ẑ) ẑ Q2

(1 − ẑ)
(

ẑQ2 + M2
ψ

)
− ẑ2q2

T

. (3.8)

Then, only the integral over ẑ is left

I = x̂max

∫ 1

0
dẑ

[
(1 − ẑ) +

1 − ẑ
ẑ

M2
ψ

Q2 − ẑ
q2

T
Q2

]−1(
1 +

M2
ψ

ẑ Q2

)
g̃(ẑ) f̃ (x̂′0), (3.9)

where we have introduced

g̃(ẑ) = ẑ

(
1 +

M2
ψ

ẑ Q2

)−1

g(ẑ),

f̃ (x̂′) = x̂′ f (x̂′). (3.10)

To deal with it, we separate I into three integrals

I = x̂max

(
I1 + I2 + I3

)
, (3.11)

via the relation

g̃(ẑ) f̃ (x̂′) = g̃(1) f̃ (1) +
[

g̃(ẑ)− g̃(1)
]

f̃ (1) + g̃(ẑ)
[

f̃ (x̂′)− f̃ (1)
]
. (3.12)

From this we get

I1 =
∫ 1

0
dẑ

[
(1 − ẑ) +

1 − ẑ
ẑ

M2
ψ

Q2 − ẑ
q2

T
Q2

]−1(
1 +

M2
ψ

ẑ Q2

)
g̃(1) f̃ (1),

I2 =
∫ 1

0
dẑ

[
(1 − ẑ) +

1 − ẑ
ẑ

M2
ψ

Q2 − ẑ
q2

T
Q2

]−1(
1 +

M2
ψ

ẑ Q2

) [
g̃(ẑ)− g̃(1)

]
f̃ (1),

I3 =
∫ 1

0
dẑ

[
(1 − ẑ) +

1 − ẑ
ẑ

M2
ψ

Q2 − ẑ
q2

T
Q2

]−1(
1 +

M2
ψ

ẑ Q2

)
g̃(ẑ)

[
f̃ (x̂′0)− f̃ (1)

]
.

(3.13)



3.1. Matching procedure for unpolarized J/ψ production in SIDIS 45

The first integral can be performed exactly, and then we can extract the leading
term in the small-qT expansion

I1 = g̃(1) f̃ (1)
∫ 1

0
dẑ

ẑ Q2 + M2
ψ

(1 − ẑ)
(

ẑ Q2 + M2
ψ

)
− ẑ2 q2

T

= g̃(1) f̃ (1)

{
ln

M2
ψ + Q2

q2
T

− x̂max
q2

T
M2

ψ + Q2

[(
1 + 2

M2
ψ

Q2

)
ln

M2
ψ + Q2

q2
T

−
M2

ψ

Q2

(
1 +

M2
ψ

Q2 ln
M2

ψ + Q2

M2
ψ

)]}
+O

 q4
T(

M2
ψ + Q2

)2


≈ g̃(1) f̃ (1) ln

M2
ψ + Q2

q2
T

=
∫ 1

0
dẑ

∫ x̂max

0
dx̂ g(ẑ) f (x̂) ln

M2
ψ + Q2

q2
T

δ(1 − x̂/x̂max) δ(1 − ẑ) . (3.14)

The second integral can be directly evaluated by taking the limit qT → 0 in the
denominator

I2 = f̃ (1)
∫ 1

0
dẑ

(
ẑ Q2 + M2

ψ

) [
g̃(ẑ)− g̃(1)

]
(1 − ẑ)

(
ẑ Q2 + M2

ψ

)
− ẑ2 q2

T

≈ f̃ (1)
∫ 1

0
dẑ

g̃(ẑ)− g̃(1)
(1 − ẑ)

= f̃ (1)
∫ 1

0
dẑ

g̃(ẑ)
(1 − ẑ)+

= x̂−1
max

∫ 1

0
dẑ

∫ x̂max

0
dx̂ g(ẑ) f (x̂)

ẑ
(1 − ẑ)+

(
1 +

M2
ψ

ẑ Q2

)−1

δ(1 − x̂/x̂max) , (3.15)

where we have introduced the “+"-distribution, defined in such a way that the inte-
gral of a sufficiently smooth function G is given by∫ 1

a

G(y)
(1 − y)+

=
∫ 1

a

G(y)− G(1)
(1 − y)

+ G(1) ln(1 − a). (3.16)

Finally, we focus on the third integral, which requires more care. We start notic-
ing that by inverting the relation in Eq. (3.8), it is possible to properly express the
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integration variable. Since Eq. (3.8) is quadratic in ẑ, we have two solutions

ẑ+ =
1
2

(1 + x̂′)
(

M2
ψ + Q2

)
+

√
(1 − x̂′)2

(
M2

ψ + Q2
)2

+ 2 x̂′ 2 M2
ψ q2

T

M2
ψ + (1 − x̂′) Q2 − x̂′ q2

T

= 1 +
q2

T
M2

ψ + Q2

x̂′

1 − x̂′
+O

 q4
T(

M2
ψ + Q2

)2

 ,

ẑ− =
1
2

(1 + x̂′)
(

M2
ψ + Q2

)
−
√
(1 − x̂′)2

(
M2

ψ + Q2
)2

+ 2 x̂′ 2 M2
ψ q2

T

M2
ψ + (1 − x̂′) Q2 − x̂′ q2

T

=
x̂′ M2

ψ

M2
ψ + (1 − x̂′) Q2

+
q2

T
M2

ψ + Q2

(
x̂′ M2

ψ

M2
ψ + (1 − x̂′) Q2

)2
x̂′

1 − x̂′

+O

 q4
T(

M2
ψ + Q2

)2

 . (3.17)

By looking at the qT expansion, we realize that the second solution is not physically
acceptable. Indeed, from momentum conservation (see the Dirac-delta function in
Eq. (3.7)), at qT = 0 it is mandatory that ẑ = 1 independently of x̂′, whereas ẑ− → 1 if
and only if x̂′ → 1. Furthermore, we notice that in the massless limit, the ẑ+ solution
is the only one surviving.

Therefore, by taking ẑ ≡ ẑ+ and neglecting terms of order q4
T/
(

M2
ψ + Q2

)2
, we

have

dẑ =
q2

T
M2

ψ + Q2

1

(1 − x̂′)2 dx̂′ +O

 q4
T(

M2
ψ + Q2

)2

 (3.18)

and
ẑ2 Q2

(1 − ẑ)
(

ẑ Q2 + M2
ψ

)
− ẑ2 q2

T

= −Q2

q2
T

(
1 − x̂′

)
+O

(
q0

T
)

. (3.19)

Introducing these relations in the third integral, and taking the limit g(ẑ) → g(1),
valid when qT → 0, we get

I3 =
∫ 1

0
dẑ g̃(ẑ)

(
ẑ Q2 + M2

ψ

) [
f̃ (x̂′0)− f̃ (1)

]
(1 − ẑ)

(
ẑ Q2 + M2

ψ

)
− ẑ2 q2

T

=
∫ 1

0
dẑ g(ẑ)

ẑ2 Q2

(1 − ẑ)
(

ẑ Q2 + M2
ψ

)
− ẑ2 q2

T

[
f̃ (x̂′0)− f̃ (1)

]

≈ x̂max g(1)
∫ 1

0
dx̂′

f̃ (x̂′)− f̃ (1)
(1 − x̂′)

= g(1)
∫ 1

0
dx̂′ x̂max

x̂′

(1 − x̂′)+
f (x̂′)

=
∫ 1

0
dẑ

∫ x̂max

0
dx̂ g(1) f (x̂)

x̂/x̂max

(1 − x̂/x̂max)+
δ(1 − ẑ) , (3.20)
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where we have used once again the “+"-distribution (see Eq. (3.16)) for the x̂′ vari-
able.

Finally, the sum of the three integrals in the q2
T ≪ µ2 region reads

I ≈ x̂max

∫ 1

0
dẑ

∫ x̂max

0
dx̂ g(ẑ) f (x̂)

×
[

ln
M2

ψ + Q2

q2
T

δ
(
1 − x̂/x̂max

)
δ(1 − ẑ) +

x̂/x̂max

(1 − x̂/x̂max)+
δ(1 − ẑ)

+
M2

ψ + Q2

M2
ψ/ẑ + Q2

ẑ
(1 − ẑ)+

δ
(
1 − x̂/x̂max

)]
, (3.21)

from which the Dirac-delta expansion is

δ

(
(1 − x̂)(1 − ẑ)

x̂ ẑ
− 1 − ẑ

ẑ2

M2
ψ

Q2 +
q2

T
Q2

)
→

→x̂max

[
ln

M2
ψ + Q2

q2
T

δ(1 − x̂′) δ(1 − ẑ) +
x̂′

(1 − x̂′)+
δ(1 − ẑ)

+
M2

ψ + Q2

M2
ψ/ẑ + Q2

ẑ
(1 − ẑ)+

δ(1 − x̂′)

]
. (3.22)

Note that in the limit Mψ → 0, for which x̂max → 1 and x̂′ → x̂, our expansion
coincides with the known relation found in standard SIDIS, see e.g. Ref. [129].

Before plugging Eq. (3.22) into Eq. (3.4), it is necessary to separate the continuous
part of the structure functions from poles, that can lead to indeterminate forms in the
double limit x̂′, ẑ → 1. Indeed, if a discontinuity is present, the above derivation is
not valid and the treatment of those terms needs a different approach.

3.1.2 Pole structure of the squared amplitudes

In this section we analyze the poles appearing in some structure functions. These
poles must still be included in our discussion, since they provide a non-negligible
contribution to the divergent behaviour at small qT. In particular, we have found
that their role is relevant only for the structure functions FUU,⊥ and FUU, . More
precisely, they appear in the three gluonic-initiated channels. In the following we
discuss how to deal with them.

By defining the projectors ϵ
µν
P (with P =⊥, )

ϵ
µν
⊥ = −η

µν
⊥ , ϵ

µν
= 4 ϵ

µ
ϵν, (3.23)

also appearing in Eq. (2.54), we identify the contractions of these projectors with the
hadron tensor Mµν as ∣∣∣M(a)

P [n]
∣∣∣2 =

1
2

ϵ
µν
P M(a)

µν [n]. (3.24)

Among them, the following amplitudes squared,
∣∣∣M(g)

⊥ [1S(8)
0 ]
∣∣∣2,
∣∣∣M(g)

⊥ [3P(8)
0 ]
∣∣∣2 and∣∣∣M(g)

[3P(8)
0 ]
∣∣∣2, manifest a problematic behavior. Even if poles can appear also in

other gluon channels, their overall qT divergence is less severe compared to the ones
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mentioned above. For this reason, they can be safely neglected in the small-qT ex-
pansion. Lastly, quark channels are free from singularities and will not be further
addressed in this context.

For simplicity, we will use the general notation
∣∣∣M(g)

P [n]
∣∣∣2, keeping in mind that

we only refer to the above three amplitudes squared. After applying the relation

1
1 − ẑ

=
1

q2
T

(1 − x̂′) ẑ Q2 + (ẑ − x̂′) M2
ψ

x̂′ ẑ2 , (3.25)

obtained from the Dirac-delta function in Eq. (3.7), the amplitudes squared can be
decomposed into three terms

∣∣∣M(g)
P [n]

∣∣∣2 (x̂′, ẑ) = M[n],P
0 (x̂′, ẑ) +

(
1 − ẑ
1 − x̂′

)
M[n],P

1 (ẑ) +
(

1 − ẑ
1 − x̂′

)2

M[n],P
2 (ẑ).

(3.26)
The first term, M[n],P

0 (x̂′, ẑ), is continuous in the double limit, and we can directly
use the Dirac-delta expansion in Eq. (3.22). On the other hand, the last two terms are
those containing a pole. Since M[n],P

1 (ẑ) and M[n],P
2 (ẑ) are continuous, it is then legit

to approximate these quantities as

M[n],P
1 (1) = −2

M2
ψ

M2
ψ + Q2

M[n],P
0 (1, 1), (3.27)

and

M[n],P
2 (1) =

(
M2

ψ

M2
ψ + Q2

)2

M[n],P
0 (1, 1). (3.28)

Therefore, we can directly evaluate the integrals Isp and Idp, corresponding respec-
tively to the single and double poles. The former reads

Isp =
∫ 1

0
dẑ

∫ 1

0
dx̂′

1 − ẑ
1 − x̂′

δ

(
ẑ (1 − x̂′) (1 − ẑ)− (1 − ẑ) (x̂′ − ẑ)

M2
ψ

Q2 + x̂′ ẑ2 q2
T

Q2

)

=
∫ 1

0
dẑ

∫ 1

0
dx̂′

1 − ẑ
M2

ψ (1 − ẑ)2 + ẑ2 q2
T

=
1
2

Q2

M2
ψ

log
M2

ψ

q2
T

+O
(
|qT|
M2

ψ

)
, (3.29)

while the second one

Idp =
∫ 1

0
dẑ

∫ 1

0
dx̂′

(
1 − ẑ
1 − x̂′

)2

δ

(
ẑ (1 − x̂′) (1 − ẑ)− (1 − ẑ) (x̂′ − ẑ)

M2
ψ

Q2 + x̂′ ẑ2 q2
T

Q2

)

≈
(

M2
ψ + Q2

) ∫ 1

0
dẑ

∫ 1

0
dx̂′

(1 − ẑ)3[
M2

ψ (1 − ẑ)2 + ẑ2 q2
T

]2

= −1
2

(
M2

ψ + Q2
)

Q2

M4
ψ

(
1 + log

M2
ψ

q2
T

)
+O

(
|qT|
M2

ψ

)
. (3.30)
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Due to the proportionality of M[n],P
1 (1) and M[n],P

2 (1) to M[n],P
0 (1, 1) (see Eqs. (3.27)

and (3.28)), Isp and Idp can be effectively added to the double delta coefficient in
Eq. (3.22), leading to

∣∣∣M(g)
P [n]

∣∣∣2 (x̂′, ẑ) δ

(
(1 − x̂)(1 − ẑ)

x̂ ẑ
− 1 − ẑ

ẑ2

M2
ψ

Q2 +
q2

T
Q2

)
→ M[n],P

0 (x̂′, ẑ) δ
[n],P
eff ,

(3.31)

with an effective delta expansion given by

δ
[n],P
eff = x̂max

[
1
2

(
log

M2
ψ + Q2

q2
T

− 1 + log
M2

ψ + Q2

M2
ψ

)
δ(1 − x̂′) δ(1 − ẑ)

+
x̂′

(1 − x̂′)+
δ(1 − ẑ) +

M2
ψ + Q2

M2
ψ/ẑ + Q2

ẑ
(1 − ẑ)+

δ(1 − x̂′)

]
. (3.32)

3.1.3 From high to intermediate transverse momentum

By using the Dirac-delta expansion for the continuous terms (Eq. (3.22)), and the
above pole analysis, we can obtain the small-qT limit of the structure functions in
Eq. (3.2)

FUU,⊥ = σUU,⊥

[
L
(

µ2

q2
T

)
f g
1 (x, µ2) +

(
Pgg ⊗ f g

1 + Pgi ⊗ f i
1

)
(x, µ2)

]
+O

(
|qT|

µ

)
,

FUU, = σUU,

[
L
(

µ2

q2
T

)
f g
1 (x, µ2) +

(
Pgg ⊗ f g

1 + Pgi ⊗ f i
1

)
(x, µ2)

]
+O

(
|qT|

µ

)
,

Fcos ϕψ

UU = O
(
|qT|

µ

)
,

Fcos 2ϕψ

UU = σ
cos 2ϕψ

UU

(
δPgg ⊗ f g

1 + δPgi ⊗ f i
1

)
(x, µ2) +O

(
|qT|

µ

)
. (3.33)

The results presented in Eq. (3.33) are valid up to O
(
|qT |

µ

)
, but also up to corrections

of the order O
(

ΛQCD
|qT |

)
.

In the above expressions the momentum fraction x is fixed by

x ≡ xB

x̂max
, (3.34)

and the function L(µ2/q2
T) is defined as

L
(

µ2

q2
T

)
= CA

(
log

µ2

q2
T
− 1 + log

(M2
ψ + Q2)2

µ2 M2
ψ

)
−

11 CA − 4 n f TR

6
, (3.35)
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where TR = 1/2, CA = Nc, Nc = 3 (number of colors) and n f is the number of active
flavors. Moreover, the leading-order unpolarized splitting functions are given by

Pgg(x̂) = 2 CA

 x̂
(1 − x̂)+

+
1 − x̂

x̂
(

1 − x̂
) + x̂

+ δ
(

1 − x̂
) 11 CA − 4 n f TR

6
,

Pgi(x̂) = CF

1 +
(

1 − x̂
)2

x̂
, (3.36)

with CF = 4/3, while the splitting functions for an unpolarized parton into a linearly
polarized gluon read (see also Refs. [130, 131])

δPgg(x̂) = CA
1 − x̂

x̂
,

δPgi(x̂) = CF
1 − x̂

x̂
. (3.37)

Furthermore, the symbol “⊗" denotes the convolution between the splitting function
P and the collinear gluon PDF f g

1 in the light-cone momentum fraction

(
P ⊗ f g

1

)
(x, µ2) =

∫ 1

x

dx̂
x̂

P(x̂) f g
1

(
x/x̂, µ2) . (3.38)

Finally, the partonic cross sections for the 2 → 1 process, namely γ∗ g → cc̄[n], are
given by

σUU,⊥ =
e2

c α α2
s

Mψ

(
M2

ψ + Q2
)

q2
T

×

⟨Oψ
8 [

1S0]⟩+ 4
7 M4

ψ + 2 M2
ψ Q2 + 3 Q4

M2
ψ

(
M2

ψ + Q2
)2 ⟨Oψ

8 [
3P0]⟩

 δ(1 − z),

σUU, =
e2

c α α2
s

Mψ

(
M2

ψ + Q2
)

q2
T

64
Q2(

M2
ψ + Q2

)2 ⟨Oψ
8 [

3P0]⟩

 δ(1 − z),

σ
cos 2ϕψ

UU =
e2

c α α2
s

Mψ

(
M2

ψ + Q2
)

q2
T

×

−4 ⟨Oψ
8 [

1S0]⟩+ 16
3 M2

ψ − Q2

M2
ψ

(
M2

ψ + Q2
) ⟨Oψ

8 [
3P0]⟩

 δ(1 − z), (3.39)

where ec is the fractional charm charge in units of the proton one.
Notice that, up to this order, the structure function Fcos ϕψ

UU is suppressed com-
pared to the others and will not be considered in the following.

Our study, at order α2α2
s , includes both the CS wave and the subleading CO con-

tributions, even if suppressed up to a factor v4, with the dominant ones at small-qT

being the 1S(8)
0 and the 3P(8)

J terms. On the other hand, we cannot exclude a priori
that higher-order corrections in αs might contribute in this limit, since an enhanced
scaling in v and a potentially different qT behaviour could make them relevant in
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the qT ≪ µ region. Nevertheless, the qT behaviour found here is similar to the
analogous case of light-hadron production in SIDIS, Ref. [125]. In this case, ex-
tra terms appear due to the presence of a fragmentation function, not present in
quarkonium production within the NRQCD approach. Moreover, their underlying
partonic process is γ∗ q → q, and the corresponding logarithmic term is given by
CF
(
2 ln Q2/q2

T − 3
)
, with CF replacing CA, as expected for a quark initiated process.

Notice that the logarithmic divergence in Eq. (3.35) is half compared to what ap-
pears in standard SIDIS processes (e p → e′ h + X). This is in agreement with other
results, e.g. Ref. [132]. Similarly in Ref. [133] they found that in p p → J/ψ + X
process, there are no logarithmic divergences associated to the J/ψ meson in the
small transverse momentum region. In our case, the single pole causes the reduc-
tion of the number of logarithmic divergences, see Eq. (3.29). On the other hand,
from the double pole (Eq. (3.30)) we have a constant term, partially found also in
Ref. [133]. Its exact meaning is still under investigation and will be addressed in a
future work [134].

Finally, we mention that in Ref. [135], the authors evaluated the Sudakov factor
for open heavy-quark/antiquark production in electron-proton collisions. We have
checked that the logarithmic divergences in Eq. (3.35) are in agreement with the
results in Ref. [135], when one considers the limit in which the heavy quark pair
forms a bound state.

3.1.4 From low to intermediate transverse momentum

At low transverse momentum, where TMD factorization applies, the differential
cross section is given by Eq. (3.3). The F are the structure functions evaluated in
the TMD regime, and they are explicitly given by

FUU,⊥ = 2π2 e2
c α αs

Mψ

(
M2

ψ + Q2
)δ(1 − z)

×
[
C
[

f g
1 ∆[1S(8)

0 ]
]
+ 4

7 M4
ψ + 2 M2

ψ Q2 + 3 Q4

M2
ψ

(
M2

ψ + Q2
)2 C

[
f g
1 ∆[3P(8)

0 ]
] ]

,

FUU, = 2π2 e2
c α αs

Mψ

(
M2

ψ + Q2
)[64

Q2(
M2

ψ + Q2
)2 C

[
f g
1 ∆[3P(8)

0 ]
] ]

δ(1 − z),

F cos 2ϕψ

UU = 2π2 e2
c α αs

Mψ

(
M2

ψ + Q2
)δ(1 − z)

×
[
− 4 C

[
w h⊥, g

1 ∆[1S(8)
0 ]

h

]
+ 16

3 M2
ψ − Q2

M2
ψ

(
M2

ψ + Q2
) C

[
w h⊥, g

1 ∆[3P(8)
0 ]

h

] ]
.

(3.40)
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∆[n] are the TMDShFs and their convolutions with the TMD-PDFs are defined as

C
[

f g
1 ∆[n]

]
=
∫

d2 pT

∫
d2kTδ(2)(qT − pT − kT) f g

1 (x, p2
T; µ2)∆[n](k2

T; µ2),

C
[
w h⊥, g

1 ∆[n]
h

]
=
∫

d2 pT

∫
d2kTδ(2)(qT − pT − kT)w h⊥, g

1 (x, p2
T; µ2)∆[n]

h (k2
T; µ2).

(3.41)

with
w(pT, qT) =

1
m2

pq2
T

[
2 (pT · qT)

2 − p2
T q2

T

]
, (3.42)

as shown in Ref. [111]. Notice that the above convolutions depend on x, q2
T and µ2.

Moreover, as a consequence of ultraviolet and rapidity divergences, TMDs should
depend on two scales, here both set equal to µ. In Eq. (3.41), we suppose a different
shape function contributing to the structure function F cos 2ϕψ

UU .
The evaluation of the above convolutions in the qT ≫ ΛQCD limit is more easily

performed in the parameter (or bT) space. We will mostly focus on the first convolu-
tion of Eq. (3.41), since at this order it is the only one allowing for the extraction of
the TMDShF tail.

The Fourier transform of the unpolarized TMD distribution f g
1 is defined as

f̂ g
1 (x, b2

T; µ2) =
1

2π

∫
d2 pT ei bT ·pT f g

1 (x, p2
T; µ2)

=
∫ ∞

0
dpT pT J0(bT pT) f g

1 (x, p2
T; µ2), (3.43)

while the Fourier transform of the TMDShF is given by

∆̂[n](b2
T; µ2) =

1
2π

∫
d2kT ei bT ·kT ∆[n](k2

T; µ2). (3.44)

From these, the first convolution in Eq. (3.41) in bT-space takes the following form

C
[

f g
1 ∆[n]

]
(x, q2

T; µ2) =
∫

d2bT f̂ g
1 (x, b2

T; µ2) ∆̂[n](b2
T; µ2). (3.45)

The perturbative expansion of the unpolarized TMD distribution for bT ≪ 1/ΛQCD
is well known, e.g. Ref. [26], and reads

f̂ g
1 (x, b2

T; µ2) =
1

2π ∑
a=q, q̄, g

(
Cg/a ⊗ f a

1
)
(x; µ2

b) e−
1
2 SA(b2

T ;µ2). (3.46)

The function f a
1 is the collinear parton distribution for a specific (anti)quark flavor

or gluon, while the Cg/a’s are the (perturbative) matching coefficients between the
TMD and the collinear PDFs. They can be expanded in series of αs as follows

Cg/a(x; µb) = δga δ(1 − x) +
∞

∑
k=1

C(k)
g/a

(
αs(µb)

π

)k

, (3.47)

where the scale µb = 2e−γE /bT reduces the number of large logarithms in the ex-
pansion [136]. For those processes in which TMD factorization is valid, as SIDIS,
the soft gluon radiation to all orders is included into an exponential Sudakov factor.
In particular, its perturbative part SA resums large logarithms of the type log(bT µ),
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and at leading order is given by

SA(b2
T; µ2) =

CA

π

∫ µ2

µ2
b

dζ2

ζ2 αs(ζ)

(
log

µ2

ζ2 −
11 − 2 n f /CA

6

)
=

αs

2 π
CA

(
log2 µ2

µ2
b
−

11 − 2 n f /CA

3
log

µ2

µ2
b

)
. (3.48)

Notice that the running of αs is not considered in the last line, since its effect would
enter at the next order.

Therefore, in the bT ≪ ΛQCD region, the LO Fourier transform of the unpolarized
TMD is given by

f̂1(x, b2
T; µ2) =

1
2π

{
f g
1 (x; µ2)− αs

2π

(
Pgg ⊗ f g

1 + Pgi ⊗ f i
1

)
(x, µ2) log

µ2

µ2
b

− αs

2π

(
CA

2
log2 µ2

µ2
b
−

11 CA − 2 n f

6
log

µ2

µ2
b

)
f g
1 (x; µ2)

+
αs

π ∑
a

(
C(1)

g/a ⊗ f a
1

)
(x; µ2

b)

}
. (3.49)

Note that the LO DGLAP equations (already applied previously), allows to evolve
the collinear PDF, f g

1 , from the scale µ down to the other scale µb < µ and introduce
the same unpolarized splitting functions given in Eq. (3.36).

Plugging Eq. (3.49) into the convolution (3.45) and considering only terms up to
the order αs, we get

C
[

f g
1 ∆[n]

]
(x, q2

T; µ2) =
1

(2π)

∫
d2bT e−i bT ·qT ∆̂[n](b2

T; µ2)

×
{

f g
1 (x; µ2)− αs

2π

(
Pgg ⊗ f g

1 + Pgi ⊗ f i
1

)
(x, µ2) log

µ2

µ2
b

− αs

2π

(
CA

2
log2 µ2

µ2
b
−

11 CA − 2 n f

6
log

µ2

µ2
b

)
f g
1 (x; µ2)

}
,

(3.50)

where we have neglected the last term in Eq. (3.49) since it is subdominant for
bT ≪ ΛQCD. Using the results

∫
d2bT e−i bT ·qT log2 µ2

µ2
b
= −8π

q2
T

log
µ2

q2
T

,
∫

d2bT e−i bT ·qT log
µ2

µ2
b
= −4π

q2
T

, (3.51)

we can transform back to the momentum space, and compare the TMD structure
functions with the corresponding collinear ones in the Λ2

QCD ≤ q2
T ≤ µ2 region. In

particular, comparing the term that includes the splitting functions, we derive that,
as expected, at leading order (α0

s ) the shape function corresponds to the LDME with-
out any smearing effect. On the other hand, from the mismatch with the logarithmic
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function L, we get the αs-order correction. Finally, the perturbative tail of the TMD-
ShF up to order αs is

∆̂[n](b2
T; µ2) =

1
2π

⟨O[n]⟩

1 +
αs

2π
CA

1 + log
µ2M2

ψ(
M2

ψ + Q2
)2

 log
µ2

µ2
b

 . (3.52)

In momentum space, the above equation reads

∆[n](k2
T; µ2) = ⟨O[n]⟩

δ(k2
T)−

αs

2π2 k2
T

CA

1 + log
µ2M2

ψ(
M2

ψ + Q2
)2


 . (3.53)

Moving to the second convolution of Eq. (3.41), involving the linearly polarized
TMD distribution, it is possible to verify that F cos 2ϕψ

UU matches with the correspond-
ing collinear quantity Fcos 2ϕψ

UU in the intermediate region, without the necessity to
include any smearing effect. Notice that, differently from f g

1 , h⊥, g
1 disappears in the

collinear limit, so the equivalent expression of Eq. (3.47) for h⊥, g
1 starts already at

order αs . Indeed, the dominant term of the h⊥, g
1 perturbative tail follows a DGLAP-

like equation [130]

q2
T

2m2
p

h⊥, g
1 (x, q2

T; µ2) =
αs

π2
1

q2
T

σ
cos 2ϕψ

UU

(
δPgg ⊗ f g

1 + δPgi ⊗ f i
1

)
(x, µ2). (3.54)

Ultimately, the equivalence F cos 2ϕψ

UU = Fcos 2ϕψ

UU precludes the possibility to extract any
new information on the TMDShF ∆[n]

h . This would require a complete calculation at
α2α3

s within the NRQCD approach, still lacking at the moment.

3.2 TMD shape functions for J/ψ polarization in SIDIS

In this section we discuss the corresponding derivation of the TMDShFs in the study
of J/ψ polarization.

Notice that the kinematics involved when explicitly including the J/ψ decay and
the angular distribution of its decay products are the same as for the unpolarized
case. Consequently, the expansion of the Dirac-delta function in Eq. (3.22) applies.
Moreover, in the gluon induced CO channel, the pole structure described in Sec. 3.1.2
appears, leading to the effective Dirac-delta function in Eq. (3.32).
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In the end, the behavior of the collinear helicity structure functions in the small-
qT limit is very similar to what discussed in the previous section, namely

W⊥
L =

αs

2π2q2
T

w̃⊥
L

[
L
(

µ2

q2
T

)
f g
1 (x, µ2) +

(
Pgg ⊗ f g

1 + Pgi ⊗ f i
1

)
(x, µ2)

]
+O

(
|qT|

µ

)
,

W⊥
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αs

2π2q2
T

w̃⊥
T

[
L
(
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q2
T

)
f g
1 (x, µ2) +

(
Pgg ⊗ f g

1 + Pgi ⊗ f i
1
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)
,

W⊥
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π2q2
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(
δPgg ⊗ f g

1 + δPgi ⊗ f i
1
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[
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1 (x, µ2) +

(
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(
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)
,

(3.55)

where w̃P
Λ are the same quantities appearing in Eq. (2.107) and the light-cone mo-

mentum fraction is fixed at x = xB/x̂max. Furthermore, the logarithmic function
L(µ2/q2

T) is defined as in Eq. (3.35), while Pab and δPab are the splitting functions in
Eqs. (3.36) and (3.37).

Similarly, the TMD evolved results can be derived from the expressions in Sec. 2.4,
substituting the naive TMD-PDFs with their convolutions with the TMDShFs. Ex-
plicitly, the leading-twist helicity structure functions at small transverse momentum
are given by

W̃⊥
L = 2 (4π)2 ααse2
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)3 C

[
f g
1 ∆[3P(8)
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, (3.56)

with the convolution defined as in Eq. (3.41). In addition, we have included an
extra subscript that relates the TMDShF to the J/ψ polarization state. By comparing
Eqs. (3.55) and (3.56) in the intermediate region, we can then obtain the perturbative
tail of the TMDShF. As shown in Ref. [112], we find that ∆[n]

T and ∆[n]
L are independent

of the J/ψ polarization state and they actually coincide with the unpolarized case,
namely ∆[n]

T = ∆[n]
L ≡ ∆[n], with the latter defined in Eq. (3.53). Once again, since the

perturbative expansion of h⊥, g
1 starts at αs, it is not possible to determine the ∆[n]

∆∆ tail
at this order.

The inclusion of smearing effects may have important consequences on the study
of both the unpolarized and polarized sectors. Indeed, the structure functions de-
fined in Eq. (3.56) substitute those in Eq. (2.106), since the latter involve the partonic
process in Eq. (2.107). Thus, the effect from the TMDShF may be observed in figures
like Fig. 2.12. Indeed, while up to order αs the perturbative tails of the TMDShFs
seem to be independent of J/ψ polarization, it may not be true in general. In this
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case, a deviation in the λ behaviour (upper panel of Fig. 2.12) can be a hint of non-
perturbative effects from the TMDShF. The analysis of the ν parameter (lower panel
of Fig. 2.12) can be even more effective. Since TMDShFs for different J/ψ polar-
ization states appear in its numerator and denominator, their (potentially) different
nonperturbative behaviours could be less suppressed, resulting in a sizeable effect.
On the other hand, we have to remark that ν depends also on other quantities, that
are poorly known and can be a further source of uncertainties. We are referring to
the linearly polarized gluon distribution h⊥, g

1 and the LDME parameters, whose ex-
pected universality is still an open issue from the phenomenological point of view.
Further studies on these aspects are certainly worth and necessary.

Once again, data in the region of validity of the TMD approach, potentially cov-
ered by the planned EIC, are highly valuable to deeply understand the TMD factor-
ization in quarkonium production.
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Chapter 4

Single-spin asymmetries within the
Generalized Parton Model and its
Color-Gauge Invariant extension

At variance with previous chapters, here we discuss the (more) inclusive J/ψ pro-
duction in proton-proton collisions.

In particular, we are interested in studying the Single-Spin Asymmetry observ-
able; this quantity can be measured if one of the initial protons is transversely po-
larized, namely via the process p p↑ → J/ψ + X. Due to the lack of a formal TMD
factorization proof for pp collisions, a phenomenological approach, called General-
ized Parton Model [61–63], was proposed, being quite successful in describing SSA
data for light-meson production.

So far, phenomenological studies within the GPM have been focused on quark
distributions [76, 77, 80, 81]. Nevertheless, our interest is to explore the gluon con-
tent of nucleons, too. This information is accessible considering processes that in-
volve quarkonia, as shown in Refs. [30, 137–139]. In particular, one can potentially
access the gluon Sivers function (GSF) from SSA for quarkonium production in in-
clusive processes. The PHENIX Collaboration provided data points for this observ-
able in Ref. [42], but unfortunately they are not enough to perform a fit. Neverthe-
less, one can try to extract some constraints on the GSF by comparing this data set
with SSA estimates, computed by maximizing TMD effects.

In this chapter, we will continue to adopt the NRQCD approach and compare its
predictions with the CSM, to deeply understand the role of CO contributions. More-
over, we will use both the GPM and its Color-Gauge Invariant (CGI) extension. The
latter, proposed in Ref. [85] and further developed in Refs. [137, 138, 140], assumes
TMD factorization as in the GPM, but with the inclusion of initial- and final-state
interactions. Although other formalisms can produce sizeable asymmetries, in this
thesis we keep adopting the aforementioned phenomenological approaches, since
we are interested in providing a coherent description in terms of TMDs.

This chapter is structured as follows. First in Sec. 4.1 we present some key fea-
tures of the GPM and its application to SSAs. In Sec. 4.2 we introduce the formal
steps to properly include initial- and final-state interactions, leading to the formu-
lation of the CGI-GPM approach; in this context different cases will be considered,
including quarkonium production in proton-proton collisions. Finally, in Sec. 4.3 we
adopt these two approaches to provide numerical estimates of Single-Spin Asymme-
tries, comparing them to PHENIX data and giving useful predictions for upcoming
experiments.
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4.1 GPM: a phenomenological approach

In this section we present the phenomenological approach known as the General-
ized Parton Model, adopting the helicity formalism. A more exhaustive treatment
of the model can be found in Ref. [63], while in Ref. [141] some more recent phe-
nomenological applications to pp processes are discussed.

In the GPM approach, we assume that a cross section can be written in a factor-
ized form in terms of unintegrated TMD parton and fragmentation functions con-
voluted with elementary hard parts. The direct inclusion of spin and transverse
momentum effects into these functions follows the spirit of the parton model it-
self, maintaining a simple interpretation in terms of partons. In the GPM, differently
from the TMD factorization approach, the transverse momentum of partons are kept
also in the hard parts, reproducing some kinematic higher-twist effects. Moreover,
within this approach, it is possible to include partonic channels beyond the leading
ones, as will be done in the following for p p → J/ψ + X.

In Sec. 4.1.1 we present some key points of this model adopting the helicity for-
malism with the inclusion of TMD effects and show how helicity distributions so
defined are directly related to ordinary TMDs. In particular, we will limit to the one
of interest in our study, namely the Sivers distribution. In Sec. 4.1.2 we discuss SSAs
and how they can be evaluated within the GPM formalism.

4.1.1 Helicity Formalism

The helicity formalism allows the evaluation of scattering amplitudes and cross
sections via the decomposition into helicity states. This method, developed in the
collinear framework, can be easily extended to the TMD formalism. In the following
we focus explicitly on its use in inclusive quarkonium production.

The cross section for the process p p → J/ψ + X, where the initial protons are
in a momentum-spin configuration equal to PA, SA and PB, SB, within the GPM is
schematically given by

EQ
dσ

d3PQ
= ∑

{λ}

∫ dξa dξb

16 π2ŝ
d2 p⊥ a d2 p⊥ b

× ρ
a/pSA
λa, λ′

a
fa/pSA

(ξa, p⊥ a) ρ
b/pSB
λb, λ′

b
fb/pSB

(ξb, p⊥ b)dσ̂{λ}. (4.1)

The explicit sum over {λ} corresponds to a sum over all helicity configurations,
while dσ̂{λ} is a shorthand notation for the helicity partonic cross section (more pre-
cisely a product of helicity scattering amplitudes)

dσ̂{λ} = M{λ}M∗
{λ′} δ(ŝ + t̂ + û − M2

ψ), (4.2)

where Mψ is the J/ψ mass, which is the only massive particle in the process. For
simplicity, in Eq. (4.1) we omitted the sum over partons. Since we are specifically
interested in quarkonium production, the hard part must include also the quarko-
nium formation process. In the next section we will consider J/ψ production either
within the Color Singlet Model (CSM) or the Non-relativistic QCD (NRQCD) ap-
proach. For the same reason, a helicity fragmentation function does not appear in
Eq. (4.1), as happens in the master formula for light-meson production [63].

The main element in Eq. (4.1) is the helicity density matrix ρ
a/ASA
λa, λ′

a
, describing the

polarization state of a parton a in its rest-frame, defined as its helicity-frame [142]. In
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particular, the quantity ρ
a/ASA
λa, λ′

a
fa/ASA

(ξa, p⊥ a) includes all information relative to the
polarization of the parton a inside a polarized parent hadron A (in this case a proton)
with spin-polarization SA.

It is nevertheless more convenient to express the helicity density matrix in terms
of measurable quantities. We then introduce the soft, nonperturbative, helicity am-
plitudes Fλa,λX ;λA for the process A → a + X, and their products Fλa, λ′

a
λA, λ′

A

ρ
a/ASA
λa, λ′

a
fa/ASA

(ξa, p⊥ a) = ∑
λA, λ′

A

ρ
ASA
λA, λ′

A
∑
∫

X,λX

Fλa,λX ;λA F
∗
λ′

a,λX ;λ′
A

= ∑
λA, λ′

A

ρ
ASA
λA, λ′

A
Fλa, λ′

a
λA, λ′

A
(ξa, p⊥ a), (4.3)

where in the first line ∑
∫

X,λX
stands for the spin sum and the phase space integration

with respect to the undetected system produced by A remnants.
These distributions depend on the light-cone momentum fraction ξa and its trans-

verse momentum p⊥ a, where the azimuthal dependence can be factorized as

Fλa, λ′
a

λA, λ′
A
(ξa, p⊥ a) = Fλa, λ′

a
λA, λ′

A
(ξa, |p⊥ a|) ei (λA−λ′

A) ϕa . (4.4)

Moreover, they fulfill the parity transformation property

F−λa,−λ′
a

−λA,−λ′
A
(ξa, |p⊥ a|) = eiπ((λA−λ′

A)+(λa−λ′
a)) Fλa, λ′

a
λA, λ′

A
(ξa, |p⊥ a|), (4.5)

analogous to the corresponding helicity distributions in the fragmentation sector [143].
These conditions reduce the number of independent complex quantities to six dis-
tributions, Fλa, λ′

a
λA, λ′

A
, namely

F++
++ , F++

−− , F+−
+− , F−+

+− , F++
+− , F+−

++ , (4.6)

where the ± superscripts correspond to ±1/2 for (anti)quarks and to ±1 for gluons,
while the subscripts are ±1/2 for a spin-1/2 hadron. In particular, the first two, F++

++

and F++
−− , are moduli squared, while F+−

+− and F−+
+− are purely imaginary (real) for

gluons (quarks).
The helicity density matrix for a spin-1/2 hadron, in the left-hand side of Eq. (4.3),

can be decomposed as

ρ
ASA
λA, λ′

A
=

1
2

(
1 + SAL SAT e−iϕSA

SAT eiϕSA 1 − SAL

)
, (4.7)

where SAT and SAL are the transverse and longitudinal components of the polariza-
tion three-vector SA, while ϕSA is its azimuthal angle,

SA = (SAT cos ϕSA , SAT sin ϕSA , SAL) . (4.8)

The same matrix form is found, in terms of the corresponding partonic polarization
components SaL and SaT, for quarks and antiquarks

ρ
a/ASA
λa, λ′

a
=

1
2

(
1 + SaL SaT e−iϕSa

SaT eiϕSa 1 − SaL

)
ASA

, (4.9)
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while a similar one is also valid for gluons, where the role of longitudinal and trans-
verse polarizations are substituted by circular Sg

circ and linear Sg
lin ones, respectively,

ρ
g/ASA
λg, λ′

g
=

1
2

(
1 + Sg

circ −Sg
lin e−iϕSa

−Sg
lin eiϕSa 1 − Sg

circ

)
ASA

. (4.10)

It is worth noticing that all polarization directions are defined in their proper helicity
frames.

Combining the matrix form in Eq. (4.7) with the corresponding one of the parton
in Eq. (4.3), one can connect the distributions Fλa, λ′

a
λA, λ′

A
to the more common TMDs.

For our discussion, we explicitly mention the relation with the fully unpolarized
TMD f1 (unpolarized parton distribution inside an unpolarized spin-1/2 hadron)
and the Sivers distribution function ∆N fa/p↑ (unpolarized parton distribution inside
a transversely polarized spin-1/2 hadron)

f1(ξa, |p⊥ a|) = F++
++ (ξa, |p⊥ a|) + F++

−− (ξa, |p⊥ a|),
∆N fq/p↑(ξa, |p⊥ a|) = −2 Im

[
F+−
++ (ξa, |p⊥ a|)

]
. (4.11)

In the above expressions we have used the Torino-Cagliari notation, related to the
Amsterdam one as [144]

∆N fa/p↑ =

(
−2

|p⊥ a|
mp

)
f⊥ a
1T , (4.12)

where mp is the proton mass.

4.1.2 SSAs for quarkonium production within the GPM approach

For inclusive particle production in proton-proton collisions, with a proton trans-
versely polarized w.r.t. the production plane, the SSA is defined as

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓ =
d∆σ

2 dσ
, (4.13)

where the arrows ↑ and ↓ refer to the two possible polarization directions, while dσ
is the unpolarized differential cross section.

According to Eq. (4.1), to compute the differential cross sections entering Eq. (4.13),
we have to consider the following kernel

K(SA, SB) = ∑
{λ}

ρ
a/pSA
λa, λ′

a
fa/pSA

ρ
b/pSB
λb, λ′

b
fb/pSB

M{λ}M∗
{λ′}. (4.14)

If we take the proton A transversely polarized and the proton B unpolarized, the
numerator in Eq. (4.13) is related to the difference [K(↑, 0)− K(↓, 0)], while the de-
nominator is related to the sum [K(↑, 0) + K(↓, 0)]. Helicity conservation and parity
reduce the number of independent helicity amplitude M{λ}. In particular, for a
subprocess of the type a b → c d, we have only three independent amplitudes, corre-
sponding to M++;++, M−+;−+ and M−+;+−, see e.g. Ref. [64].

Formally, by summing over the parton helicity, the SSA for the process p p↑ →
J/ψ + X, could receive contributions from different TMD effects. Among them, the
main contribution comes from the Sivers distribution, ∆N fa/p↑ , combined with the
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unpolarized TMD, f1, and the unpolarized partonic cross sections. Another poten-
tial source involves the transversity (in the polarized proton) and the Boer-Mulders
(in the unpolarized proton) distributions, coupled to a double-spin partonic asym-
metry; however, by integration over the partonic variables, this turns to be strongly
suppressed, as explicitly checked for inclusive light meson production.1 Since we
are considering quarkonium production within the CSM or the NRQCD approach,
the channel driven by the Collins fragmentation function [145] is absent.

Taking into account these arguments, the numerator of the asymmetry within
the GPM is given by

d∆σ2→2 =
1

2(2π)2
1
2s

∫ dξa

ξa

dξb

ξb
d2 p⊥ad2 p⊥b

× ∆N fa/p↑(ξa, |p⊥ a|) f b
1 (ξb, |p⊥ b|) cos ϕa dσ̂, (4.15)

while the denominator involves only unpolarized TMD distributions

dσ2→2 =
1

2(2π)2
1
2s

∫ dξa

ξa

dξb

ξb
d2 p⊥ad2 p⊥b f a

1 (ξa, |p⊥ a|) f b
1 (ξb, |p⊥ b|)dσ̂. (4.16)

In Sec. 4.3.3 we will present numerical estimates based on the previous formulae.

4.2 The Color Gauge Invariant - Generalized Parton Model

Despite several phenomenological achievements, the Generalized Parton Model has
some intrinsic assumptions. Among them, here we recall that the Sivers function,
∆N fa/p↑ , in the GPM is universal by definition, being the same in any process. On
the other hand, when one derives the TMD factorization in SIDIS and DY processes,
the formal definition of the Sivers distribution manifests a process dependence.

In Refs. [146, 147] it has been shown how the interaction between the struck
parton (a quark/antiquark or a gluon) and the proton remnants plays a significant
role in the evaluation of SSAs. This effect can be described via a gauge link, whom
explicit form depends on the process. As a consequence, the Sivers function itself
becomes process dependent. In particular, a sign change is expected for the Sivers
function when moving from SIDIS to DY processes.

This property is usually called modified universality, and it has been widely dis-
cussed, e.g. in the seminal articles [148, 149], but is still lacking an experimental
confirmation.

In order to include a potential process dependence also in inclusive processes,
following the same approach adopted in SIDIS and DY, a modified version of the
GPM, named Color Gauge Invariant Generalized Parton Model (CGI-GPM or CGI
for short), has been developed [85, 137, 138, 140]. The CGI approach, while keeping
the fundamental features of the GPM, includes also initial- and final-state interac-
tions (ISIs and FSIs), making the Sivers function process dependent. This process
dependence can be absorbed into a redefinition of the hard parts: in this case, the
modified hard parts show a close connection with the corresponding ones appearing
in the twist-3 formalism.

In this section we present how ISIs and FSIs can be properly included in different
processes, starting from DY and SIDIS ones. These two processes, indeed, allow

1Since for quarkonium production we have a subset of the same partonic subprocesses, we expect
the same kind of suppression.
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FIGURE 4.1: Representative diagrams in the CGI approach for SIDIS (on the left) and DY (on
the right) processes in one-gluon-exchange approximation. The colored gluon, connecting

the proton remnants to one of the partons, describes the FSI or ISI.

us to rederive the expected sign change of the quark Sivers function, as well as to
understand how to include the process dependence in the hard parts.

As a second step, we consider the q g → q γ subprocess, relevant for accessing
the gluon Sivers function in pp collisions. In this case, we will also discuss the role
of FSIs from the (unobserved) quark in the final state.

Finally, we focus explicitly on the p↑p → J/ψ + X process, computing the ISIs
involving a hard gluon and showing how FSIs behave in quarkonium production.
To describe the hadronization mechanism we will adopt two approaches: the Color-
Singlet Model and the Non-relativistic QCD framework. Notice that we will only
recall some of their main properties, relevant in our discussion. More details on the
CSM can be found in the seminal works [150, 151], while for the NRQCD approach
we refer the reader to Ref. [6]. Some useful relations are collected in Appendix A,
too.

Before entering into the main aspects of this derivation, it is worth spending few
words on the notation. For the hard parts, we will use here and in the following
the symbol H, which corresponds to a partonic amplitude squared. This notation
is much closer to the one commonly found in the literature, but different to the one
adopted in Appendix B. Moreover, in the following derivation we will continue em-
ploying the Cagliari-Torino notation for the Sivers function. This choice is different
from what usually adopted in the literature, where the Amsterdam notation is pre-
ferred. The two notations can be easily connected, see Eq. (4.12).

4.2.1 Initial- and Final-state interactions

In this section we discuss how one can compute initial- and final-state interactions
for the process under consideration, referring the reader to Refs. [85, 137] for further
details.

Quark Sivers function

We start considering the computation of ISIs and FSIs for two standard processes,
namely SIDIS and DY. The leading order (LO) approximation is shown in Fig. 4.1,
corresponding to a single-gluon exchange. The gluon line connects, along one of
the light-cone directions, the proton remnants and a parton, which is either coming
from the other hadron or produced in the final state. The former corresponds to a
ISI, while the latter to a FSI.

In order to study the role of the extra gluon, we adopt the eikonal approximation,
in which the exchanged gluon is longitudinally polarized. In particular, by using
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FIGURE 4.2: Visual factorization between the hard SIDIS amplitude and the TMD-PDF
within its gauge-invariant definition at leading order.

the light-cone components, the gluon field is dominated by A+. The extra gluon
modifies how the particle (antiparticle) spinor u(p) (v(p)) is connected to the rest of
the diagram. More explicitly, the spinors, in the two cases, undergo the following
replacement

SIDIS (FSI) : ū(pc) → ū(pc) (−igγ−ta) i /pc − /k
(pc − k)2 + iϵ

≈ ū(pc)

[
gta γ−/pc

−2p−c k+ + iϵ

]
≈ ū(pc)

[
gta 2p−c − /pcγ−

−2p−c k+ + iϵ

]
≈ ū(pc)

[
g

−k+ + iϵ
ta
]

, (4.17)

DY (ISI) : v̄(pb) → v̄(pb) (−igγ−ta) (−i) /pb + /k
(pb + k)2 + iϵ

≈ v̄(pc)

[
− g

k+ + iϵ
ta
]

. (4.18)

In the eikonal approximation, in the interaction vertex only the γ− matrix appears.
Moreover, since we are interested in the propagator pole, given by k+ = 0, we can
neglect this term in the numerator and impose the on-shell condition (p2

b ∧ p2
c ∧ k2 =

0) whenever possible. Finally, via the massless Dirac equations ū(pc) /pc = 0 and
v̄(pb) /pb = 0, we obtain the squared brackets in the last lines of Eqs. (4.17) and (4.18).
Notice that, since the eikonal gluon comes from a quark/antiquark, the Gell-Mann
matrix Ta is in the fundamental representation ta, with a being the (eikonal) gluon
color index. The transformation rules obtained in Eqs. (4.17) and (4.18) can be seen
as the first order expansion of the gauge-invariant definition of a TMD-PDF. The first
non-trivial order for SIDIS is shown in Fig. 4.2.

To get the proper factorized expression, one should further expand Eqs. (4.17)
and (4.18) in the principal value P and the imaginary part

1
k+ ± iϵ

= P 1
k+

∓ iπδ(k+). (4.19)

Since this factor is contracted with the Born amplitude, only the second term sur-
vives. In the end, the particle and antiparticle spinors transform in the following
way

SIDIS (FSI) : ū(pc) → (−iπg) ta ū(pc) δ(k+),
DY (ISI) : v̄(pb) → (+iπg) ta v̄(pc) δ(k+). (4.20)
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The different sign in the imaginary part between Eqs. (4.17) and (4.18) is directly
related to a sign change between the Sivers function entering in SIDIS and DY pro-
cesses. It is possible to prove that this relation holds at all orders, using parity and
time reversal arguments, and that the two (T-odd) functions involve gauge links
pointing in opposite directions, Ref. [152].

The presence of an extra Ta matrix (given by ta in the fundamental represen-
tation) also modifies how the color flows through the diagram. When the eikonal
gluon interacts with the proton remnants, this color must be neutralized. This oper-
ation is achieved by a proper projection.

Following the method developed in Refs. [49, 50, 52, 153], the color projector can
be defined as

Ca
ij = NC ta

ij, (4.21)

where its normalization is

NC = Tr [tata]−1 =
2

N2
c − 1

. (4.22)

If denote by CU the unpolarized color factor, obtained without any extra eikonal
gluon, we can introduce CI and CF for the color factors obtained when ISIs and FSIs
are present, respectively. The appearance of the modified color factor CI and/or CF
leads to the process dependence of the asymmetry.

This dependence can be ultimately absorbed in the definition of the Sivers func-
tion, leading to its modified universality property. At variance with this choice,
within the CGI approach we can show that this dependence can also be absorbed
into the hard parts. In the first case we have a different Sivers function for each
process, e.g. ∆N f SIDIS

a/A↑ and ∆N f DY
a/A↑ , with a simple relation between them, at least

within the one-gluon-exchange approximation. In the second case we can introduce
a process-dependent version of the hard scattering part, keeping the Sivers formally
universal, as it is usually adopted in the GPM. In the following we describe how to
relate these two choices.

Let us consider the unpolarized hard part of DY, namely |MU
DY|2 ≡ HU

DY. We
know that this is given by the corresponding partonic reduced hard term, hDY, which
does not include the color factor, multiplied by the unpolarized color factor CU .
The partonic hard part in DY is the same as the leptonic inhomogeneous scatter-
ing l+l− → l′+l′− (e.g. e+e− → µ+µ−), with the inclusion of an average over colors.
This implies

hDY =
e2

q (4πα)2

3 ŝ
, CU =

1
Nc

. (4.23)

When ISIs are included, the color factor modifies in

CDY
I = −Ca

ij ta
ji × CU = −CU . (4.24)

The minus sign can be absorbed into a process-dependent Sivers function, leading
to

∆N f DY
a/A↑ =

CDY
I

CU
∆N fa/A↑ = −∆N f SIDIS

a/A↑ , (4.25)

where we have defined the general Sivers function in one-gluon approximation as
∆N fa/A↑ ≡ ∆N f SIDIS

a/A↑ . Alternatively, we can introduce the process-dependent hard
part HInc. For DY, where only ISIs are present, we can use a more complete notation
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FIGURE 4.3: q q′ → q q′ process within the CGI-GPM approach: ISIs and FSIs at work.

HInc−I
DY . This new hard part is related to hDY via

HInc−I
DY =

CDY
I

CU
HU

DY = CDY
I hDY. (4.26)

In this case the Sivers function keeps its general and universal form, equal to the one
defined for SIDIS processes.

If we extend this approach beyond the above processes, whose partonic subpro-
cesses are both characterized by the exchange of a color-singlet mediator (a photon),
we find a much more complex situation. For example, for the inclusive-hadron pro-
duction in pp collisions, one has to consider the qq′ → qq′ subprocess. In this case,
both CI and CF appear, as shown in Fig. 4.3. The Sivers function of this process can
be still related to the SIDIS one as follows

∆N f qq′→qq′

a/A↑ =
CI + CF

CU
∆N f SIDIS

a/A↑ , (4.27)

or alternatively one can introduce the process-dependent cross section, that includes
both ISIs and FSIs,

HInc
qq′→qq′ = HInc−I

qq′→qq′ + HInc−F
qq′→qq′ = (CI + CF) hqq′→qq′ . (4.28)

For SSAs in J/ψ production, where different subprocesses enter, this simple relation
is not valid for the entire hard part, even if a suitable modification can still be found.

Gluon Sivers function

We discuss here the extension of the CGI approach for subprocesses where gluons
are involved. We start considering the partonic subprocess g q → γ q, for which
the CGI relevant diagrams are shown in Fig. 4.4. The first one, a , describes the
initial-state interaction, while the last two, b and c , are the final-state interactions
involving the unobserved parton. We will show that these last two contributions
cancel out. This simplifies the whole approach, since this happens whenever an
undetected parton is involved.

For each case, the spinors are replaced according to

a : u(pb) → (−iπg) te ū(pc) δ(k+),

b : ū(pc) → (+iπg) te ū(pc) δ(k+),
c : u(pc) → (−iπg) te u(pc) δ(k+). (4.29)

The extra color carried by the exchanged gluon has to be neutralized by a proper
color projector. Since the parton coming from the polarized proton is a gluon, within
the one-gluon-exchange approximation there are two different ways to perform the
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FIGURE 4.4: Diagrams relative to the subprocess g q → γ q within the CGI-GPM approach.
They play a role in the study of the gluon Sivers function.

color neutralization. One projector, T e
aa′ , is antisymmetric, while the second one,

De
aa′ , is symmetric. Their explicit definitions are

T e
aa′ = NT (Te)aa′ = −iNT feaa′ , (4.30)

De
aa′ = ND (De)aa′ = ND deaa′ , (4.31)

where feaa′ (deaa′) is the antisymmetric (symmetric) structure constant of SU(3), while
the normalizations are given by

NT = Tr [TeTe]−1 =
1

Nc(N2
c − 1)

, (4.32)

ND = Tr [DeDe]−1 =
Nc

(N2
c − 4)(N2

c − 1)
. (4.33)

We first consider the diagram a , where in the gray bubble we take only the tree-
level diagram2 of the process g q → γ q. In this case, two different averaged color
factors can be identified, depending on the color projector choice, namely

C( f )
I =

1
Nc

T e
ij te

ji ta′
imta

mj =
−i feaa′

N2
c (N2

c − 1)
Tr
[
teta′ ta

]
= − 1

4Nc
, (4.34)

C(d)
I =

1
Nc

De
ij te

ji ta′
imta

mj =
deaa′

(N2
c − 4)(N2

c − 1)
Tr
[
teta′ ta

]
=

1
4Nc

. (4.35)

These two color factors are independent and cannot be associated to a unique gluon
Sivers function. This implies that, even in one-gluon-exchange approximation, two
different gluon Sivers functions arise. These are defined as the f -type GSF (∆N f ( f )

a/A↑)

and the d-type one (∆N f (d)a/A↑). Once again, the process dependence can be moved to

2This allows us to obtain exact results, without loss of generality.
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the hard part, by defining

HInc ( f /d)
qg→γq = C( f /d)

Inc hqg→γq, (4.36)

where, in principle, the label “Inc" include both initial- and final-state interactions.
Moving to the undetected parton contributions, we have to study the two dia-

grams b and c in Fig. 4.4. Once again, we take into account only the tree level in
the grey bubble to provide an explicit example. We start noticing that while in the
b diagram the parton is strictly on-shell, in c this is not mandatory, and the parton

can be slightly off-shell; this is possible only because the final parton is unobserved.
Elaborating in more detail Eq. (4.29), we have

b : ū(pc) (−igγ−te) i /pc − /k
(pc − k)2 + iϵ

δ(p2
c) → (−iπg) te ū(pc) δ(k+)δ(p2

c),

c : (−igγ−te) i /pc
(pc)2 − iϵ

u(pc − k) δ
(
(pc − k)2)→ (+iπg) te u(pc) δ(k+)δ(p2

c).

(4.37)

Since in both cases the remaining parts of the scattering amplitudes are the same, the
opposite pole contributions add up directly, leading to a cancellation. As previously
mentioned, this happens whenever an unobserved parton is involved.

Quarkonium formation and FSIs

In this section we explicitly discuss the FSIs in the context of SSAs for quarkonium
production. The pp↑ → J/ψ + X process involves three classes of partonic subpro-
cesses at order α3

s : g g → J/ψ g, g q(q̄) → J/ψ q(q̄) and q q̄ → J/ψ g. Their repre-
sentative diagrams are shown in Fig. 4.5. From diagrams b and c , we see that ISIs
are given by the extra eikonal gluon attached to the initial quark/antiquark. This
does not provide any new information compared to what discussed in the previous
sections. On the other hand, in diagram a ISIs will involve the attachment of the
eikonal gluon to the hard one.

Let us consider it in more detail, as depicted in Fig. 4.6. Focusing on ISIs (left
diagram) we can introduce the polarization vector transformation rule, while FSIs
(right diagram) allow us to describe how the eikonal gluon insertion works when a
heavy-quark-antiquark bound state is involved.

Via the eikonal approximation, the extra gluon field has a dominant component
Aρ ≈ A+, with momentum3 k ≈ k+. Moreover, its presence dictates a replacement
rule which, in this example, is applied to the hard gluon polarization vector ϵν(pb)

ϵν(pb) → ϵν(pb) Aρ(k) (−g fbkb′)Cνρρ′

(
−i

ηρ′ν′

(k + pb)2 + iϵ

)
, (4.38)

with

Cνρρ′ = ηνρ(pb − k)ρ′ + ηρρ′(2 k + pb)ν − ηρ′ν(2 pb + k)ρ

≈ ηνρ(pb)ρ′ + ηρρ′(pb)ν − ηρ′ν(2 pb)ρ

= −2 ηρ′ν pbρ. (4.39)

3Do not confuse the momentum k with the color index k corresponding to the eikonal gluon.
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FIGURE 4.5: Representative 2 → 2 diagrams for the unpolarized process p p → J/ψ X.

FIGURE 4.6: Diagrams corresponding to the insertion of ISIs (left diagram) and FSIs (right
diagram) in the partonic process g g → J/ψ g, Fig. 4.5 diagram a . ISIs connect the polarized
proton remnants to the hard gluon coming from the unpolarized proton, implying also a
modification of the polarization vector. FSIs are obtained by combining the heavy quark

and antiquark contributions; this depends on the hadronization model.

In the second line we have neglected k compared to pb, while in the third line we
have used the polarization vector gauge condition (ϵ−(pb) = 0) and its orthogonal-
ity condition (ϵ(pb) · pbν = 0). Applying the final (approximated) form of Cνρρ′ to
Eq. (4.38), the substitution becomes

ϵν(pb) Aρ(k) (−g fbkb′)Cνρρ′

(
−i

ηρ′ν′

(k + pb)2 + iϵ

)
≈

≈ ϵν′(pb) A+(k) (ig fbkb′)
2pb−

2k+pb− + iϵ

≈ ϵν′(pb) (−ig fbkb′)
A+(k)
k+ + iϵ

≈ ϵν′(pb) (−iπg) (−i fbkb′)
(

A+(k)δ(k+)
)

. (4.40)

In the last step, we have decomposed the propagator in its principal value and the
imaginary part, keeping only the latter. We notice that, since the index ν′ is actually
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contracted with the rest of the diagram, one can restore the original index ν. In this
way, the following substitution rule for the polarization vector can be used

ϵν(pb) → ϵν(pb) (−iπg) (−i fbkb′)
(

A+(k)δ(k+)
)

. (4.41)

Moving to the FSIs, we have the most interesting case, given by the presence
of the two heavy quarks bounded together.4 These FSIs, within the one-gluon-
exchange approximation, are shown in Fig. 4.6 (right diagram).

The form of FSIs for quarkonium production depends on the color nature of the
quark-antiquark pair, i.e. if it is in a CS or a CO state. In the first case, the contri-
butions coming from the quark and the antiquark are opposite in sign, leading to
a cancellation. To demonstrate it, we explicitly impose the projection of the quark-
antiquark pair into a CS state.

The color structure Cij;mn of one of the diagrams in Fig. 4.5 can be decomposed,
in general, into two terms, CQ

ij and Cq
mn, as

Cij;mn = CQ
ij Cq

mn. (4.42)

The first factor is identified by the color flow that follows the fermionic line that in-
cludes the heavy quark-antiquark pair. The second one follows the fermionic line
identified by other quarks/antiquarks; notice that if this fermionic line is missing,
then Cq

mn is just the identity matrix (i.e. it can be removed from the previous equa-
tion).

In the case of a CS state, the color projector is given in Eq. (A.6) (first equation)
of Appendix A. From that, the unpolarized hard part HU involves directly the trace
of the quarkonium color structure CQ, namely Tr[CQ]. With the inclusion of the
extra eikonal gluon, an extra matrix T e in its fundamental representation needs to
be added. Following the fermion line backwards, the extra T e term will be either in
front of or after the quarkonium color structure CQ, if the gluon is attached to the
heavy quark or antiquark, respectively. Due to the different sign in the imaginary
contribution of the pole, the two terms enter with opposite signs (see also Eq. (4.20)).
In the end, we have the following replacement rule

Tr[CQ]√
Nc

→
(

te
ikCQ

kj − CQ
ik te

kj

) δji√
Nc

=
Tr[teCQ]− Tr[CQte]√

Nc
= 0, (4.43)

where, in the last step, we used the cyclic property of a trace.
When the pair is produced in a CO state, it behaves like a gluon. This implies

that the sum of the two contributions leads to a similar substitution rule found for
a hard gluon polarization vector. In this case the CO projector, given in Eq. (A.6)
(second equation) of Appendix A, brings another matrix td, which plays a role in
the trace of the hard part color structure, namely Tr[CQtd]. Moreover, its presence
prevents the cancellation between the contributions coming from the quark and the
antiquark after the insertion of the eikonal gluon. Indeed, the FSIs for the CO case

4We remind that the other unobserved parton never contributes to the SSA in the CGI approach.
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can be managed as follows

√
2Tr[CQtd] →

√
2
(

te
ikCQ

kj − CQ
ik te

kj

)
td

ji =
√

2
(

Tr[teCQtd]− Tr[CQtetd]
)

=
√

2
(

Tr[CQtdte]− Tr[CQtetd]
)

=
√

2 (i fded′)Tr[CQtd′ ]. (4.44)

Again, the cyclic property of the trace has been used. Furthermore, to reduce the
number of traces, the anti-commutator fundamental property of the Gell-Mann ma-
trices has been used, Eq. (A.33) of Appendix A. The sum of the two FSI contributions
has the net effect of introducing an extra antisymmetric structure constant, fded′ . As
already anticipated, this is the same effect found when the eikonal gluon is attached
to another, hard, gluon.

From these examples it is now clear that, when studying SSAs within the CGI-
GPM framework, the gluonic-like nature of the quarkonium state has a real impact
on the final result.

4.3 SSAs in p↑p → J/ψ + X within the CGI-GPM approach

The main goal of this section is to provide the formal tools to evaluate Single-Spin
Asymmetries within the CGI-GPM framework for inclusive J/ψ production in pp
collisions. As previously mentioned, for inclusive processes like pp → h + X or
pp → Q+ X a formal proof of factorization in terms of TMDs does not exist. On the
other hand, for their relevance, phenomenological TMD approaches, like the GPM
and its CGI extension, are worth to be exploited.

In order to describe the SSAs for quarkonium production, it is necessary to com-
bine these approaches (GPM or CGI) with a model, describing the hadronization for-
mation. In this context, both the CSM and the NRQCD approaches will be adopted.

It is well known that quarkonium production is in general dominated by gluon
channels; for this reason, within a TMD scheme, SSA measurements can provide
information on the still poorly known gluon Sivers function.

To unveil the role of the gluonic content in a proton, it is then important to
study as many processes as possible. While here we focus on J/ψ production in
pp collisions, other processes, like e p↑ → e′ J/ψ + X have received considerable at-
tention. This can be deeply explored with the advent of the Electron-Ion Collider.
In Ref. [139], for instance, estimates for the Sivers SSA potentially accessible at the
EIC (

√
s = 140 GeV) are presented, paying special attention to the role of ISIs and

FSIs. Moreover, considering the real photon emission limit, it is possible to study
the Sivers effect in inelastic J/ψ photoproduction. Estimates for SSAs, limiting to
the GPM approach, in γ g → J/ψ + X are given in Ref. [30] for EIC (at

√
s = 45 and

100 GeV) and COMPASS (at
√

s = 17.2 GeV).
Unfortunately, at the moment the available data are not enough to perform a

fit, and extract precious information on the GSF. For this reason, in this section (fol-
lowing Ref. [154]) we will show only “maximized" asymmetry estimates; their exact
meaning will be explained in Sec. 4.3.2, where explicit parameterization choices will
be discussed.

In details, the next sections are organized as follows. In Sec. 4.3.1 we apply the
CGI-GPM approach to the case of quarkonium formation, gathering all color factors
for each subprocess as well as the resulting process-dependent hard parts. Then, in
Sec. 4.3.2, we describe the typical parameterization choice adopted in these studies.
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Finally, in Sec. 4.3.3 and Sec. 4.3.4 we show numerical estimates compared against
PHENIX data [41, 42], as well as predictions for future experiments.

4.3.1 CGI hard part in pp collisions

We start discussing the formal novelties of the p↑p → J/ψ + X SSA within the CGI-
GPM approach, compared to the standard GPM. The latter can be found, for in-
stance, in Ref. [155] and references therein.

All leading diagrams (both 2 → 1 and 2 → 2 partonic channels) and the corre-
sponding unpolarized hard parts for the process pp → J/ψ + X are given in Ap-
pendix B.1.5

These quantities enter the denominator of the SSA, and they are always evalu-
ated within the GPM approach, even when we adopt the CGI-GPM. The same dia-
grams are also involved in the numerator of the asymmetry evaluated both within
GPM and CGI-GPM. On the other hand, in the former the same amplitudes HU as
those for the unpolarized cross section are used, while in the latter they are replaced
by HInc, including ISIs and FSIs. This replacement is carried out, as widely discussed
in the previous section, by introducing new color factors related to initial- and final-
state interactions, CI and CF respectively. Due to the high complexity of the process
itself, the direct relation in Eq. (4.28) does not hold in this case. Indeed, it is not
possible, in general, to identify a common color factor for all the relevant non-zero
sub-diagram products. This is particularly evident for some Fock-states, e.g. 3S(8)

1
CO state, whose corresponding color factors are given in Tab. 4.4. Nevertheless, it is
still possible to apply the relation in Eq. (4.28) to a specific subset diagram product
I × J

HI×J, Inc =
CI×J

I + CI×J
F

CI×J
U

HI×J, U =
CI×J, Inc

CI×J
U

HI×J, U , (4.45)

where I and J correspond to two of the possible diagrams.
In the following, for different J/ψ states, we collect the analogous color factor

tables shown in Appendix B.1.3 for the initial- and final-state interactions, as well
as their sum CInc. Moreover, we provide the relative process-dependent hard parts,
that enter the CGI-GPM numerator of the asymmetry.

Starting from the 2 → 1 process, the J/ψ particle can be produced only via a CO
state, as shown in Appendix B.2 (unpolarized production). Thus, the AN numerator
receives contribution only from the CO sector, too. Moreover, when adopting the
CGI framework, the insertion of ISIs and FSIs has an important consequence in the
final result. In particular, in the gluon channel, the contributions from both f - and d-
type GSFs turn out to be zero. The latter is true due to the projection in the symmetric
color space, which is null by itself. The former, instead, is true due to the cancellation
of the non-zero contributions coming from ISI and FSI. This result, presented also in
Tab. 4.1, is in agreement with Ref. [28].

Hence, within the CGI approach, only the quark-antiquark annihilation channel
produces a non-zero result, with a sign change if the parton coming from the polar-
ized proton is a quark or a antiquark, as shown in Tab. 4.2. Finally, at order α2

s , the
amplitudes squared in the CGI framework are given by

HInc ( f /d)

gg→1S(8)
0

= HInc ( f /d)

gg→3S(1,8)
1

= HInc ( f /d)

gg→3P(8)
J

= 0 (4.46)

5Notice that in this appendix we use a slightly different notation for the amplitude squared, namely
|M|2, instead of H.
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State Part. process C( f )
I C(d)

I C( f )
F C(d)

F CInc ( f ) CInc (d)

1S(8)
0 & 3P(8)

J gg → Q − N2−4
4N(N2−1) 0 N2−4

4N(N2−1) 0 0 0

TABLE 4.1: Color factors within the CGI framework for the
gg → J/ψ[1S(8)

0 ] and gg → J/ψ[3P(8)
J ] channels.

State Part. process CI CF CInc

3S(8)
1 qq̄ → Q ± 1

4N2 ± 1
4 ±N2+1

4N2

TABLE 4.2: Color factors within the CGI framework for the
qq̄ → J/ψ[3S(8)

1 ] channel; upper (lower) sign is for quark (antiquark) parton in the polarized
proton.

for gluon-gluon interaction, and

HInc ( f )

qq̄→1S(8)
0

= HInc ( f )

qq̄→3P(8)
J

= 0, (4.47)

HInc ( f )

qq̄→3S(8)
1

= ±5(4παs)2

108Mψ
(4.48)

for quark-antiquark annihilation, where the upper (lower) sign refers to a quark
(antiquark) parton picked up from the polarized proton.

Like in the unpolarized case, the next order contribution (2 → 2 subprocesses)
leads to a more complex picture. The production of the CS state in the hard process
is possible only via gg interaction and, since the cc̄ pair is in a singlet state, only ISIs
are possible. The relatively low number of active diagrams and the sole presence
of initial-state interactions make the relation between the results in CGI and GPM
approaches relatively simple

HCSM, Inc ( f ) = −1
2
HCSM, U , (4.49)

which gives

HInc ( f )

gg→3S(1)
1 g

= −
5(4παs)3Mψ

162 (ŝ + t̂)2(ŝ + û)2(t̂ + û)2

×
[

ŝ2 (t̂ û + t̂2 + û2)+ ŝ t̂ û
(
t̂ + û

)
+ t̂2û2

]
,

HInc (d)

gg→3S(1)
1 g

= 0, (4.50)

with the latter (d-type contribution) being 0 due to color projection. This result is in
agreement with Ref. [137].

Considering the CO state, the relation shown in Eq. (4.45) holds, and single prod-
ucts among different diagrams need to be considered. As also found in the previous
case, the gluon-gluon interaction does not allow the presence of a d-type GSF since
the projection in the symmetric color space is zero. This statement holds for all dom-
inant CO waves, namely 1S(8)

0 and 3P(8)
J , Tab. 4.3, and 3S(8)

1 , Tab. 4.4.

For the 1S(8)
0 and 3P(8)

J waves, only a subset of diagrams contributes, due to the



4.3. SSAs in p↑p → J/ψ + X within the CGI-GPM approach 73

gg → Q[(1S(8)
0 & 3P(8)

J )] g C( f )
I C(d)

I C( f )
F C(d)

F CInc ( f ) CInc (d)

A 1 × A 1 − N2−4
8(N2−1) 0 N2−4

8(N2−1) 0 0 0

A 2 × A 2 0 0 N2−4
8(N2−1) 0 N2−4

8(N2−1) 0

A 3 × A 3 − N2−4
8(N2−1) 0 0 0 − N2−4

8(N2−1) 0

A 1 × B 1 − N2−4
8(N2−1) 0 N2−4

8(N2−1) 0 0 0

A 1 × B 2
N2−4

8(N2−1) 0 − N2−4
8(N2−1) 0 0 0

A 2 × B 2 0 0 N2−4
8(N2−1) 0 N2−4

8(N2−1) 0

A 2 × B 3 0 0 N2−4
8(N2−1) 0 N2−4

8(N2−1) 0

A 3 × B 1
N2−4

8(N2−1) 0 N2−4
8(N2−1) 0 N2−4

8(N2−1) 0

A 3 × B 3 - N2−4
8(N2−1) 0 0 0 − N2−4

8(N2−1) 0

B 1 × B 1 − N2−4
4(N2−1) 0 N2−4

8(N2−1) 0 − N2−4
8(N2−1) 0

B 2 × B 2 − N2−4
8(N2−1) 0 N2−4

4(N2−1) 0 N2−4
8(N2−1) 0

B 3 × B 3 − N2−4
8(N2−1) 0 N2−4

8(N2−1) 0 0 0

B 1 × B 2
N2−4

8(N2−1) 0 − N2−4
8(N2−1) 0 0 0

B 1 × B 3
N2−4

8(N2−1) 0 0 0 N2−4
8(N2−1) 0

B 2 × B 3 0 0 N2−4
8(N2−1) 0 N2−4

8(N2−1) 0

TABLE 4.3: Non-zero color factors within the CGI framework for the
gg → J/ψ[1S(8)

0 ] g and gg → J/ψ[3P(8)
J ] g channels; diagram letters follow the notation used

in Appendix B.

Fock-state projector. The products among the surviving diagrams are gathered in
Tab. 4.3, leading to

HInc ( f )

gg→1S(8)
0 g

=
(4παs)3

64ŝt̂(ŝ + t̂)2(ŝ + û)2(t̂ + û)2Mψ

{
5(ŝ − t̂)

(
ŝ (2 t̂ + û) + t̂û

)
×
[

ŝ4 + 2 ŝ3 (t̂ + û
)
+ 3 ŝ2 (t̂ + û

)2
+ 2 ŝ

(
t̂ + û

)3
+
(
t̂ û + t̂2 + û2)2

]}
(4.51)
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and

HInc ( f )

gg→3P(8)
J g

=
(4παs)3

16ŝt̂(ŝ + t̂)3(ŝ + û)3(t̂ + û)3M3
ψ

(ŝ − t̂)

{
5(ŝ − t̂)

×
[

7ŝ7 (2t̂ + û
) (

t̂ + û
)
+ ŝ6 (44t̂3 + 106t̂2û + 91t̂û2 + 21û3)

+ ŝ5
(

68t̂4 + 212t̂3û + 268t̂2û2 + 175t̂û3 + 35û4
)

+ ŝ4
(

68t̂5 + 254t̂4û + 426t̂3û2 + 398t̂2û3 + 213t̂û4 + 35û5
)

+ ŝ3
(

44t̂6 + 212t̂5û + 426t̂4û2 + 528t̂3û3 + 394t̂2û4 + 165t̂û5 + 21û6
)

+ ŝ2
(

14t̂7 + 106t̂6û + 268t̂5û2 + 398t̂4û3 + 394t̂3û4 + 236t̂2û5 + 75t̂û6 + 7û7
)

+ ŝt̂û
(

21t̂6 + 91t̂5û + 175t̂4û2 + 213t̂3û3 + 165t̂2û4 + 75t̂û5 + 14û6
)

+ 7t̂2û2 (t̂ + û
) (

t̂û + t̂2 + û2)2
]}

. (4.52)

Differently from the other two cases, all diagrams contribute to the production of the
3S(8)

1 CO state. Despite this, another simplification arises, since some color factors
coming from different diagrams are equal to each other. Explicitly, we have the fol-
lowing correspondences: ( C 1, D 1) ⇔ B 1, ( C 2, D 2) ⇔ B 2 and ( C 3, D 3) ⇔
B 3, where the letters follow the notation used in Appendix B.1. For this reason,

in Tab. 4.4 only independent products are considered. From these color factors, the
process-dependent hard part is

HInc ( f )

gg→3S(8)
1 g

= − (4παs)3

96(ŝ + t̂)2(ŝ + û)2(t̂ + û)2M3
ψ

×
[

17ŝ3 (t̂û + t̂2 + û2)+ ŝ2 (54t̂2û + 66t̂û2 + 17t̂3 + 26û3)
+ ŝ t̂ û

(
17t̂2 + 66t̂û + 38û2)+ t̂2û2 (17t̂ + 26û

) ]
. (4.53)

As already mentioned, the d-type GSF is not accessible via gg interaction, namely

HInc (d)

gg→1S(8)
0 g

= HInc (d)

gg→3S(1/8)
1 g

= HInc (d)

gg→3P(8)
J g

= 0. (4.54)

In principle, it is possible to access the d-type GSF through the g q(q̄) channel, as
shown in Tab. 4.5. Nevertheless, as will be shown in Sec. 4.3.3, this channel provides
a relatively small contribution and, in general, the d-type GSF effect is suppressed
compared to the f -type one. Depending on the specific product and state, it is pos-
sible to identify a sign change in the color factors when switching from a quark to
an antiquark; in such a case both values are indicated in the table (upper and lower
signs, respectively). The same logic is adopted in the following amplitudes squared.
Moreover, in the production of a 3S(8)

1 state, the color factors related to the diagrams
A and C are found to be the same, where the letters follow the notation used in

Appendix B.1. In Tab. 4.5 only the first case is explicitly given. From these results,
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gg → Q[3S(8)
1 ] g C( f )

I C(d)
I C( f )

F C(d)
F CInc ( f ) CInc (d)

A 1 × A 1 − N2+4
8N2(N2−1) 0 N2+4

8N2(N2−1) 0 0 0

A 1 × A 2
N2−2

4N2(N2−1) 0 1
2N2(N2−1) 0 1

4(N2−1) 0

A 1 × A 3 − 1
2N2(N2−1) 0 − N2−2

4N2(N2−1) 0 − 1
4(N2−1) 0

A 2 × A 2
1

2N2 0 N2+4
8N2(N2−1) 0 N2+4

8(N2−1) 0

A 2 × A 3
N2−2

4N2(N2−1) 0 − N2−2
8N2(N2−1) 0 0 0

A 3 × A 3 − N2+4
8N2(N2−1) 0 − 1

2N2 0 − N2+4
8(N2−1) 0

A 1 × B 1
N2

8(N2−1) 0 − N2+2
8(N2−1) 0 − 1

4(N2−1) 0

A 1 × B 2
N2+2

8(N2−1) 0 − N2

8(N2−1) 0 1
4(N2−1) 0

A 2 × B 2
1

4(N2−1) 0 N2

8(N2−1) 0 N2+2
8(N2−1) 0

A 2 × B 3 − 1
4(N2−1) 0 − N2+2

8(N2−1) 0 − N2+4
8(N2−1) 0

A 3 × B 1 − N2

8(N2−1) 0 − 1
4(N2−1) 0 − N2+2

8(N2−1) 0

A 3 × B 3 - N2+2
8(N2−1) 0 − 1

4(N2−1) 0 − N2+4
8(N2−1) 0

B 1 × B 1 − N2

4(N2−1) 0 N2

8(N2−1) 0 − N2

8(N2−1) 0

B 1 × B 2 − N2

8(N2−1) 0 N2

8(N2−1) 0 0 0

B 1 × B 3 − N2

8(N2−1) 0 0 0 − N2

8(N2−1) 0

B 2 × B 2 − N2

8(N2−1) 0 N2

4(N2−1) 0 N2

8(N2−1) 0

B 2 × B 3 0 0 − N2

8(N2−1) 0 − N2

8(N2−1) 0

B 3 × B 3 − N2

8(N2−1) 0 N2

8(N2−1) 0 0 0

TABLE 4.4: Non-zero color factors within the CGI framework for the gg → J/ψ[3S(8)
1 ] g

channel; diagram letters follow the notation used in Appendix B.

gq(q̄) → Q[n] q(q̄) C( f )
I C(d)

I C( f )
F C(d)

F CInc ( f ) CInc (d)

A × A −N2−4
16N2 ±N2−12

16N2
N2−4
8N2 0 N2−4

16N2 ±N2−12
16N2

A × A − 1
16 ± 1

16
1
8 0 1

16 ± 1
16

A × B ∓ 1
16

1
16 ± 1

16
1
16 0 1

8
A × D 0 0 ∓ 1

16
1

16 ∓ 1
16

1
16

B × B −N2−1
16N2 ±N2−1

16N2
1
16 ± 1

16
1

16N2 ± 2N2−1
16N2

B × D 1
16N2 ∓ 1

16N2 0 0 1
16N2 ∓ 1

16N2

D × D 1
16N2 ∓ 1

16N2
1
16 ∓ 1

16
N2+1
16N2 ∓N2+1

16N2

TABLE 4.5: Non-zero color factors within the CGI framework for the g q(q̄) →
J/ψ[1S(8)

0 ] q(q̄) and g q(q̄) → J/ψ[3P(8)
J ] q(q̄) (first row) and gq(q̄) → J/ψ[3S(8)

1 ] q(q̄) (fol-
lowing rows) channels; the meaning of diagram letters can be found in Appendix B. Upper

(lower) sign refers to quark (antiquark) parton in the polarized proton.

the hard parts for producing a 1S(8)
0 state are given by

HInc ( f )

g q(q̄)→1S(8)
0 q(q̄)

= −5(4παs)3

288Mψ

ŝ2 + û2

t̂(ŝ + û)2
, (4.55)

HInc (d)

g q(q̄)→1S(8)
0 q(q̄)

= ∓3
5
HInc ( f )

gq(q̄)→1S(8)
0 q(q̄)

, (4.56)
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while for 3S(8)
1 are

HInc ( f )

g q(q̄)→3S(8)
1 q(q̄)

= −5(4παs)3

432M3
ψ

(10ŝ2 + 2ŝû + û2)(ŝ2 + 2ŝt̂ + 2t̂(t̂ + û) + û2)

ŝû(ŝ + û)4 , (4.57)

HInc (d)

g q(q̄)→3S(8)
1 q(q̄)

= ±5(4παs)3

432M3
ψ

(
10ŝ2 + 2ŝû − 17û2) [ŝ2 + 2ŝt̂ + 2t̂

(
t̂ + û

)
+ û2]

ŝû(ŝ + û)4 ,

(4.58)

and finally for 3P(8)
J

HInc ( f )

g q(q̄)→3P(8)
J q(q̄)

= −5(4παs)3

72M3
ψ

(ŝ + û)
(
7ŝ2 + 8t̂2 + 7û2)+ 4t̂

(
3ŝ2 + 4ŝû + 3û2)

t̂(ŝ + û)3
,

(4.59)

HInc (d)

g q(q̄)→3P(8)
J q(q̄)

= ∓3
5
HInc ( f )

gq(q̄)→3P(8)
J q(q̄)

. (4.60)

Notice that, while for 1S(8)
0 and 3P(8)

J states, the f - and d-type hard parts are directly

related, as expected from the first row of Tab. 4.5, for 3S(8)
1 the results have a slightly

different dependence on the Mandelstam variables.

q(q̄)g → Q[n] q(q̄) CI CF CInc

A × A ∓ N2−4
8(N2−1) ± N2

8(N2−1) 0

A × A ∓ N2

8(N2−1) ± N2

8(N2−1) 0

A × B − N2

8(N2−1) 0 − N2

8(N2−1)

A × D 0 − N2

8(N2−1) − N2

8(N2−1)

B × B ∓ 1
8 ∓ 1

8(N2−1) ∓ N2

8(N2−1)

B × D ± 1
8(N2−1) ∓ 1

8(N2−1) 0

D × D ± 1
8(N2−1) ± 1

8 ± N2

8(N2−1)

TABLE 4.6: Non-zero color factors within the CGI framework for the q(q̄)g → J/ψ[1S(8)
0 ] q(q̄)

and q(q̄)g → J/ψ[3P(8)
J ] q(q̄) (first row) and q(q̄)g → J/ψ[3S(8)

1 ] q(q̄) (following rows) chan-
nels; the meaning of diagram letters can be found in Appendix B. Upper (lower) sign is for

a quark (antiquark) parton coming from the polarized proton.

Moving to the quark sector, the same initial states g q(q̄) have to be considered,
where now the quark (or the antiquark) belongs to the polarized proton. This mod-
ifies the color flow and, consequently, the color factor values for this channel, as
shown in Tab. 4.6. Once again, the upper/lower sign refers to the quark/antiquark
case. From this, one obtains

HInc
q(q̄)g→1S(8)

0 q(q̄)
= HInc

q(q̄)g→3P(8)
J q(q̄)

= 0, (4.61)

while

HInc
q(q̄)g→3S(8)

1 q(q̄)
= ∓3(4παs)3

64M3
ψ

(
ŝ − t̂

) (
ŝ2 + 2t̂2 + 2Mψû

)
ŝt̂(ŝ + t̂)

, (4.62)



4.3. SSAs in p↑p → J/ψ + X within the CGI-GPM approach 77

with the same sign convention.

qq̄ → Q[n] g CI CF CInc

A × A ±N2−4
4N3 ±N2−4

8N ± (N2−4)(N2+2)
8N3

A × A ± 1
4N ±N

8 ±N2+2
8N

A × C − 1
8N −N

8 −N2+1
8N

A × D 1
8N 0 1

8N
C × C ∓ 1

8N3 ±N2−1
8N ±N4−N2−1

8N3

C × D ∓N2+1
8N3 ∓ 1

8N ∓ 2N2+1
8N3

D × D ∓ 1
8N3 ∓ 1

8N ∓N2+1
8N3

TABLE 4.7: Non-zero color factors within the CGI framework for the
qq̄ → J/ψ[1S(8)

0 ] g and qq̄ → J/ψ[3P(8)
J ] g (first row) and qq̄ → J/ψ[3S(8)

1 ] g (following rows)
channels; the meaning of diagram letters can be found in Appendix B. Upper (lower) sign is

for a quark (antiquark) parton coming from the polarized proton.

Finally, we have to consider the qq̄ case. From the polarized proton, one can pick
up either a quark or an antiquark. The corresponding color factors are shown in
Tab. 4.7, with the upper sign referring to the former case, while the lower sign to the
latter. Similarly to the previous subprocess, in the 3S(8)

1 wave two diagrams ( B and
A ) are found to possess the same color factor, so only the latter is shown explicitly

in Tab. 4.7. From this, the following process-dependent hard parts are found

HInc
qq̄→1S(8)

0 g
= ±55(4παs)3

432Mψ

t̂2 + û2

ŝ (t̂ + û)2
, (4.63)

HInc
qq̄→3S(8)

1 g
= ∓ (4παs)3

648M3
ψ

(
10t̂2 + 38t̂û − 71û2) (2ŝMψ + t̂2 + û2)

t̂ û (t̂ + û)2
, (4.64)

HInc
qq̄→3P(8)

J g
= ±55(4παs)3

108M3
ψ

(
3ŝ2 + 7M4

ψ

) (
t̂2 + û2)− 2 M2

ψ ŝ
(
t̂2 − 8t̂û + û2)

ŝ (t̂ + û)4
, (4.65)

where the same logic for the sign order has been adopted.

4.3.2 Parameterization choices

In this section we discuss the parameterizations adopted to perform a phenomeno-
logical analysis of SSAs. The SSA is defined in Eq. (4.13) of Sec. 4.1.2, where, as
already discussed, the numerator of the asymmetry is strongly dominated by the
Sivers contribution.

When including TMD effects, one has to properly parameterize the non-perturba-
tive parts entering the process. A common TMD parameterization, adopted for in-
stance in Refs. [138, 156], expresses the TMD-PDFs in terms of collinear PDFs. The
TMD-PDF dependences on the light-cone momentum fraction ξ and the transverse
momentum p⊥ are factorized, with the latter described via a Gaussian (or Gaussian-
like) ansatz. In particular, the unpolarized TMD fa/p(ξa, p⊥ a) for a parton (a) inside
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a proton (p), with light-cone momentum fraction ξa and intrinsic transverse momen-
tum p⊥ a (p⊥ a = |p⊥ a|), is parameterized as

fa/p(ξa, p⊥ a) =
e−p2

⊥ a/⟨p2
⊥ a⟩

π ⟨p2
⊥ a⟩

fa/p(ξa), (4.66)

where ⟨p2
⊥ a⟩ is the average transverse momentum squared of the specific parton a,

that, a priori, could depend on its flavor. For quarks and antiquarks, we adopt the
results obtained in Ref. [157], leading to a common average ⟨p2

⊥q⟩ = 0.25 GeV2. For

gluons, we use a different value, ⟨p2
⊥g⟩ = 1 GeV2, which has been found to provide

a good description of the unpolarized cross section data for J/ψ production in pp
collisions [137, 155].

A similar parameterization is adopted for the Sivers function,

∆N fa/p↑(ξa, p⊥ a) = 2Na(ξa) h(p⊥ a)
e−p2

⊥ a/⟨p2
⊥ a⟩

π ⟨p2
⊥ a⟩

fa/p(ξa). (4.67)

In Eq. (4.67) we have introduced Na(ξa) and h(p⊥ a), which are two normalization
functions for the collinear and transverse parts of the Sivers function. They must be
consciously chosen, so that the Sivers function fulfills its positivity bound constraint∣∣∣∆N fa/p↑(ξa, p⊥a)

∣∣∣ ≤ 2 fa/p(ξa, p⊥a). (4.68)

A reasonable, but at the same time simple, choice for the normalization functions
is given by

Na(ξa) = Na ξαa
a (1 − ξa)

βa
(αa + βa)αa+βa

ααa
a β

βa
a

, (4.69)

with |Na| ≤ 1, and
h(p⊥a) =

√
2e

p⊥a

M′ e−p2
⊥a/M′

. (4.70)

The latter modifies, consistently, the Gaussian p⊥ width for the Sivers function; this
can be seen by applying the last formula into Eq. (4.67), recasting the parameteriza-
tion as

∆N fa/p↑(ξa, p⊥a) = 2Na(ξa)

√
2e

π

√
1 − ρa

ρa
p⊥a

e−p2
⊥a/(ρa⟨p2

⊥a⟩)

π ⟨p2
⊥a⟩

3/2 fa/p(ξa), (4.71)

where

ρa =
M′2

(⟨p2
⊥a⟩

2
+ M′2)

(4.72)

with the natural condition 0 < ρa < 1.
Notice that, since for such processes we cannot employ a formal TMD factor-

ization, even the energy scale evolution cannot be properly taken into account. On
the other hand, with the previous parameterizations we include part of it, via the
DGLAP evolution of the collinear PDFs.

These parameterizations will be adopted both in the GPM and CGI frameworks,
in order to better exploit the role of FSIs and ISIs in the SSAs. In principle, the
most interesting phenomenological analysis would be a fit of all free parameters,
in particular those related to gluon TMDs. On the other hand, available data are
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not enough at the moment, so this study would not be statistically founded. For this
reason, in the following we will provide maximized (or saturated) estimates, following
Ref. [137, 138, 154, 155]. A direct comparison with PHENIX data [42] will allow us
to exploit the potential role of the GSF in these observables.

These maximized estimates are obtained by imposing |Na(ξa)| = 1 and ρa = 2/3,
both for the quark and the gluon Sivers functions. Notice that this value of ρ is
chosen to maximize the first moment of the Sivers function and, consequently, its
effect [156].

For the sake of clarity, only the positive value of the normalization, namely
Na(ξa) = +1, will be explicitly shown in the following. This means that predic-
tions symmetric to those presented should be possible.

4.3.3 Numerical results and comparison with data

In this section, numerical estimates within CGI-GPM framework are compared both
with the corresponding GPM estimates and the (few) data points provided by the
PHENIX Collaboration [42]. We adopt the parameterizations presented above, us-
ing the CTEQ6L1 set [103] for the collinear unpolarized PDFs, evaluated at a scale
around the J/ψ transverse mass and including DGLAP evolution.

Regarding the J/ψ formation mechanism, both the CSM and the NRQCD ap-
proaches are considered. In the first case, the production is possible only via the
color-singlet channel, while in the latter also color-octet channels have to be in-
cluded.

Since the SSA is defined as a ratio of cross sections, in the CSM the dependence
on the nonperturbative part of the hadronization, given by the amplitude squared of
the radial wave function |R0(0)|2 or equivalently by the matrix element ⟨O J/ψ

1 [3S1]⟩,
simplifies out. The same does not happen in the NRQCD approach, where a proper
set of (nonperturbative) Long-Distance Matrix Element is needed.

In particular, since we are also interested in the low-PT region, among the sets
presented in Appendix A.3, we adopt here the BK11 and the SYY13 ones, since both
of them are extracted including lower-PT data. The first set is a more traditional
LDME extraction, pushed down to PT ∼ 3 GeV and with a more comprehensive
set of data, including both pp and photoproduction; the second one, somehow more
peculiar, combines, in the very low-PT region, the LDME extraction with the Collins-
Soper-Sterman (CSS) procedure [126]. Thus, while the former is more solid and ex-
pected to provide predictions reliable in the whole region explored, the application
of the latter may raise some tension. Indeed, in Ref. [130], they show that the cross
section is dominated by CO contributions in the very small-PT region; this implies
that for this set the CS LDME is automatically set to zero. This could represent a too
strong assumption in a phenomenological analysis.

Both in the numerator and the denominator, we will consider the 2 → 1 and 2 →
2 partonic subprocesses. The first ones are given by g g → J/ψ and q q̄ → J/ψ, while
the second ones gather a wider variety of subprocesses, represented by g g → J/ψ g,
g q(q̄) → J/ψ q(q̄) and q q̄ → J/ψ g.



80 Chapter 4. SSAs within the GPM and the CGI-GPM

The unpolarized cross section, entering the SSA denominator, is given (see also
Eq. (4.16)) as

dσGPM
2→1 = ∑

a,b

π

ξaξbs2

∫
d2 p⊥ ad2 p⊥ b δ(2)(p⊥ a + p⊥ b − PT)

× fa/p(ξa, p⊥ a) fb/p(ξb, p⊥ b)HU
a b→J/ψ, (4.73)

dσGPM
2→2 =

1
2(2π)2

1
2s ∑

a,b,c

∫ dξa

ξa

dξb

ξb
d2 p⊥ ad2 p⊥ b δ(ŝ + t̂ + û − M2)

× fa/p(ξa, p⊥ a) fb/p(ξb, p⊥ b)HU
a b→J/ψ c, (4.74)

where s is the total cm energy of the process, while PT is the J/ψ transverse momen-
tum in the cm frame. The hard parts for the subprocesses are given in Appendix B; in
addition, in the formulae above a superscript U has been added to remark that these
amplitudes squared refer to the unpolarized case. In Eq. (4.73) it has been possible
to integrate analytically over the momentum fractions ξa and ξb, using the complete
Dirac-delta function to fix them (neglecting corrections of the order p2

⊥/s) as

ξa =
MT√

s
ey, ξb =

MT√
s

e−y, (4.75)

with MT =
√

M2 + P2
T being the J/ψ transverse mass and y its rapidity. This is

valid independently of the parton type and flavor. A further simplification can be
encountered once the parameterization given in Sec. 4.3.2 is inserted in Eq. (4.73).
In this way, the integrals over the parton transverse momenta can be analytically
carried out, finding

2 dσGPM
2→1 =

2
s2 ∑

a,b

1
ξaξb

1
⟨p2

⊥a⟩+ ⟨p2
⊥b⟩

exp

(
− P2

T
(⟨p2

⊥a⟩+ ⟨p2
⊥b⟩)

)
× fa/p(ξa, p⊥a) fb/p(ξb, p⊥b)HU

a b→J/ψ . (4.76)

On the other hand, in the 2 → 2 case the integrals over the momentum fractions and
the transverse momenta can be performed only numerically. For completeness, we
recall that in Eq. (4.74) we have integrated over the unobserved final parton phase
space, getting∫ d3 pc

2Ec(2π)3 (2π)4δ(4)(pa + pb − Pψ − pc) = (2π)
∫

d4 pc δ(pc)
2δ(4)(pa + pb − Pψ − pc)

= (2π) δ
(
(pa + pb − Pψ)

2)
= (2π) δ(ŝ + t̂ + û − M2) . (4.77)

Numerical results for the unpolarized cross section are shown in Fig. 4.7. The two
theoretical curves are obtained adopting the NRQCD approach, BK11 (left panel)
and SYY13 (right panel) sets, as a function of the J/ψ transverse momentum, PT,
and at fixed rapidity (y = 0). The calculation is taken from Ref. [155], while the
corresponding study within the CSM was done in Ref. [137]. The bands are obtained
considering the factorization scale variation MT/2 ≤ µF ≤ 2 MT, with the central
value given by µF = MT. The comparison with PHENIX data [41] shows a good
agreement between the predictions and the experimental values.

By studying the parton and color-state decomposition, Fig. 4.8, it is clear that the
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FIGURE 4.7: Estimates of the cross section for J/ψ production in unpolarized pp collisions
as a function of PT at mid-rapidity, within the NRQCD approach and adopting the BK11 (left
panel) and SYY13 (right panel) sets. Central values are evaluated at the factorization scale
µF = MT , while the uncertainty bands take into account its variation from MT/2 to 2 MT .

Data points are from Ref. [41]; figures are taken from Ref. [155].

differential cross section is dominated by the gluon-gluon contributions, both via
the CO state (blue dashed line) and, at least in the low-PT region, via the CS one
(green dot-dashed line). On this basis, it is reasonable to expect a high sensibility to
the gluon Sivers function in this region. Notice that while the CS wave (left panel)
undershoots the data, a proper analysis within the CSM and still adopting the GPM
approach, as discussed in Ref. [137], shows a fairly good agreement between data
and theoretical estimates in the small-PT region. It is also important to observe that,
within a collinear framework, by including higher-order corrections within the CSM
the data description improves significantly [10].

Moving to the numerator of the asymmetry, we can evaluate it adopting either
the GPM or the CGI-GPM approach. In both cases, in the 2 → 1 channel the light-
cone momentum fractions are fixed as in Eq. (4.75)

d∆σGPM
2→1 =

π

ξaξbs2 ∑
a,b

∫
d2 p⊥ ad2 p⊥ b δ(2)(p⊥ a + p⊥ b − PT) cos ϕa

× ∆N fa/p↑(ξa, p⊥ a) fb/p(ξb, p⊥ b)HU
a b→J/ψ, (4.78)

d∆σCGI
2→1 =

π

ξaξbs2

∫
d2 p⊥ ad2 p⊥ b δ(2)p⊥ a + p⊥ b − PT) cos ϕa

×
[
∆N fg/p↑(ξa, p⊥ a) fg/p(ξb, p⊥ b)

(
HInc ( f )

g g→J/ψ +HInc (d)
g g→J/ψ

)
+ ∆N fq/p↑(ξa, p⊥a) fq̄/p(ξb, p⊥ b)HInc

q q̄→J/ψ

+ ∆N fq̄/p↑(ξa, p⊥ a) fq/p(ξb, p⊥ b)HInc
q̄ q→J/ψ

]
, (4.79)

and adopting the TMD parameterizations

d∆σGPM
2→1 =

2
√

2e
s2 ∑

a,b

1
ξaξb

√
ρa(1 − ρa) ⟨p2

⊥a⟩
(ρa ⟨p2

⊥a⟩+ ⟨p2
⊥b⟩)2

ρaPT exp

(
− P2

T
(ρa ⟨p2

⊥a⟩+ ⟨p2
⊥b⟩)

)
×Na(ξa) fa/p(ξa, p⊥a) fb/p(ξb, p⊥b)HU

a b→J/ψ , (4.80)
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FIGURE 4.8: Partonic decomposition of the results in Fig. 4.7. Figures are taken in Ref. [155].

d∆σCGI
2→1 =

2
√

2e
s2 ∑

a,b

1
ξaξb

√
ρa(1 − ρa) ⟨p2

⊥a⟩
(ρa ⟨p2

⊥a⟩+ ⟨p2
⊥b⟩)2

ρaPT exp

(
− P2

T
(ρa ⟨p2

⊥a⟩+ ⟨p2
⊥b⟩)

)
×Na(ξa) fa/p(ξa, p⊥a) fb/p(ξb, p⊥b)HInc

a b→J/ψ. (4.81)

Notice that, since the process-dependent gluon hard part is null (HInc ( f /d)
gg→J/ψ = 0)

as shown in Sec. 4.3.1, in Eq. (4.81) the hard part HInc
a b→J/ψ can only assume the forms

HInc
q q̄→J/ψ or HInc

q̄ q→J/ψ.6 On the contrary, all channels are active in the GPM case,
Eq. (4.80).

Like in the denominator, the 2 → 2 contribution to the numerator is computable
only numerically, and in the two frameworks is given by

d∆σGPM
2→2 =

1
2(2π)2

1
2s

∫ dξa

ξa

dξb

ξb
d2 p⊥ ad2 p⊥ b δ(ŝ + t̂ + û − M2) cos ϕa

× ∆N fa/p↑(ξa, p⊥ a) fb/p(ξb, p⊥ b)HU
a b→J/ψ c, (4.82)

6Notice that the first parton in the subscript is the one coming from the polarized proton.
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d∆σCGI
2→2 =

1
2(2π)2

1
2s

∫ dξa

ξa

dξb

ξb
d2 p⊥ ad2 p⊥ b δ(ŝ + t̂ + û − M2) cos ϕa

×
{

∆N fg/p↑(ξa, p⊥ a)

[
fg/p(ξb, p⊥ b)

(
HInc ( f )

g g→J/ψ g +HInc (d)
g g→J/ψ g

)
+ fq/p(ξb, p⊥ b)

(
HInc ( f )

g q→J/ψ q +HInc (d)
g q→J/ψ q

)
+ fq̄/p(ξb, p⊥b)

(
HInc ( f )

g q̄→J/ψ q̄ +HInc (d)
g q̄→J/ψ q̄

) ]
+ ∆N fq/p↑(ξa, p⊥ a)

(
fg/p(ξb, p⊥b)HInc

q g→J/ψ q + fq̄/p(ξb, p⊥b)HInc
q q̄→J/ψ g

)
+ ∆N fq̄/p↑(ξa, p⊥ a)

(
fg/p(ξb, p⊥b)HInc

q̄ g→J/ψ q̄ + fq/p(ξb, p⊥ b)HInc
q̄ q→J/ψ g

)}
.

(4.83)

In all previous formulae, whenever a quark or antiquark label is present, a sum
over flavors up to the strange quark/antiquark is understood.

All results are in principle affected by theoretical uncertainties coming from the
TMD frameworks and the quarkonium formation models used, as well as from er-
rors in the transverse-momentum dependence of the observable. On the other hand,
at the moment a reliable way to evaluate this combination of uncertainties is not
possible. Despite this, it is reasonable to expect that their impact, even if potentially
sizeable, is reduced by the fractional nature of the SSA. Furthermore, the predictions
are not based on specific extractions of TMDs, but rather are intended to provide
an estimate of the potentially maximized asymmetry, highlighting the effect of the
inclusion of ISIs and FSIs. Therefore, at this level, a detailed study of the uncertainty
sources is not relevant.

In Fig. 4.9 we show estimates of SSAs for quarkonium production at the cm en-
ergy of

√
s = 200 GeV, as a function of PT in the forward region (xF > 0), while in

Fig. 4.10 the same results are presented for the backward region (xF < 0). We recall
that the Feynman-x is defined as

xF =
PL

PLmax
, (4.84)

where PL is the longitudinal component of the J/ψ momentum, while PLmax is the
maximal absolute value that this component can reach. In both figures, the upper
panels refer to the BK11 set choice, while the lower ones to the SYY13. All predic-
tions are compared with data points collected by the PHENIX Collaboration [42].

These figures give a very complete picture, with predictions for NRQCD and
CSM in either the GPM or the CGI frameworks. While within the CSM only the GSF
can be active, in particular the f -type one in the CGI approach, in principle more
channels could play a role within the NRQCD approach. In the following, all cases
are shown for the CGI+NRQCD framework, while within the GPM+NRQCD one,
only the dominant gg contribution is given. A complete description for the latter
case, including subdominant contributions, can be found in Ref. [155]. Moreover, in
the lower panels, curves are evaluated only within the NRQCD approach, since the
SYY13 set excludes the CS wave contribution.

Let us now discuss some phenomenological aspects, starting from the CSM. The
differences between the predictions in the GPM (green dashed line) and in the CGI-
GPM (light-blue dotted line) approaches can be directly understood by looking at
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FIGURE 4.9: Maximized SSA estimates for the process
p↑p → J/ψ + X as a function of PT at

√
s = 200 GeV and for xF = +0.1. We consider

both the CGI-GPM and the GPM, combined with the CSM and the NRQCD approaches,
adopting two LDME sets: the BK11 (upper panel) and SYY13 (lower panel). Data points are

taken from Ref. [42]. Figures are taken from Ref. [154].

Eq. (4.49). Estimates of maximized asymmetries are sizeable both in the forward and
the backward regions, and in both approaches. Hence, a comparison with PHENIX
data suggests the potential strong suppression of the GSF, at least in this framework.

Moving to the NRQCD approach, there is a clear difference when the CGI ap-
proach is adopted compared to the GPM case. The inclusion of CO channels in the
GPM approach (upper panels) leads to large SSAs (dark-blue dotted line). In this
case, the asymmetry is not drastically reduced compared to the corresponding CSM
case; indeed, it is even larger at very low PT in the backward region. It is fair to ex-
pect that future data could help in putting stronger constraints on the gluon Sivers
parameterization within the GPM.

Finally, the impact of the inclusion of ISIs and FSIs can be observed by looking at
the different curves within the CGI+NRQCD scenario: solid red line for the f -type
GSF, while dotted green and thinner dotted blue lines for, respectively, the d-type
GSF and the quark Sivers function. The latter, as found in the GPM, is compati-
ble with zero, while the gluon d-type, even if not exactly null as in the CSM case, is
still negligible. The only potentially sizeable contribution is then given by the gluon
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FIGURE 4.10: Same scenarios as in Fig. 4.9 but for the backward region (xF = −0.1). Figures
are taken from Ref. [154].

f -type Sivers function, which is found to be highly suppressed compared to other
cases. Indeed, at variance with what found in the CGI+CSM framework, the back-
ward region loses the potential role in constraining the gluon Sivers function, since
maximized estimates are already compatible with data within the CGI+NRQCD
framework, and in general are very small. Similarly, in the forward region, even
if the estimates are a bit larger, the possibility to constrain the f -type GSF is still
limited.

A complementary picture can be achieved by studying the SSA at fixed PT as a
function of xF. In Fig. 4.11 we present the corresponding estimates at PT = 1.65 GeV,
adopting the kinematic set-up of the PHENIX experiment [42]. As one can see, this
turns out to not be an optimal choice to constrain the f -type GSF in the NRQCD+CGI
framework. Comparing with the previous figures, and as also pointed out in Ref. [154],
a slightly higher PT value (around 3 GeV) could provide a xF distribution sizeable
enough to perform more effective phenomenological studies on the f -type GSF.

Finally, it is worth addressing, through a wave decomposition analysis, the
sources of cancellation that leads to such smaller estimates when the CGI+NRQCD
framework is applied. In all cases discussed below, we adopt the BK11 set. Similar
conclusions can be drawn also for the other LDME set. In the following figures, the
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FIGURE 4.11: Same scenarios as in Fig. 4.9 but as a function of xF at fixed PT = 1.65 GeV.
Figures are taken from Ref. [154].

red solid lines refer to the dominant gg contribution to AN (including both 2 → 1 and
2 → 2 channels). For the CGI, this corresponds to the red solid lines in Figs. 4.9-4.11,
while for the GPM it corresponds to the dark-blue dotted lines.

Starting from Fig. 4.12, a strong cancellation between the (CO) 1S(8)
0 state and

the P-wave sum 3P(8)
[J] occurs both in the CGI (upper panel) and the GPM (lower

panel) approaches, even if with different magnitudes; this is a consequence of the
relative sign of the corresponding LDMEs in the BK11 set. Notice that, since this is
a wave decomposition, the single wave can potentially exceed the |AN | ≤ 1 limit, as
happens in the GPM (lower panel) for the 1S(8)

0 and 3P(8)
J -waves. Moreover, there is a

clear difference in the behavior of the main contributions (1S(8)
0 and 3P(8)

J ) within the
two frameworks, when one focuses on the small-PT region. While the (relative) sign
of the two curves is fixed in the whole spectrum within the GPM approach, in the
CGI case a change of sign is present for both waves at PT ∼ 1 GeV. This is a specific
characteristic of the 2 → 2 channel and indeed it plays a role also in the GPM case,
suggesting that this effect comes from the parton dynamics and the modulation of
the Sivers azimuthal phase. In the end, within the GPM, the 2 → 1 channel, which
is significant only in the small-PT region, is able to compensate this effect, leading
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FIGURE 4.12: Wave decomposition of the maximized gluon Sivers asymmetry estimate in
the forward region (xF = +0.1) within the NRQCD approach, using the BK11 set. Upper
panel: CGI-GPM f -type GSF; lower panel: GPM GSF. The red solid line corresponds to the

full result. Figures taken from Ref. [154].

to CO curves with a define sign. We recall once again that the 2 → 1 channel turns
out to be null when ISIs and FSIs are included (see Sec. 4.3.1), so this compensation
effect is missing in the CGI framework.

Another source of suppression of the CGI results is due to the cancellation be-
tween the CO waves sum and the CS wave (possible only with the BK11 set). In-
deed, while in the GPM approach both CS and CO estimates have the same sign, in
the CGI approach the CS sign is reversed.

In the backward region, Fig. 4.13 (upper panel), while the same sources of sup-
pression are present, there is another similar effect coming from the cos ϕa modula-
tion, that upon integration is even more effective in reducing the asymmetry. The
reason is that, in this region, the hard parts depend only marginally (through the
Mandelstam variables) on this phase.

Furthermore, from the lower panel of Fig. 4.13, showing the decomposition at
fixed PT = 1.65 GeV, it is clear that the above-mentioned suppression sources work
actively in all xF regions. This leads, both in the forward and backward regions, to
the observed relative small maximized AN from the f -type GSF within NRQCD.
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FIGURE 4.13: As in Fig. 4.12 but limited to the GSF in the CGI+NRQCD framework, as a
function of PT at fixed xF = −0.1 (upper panel) and as a function of xF at PT = 1.65 GeV
(lower panel). The red solid lines correspond to the full result. Figures taken from Ref. [154].

With this deep insight on the CGI+NRQCD framework, via the wave decompo-
sition, we can also better understand the differences between this phenomenological
approach and the GPM one, and consequently the impact of including ISIs and FSIs
in the picture. Even if less promising compared to other frameworks, by adopting
different kinematic choices one can still expect to carry out useful phenomenological
analyses from which the role of the gluon distributions can be better disentangled.

As a final remark, we recall that all previous results are obtained considering the
J/ψ yield in the direct channel. Nevertheless, we know that a significant amount of
J/ψ data (almost 40%) comes from the χc feed-down contribution, see Refs. [10, 158].
Its inclusion may then lead to different SSA estimates compared to those discussed
here. On the other hand, this effect requires further investigation beyond the scope
of this thesis.

4.3.4 Predictions for future experiments

In conclusion of this chapter, we present some estimates for a selection of upcoming
experiments. The focus will be given to the CGI+NRQCD approach. Nevertheless,
predictions for the GPM and the CGI+CSM frameworks will also be given, at least
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FIGURE 4.14: SSA estimates for p↑p → J/ψ + X at LHC-fixed target, evaluated at
√

s =
115 GeV. The upper panel shows the estimate at fixed PT = 3 GeV as a function of xF, while
the lower panel is for fixed rapidity y = −2 as a function of PT . In both cases, NRQCD

curves are obtained adopting the BK11 set. Figures are taken from Ref. [154].

for the dominant contributions. We will consider only one LDME set, namely the
BK11 one. In particular, we discuss:

1. LHC in fixed-target mode proposed by the LHCspin Collaboration, Refs. [159–
162];

2. NICA SPD, Ref. [163];

3. SpinQuest at Fermilab, Ref. [164–166].

We recall that we keep adopting Na(ξa) = 1 and that, therefore, the sign of the
maximized SSA could be reversed.

LHC fixed-target is a side-experiment proposed by the LHCb Collaboration. This
installation could provide useful data in the intermediate-Q2 and high-x region, im-
proving the kinematic range and accuracy level reached by other experiments. It is
expected to operate at cm energies around

√
s = 115 GeV, as adopted in our analy-

sis. In Fig. 4.14, the upper panel, we show SSA estimates as a function of xF at fixed
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FIGURE 4.15: SSA estimates for p↑p → J/ψ + X at NICA, at
√

s = 27 GeV and fixed PT =
1.5 GeV as a function of xF. NRQCD curves are obtained adopting the BK11 set.

PT = 3 GeV, while in the lower panel are at fixed rapidity y = −2 as a function of
PT. Notice that, due to the experimental configuration, the backward rapidity region
refers to the forward one for the polarized proton target.

Experimental measurements will be extremely important to set a constraint on
the Sivers functions. From the upper panel, we can see that the maximized asym-
metry related to the f -type GSF could reach AN ∼ 5% in the backward rapidity; this
value is potentially accessible experimentally. This is in general true for very small
(less than 1 GeV) or large (greater than 3 GeV) PT values, as can be seen from the
estimates at y = −2 (lower panel). All other scenarios taken into account provide
in general much higher AN maximized estimates, which turn out to be in principle
easier to constrain.

NICA is a planned experiment to be set in Russia. The kinematic coverage in the
(x, Q2) plane is partially overlapping with the one proposed by AFTER@LHC [160],
but at lower energy (up to

√
s = 27 GeV) and with the possibility to polarize both

(proton/deuterium) beams.
This would allow to explore not only SSAs in pp↑ collisions, but other physical

quantities. In Fig. 4.15 we show maximized estimates for AN at fixed PT = 1.5 GeV
for several scenarios. Also in this case, the f -type GSF provides maximized asymme-
tries around AN ∼ 5% in the forward region (xF > 0). Other scenarios are even more
promising, with AN ∼ 40% for the GPM+NRQCD and GPM+CSM frameworks and
AN ∼ 20% for the CGI+CSM one. Moreover, we notice that the asymmetry value is
almost stable when moving from the forward to the backward region.

We can conclude that this experimental option can represent a good tool to test
and improve potential constraints obtained from other experiments, like the LHC in
the fixed-target mode.

SpinQuest is a proposed experiment at FermiLab. Its main goal is somehow dif-
ferent from the previous ones, since it aims to explore the spin structure of the proton
by looking at the contributions from the sea quarks. For this reason, they will operate
at a cm energy even lower compared to NICA,

√
s = 15 GeV.
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FIGURE 4.16: Upper panel: estimates for the unpolarized cross section for SpinQuest kine-
matics, at

√
s = 15 GeV and xF = 0.5 as a function of PT , within the NRQCD approach.

Lower panel: maximized AN estimates in different frameworks. Parton/color configuration
decomposition is also shown. In both panels, curves are obtained adopting the BK11 set.

As one can see from Fig. 4.16 (upper panel), at low PT (PT ≲ 1 GeV) the unpolar-
ized cross section is dominated by the CO quark contribution, which is the sum of
different channels where quark and/or antiquark are involved.

Moreover, SSA estimates, Fig. 4.16 (lower panel), clearly show that, both in the
GPM+NRQCD and the CGI+NRQCD frameworks at PT ≲ 1 GeV, the result is domi-
nated by the quark/antiquark channels. A more detailed analysis would show that,
in the PT ≲ 1 GeV region, the 2 → 1 channel with an antiquark in the polarized
proton is actually the dominant one.

At higher-PT values, AN is once again dominated by gluon channels, which can
be used as an additional tool to learn on the GSFs. Note that in this case, within the
CGI+NRQCD framework, at high-PT the d- and f -type GSFs are both not negligible
(thinner dashed green line and red solid line in the lower panel). On the other hand,
their small contribution (AN ≲ 5% in size) makes their extraction very difficult.

The study of the GSF in the other scenarios seems more promising. As one can
see, the maximized f -type GSF in the CGI+CSM framework gives AN up to 35% at
PT ∼ 3 GeV, while the GSF within the GPM+NRQCD and GPM+CSM approaches
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leads to AN ≳ 50% at PT > 2 GeV. This means that any experimental information in
this region could help in putting strong constraints on the GSFs.
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Chapter 5

Summary and conclusions

Quarkonia, such as J/ψ mesons, are important tools to deepen our understanding
of QCD. In this thesis, we adopted the NRQCD approach to study J/ψ production
in both SIDIS and pp collisions.

In Chapter 2, we considered the J/ψ polarization as a potential observable to
discern among different hadronization models. Thus, we presented the formalism
to evaluate the structure functions WT, WL, W∆, W∆∆, and consequently the polar-
ization parameters λ, µ, ν, for polarized J/ψ production in SIDIS. We firstly studied
the kinematic region where the transverse momentum of the exchanged virtual pho-
ton is large, namely qT ≫ ΛQCD, and for which collinear factorization applies. We
then evaluated the aforementioned helicity structure functions within the NRQCD
approach, up to the order α2α2

s , considering CO contributions up to the order v4

w.r.t. the CS one. The explicit form of these quantities depends on the reference
frame choice: we presented our results in the Gottfried-Jackson frame and derived the
transformations to obtain the same quantities in the Target, Helicity and Collins-Soper
frames.

Using these results, we presented our predictions of the polarization parameters
λ, ν and µ at the EIC kinematics. We proposed to study these parameters w.r.t. both
z and especially P⊥, i.e. the J/ψ energy fraction and its transverse momentum mea-
sured in a frame where the photon and proton momenta have no transverse com-
ponents. Indeed, it turned out that differences between the CSM and the NRQCD
estimates are more sizeable in the latter case, at least for the considered LDMEs.
Moreover, such measurements at different energies, or equivalently proper binning
in Q, provide precious information as well. Finally, by properly combining λ, µ and
ν, one can construct rotational invariant quantities. At present, the experimental in-
formation on these quantities is not sufficient and, in any case, the available data are
not accurate enough to draw definite phenomenological conclusions. Despite these
difficulties, their study should be pursued, since they are both a test of the absence
of systematic errors in the measurement and a tool to test theoretical models to a
deeper extent.

We then discussed the formalism when the photon transverse momentum is
small, qT ≪ µ, with µ being a hard scale typical of the process. In this case, even
if not formally proven, there are strong arguments in favor of the validity of TMD
factorization. Thus, we evaluated the helicity structure functions up to order α2αs,
including the same CO contributions as done in the collinear scheme. We found that
the helicity structure functions do not depend on the reference frame choice at such
small-qT values. Moreover, only three of them survive: W̃T, W̃L and W̃∆∆. Quite
remarkably, we found that the latter (W̃∆∆) depends on h⊥ g

1 , the linearly polarized
gluon distribution inside an unpolarized proton. We therefore suggest novel experi-
ments to extract this TMD distribution by looking, in the aforementioned transverse
momentum domain, at the ν parameter, which is related to the cos 2ϕ azimuthal
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decay asymmetry of the J/ψ meson. Furthermore, we showed how both λ and ν

(where for the latter we considered the saturation of the h⊥g
1 positivity bound) are

extremely sensitive to the LDME parameters. Measurements in this region are thus
helpful in testing NRQCD and improving our knowledge on the CO LDMEs.

In Chapter 3, we studied the intermediate transverse momentum region (namely
ΛQCD ≪ qT ≪ µ) to propose a correct TMD factorized form of the structure func-
tions, which involves a TMD-PDF and a TMD shape function. We studied both
the unpolarized and polarized J/ψ production cases, whose results are consistent
with one another. In the former, we kept the dependence on the azimuthal angle of
the J/ψ (ϕψ), whilst in the latter, the considered angular dependence derives entirely
from the solid angle (Ω) of the J/ψ decay products. Starting from the high transverse
momentum region, we obtained the small-qT behavior of the structure functions cal-
culated within the collinear factorization approach. For the unpolarized case, we
have that FUU,⊥ and FUU, receive large logarithmic corrections at small qT, which
are instead absent in Fcos 2ϕψ

UU . Moreover, Fcos ϕψ

UU is suppressed by a factor qT/µ com-
pared to the other structure functions. Similarly, in the polarized case it turns out
that WT and WL receive the same type of large logarithmic corrections, absent for
W∆∆, whilst W∆ is suppressed by a factor qT/µ.

The large logarithms mentioned above can be resummed within the TMD frame-
work. By requiring that the TMD expressions for the structure functions correctly
match with the collinear factorization results in the intermediate transverse momen-
tum region, we determined the perturbative tails of the shape functions. We found
that these quantities do not depend on the J/ψ polarization, at least up to the consid-
ered αs accuracy. Moreover, the transverse momentum dependence of these objects
is independent of the quantum number of the intermediate Fock-state, except for
the overall magnitude given by the corresponding LDME values. We emphasize
that the results shown in this chapter are the updated version of Refs. [111, 112]. We
also note that this result holds for any quarkonia with the same quantum numbers
of the J/ψ, e.g. ψ(2S) or Υ(nS).

On the other hand, Fcos 2ϕψ

UU and W∆∆ match with the TMD counterparts without
the necessity to include a TMD shape function. Thus, a complete evaluation of the
J/ψ production at the next αs order and within the NRQCD framework is necessary
to study the impact of TMDShFs on these structure functions. This calculation is still
missing but would be very valuable.

Even if we were able to deduce the perturbative tail of these objects by adopting
this matching procedure, we cannot predict their nonperturbative parts. However,
their effects can be observed in J/ψ production and potentially in the polarization
parameters measured at small transverse momentum. We point out that very re-
cently an analysis of TMDShFs in SIDIS has been performed [167]. The authors eval-
uated the proper TMD evolution for the cos 2ϕψ azimuthal asymmetry accessible at
the Electron-Ion Collider. On the other hand, the corresponding shape function was
approximated at leading order (α0

s ), reducing the impact of smearing effects. Other
studies are expected in the near future.

Finally, in Chapter 4, we considered different frameworks, within phenomeno-
logical TMD schemes, to evaluate SSAs for inclusive J/ψ production in pp collisions.
More specifically, we adopted the GPM approach and its CGI extension, which in-
cludes the effects of initial- and final-state interactions. Their presence introduced
new color factors, which are required to compute the modified hard scattering ampli-
tudes. In this way, the process dependence coming from ISIs and FSIs is included in
these hard parts. Moreover, when studying the gluon content of the SSA within the
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CGI approach and at the one-gluon approximation, two independent gluon Sivers
functions are needed, namely the d-type and f -type GSFs. Within the CSM, the
SSA driven by the d-type GSF is exactly zero; at variance, the d-type may contribute
to the SSA numerator within the NRQCD approach. Nevertheless, our predictions
relative to PHENIX kinematics showed that (even if maximized) the d-type contri-
bution is negligible compared to the f -type one. In addition, the quark content of
the asymmetry is negligible compared to the gluon one, meaning that in both frame-
works (CGI+CSM and CGI+NRQCD), the most sizeable contribution comes from
the f -type GSF.

The inclusion of ISIs and FSIs, however, causes a significant reduction of the max-
imized asymmetry. This effect is more powerful when considering the NRQCD+CGI
framework. In this case, the maximized asymmetry driven by the f -type GSF is (rel-
atively) sizeable only at forward rapidities and PT around 2 − 3 GeV. This implies
that, within this framework, the f -type GSF can hardly be constrained. Instead,
other scenarios provide maximized asymmetries sizeable enough to be used to con-
strain (more) easily the corresponding GSFs.

We also computed maximized SSA estimates for upcoming experiments: LHC in
a fixed target mode, NICA and SpinQuest. The first two cases have similar features
discussed for the PHENIX setup, while in the latter we found that, if adopting the
CGI+NRQCD framework, one may potentially have access to both the quark Sivers
(at low PT) and the d-type and f -type GSFs (at high PT). Thus, these experiments
could certainly help in shedding light on the role of the gluon Sivers function, as
well as its process dependence.

We have to remark that the correct factorized description would require the pres-
ence of a TMDShF also for this process. The non-inclusion of this term may poten-
tially invalidate future GSF extractions. Hence, it is essential to test the TMDShF uni-
versality (or some kind of modified universality) which may improve phenomeno-
logical analyses. Differently from SIDIS, pp collisions provide both unpolarized and
polarized J/ψ production data to potentially test the impact of the TMDShF. Its in-
clusion in this process is still ongoing, however. In this context, we mention that
the authors of Ref. [133] studied the small-PT limit of the differential cross section
for pp → J/ψ + X calculated within the collinear factorization approach and valid
in the high transverse momentum region, with the inclusion of CO contributions.
Their results suggest the need for a TMDShF, but its exact expression and its connec-
tion with the SIDIS one are still in progress. New exciting studies and outcomes in
this field of research, from both the theoretical and experimental sides, are expected
in the near future.
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Appendix A

NRQCD in a nutshell

Within the NRQCD approach [6], we make explicit use of the non relativistic nature
of the relative velocity v of the heavy quark-antiquark pair (QQ̄). For quarkonia like
charmonium or bottomonium, for which v2 ≈ 0.3 or v2 ≈ 0.1,1 we can identify three
well-separated scales, namely M2 ≫ (Mv)2 ≫ (Mv2)2. The first is the typical scale
of the quarkonium; Mv is its typical momentum scale, whose inverse is related to
the size of the quarkonium itself; and the last one is its typical kinetic energy [6].

For quarkonium, we can assume αs(M) ≪ 1,2 hence effects at scale M, as the cre-
ation of the QQ̄, can be evaluated at perturbative level. Instead, effects at lower mo-
mentum scales (around Mv, Mv2 and also ΛQCD) are factorized into long-distance
matrix elements, which can potentially be evaluated via Lattice-QCD simulations or
extracted from data. At the moment, they are obtained exclusively in the second
way and, even if they are supposed to be universal, their values strongly depend on
the performed fit.

These matrix elements follow a hierarchy, depending on their v2 power depen-
dence, which is predicted by the use of scaling rules [168]. Indeed, within the
NRQCD approach, quarkonium production (or decay) is possible via a Fock-state
n with different quantum numbers compared to the observed particle. The transi-
tion between the general state n and the quarkonium one is obtained via soft gluon
emission.

This motivates a double expansion, w.r.t. both αs and v. The (process-dependent)
short-distance coefficients are evaluated with the usual perturbative expansion in αs.
Instead, by truncating the expansion w.r.t. v at the kth-order, we select which matrix
elements to include in the long-distance part of the process. Explicitly, at leading
order in v and for S-wave quarkonia, we have the color-singlet state with the same
quantum numbers of the quarkonium, while higher order contributions are given
by color-octet states.

We use the standard notation n = 2S+1L(c)
J to describe these states, where c indi-

cates their color configuration, S their spin, L their orbital angular momentum and J
their total angular momentum. In particular, for the J/ψ (3S1 state) the main contri-
butions, up to v4 order compared to the leading one, are given by 3S(1)

1 , 1S(8)
0 , 3S(8)

1

and 3P(8)
J .

1We are considering natural units, for which c = 1.
2Note that αs(M) ≈ 0.24 for charmonium and αs(M) ≈ 0.18 for bottomonium.
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For each state we have a different LDME value, which is connected to the modu-
lus squared of the quarkonium radial wave function (R0 or R1). Explicitly, we have

⟨0|O1(
2s+1SJ)|0⟩ =

Nc

2π
(2J + 1)|R(1)

0 (0)|2,

⟨0|O8(
2s+1SJ)|0⟩ =

2
π
(2J + 1)|R(8)

0 (0)|2,

⟨0|O8(
3PJ)|0⟩ =

2Nc

π
(2J + 1)|R′(8)

1 (0)|2, (A.1)

with, assuming the standard spin symmetry,

⟨0|O8(
3PJ)|0⟩ = (2J + 1) ⟨0|O8(

3P0)|0⟩ . (A.2)

Moreover, even if the LDMEs are defined for a specific particle, one can find
relations among different particles via rotational symmetries. For example, let us
consider the ηc meson (1S0 state), that can be produced via 1S(1)

0 , 1S(8)
0 , 3S(8)

1 and
1P(8)

1 states, up to order v4. In this case, ηc LDMEs can be related to the J/ψ ones, as
follows

⟨0|Oηc
1 (1S0)|0⟩ =

1
3
⟨0|O J/ψ

1 (3S1)|0⟩ ,

⟨0|Oηc
8 (1S0)|0⟩ = ⟨0|O J/ψ

8 (3S1)|0⟩ ,

⟨0|Oηc
8 (3S1)|0⟩ = ⟨0|O J/ψ

8 (1S0)|0⟩ ,

⟨0|Oηc
8 (1P1)|0⟩ = 3 ⟨0|O J/ψ

8 (3P0)|0⟩ , (A.3)

as shown in Eq. (3) of Ref. [169].

A.1 Amplitudes in NRQCD

The amplitudes within the NRQCD approach are evaluated as follows. At the per-
turbative level, we have the production of a heavy quark-antiquark pair, a cc̄-pair for
J/ψ and ηc. Then, we have to project the general cc̄-state into a configuration with
specific quantum numbers; the evaluation of the spin/angular projector for S-waves
will be discussed in the next section A.2.

The nonperturbative part of the amplitude is given by the radial wave function.
Depending on the specific state, the radial wave function can vanish and it is re-
placed by its derivative: for example, R0 contributes to S-wave production, while R′

1
to P-wave production. After the evaluation of the amplitude squared, these quanti-
ties are related to LDME parameters according to Eq. (A.1).

In particular, for the two aforementioned quarkonia (J/ψ and ηc), S- and P-waves
amplitudes have to be considered. The former is given by

M = − R0√
16πM

Tr
[
O(Ph, 0)(/Ph − M)ΠSSz

]
⟨3i; 3j|1, 8d⟩ , (A.4)
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while the latter is

M = −i

√
3

16πM
R′

1 Tr

[
∂O(Ph, k)

∂kα

∣∣∣∣
k=0

(/Ph − M)Πα
J Jz

− O(Ph, 0)
M

(
γαΠα

J Jz
(/Ph + M)− (/Ph − M)Πα

J Jz
γα

)]
⟨3i; 3j|1, 8d⟩ . (A.5)

In the above expressions, Ph is the quarkonium momentum, with P2
h = M2, while

k is directly related to the relative velocity of the heavy quark and antiquark, being
k = v/2.

In both cases, the projection into the color configuration is

⟨3i; 3j|1⟩ =
δij√
Nc

, ⟨3i; 3j|8d⟩ =
√

2td
ij, (A.6)

for a CS- or a CO-state, respectively.
The operator O(Ph, k) is obtained from the perturbative amplitude by excluding

the spinors of the heavy quark and antiquark.
Finally, we have two different spin/angular projectors depending on the state

produced. In particular, for an S-wave we have

ΠSSz =

{
−γ5 for 1S0

/ϵ∗
Sz

for 3S1
(A.7)

and for a P-wave

Πα
J Jz

=

{
−∑Lz

ϵ∗Lz
αγ5 for 1P1

Σαβ
Jz

γβ for 3PJ
, (A.8)

where
Σαβ

Jz
= ∑

Lz,Sz

⟨1Lz; 1Sz|J Jz⟩ ϵ∗Lz
αϵ∗Sz

β, (A.9)

and explicitly

∑
Lz,Sz

⟨1Lz; 1Sz|00⟩ ϵ∗Lz
αϵ∗Sz

β =
1√
3

(
gαβ −

Pα
h Pβ

h
M2

)
,

∑
Lz,Sz

⟨1Lz; 1Sz|1Jz⟩ ϵ∗Lz
αϵ∗Sz

β = − 1√
2

i
M

ϵαβγδPhγϵ∗Jz δ
,

∑
Lz,Sz

⟨1Lz; 1Sz|2Jz⟩ ϵ∗Lz
αϵ∗Sz

β = ϵ∗Jz
αβ. (A.10)
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Moreover, we have useful completeness relations for the quarkonium polariza-
tion vector, given by

∑
pol

ϵ∗λ
µ(p)ϵν

λ(p) =− gµν +
pµPν

h + pνPµ
h

p · Ph
− M2 pµ pν

(p · Ph)2 ,

∑
pol

ϵ∗λ
µ(Ph)ϵ

ν
λ(Ph) =− gµν +

Pµ
h Pν

h
M2 = Qµν,

∑
pol

ϵ∗λ
αβ(Ph)ϵλ

α′β′
(Ph) =

1
2

(
Qαα′Qββ′

+ Qαβ′
Qβα′

)
− 1

3
QαβQα′β′

. (A.11)

A.2 Angular/spin projector

In this section we show how to derive the projector into a state with angular quan-
tum number L = 0. The explicit general form of the projector is given by

PSSz(Ph, k) =
1√
8m3

Q

[
−
(

/Ph

2
− /k

)
+ mQ

]
ΠSSz

[(
/Ph

2
+ /k

)
+ mQ

]
, (A.12)

where mQ is the heavy quark mass, Ph is the quarkonium momentum and k is half
of the relative velocity of the heavy QQ̄-pair. The projector is valid both for scalar
(S = 0) and vector (S = 1) states, with the matrix ΠSSz taking a different form in the
two cases (see Eq. (A.7)).

From the antisymmetric relation of the Dirac matrices and the mass relation
2mQ = M, it is straightforward to prove that the projector in Eq. (A.12) is equivalent
to the last two terms of the trace in Eq. (A.4).

To derive Eq. (A.12), we first introduce the projector of a bound QQ̄-state into
a specific spin configuration. This is achieved by introducing the Clebsch-Gordan
coefficients, via

PSSz =
1

√mQ
∑
s,s

⟨1
2

s;
1
2

s|SSz⟩ v(pv, s)u(pu, s), (A.13)

where pu and pv are the momenta of the quark and antiquark, respectively. Note
that the spinors of particles and antiparticles with momentum p can be related to
the corresponding ones evaluated at rest

u(s)(p) = (/p + m)u(s)(0), v(s)(p) = (−/p + m)v(s)(0). (A.14)
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Moreover, considering the non-relativistic nature of the quarkonium, we can use the
following approximations

u+(0) ≃
1√
2mQ


1
0
0
0

 , u−(0) ≃
1√
2mQ


0
1
0
0

 ,

v+(0) ≃
1√
2mQ


0
0
0
1

 , v−(0) ≃
1√
2mQ


0
0
−1
0

 . (A.15)

We start our derivation from the scalar case, where the projection is unique and
described by P00. This state is the superposition of fermions in a singlet state, with
opposite sz components, namely

P00(Ph, k) =
1

√mQ
∑
s,s

⟨1
2

s;
1
2

s|00⟩ v(
1
2

Ph − k, s)u(
1
2

Ph + k, s)

=
1√
2mQ

[
v−(

1
2

Ph − k)u+(
1
2

Ph + k)− v+(
1
2

Ph − k)u−(
1
2

Ph + k)
]

=
1√
2mQ

(
−1

2
/Ph + /k + mQ

)
[v−(0)u+(0)− v+(0)u−(0)]

(
1
2

/Ph + /k + mQ

)
=

1√
8m3

Q

(
−1

2
/Ph + /k + mQ

)(
0 0
−1 0

)(
1
2

/Ph + /k + mQ

)
, (A.16)

where in the last line we have used the block form to simplify the notation. Notice
that the matrix related to the spinors combination can be recast into the following
combination of Dirac matrices

γ5 1 + γ0

2
=

1
2

(
0 1
1 0

) [(
1 0
0 1

)
+

(
1 0
0 −1

)]
=

(
0 1
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
, (A.17)

from which the projector takes a more compact form

P00(Ph, k) = − 1√
8m3

Q

(
−1

2
/Ph + /k + mQ

) [
γ5 1 + γ0

2

] (
1
2

/Ph + /k + mQ

)
. (A.18)
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Considering now the non-relativistic limit, which implies that k is small compared
to other quantities, we have

−
√

8m3
QP00(Ph, k) =

(
−1

2
/Ph + /k + mQ

) [
γ5 1 + γ0

2

] (
1
2

/Ph + /k + mQ

)
=

(
0 −kiσ

i

kiσ
i 2mQ

)(
0 0
1 0

)(
2mQ kiσ

i

−kiσ
i 0

)
=

(
−2mQkiσ

i −kiσ
iqjσ

j

4m2
Q 2mQkiσ

i

)
≃ 4m2

Q

(
0 0
1 0

)
+ 2mQkiσ

i
(
−1 0
0 1

)
+ O(k2), (A.19)

which can be approximated by

−
√

8m3
QP00(Ph, k) ∼

(
−1

2
/Ph + /k + mQ

)
γ5
(

1
2

/Ph + /k + mQ

)
=

(
0 −kiσ

i

kiσ
i 2mQ

)(
0 1
1 0

)(
2mQ kiσ

i

−kiσ
i 0

)
=

(
−2mQkiσ

i −kiσ
iqjσ

j

4m2
Q − kiσ

iqjσ
j 2mQkiσ

i

)
≃ 4m2

(
0 0
1 0

)
+ 2mQkiσ

i
(
−1 0
0 1

)
+ O(k2). (A.20)

Finally, we conclude that the projector for a scalar particle has the following exact
and non-relativistic approximated forms

P00 = − 1√
8m3

Q

(
−1

2
/Ph + /k + mQ

) [
γ5 1 + γ0

2

] (
1
2

/Ph + /k + mQ

)

∼ − 1√
8m3

Q

(
−

/Ph

2
+ /k + mQ

)
γ5
(

/Ph

2
+ /k + mQ

)
. (A.21)

Moving to the vector case, we have to evaluate the projector P1Sz for all values
of the spin z-component, namely Sz = 0,±1. Since the derivation is analogous for
all Sz values, it is sufficient to discuss one of the cases, e.g. P11. The state with Sz = 1
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can be achieved only through the combination of v+ and u+ spinors

P11(Ph, k) =
1

√mQ
∑
s,s

⟨1
2

s;
1
2

s|11⟩ v(
1
2

Ph − k, s)u(
1
2

Ph + k, s)

=
1

√mQ

[
v+(

1
2

Ph − k)u+(
1
2

Ph + k)
]

=
1

√mQ

(
−1

2
/Ph + /k + mQ

)
[v+(0)u+(0)]

(
1
2

/Ph + /k + mQ

)

=
1√
4m3

Q

(
−1

2
/Ph + /k + mQ

)
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

(1
2

/Ph + /k + mQ

)
.

(A.22)

Again, it is possible to write the projector in a more compact form, which involves
the polarization vector of the quarkonium. In the case considered, the relevant po-
larization vector is ϵ∗1 (with helicity +1), defined as

ϵ∗1 =
1√
2


0
−1

i
0

 , (A.23)

thus

/ϵ∗
1 =

1√
2

(
−γ1 + iγ2

)
=

√
2


0 0 0 0
0 0 −1 0
0 0 0 0
1 0 0 0

 (A.24)

and

/ϵ∗
1√
2

1 + γ0

2
=

/ϵ∗
1√
2


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 . (A.25)

From this, we have that the projector is given by

P11(Ph, k) =
1√
8m3

Q

(
−1

2
/Ph + /k + mQ

) [
/ϵ∗

1
1 + γ0

2

] (
1
2

/Ph + /k + mQ

)
. (A.26)
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As in the scalar case, in the non-relativistic limit the matrix 1 + γ0 is approximated
by the identity. Indeed, the full projector is approximated by√

4m3
QP11(Ph, k) =

(
−1

2
/Ph + /k + mQ

) [
/ϵ∗

1√
2

1 + γ0

2

] (
1
2

/Ph + /k + mQ

)

=

(
0 −kiσ

i

kiσ
i 2mQ

)
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

( 2mQ kiσ
i

−kiσ
i 0

)

=


0 0 0 0

−2mQkiσ
i 0 −(kiσ

i)2 0
0 0 0 0

4m2
Q 0 2mQkiσ

i 0



≃


0 0 0 0

−2mQkiσ
i 0 0 0

0 0 0 0
4m2

Q 0 2mQkiσ
i 0

+ O(k2), (A.27)

which coincides with√
4m3

QP11(Ph, k) ∼
(
−1

2
/Ph + /k + mQ

)
/ϵ∗

1√
2

(
1
2

/Ph + /k + mQ

)

=

(
0 −kiσ

i

kiσ
i 2mQ

)
0 0 0 0
0 0 −1 0
0 0 0 0
1 0 0 0

( 2mQ kiσ
i

−kiσ
i 0

)

=


0 0 0 0

−2mQkiσ
i 0 −(kiσ

i)2 0
0 0 0 0

4m2
Q + (kiσ

i)2 0 2mQkiσ
i 0



≃


0 0 0 0

−2mQkiσ
i 0 0 0

0 0 0 0
4m2

Q 0 2mQkiσ
i 0

+ O(k2). (A.28)

Since the very same approximation holds for other helicity components of the J/ψ
polarization vector, the projector takes the exact and approximated forms

P1Sz =
1√
8m3

Q

(
−1

2
/Ph + /k + mQ

) [
ϵ∗Sz

1 + γ0

2

] (
1
2

/Ph + /k + mQ

)

∼ − 1√
8m3

Q

(
−

/Ph

2
+ /k + mQ

)
ϵ∗Sz

(
/Ph

2
+ /k + mQ

)
(A.29)

for all Sz values.

By combining the two results into ΠSSz in Eq. (A.7), we proved that the projector
in Eq. (A.12) is correct.
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A.3 Long-distance matrix elements sets

In this section we list the LDME sets used in this thesis. They are all referred to the
J/ψ particle.

In particular, we consider four LDME sets, with different characteristics.
The C12 set [15] has been obtained by fitting simultaneously polarized and unpo-
larized direct J/ψ production data in pp collision, measured by the CDF (Run II)
Collaboration in Ref. [170]; in the fit they imposed a cut on the J/ψ transverse mo-
mentum, considering only the PT > 7 GeV region.
The G13 set [105] includes only unpolarized data at PT > 7 GeV, from both CDF [171]
and LHCb [172] Collaborations, but including also the feed-down contribution.
Moreover, they test their set predicting the J/ψ polarization in pp collisions, find-
ing a general agreement with the C12 set only when the feed-down contribution is
negligible.
The BK11 set [104], differently from the previous two, includes both hadron produc-
tion and photoproduction unpolarized data, with a lower cut on the J/ψ transverse
momentum at around PT = 3 GeV.
Finally the SYY13 set [133] is based on a different approach, combining the LDME
extraction with the CSS matching procedure [126] in pp collision in the very low-PT
region. They found, however, that the J/ψ production is dominated by CO waves
in this region, so the CS contribution is totally missing in their set. This implies that
this contribution should be excluded a priori, but it could be added a posteriori.

The first two sets are useful when studying the quarkonium polarization states,
as we did in Chapter 2. The third one is instead very versatile, and it can be used
in studies at low-PT, as done in Chapter 4 to provide our SSA estimates, or when
dealing with processes involving a proton and a photon (real or virtual) in the initial
state, as in Chapter 2. Finally, in the application of the fourth some tension can arise
since the total absence of the CS contribution can be a too strong assumption. For
this reason, we used this set only in Chapter 4.

LDME Set ⟨O J/ψ
1 [3S1]⟩

[
GeV3]

C12 1.16

G13 1.16

BK11 1.32

SYY13 0

TABLE A.1: LDME set (central) values for the J/ψ production via a CS state.

LDME Set ⟨O J/ψ
8 [1S0]⟩

[
GeV3] ⟨O J/ψ

8 [3S1]⟩
[
GeV3] ⟨O J/ψ

8 [3P0]⟩
[
GeV5]

C12 0.089 0.003 0.0126

G13 0.097 −0.0046 −0.0214

BK11 0.0304 0.00168 −0.00908

SYY13 0.1423 −0.0093 −0.0394

TABLE A.2: LDME set (central) values for the J/ψ production via a CO state; notice that for
the other 3PJ states (with J ̸= 0) we use Eq. (A.2)).
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In Tab. A.1 we present the LDME relative to the CS wave, while in Tab. A.2 we
present the three dominant CO waves in J/ψ production.

We highlight the differences in the CS table. First we remark that the SYY13 set
does not formally present any CS contribution, so its value is automatically set to 0.
Moreover, the BK11 set presents a CS LDME value slightly different from that used
in the C12 and G13 sets. Notice that, in the BK11 case, this LDME value is based on
a potential model derived from the Cornell potential (combination of Coulomb and
a linear dependence) and applied to the J/ψ → e+e− decay width, see Ref. [173]; the
other two are based on the QCD-motivated potential model given by Buchmüller
and Tye and evaluated in Ref. [174].

A.4 Trace relations

A.4.1 Gell-Mann matrix trace relations

Traces involving up to 3 Gell-Mann matrices ta can be found in every QCD book, e.g.
[175]

Tr [ta] = 0,

Tr
[
tatb
]
=

1
2

δab,

Tr
[
tatbtc

]
=

1
4
(dabc + i fabc) . (A.30)

Moreover, for the diagrams encountered in this work and gathered in Appendix B,
we need the traces involving four Gell-Mann matrices. In particular we have the
difference

Tr
[
tatbtctd

]
− Tr

[
tctbtatd

]
=

i
4
( fabedcde + dabe fcde) , (A.31)

and the sum

Tr
[
tatbtctd

]
+ Tr

[
tctbtatd

]
=

1
4

(
2
N

δabδcd + dabedcde − fabe fcde

)
. (A.32)

To obtain these last relations the commutator[
ta, tb

]
= i fabctc (A.33)

and the anticommutator {
ta, tb

}
=

1
N

δab1(N) + dabctc (A.34)

have been repeatedly used.

A.4.2 Dirac matrices traces relevant in quarkonium production

When the quarkonium is produced via an S-wave following the NRQCD approach,
the amplitude is evaluated as in Eq. (A.4). Summing the contribution from differ-
ent diagrams, usually the inversion of the heavy quark lines relates two diagrams
together. In particular for a scalar state we have the antisymmetric relations

Tr
[
γµ(/a + M)γν(/P − M)γ5] = −Tr

[
γν(/a − M)γµ(/P − M)γ5] , (A.35)
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and

Tr
[
γµ(/a + M)γν(/b − M)γρ(/P − M)γ5] = −Tr

[
γρ(/b + M)γν(/a − M)γµ(/P − M)γ5] ,

(A.36)
while for the vector state, we found the symmetric relations

Tr
[
γµ(/a + M)γν(/b − M)γρ(/P − M)/ϵ∗

Sz

]
= Tr

[
γρ(/b + M)γν(/a − M)γµ(/P − M)/ϵ∗

Sz

]
,

(A.37)
and

Tr
[
γµ(/a + M)γν(/P − M)/ϵ∗

Sz

]
= Tr

[
γν(/a − M)γµ(/P − M)/ϵ∗

Sz

]
. (A.38)

Production of a P-wave is instead described in Eq. (A.5). In addition to the previ-
ous waves, one needs to consider traces involving the combination of Dirac matrices

Γα = γαγ5(/P + M)− (/P − M)γ5γα, Γαβ = γαγβ(/P + M)− (/P − M)γβγα, (A.39)

where the former is valid for the production of a state with S = 0, while the latter
for S = 1. In this case we found the antisymmetric relations

Tr
[
γµ(/a + M)γνΓαβ

]
= −Tr

[
γν(/a − M)γµΓαβ

]
, (A.40)

Tr
[
γµ(/a + M)γν(/b − M)γρΓαβ

]
= −Tr

[
γρ(/b + M)γν(/a − M)γµΓαβ

]
, (A.41)

and the symmetric ones

Tr [γµ(/a + M)γνΓα] = Tr [γν(/a − M)γµΓα] , (A.42)

Tr [γµ(/a + M)γν(/b − M)γρΓα] = Tr [γρ(/b + M)γν(/a − M)γµΓα] . (A.43)
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Appendix B

Hard parts

In this appendix we gather the perturbative quantities used for the different pro-
cesses studied in this thesis.

We first present the diagrams relevant in pp collisions (Sec. B.1). We will consider
two quarkonia, J/ψ and ηc, produced in both CS and CO states. Moreover, we gather
the color factors (CFs) relative to each diagram product in Sec. B.1.3. We remark that
the following results can also be found in Refs. [150, 176].

We then move to the production of polarized and unpolarized J/ψ in SIDIS
(Sec. B.2), where the cross section is parameterized via structure functions. We will
present them for both cases. They can also be found in literature, e.g. Refs. [97, 112]
for the polarized case, while Refs. [87, 125] for the unpolarized one.

In the following results the LDME will be omitted to simplify the notation.

B.1 pp collisions

In this section we provide the hard terms relative to the pp → Q + X process. To
highlight the differences arising from the quantum number combinations, we will
take into account two quarkonia. The former, vastly investigated during this thesis,
is the J/ψ, corresponding to the 3S1 lowest energy state. The second is the ηc meson,
which is a 1S0 state.

B.1.1 LO diagrams

The production of a quarkonium Q in pp → Q+ X at first order in αs is achieved
via

a(pa) b(pb) → Q(Ph), (B.1)

where the initial partons can be either gg, Fig. B.1, or qq̄, Fig. B.2. In the following
we define P2

h = M2.

FIGURE B.1: Diagrams relative to the production of a cc̄ pair at α2
s order via gg fusion.
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FIGURE B.2: Diagram relative to the production of a cc̄ pair at α2
s order via qq̄ annihilation.

The gg interaction diagrams translate into

OA
gg(P, k) = −2(4παs)

×
[

ta
iktb

kj/ϵ a
/pb − /pa + /k + M

(pb − pa + k)2 − M2 /ϵb − tb
ikta

kj/ϵb
/pb − /pa − /k − M

(pb − pa − k)2 − M2 /ϵ a

]
,

OB
gg(P, k) = (4παs) (i fabete

ij)ϵ
µ
a ϵν

b

ηµν(/pb − /pa) + 2(γµ paν − γν pbµ)

M2 , (B.2)

while the diagram for qq̄ annihilation is given by

Oqq̄(P, k) = (4παs) te
ijt

e
mn v(pb)γρu(pa)

γρ

M2 . (B.3)

Color-singlet production

The results relative to the CS state depend on the quarkonium produced. In any
case, a CS state can only be produced via diagram A of Fig. B.1.

To evaluate the ηc production (1S0 state) we take into account the trace relation
in Eq. (A.35) of Appendix A.4.2, which leads to∣∣∣Mgg→1S(1)

0

∣∣∣2 =
(4παs)2

72M
. (B.4)

The J/ψ (3S1 state), instead, cannot be produced in a CS configuration. Indeed,
in this case we have to consider the trace relation in Eq. (A.38), from which∣∣∣Mgg→3S(1)

1

∣∣∣2 = 0. (B.5)

Color-octet production

In the CO production both gg and qq̄ channels contribute. In the velocity expan-
sion for the two quarkonia, both S- and P-waves are present; in particular 1P(8)

1

contributes to ηc while 3P(8)
J (with J = 0, 1, 2) to J/ψ.

Considering first the S-waves, the gg channel leads to∣∣∣Mgg→1S(8)
0

∣∣∣2 =
5(4παs)2

192M
=

15
8

∣∣∣Mgg→1S(1)
0

∣∣∣2, (B.6)∣∣∣Mgg→3S(8)
1

∣∣∣2 = 0, (B.7)
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while the qq̄ one provides ∣∣∣Mqq̄→1S(8)
0

∣∣∣2 = 0, (B.8)∣∣∣Mqq̄→3S(8)
1

∣∣∣2 =
(4παs)2

27M
. (B.9)

Notice how the gg → 1S(8)
0 is directly related to the corresponding CS case, with a

proportional factor deriving from the different CFs involved (see Tab. B.1).
Moving to ηc and J/ψ production through a CO P-wave, for gg we have∣∣∣Mgg→1P(8)

1

∣∣∣2 =
9(4παs)2

16M3 , (B.10)∣∣∣Mgg→3P(8)
J

∣∣∣2 =
35(4παs)2

48M3 , (B.11)

and for qq̄ annihilation ∣∣∣Mqq̄→1P(8)
1

∣∣∣2 = 0, (B.12)∣∣∣Mqq̄→3P(8)
J

∣∣∣2 = 0. (B.13)

In the previous equations, the 3P(8)
J state is a short notation which implies a sum

over states with different total angular momentum J, via Eq. (A.2).

B.1.2 NLO diagrams

The quarkonium production at α3
s order is described by the partonic subprocess

a(pa) b(pb) → Q(Ph) + x, (B.14)

with P2
h = M2. In particular, initial partons, a and b, can be either gg (Fig. B.3), gq(q̄)

(Fig. B.4) or qq̄ (Fig. B.5).
The (perturbative) operators relative to the diagrams in Fig. B.3 are given by

OA1
gg (P, k) = 4 (4παs)

3/2

{
ta
iktb

klt
c
lj

/ϵ a
(
/P − 2/pa + 2/k + M

)
/ϵb
(
/P + 2/pc − 2/k − M

)
/ϵ∗

c

[(P − 2pa + 2k)2 − M2] [(P + 2pc − 2k)2 − M2]

+tc
iktb

klt
a
lj

/ϵ∗
c
(
/P + 2/pc + 2/k + M

)
/ϵb
(
/P − 2/pa − 2/k − M

)
/ϵ a

[(P + 2pc + 2k)2 − M2] [(P − 2pa − 2k)2 − M2]

}
,

OA2
gg (P, k) = OA1

gg (P, k) (c ↔ b, pc ↔ −pb) ,

OA3
gg (P, k) = OA1

gg (P, k) (a ↔ b, pa ↔ pb) ,

OB1
gg(P, k) = −2 (4παs)

3/2 ϵ
µ
a ϵν

b
ηµν(pa − pb)ρ + ηνρ(pa + 2pb)µ − ηρµ(2pa + pb)ν

ŝ

× (i fabe)

[
tc
ikte

kj
/ϵ∗

c (/P + 2/pc + 2/k + M)γρ

(P + 2pc + 2k)2 − M2 − te
iktc

kj
γρ(/P + 2/pc − 2/k − M)/ϵ∗

c

(P + 2pc − 2k)2 − M2

]
,

OB2
gg(P, k) = OB1

gg(P, k)(c ↔ a,−pa ↔ pc),

OB3
gg(P, k) = OB1

gg(P, k)(c ↔ b,−pb ↔ pc), (B.15)
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FIGURE B.3: Diagrams relative to the production of a cc̄ pair at α3
s order via gg fusion.

OC1
gg(P, k) = (4παs)

3/2 ϵ
µ
a ϵν

bϵ∗c
σ fabe fechth

ij
γτ

ŝM2

×
[
ηµν(pa − pb)ρ + ηνρ(pa + 2pb)µ − ηρµ(2pa + pb)ν

]
×
[
η

ρ
σ(pa + pb + pc)τ + ηστ(pa + pb − 2pc)

ρ − η
ρ
τ(2pa + 2pb − pc)σ

]
,

OC2
gg(P, k) = OC1

gg(P, k)(c ↔ a,−pa ↔ pc),

OC3
gg(P, k) = OC1

gg(P, k)(c ↔ b,−pb ↔ pc),

OD
gg(P, k) = OD1

gg (P, k) + OD2
gg (P, k) + OD3

gg (P, k), (B.16)

where the last amplitude has been decomposed in three terms with different color
structures

OD1
gg (P, k) = (4παs)

3/2 th
ij fabe fche [(ϵa · ϵc) ϵτ

b − (ϵb · ϵc) ϵτ
a ]

γτ

M2 ,

OD2
gg (P, k) = OD1

gg (P, q) (c ↔ a,−pa ↔ pc) ,

OD3
gg (P, k) = OD1

gg (P, q) (c ↔ b,−pb ↔ pc) . (B.17)
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FIGURE B.4: Diagrams relative to the production of a cc̄ pair at α3
s order via gq(q̄) fusion.

FIGURE B.5: Diagrams relative to the production of a cc̄ pair at α3
s order via qq̄ fusion.

Moreover, operators relative to g q(q̄) interaction in Fig. B.4 are

OA
gq(P, q) = 2 (4παs)

3/2 u(pc)γρu(pb)

t̂
(te

mn)

×
[

ta
ikte

kj
/ϵ a(/P − 2/pa + 2/q + M)γρ

(P − 2pa + 2q)2 − M2 − te
ikta

kj
γρ(/P − 2/pa − 2/q − M)/ϵ a

(P − 2pa − 2q)2 − M2

]
,

OB
gq(P, q) = (4παs)

3/2 (te
ij)(t

e
mlt

a
ln)

u(pc)γτ(/pa + /pb)/ϵ au(pb)

ŝ
γτ

M2 ,

OC
gq(P, q) = (4παs)

3/2 (i fahete
mnth

ij)
u(pc)γρu(pb)

t̂
γτ

M2

× ϵ
µ
a

[
ητ

µ(2pa + pb − pc)
ρ + ητρ(2pc − 2pb − pa)µ + η

ρ
µ(pb − pc − pa)

τ
]

,

OD
gq(P, q) = (4παs)

3/2 (te
ij)(t

a
mlt

e
ln)

u(pc)/ϵ a(/pc − /pa)γτu(pb)

û
γτ

M2 . (B.18)
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Finally, for the qq̄ annihilation, Fig. B.5, we have

OA
qq̄(P, q) = 2 (4παs)

3/2 u(pb)γρu(pa)

ŝ
(te

mn)

×
[

tc
ikte

kj
/ϵ∗

c (/P + 2/pc + 2/q + M)γρ

(P + 2pc + 2q)2 − M2 − te
iktc

kj
γρ(/P + 2/pc − 2/q − M)/ϵ∗

c

(P + 2pc − 2q)2 − M2

]
,

OB
qq̄(P, q) = (4παs)

3/2 (i fchete
mnth

ij)
u(pb)γρu(pa)

ŝ
γτ

M2

× ϵ∗c
σ [ηρ

σ(pa + pb + pc)
τ + ηρτ(pc − 2pa − 2pb)σ + ητ

σ(pa + pb − 2pc)
ρ
]

,

OC
qq̄(P, q) = (4παs)

3/2 (te
ij)(t

c
mlt

e
ln)

u(pb)/ϵ∗
c (/pc − /pb)γτu(pa)

t̂
γτ

M2 ,

OD
qq̄(P, q) = (4παs)

3/2 (te
ij)(t

e
mlt

c
ln)

u(pb)γτ(/pa − /pc)/ϵ
∗
c u(pa)

û
γτ

M2 . (B.19)

Color-singlet production

Starting once again from the CS state, the results are very different depending on
the quarkonium involved. In any case, the CS state cannot be produce by a single
gluon fragmentation, which restricts the contributing diagrams to: A and B of
Fig. B.3 and diagrams A of Figs. B.4 and B.5. For the remaining ones, we can use
the trace relations in Eqs. (A.35)-(A.36) for ηc and Eqs. (A.35)-(A.36) for J/ψ. For
all A diagrams, only the anti-symmetric (symmetric) components contribute to ηc

(J/ψ) production, while the opposite is true for diagrams B in gg interaction.
The amplitudes squared for gg are then given by∣∣∣Mgg→1S(1)

0 g
∣∣∣2 = (4παs)

3 [ŝ(t̂ + û) + t̂û
]2

×
[
ŝ4 + 2 ŝ3(t̂ + û) + 3ŝ2(t̂ + û)2 + 2ŝ(t̂ + û)3 + (t̂2 + t̂ û + û2)2]

6 ŝ t̂ û (ŝ + t̂)2(ŝ + û)2(t̂ + û)2M
,∣∣∣Mgg→3S(1)

1 g

∣∣∣2 = (4παs)
3 5

108
M

ŝ2 (t̂2 + t̂ û + û2)+ ŝ t̂ û (t̂ + û) + t̂2û2

(ŝ − M2)2(t̂ − M2)2(û − M2)2
, (B.20)

moreover for gq(q̄) we have∣∣∣Mgq(q̄)→1S(1)
0 q(q̄)

∣∣∣2 = −(4παs)
3 ŝ2 + û2

27 t̂ (ŝ + û)2M
,∣∣∣Mgq(q̄)→3S(1)

1 q(q̄)

∣∣∣2 = 0, (B.21)

and finally for qq̄ ∣∣∣Mqq̄→1S(1)
0 g

∣∣∣2 = (4παs)
3 8(t̂2 + û2)

81 ŝ
(
t̂ + û

)2 M
,

∣∣∣Mqq̄→3S(1)
1 g

∣∣∣2 = 0. (B.22)

Color-octet production

Moving to the production of a CO state, we have to consider once again the S- and
P-waves contributions.
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For both quarkonia, the expansion over velocity involves two CO S-waves,
namely 1S(8)

0 and 3S(8)
1 . The first is related to the production of a ηc in a CS state,

with different CFs (listed in Tabs. B.3-B.5)∣∣∣Mgg→1S(8)
0 g

∣∣∣2 =
5(4παs)3

16
[
ŝ2(t̂2 + t̂û + û2) + ŝt̂û(t̂ + û) + t̂2û2]

×
[
ŝ4 + 2ŝ3(t̂ + û) + 3ŝ2(t̂ + û)2 + 2ŝ(t̂ + û)3 + (t̂2 + t̂û + û2)2]

ŝt̂û(ŝ + t̂)2(ŝ + û)2(t̂ + û)2M

=
15
8

ŝ2(t̂2 + t̂ û + û2) + ŝt̂û(t̂ + û) + t̂2û2[
ŝ(t̂ + û) + t̂û

]2

∣∣∣Mgg→1S(1)
0 g

∣∣∣2, (B.23)

∣∣∣Mgq(q̄)→1S(8)
0 q(q̄)

∣∣∣2 =
15
8

∣∣∣Mgq(q̄)→1S(1)
0 q(q̄)

∣∣∣2, (B.24)∣∣∣Mqq̄→1S(8)
0 g

∣∣∣2 =
15
8

∣∣∣Mqq̄→1S(1)
0 g

∣∣∣2. (B.25)

On the other hand, the 3S(8)
1 state is only partially related to J/ψ production via CS

state, since all diagrams contribute in this case, giving∣∣∣Mgg→3S(8)
1 g

∣∣∣2 =
(4παs)3

72

[
19M4 − 27(ŝt̂ + ŝû + t̂û)

]
×

ŝ2 (t̂2 + t̂û + û2)+ ŝt̂û(t̂ + û) + t̂2û2

M3(ŝ − M2)2(t̂ − M2)2(û − M2)2

=
3
10

19M4 − 27(ŝ t̂ + ŝ û + t̂ û)
M4

∣∣∣Mgg→3S(1)
1 g

∣∣∣2, (B.26)∣∣∣Mgq(q̄)→3S(8)
1 q(q̄)

∣∣∣2 = − (4παs)3

108M3
(ŝ2 + 2M2 t̂ + û2)(4ŝ2 − ŝû + 4û2)

ŝû(t̂ − M2)2
, (B.27)∣∣∣Mqq̄→3S(8)

1 g

∣∣∣2 = 2
(4παs)3

81M3
(t̂2 + 2M2ŝ + û2)(4t̂2 − t̂û + 4û2)

t̂û(ŝ − M2)2
. (B.28)

Moving to P-waves, we consider both 1P(8)
1 and 3P(8)

J (summed over the different
J values) states. Due to the symmetry relations derived in Eqs. (A.40)-(A.43), the
relevant CFs are related to the previous cases (see Tabs. B.3-B.5 of next section B.1.3).
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From this, the production of 1P(8)
1 state in the different partonic channels is given by∣∣∣Mgg→1P(8)

1 g

∣∣∣2 =
(4παs)3

4M2ŝt̂û(û − M2)3(t̂ − M2)3(ŝ − M2)3[
ŝ8(27t̂3 + 38t̂2û + 38t̂û2 + 27û3)

+ ŝ7(81t̂4 + 271t̂3û + 120t̂2û2 + 271t̂û3 + 81û4)

+ ŝ6(135t̂5 + 715t̂4û + 668t̂3û2 + 668t̂2û3 + 715t̂û4 + 135û5)

+ ŝ5(135t̂6 + 964t̂5û + 1432t̂4û2 + 1390t̂3û3 + 1432t̂2û4

+ 964t̂û5 + 135û6)

+ ŝ4(81t̂7 + 715t̂6û + 1432t̂5û2 + 1640t̂4û3 + 1640t̂3û4 + 1432t̂2û5

+ 715t̂û6 + 81û7)

+ ŝ3(27t̂8 + 271t̂7û + 668t̂6û2 + 1390t̂5û3 + 1640t̂4û4

+ 1390t̂3û5 + 668t̂2û6 + 271t̂û7 + 27û8)

+ 2ŝ2 t̂û(19t̂7 + 60t̂6û + 334t̂5û2 + 716t̂4û3 + 716t̂3û4

+ 334t̂2û5 + 60t̂û6 + 19û7)

+ ŝt̂2û2(t̂ + û)2(38t̂4 + 195t̂3û + 287t̂2û2 + 195t̂û3 + 38û4)

+ 27t̂3û3(t̂ + û)(t̂2 + t̂û + û2)2
]
, (B.29)

∣∣∣Mgq(q̄)→1P(8)
1 q(q̄)

∣∣∣2 = −(4παs)
3 3(ŝ2 + û2)

2t̂(t̂ − M2)2M3
, (B.30)∣∣∣Mqq̄→1P(8)

1 g

∣∣∣2 = (4παs)
3 4(t̂2 + û2)

2ŝ(ŝ − M2)2M3 ; (B.31)

while for 3P(8)
J state we have

∣∣∣Mgg→3P(8)
J g

∣∣∣2 =
5(4παs)3

4M3ŝt̂û (M2 − ŝ)3 (M2ŝ + t̂û
)3

×
[
7M16ŝ3 − 7M14

(
5ŝ4 − 2ŝ2 t̂û

)
+ M12 (−85ŝ3 t̂û + 14ŝt̂2û2 + 84ŝ5)
+ M10

(
211ŝ4 t̂û − 78ŝ2 t̂2û2 − 126ŝ6 + 7t̂3û3

)
+ M8 (−302ŝ5 t̂û + 195ŝ3 t̂2û2 − 50ŝt̂3û3 + 126ŝ7)
+ M6

(
275ŝ6 t̂û − 233ŝ4 t̂2û2 + 95ŝ2 t̂3û3 − 84ŝ8 − 14t̂4û4

)
+ M4

(
−157ŝ7 t̂û + 165ŝ5 t̂2û2 − 98ŝ3 t̂3û3 + 34ŝt̂4û4 + 35ŝ9

)
− M2 (ŝ2 − t̂û

)2
(
−33ŝ4 t̂û − 6ŝ2 t̂2û2 + 7ŝ6 − 7t̂3û3

)
− 3ŝt̂û

(
ŝ2 − t̂û

)4
]
, (B.32)
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∣∣∣Mgq(q̄)→3P(8)
J q(q̄)

∣∣∣2 =
(4παs)3

54M3 t̂
(
t̂ − M2

)4

×
[
162M11 t̂ − 648M9 t̂2 − 105M8 + 972M7 t̂3 + 30M6 (8t̂ + 7û

)
− 648M5 t̂4 − 10M4 (43t̂û + 19t̂2 + 21û2)+ 162M3 t̂5

+ 10M2 t̂
(
27t̂û + 8t̂2 + 22û2)− 25t̂2 (2t̂û + t̂2 + 2û2) ], (B.33)∣∣∣Mqq̄→3P(8)

J g

∣∣∣2 =
20(4παs)3

27

(
7M4 + 3ŝ2) (t̂2 + û2)− 2M2ŝ

(
−8t̂û + t̂2 + û2)

M3ŝ
(
t̂ + û

)4 .

(B.34)

B.1.3 Color factors

In this section, the relevant, non-zero CFs appearing for different partonic subpro-
cesses will be gathered. We present them in terms of the number of colors N.

B.1.4 Color factors at LO

At leading order, the CS state can be produced only via the diagram A in Fig. B.1.
Moreover, as also shown in the previous section, only ηc is produced in a CS config-
uration. Then, in this discussion only one CF is needed at LO, corresponding to

CUCSM
gg→ηc

=
1

N(N2 − 1)
. (B.35)

Moving to the production of a CO state, the CFs are given in Tab. B.1. We see that
via gg → Q is possible to produce either a P-wave (3P(8)

J or 1P(8)
1 ) or a 1S(8)

0 state,

while the 3S(8)
1 state is produced only via qq̄ → Q.

State Partonic process (2 → 1) Color Factor

1S(8)
0 & 3P(8)

J gg → Q N2−4
2N(N2−1)

3S(8)
1 qq̄ → Q N2−1

4N2

1P(8)
1 gg → Q N

2(N2−1)

TABLE B.1: Color factors relative to the production of a CO state in pp collisions at LO in αs.
In the first two columns we indicate which state we are considering and via which process
can be produced, while in the last column the corresponding (unpolarized) color factors are

given.

Moreover, notice that the difference between the CO and CS 1S0 states is just a factor
(N2 − 4)/2, as expected by the different projectors in Eq. (A.6).

B.1.5 Color factor at NLO

At α3
s order, we have three subprocesses to consider, namely g g → Q g, g q(q̄) →

Q q(q̄) and q q̄ → Q g. The CFs for the production of ηc and J/ψ via a CS state are
listed in Tab. B.2.
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Quarkonium Partonic process Color Factor

gg → ηc g
A 1 × A 1 & A 2 × ( A 2, A 3) & A 3 × A 3

1
4(N2−1)

A 1 × ( A 2, A 3) − 1
4(N2−1)

A 1 × B 1 & ( A 2, A 3)× ( B 2, B 3)
1

2(N2−1)

A 1 × ( B 2, B 3) & ( A 2, A 3)× B 1 − 1
2(N2−1)

ηc[1S(1)
0 ] B 1 × B 1 & B 2 × ( B 2, B 3) & B 3 × B 3

1
N2−1

B 1 × ( B 2, B 3) − 1
N2−1

qq̄ → ηc g N2−1
2N3

gq(q̄) → ηc q(q̄) 1
2N2

gg → J/ψ g N2−4
4N2(N2−1)

J/ψ[3S(1)
1 ] qq̄ → J/ψ g 0

gq(q̄) → J/ψ q(q̄) 0

TABLE B.2: Color factors relative to the production of a CS state in pp collisions at α3
s order.

In the first column we indicate which quarkonium we are producing. In the second column
we indicate the process involved and in the third column the corresponding (unpolarized)
color factor to each diagram products are given; if not otherwise stated, the color factor is

relative to the product A × A .

Partonic process and state Diagram products Color Factor

g g → Q[1S(8)
0 & 3P(8)

J ] g

A 1 × A 1 & A 1 × B 1 & − A 1 × B 2
N2−4

4(N2−1)

A 2 × A 2 & A 2 × B 2 & A 2 × B 3
N2−4

4(N2−1)

A 3 × A 3 & − A 3 × B 1 & A 3 × B 3
N2−4

4(N2−1)

B 1 × B 1 & B 2 × B 2 & B 3 × B 3
N2−4

2(N2−1)

B 1 × B 2 & B 1 × B 3 & − B 2 × B 3 − N2−4
4(N2−1)

g g → Q[3S(8)
1 & 1P(8)

1 ] g

A 1 × A 1 & A 2 × A 2 & A 3 × A 3
N4−2N2+6
4N2(N2−1)

A 1 × ( A 2, A 3) & − A 2 × A 3 − N2−3
2N2(N2−1)

A 1 × ( B 1, B 2) − N2

4(N2−1)

A 2 × B 2 & − A 2 × B 3
N2

4(N2−1)

A 3 × ( B 1, B 3)
N2

4(N2−1)

B 1 × B 1 & B 2 × B 2 & B 3 × B 3
N2

2(N2−1)

B 1 × B 2 & B 1 × B 3 & − B 2 × B 3
N2

4(N2−1)

TABLE B.3: Non-zero, independent color factors relative to the process g g → Q g. Due to
symmetry relations, 1S(8)

0 and 3P(8)
J states have same color factors (first rows). The same is

also found for 3S(8)
1 and 1P(8)

1 (last rows).
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Partonic process and state Diagram products Color Factor

g q(q̄) → Q[1S(8)
0 & 3P(8)

J ] q(q̄) A × A N2−1
4N2

g q(q̄) → Q[3S(8)
1 & 1P(8)

1 ] q(q̄) A × A 1
4

g q(q̄) → Q[3S(8)
1 ] q(q̄)

B × B & D × D N2−1
8N2

A × B ± 1
8

A × D ∓ 1
8

B × D − 1
8N2

TABLE B.4: Non-zero, independent color factors relative to the process g q(q̄) → Q q(q̄).
Due to symmetry relations, the squared product of diagram A provides same color factors

when producing 1S(8)
0 and 3P(8)

J states (first row), or 3S(8)
1 and 1P(8)

1 states (second row). All

the other products are relevant only when producing a 3S(8)
1 state (last four rows). Moreover,

if present, upper and lower signs are relative to the quark and antiquark cases, respectively.

Partonic process and state Diagram products Color Factor

qq̄ → Q[1S(8)
0 & 3P(8)

J ] g A × A (N2−4)(N2−1)
4N3

qq̄ → Q[3S(8)
1 & 1P(8)

1 ] g A × A N2−1
4N

qq̄ → Q[3S(8)
1 ] g

C × C & D × D (N2−1)2

8N3

A × C N2−1
8N

A × D −N2−1
8N

C × D −N2−1
8N3

TABLE B.5: Non-zero, independent, color factors relative to the process q q̄ → Q g. Due to
symmetry relations, the squared product of diagram A provides same color factors when

producing 1S(8)
0 and 3P(8)

J states (first row), or 3S(8)
1 and 1P(8)

1 states (second row). All the

other products are relevant only when producing a 3S(8)
1 state (last four rows).

Moving to the CO production, we find that some of the CFs are equal. More
specifically, we have the same CFs for 1S(8)

0 and 3P(8)
J states. Furthermore, the dia-

grams that contribute to both 3S(8)
1 and 1P(8)

1 give the same CFs.
For each partonic process we find at least two diagrams whose products pro-

vide the same CFs. In particular: for g g → Q g we have the correspondence
( C i, D i) ⇔ B i (with i = 1, 2, 3), for g q(q̄) → Q q(q̄) we have that C ⇔ A ,
and finally for q q̄ → Q g B ⇔ A . Then, we will explicitly show only the indepen-
dent CFs.

Moreover, if more than one product provides the same CF (including also a dif-
ferent sign), they will be listed together, using the notation I × J & K × H ;
furthermore, if the products of one diagram with two other diagrams have the same
output, they will be gathered using the notation I × ( J , K ).

Finally, the (unpolarized) CFs for g g → Q g are presented in Tab. B.3, for
g q(q̄) → Q q(q̄) in Tab. B.4, and for q q̄ → Q g in Tab. B.5. Note that these CFs
can have a different sign depending on whether we are considering a quark or an
antiquark in g q(q̄) interaction; in this case, we show the double signs, the upper sign
is related to the quark, while the lower sign refers to the antiquark.
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B.2 SIDIS

In this section we provide the structure functions relative to the SIDIS process e p →
e′ J/ψ + X; differently from pp, here we will limit the discussion to the J/ψ meson.

B.2.1 LO diagrams

The partonic process for SIDIS at order ααs is given by

γ∗(q) a(pa) → J/ψ(Pψ), (B.36)

where P2
ψ = M2

ψ and initial parton can only correspond to a gluon, Fig. B.6.

FIGURE B.6: Production of cc̄ at 1st order from γ g interaction.

The operator related to this diagram is given by

OA
γ∗g

µ
(P, k) = 2

√
(4π)2ααsta

ij

[
γµ /p − /q + /k + Mψ

(p − q + k)2 − M2
ψ

/ϵ a − /ϵ a
/p − /q − /k − Mψ

(p − q − k)2 − M2
ψ

γµ

]
.

(B.37)
Due to the Dirac matrix structure, it is clear that this diagram is related to a quarko-
nium production via a CO state. Unpolarized results obtained from previous op-
erators are shown in Sec. 3.1.3 (Eq. (3.39)), while the polarized case is reported in
Sec. 2.4 (Eq. (2.107)).

B.2.2 NLO diagrams

At the αα2
s order, the partonic process describing the J/ψ production in SIDIS is

given by
γ∗(q) a(pa) → J/ψ(Pψ) + a, (B.38)

where the initial parton a can be either a gluon, Fig. B.7, or a quark/antiquark,
Fig. B.8.
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FIGURE B.7: Production of cc̄ at 2nd order from γ∗ g interaction.

FIGURE B.8: Production of cc̄ at 2nd order from γ∗ q interaction.

The diagrams relative to the first case are translated into the operators

OA
γ∗g(P, k) = 4

√
(4π)3αα2

s

ta
iktb

kj
γµ
(
/P − 2/q + 2/k + Mψ

)
/ϵ a
(
/P + 2/pb − 2/k − Mψ

)
/ϵ∗

b[
(P − 2q + 2k)2 − M2

ψ

] [
(P + 2pb − 2k)2 − M2

ψ

]
+tb

ikta
kj

/ϵ∗
b
(
/P + 2/pb + 2/k + Mψ

)
/ϵ a
(
/P − 2/q − 2/k − Mψ

)
/γµ[

(P + 2pb + 2k)2 − M2
ψ

] [
(P − 2q − 2k)2 − M2

ψ

]
 ,

OB
γ∗g(P, k) = OA

γ∗g(P, k)(q ↔ pa),

OC
γ∗g(P, k) = OA

γ∗g(P, k)(b ↔ a, pb ↔ −pa),

OD
γ∗g(P, k) = −2

√
(4π)3αα2

s ϵ
µ
a ϵ∗b

ν ηµν(pa + pb)ρ − ηµρ(2pa − pb)ν + ηρν(pa − 2pb)ν

t̂

× (i fabe)te
ij

[
γµ(/P − 2/q + 2/k + Mψ)γρ

(P − 2q + 2k)2 − M2
ψ

−
γρ(/P − 2/pb − 2/k − Mψ)γµ

(P − 2pb − 2k)2 − M2
ψ

]
,

(B.39)
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while the operators relative to the second case are

OA
γ∗q(P, k) = 2

√
(4π)3αα2

s (t
e
mnte

ij)
u(pb)γρu(pa)

t̂

×
[

γµ(/P − 2/q + 2/k + Mψ)γρ

(P − 2q + 2k)2 − M2
ψ

−
γρ(/P − 2/q − 2/k − Mψ)γµ

(P − 2q − 2k)2 − M2
ψ

]
,

OB
γ∗q(P, k) =

√
(4π)3αα2

s (t
e
ijt

e
mn)

u(pb)γτ(/q + /pa)γ
µu(pa)

ŝ
γτ

M2
ψ

,

OC
γ∗q(P, k) =

√
(4π)3αα2

s (t
e
ijt

e
mn)

u(pc)γτ(/q − /pb)γ
µu(pa)

û
γτ

M2
ψ

. (B.40)

B.2.3 Partonic helicity structure functions

In this section, we show the analytic expressions for the partonic helicity structure
functions relative to the 2 → 2 channel; we remark that this is the leading-order
contribution to the high transverse momentum region, where collinear factorization
applies.

We have selected the Gottfried-Jackson frame to present them, while the explicit
forms in other frames are obtained by applying the rotational matrix in Eq. (2.82).
Moreover, we decompose the wP (a)

Λ as

wP (a)
Λ [n] = F(a)[n] ŵP (a)

Λ [n]. (B.41)

The prefactor F(a)[n] is independent of both the photon and J/ψ polarizations, given
by P =⊥, and Λ = T, L, ∆, ∆∆, respectively. Furthermore, the modified Man-
delstam variables defined in Eq. (2.69) are used once again to provide more compact
expressions, while the superscript (a) and the dependence on the Fock-state n will be
dropped, if not otherwise stated. Finally, we remark that, while the analytic expres-
sions for the wP (a)

T and wP (a)
L were already known in Ref. [97], the complete expres-

sions for wP (a)
∆ and wP (a)

∆∆ were first shown in Ref. [112]. We mention that, in Ref. [97]
they claim to reproduce the photoproduction limit (Ref. [88]), while they found in-
consistencies with Ref. [87] when comparing the unpolarized structure functions.
On the contrary, the partonic helicity structure functions reported in the following
correctly reproduce both photoproduction and unpolarized cases.

• γ∗ + q(q̄) → cc̄[ 1S(8)
0 ] + q(q̄):

F = − 64 e2
c αα2

s
9Mψs2t(s + u)2 ,

ŵL = 8Q2t
(
Q2t + su

)
,

ŵ⊥
L = 2Q2t

[
Q2t + s(s + u)

]
+ s2(s2 + u2),

ŵT = ŵL,

ŵ⊥
T = ŵ⊥

L ,

ŵ∆ = ŵ⊥
∆ = ŵ∆∆ = ŵ⊥

∆∆ = 0. (B.42)
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• γ∗ + q(q̄) → cc̄[ 3S(8)
1 ] + q(q̄):

F = −
16 e2

qαα2
s

9M3
ψs2(Q2 − s)2(Q2 − u)2

(
4Q2t + (s + u)2

) ,

ŵL = 32Q2M2
ψt2(Q2 − s)2(Q2t + su),

ŵ⊥
L = 4M2

ψt
[
2Q8t2 + 2Q6st(s − 2t + u) + Q4s2(s2 − 2st + 2t2 − 6tu + u2)

− 2Q2s3u(s − 2t + u) + 2s4u2
]
,

ŵT = 8Q2t(Q2 − s)2
{

2Q4t2 + 2Q2t
[
2s2 + s(3t + u) + t(t − u)

]
+ s2(s + t + u)2 + t2u2

}
,

ŵ⊥
T = 4Q10t3 + 4Q8t2

[
s2 + s(t + u) + t(t − u)

]
+ 2Q6t

[
s4 − 2s3(t − 2u) + s2(−7t2 + 2tu + u2)− 4st2(t − u) + t2u2

]
− 2Q4s

[
s4(t − u) + s3u(5t − 2u)− s2(2t3 − 10t2u − 3tu2 + u3).

− st(2t3 − 4t2u + u3) + 2t3u2
]
+ Q2s2

[
s4(t − 2u) + 2s3(t2 + tu − 3u2)

+ 2s2(t3 + 3t2u − 2tu2 − 3u3)− 2su(−2t3 − t2u + tu2 + u3)

+ tu2(2t2 − 2tu − u2)
]
+ s3u(s2 + u2)

[
s2 + 2s(t + u) + 2t2 + 2tu + u2

]
,

ŵ∆ = 16Q2Mψt
√
(Q2t + su)t(Q2 − s)2

[
2Q2t + s2 + s(t + u)− ut

]
,

ŵ⊥
∆ = 2Mψ

√
(Q2t + su)t

{
4Q8t2 + 2Q6t

[
s2 + s(u − 3t)− tu

]
− Q4s

[
s3 + 2s2t + su(6t − u)− 4t2u

]
+ 2Q2s2t

[
s(t + u) + u(u − t)

]
+ s3u(s − u)(s + 2t + u)

}
,

ŵ∆∆ = 16Q2M2
ψt2(Q2t + su)(Q2 − s)2,

ŵ⊥
∆∆ = 2(Q2t + su)t

{
− 2Q8t + 2Q6

[
s2 + 3st + t(t + u)

]
− 4Q4st(s + t + u)− Q2s2(s2 + 4su − 2t2 + u2) + 2s3u(s + t + u)

}
.

(B.43)
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• γ∗ + q(q̄) → cc̄[ 3P(8)
J ] + q(q̄):

F = − 256 e2
c αα2

s

3M3
ψs2t(s + u)4

(
4Q2t + (s + u)2

) ,

ŵL = 8Q2
{

16Q8t3 − 8Q6t2
[
− s2 + 2s(t − u) + 4t2 + 6tu + u2

]
− 4Q4t

[
s4 + 2s3t + s2(5t2 + 10tu + u2) + 2s(−2t3 + 3t2u + 7tu2 + u3)

− t(4t3 + 12t2u + 11tu2 + 2u3)
]
+ Q2

[
− 2s6 + 4s5(t − u)

+ s4(5t2 + 4tu − 4u2) + 4s3(4t3 + t2u − 3tu2 − u3)

+ 2s2(8t4 + 32t3u + 21t2u2 − 2tu3 − u4)

+ 4stu(8t3 + 20t2u + 15tu2 + 2u3) + t2u4
]

+ s(s + u)
[
2s5 + 2s4(t + 2u) + s3u(3t + 4u)

+ s2u(16t2 + 17tu + 4u2) + su(16t3 + 32t2u + 17tu2 + 2u3) + tu4
]}

,
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ŵ⊥
L = 32Q10t3 − 16Q8t2

[
s2 + 2s(t − u) + 4t2 + 6tu + u2

]
+ 8Q6t

[
2s3(3t − u) + s2t(7t − 2u)− 2s(−2t3 + 3t2u + 7tu2 + u3)

+ t(4t3 + 12t2u + 11tu2 + 2u3)
]
+ 2Q4t

[
s4(−7t + 24u)

− 4s3(4t2 + tu − 2u2) + 2s2u(16t2 + 15tu − 4u2)

+ 4su(8t3 + 20t2u + 15tu2 + 2u3) + tu4
]

+ 2Q2st
[
5s5 + 4s4(8t − 11u) + 2s3(4t2 + 4tu − 9u2)

+ 2s2u(8t2 + 20tu + 9u2) + su2(24t2 + 40tu + 21u2) + u5
]

+ s2(s + u)2
[
s4 + 2s3u + 2s2u(8t + u) + 2su(8t2 + 8tu + u2) + u4

]
,

ŵT = 8Q2t
{
− 8Q8t2 + 4Q6t

[
s2 − 2su + u(4t + u)

]
− 2Q4

[
s3(3t − 2u)

+ s2t(2t + u)− s(8t3 + 4t2u + 7tu2 + 2u3) + t(−4t3 + 6tu2 + 3u3)
]

− Q2
[
s4(t + 6u)− 2s3(7t2 + 4tu − u2)− 2s2(6t3 + 13t2u + 3tu2 − u3)

+ 2su(−4t3 − t2u + 4tu2 + 3u3)− tu2(4t2 + 6tu + 3u2)
]

+ s(s + u)
[
s3(4t + 3u) + s2(4t2 + 6tu + u2) + su3 + u2(4t2 + 6tu + 3u2)

]}
,

ŵ⊥
T = −16Q10t3 + 8Q8t2

[
− 3s2 − 2su + u(4t + u)

]
+ 4Q6t

[
2s4

+ s3(5t − 2u) + s2(10t2 + 7tu + 2u2) + s(8t3 + 4t2u + 7tu2 + 2u3)

+ t(4t3 − 6tu2 − 3u3)
]
+ 2Q4

[
2s6 + s5(4u − 6t)− s4(t2 + 8tu − 4u2)

+ 2s3(3t3 + 8t2u − 2tu2 + 2u3) + 2s2(2t4 + 9t3u + 3t2u2 − 4tu3 + u4)

+ 2stu(4t3 + t2u − 4tu2 − 3u3) + t2u2(4t2 + 6tu + 3u2)
]

+ 2Q2s
[
− 3s6 + s5(t − 9u) + s4(6t2 + 11tu − 12u2)

+ 2s3(2t3 + 12t2u + 9tu2 − 6u3) + s2u(12t3 + 20t2u + 10tu2 − 9u3)

+ su2(4t3 + 8t2u + 5tu2 − 3u3) + tu3(4t2 + 6tu + 3u2)
]

+ s2(s + u)2(s2 + u2)
[
3s2 + 6s(t + u) + 4t2 + 6tu + 3u2

]
,

ŵ∆ = −8Q2Mψ

√
(Q2t + su)t

{
16Q6t2 − 8Q4t

[
2t2 + 4tu − u(s − u)

]
− 2Q2

[
2s4 − s3(3t − 2u) + s2(4t2 + 3tu + 2u2)

+ s(4t3 + 12t2u + 11tu2 + 2u3)− tu(4t2 + 8tu + 3u2)
]

+ s(s + u)
[
3s3 + s2(−4t + u) + s(−8t2 − 8tu + u2)

+ u(8t2 + 12tu + 3u2)
]}

,
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ŵ⊥
∆ = 2Mψ

√
(Q2t + su)t

{
− 16Q8t2 + 8Q6t

[
2t2 + 4tu − u(s − u)

]
+ 2Q4

[
2s4 + s3(−3t + 2u) + s2(4t2 + 3tu + 2u2)

+ s(4t3 + 12t2u + 11tu2 + 2u3)− tu(4t2 + 8tu + 3u2)
]

− Q2s
[
7s4 + 4s3(t + 2u)− 2s2u(6t + u)− 4stu(2t + u)

+ u2(8t2 + 12tu + 3u2)
]
+ s2(s − u)(s + u)2(3s + 4t + 3u)

}
,

ŵ∆∆ = −16Q2M2
ψt2(Q2t + su)

{
4Q4t − 2Q2(s2 − 2st + 2t2 + 2tu + u2)

+ (s + u)
[
s2 + u2 − 2s(2t + u)

]}
,

ŵ⊥
∆∆ = 4M2

ψ(Q
2t + su)t

{
− 4t2Q6 + Q4

[
2s2t − 4st2 + 2t(2t2 + 2tu + u2)

]
+ Q2

[
− s3t + s2tu − tu3 + stu(4t + u)

]
+ s2

[
s3 + s2(2t + 3u)

+ su(4t + 3u) + u2(2t + u)
]}

. (B.44)

• γ∗ + g → cc̄[ 1S(8)
0 ] + g:

F =
32 e2

c αα2
s

s2t(s + t)2(s + u)2(t + u)2Mψ
,

ŵL = 4Q2t
{

2Q4t2u2 + 2Q2stu(t2 + tu + 2u2)

+ s2
[
s2(t + u)2 + 2s(t3 + 2t2u + 2tu2 + u3)

+ t2u(2Q2 + 3u) + 2tu2(Q2 + u) + t4 + 2t3u + 2u4
]}

,

ŵ⊥
L = 2Q6t3u2 + 2Q4st2u

[
s(t + u) + t2 + tu + 2u2

]
+ Q2s2t

[
s4 + 2s3(t + u) + 3s2(t + u)2 + 2s(t3 + 3t2u + 4tu2 + 2u3)

+ t4 + 2t3u + 5t2u2 + 4tu3 + 3u4
]
+ s3u

[
s4 + 2s3(t + u)

+ 3s2(t + u)2 + 2s(t + u)3 + (t2 + tu + u2)2
]
,

ŵT = ŵL,

ŵ⊥
T = ŵ⊥

L ,

ŵ∆ = ŵ⊥
∆ = ŵ∆∆ = ŵ⊥

∆∆ = 0. (B.45)
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• γ∗ + g → cc̄[3S(1)
1 ] + g:

F =
256 e2

c αα2
s

27s2(s + t)2(s + u)2(t + u)2
(

4Q2t + (s + u)2
)

Mψ

,

ŵL = 4Q2t
{

8Q8t4 + 8Q6t3
[
s2 − s(t − 2u)− 2t(t + u)

]
+ 2Q4t2

[
s4 + 4t2(t + u)2 + s3(−4t + 6u) + 2st(2t2 − 5tu − 7u2)

+ s2(−4t2 − 10tu + 7u2)
]
+ 2Q2st

[
s4(−t + u) + s3(t2 − 3tu + 4u2)

+ s2(4t3 − 7tu2 + 3u3)) + st(2t3 + 8t2u − 3tu2 − 9u3) + 6t2u(t + u)2
]

+ s2
[
s4(t2 + u2) + 2s3(t3 + 2t2u + u3) + s2(t4 + 6t3u + 2t2u2 − 4tu3 + u4)

+2stu(t3 + 3t2u − 2u3) + 5t2u2(t + u)2] },

ŵ⊥
L = 2t

{
4Q10t3 − 4Q8t2

[
s(t − 2u) + 2t(t + u)

]
+ 2Q6t

[
s3t + 2t2(t + u)2

+ st(2t2 − 5tu − 7u2) + s2(3t2 − 2tu + 3u2)
]
+ 2Q4s

[
3t2u(t + u)2

+ s3t(t + 2u) + s2(5t2u + u3)− st(t3 − 2t2u + tu2 + 4u3)
]

+ Q2s2
[
s4t − 2s(t − u)2u(t + u) + 2s3(t + u)2 + 3tu2(t + u)2

+ s2t(t2 + 2tu + 6u2)
]
+ s3u(s + t + u)2(s2 + u2)

}
,

ŵT = 8Q2M2
ψ(Q

2t + su)t
{

t2
[
s2 + 2Q2(Q2 + t)

]
+ tu

[
s(s + t) + 2Q2(s − t)

]
+ u2

(
s2 − st + t2

)}
,

ŵ⊥
T = M2

ψ

{
4Q8t4 + 4Q6t3

[
2s(s + u) + t(t − u)

]
+ 2Q4t2

[
s4 − s3(t − 6u)

+ 2s2(t2 + 2u2) + 3st(t − u)u + t2u2
]
+ Q2st

[
− s4(t − 2u)

+ s3(3t2 + tu + 8u2) + s2u(8t2 + 3tu + 4u2) + st(5t − 3u)u2 + 2t2u3
]

+ s2
[
s4(t2 + u2) + 2s3u(t2 + tu + u2) + s2u2(4t2 + 2tu + u2)

+ 2st2u3 + t2u4
]}

,

ŵ∆ = −4Q2Mψ

√
(Q2t + su)t

{
8Q6t3 + 4Q4t2

[
s(s − t + 3u)− t(2t + 3u)

]
− 2Q2t

[
s3(t − 2u) + 2s2u(t − 2u) + stu(4t + 7u)− 2t2u(t + u)

]
+ s
[
s3(t2 + tu + 2u2) + s2(t3 + 3t2u + 2u3)− stu2(3t + 5u) + 3t2u2(t + u)

]}
,
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ŵ⊥
∆ = Mψ

√
(Q2t + su)t

{
− 8Q8t3 − 4Q6t2(s2 − st − 2t2 + 3su − 3tu)

+ 2Q4t
[
s3(t − 2u) + 2s2(t − 2u)u + stu(4t + 7u)− 2t2u(t + u)

]
− Q2s

[
s4t + 2s3(t2 + tu + u2) + s2(3t3 + 3t2u − tu2 + 2u3)

− 2stu(t2 + 2tu + 3u2) + 3t2u2(t + u)
]

+ s2(s − u)
[
s3(t − u)− su3 + tu2(t + u) + s2(t2 − 2u2)

]}
,

ŵ∆∆ = −8Q2M2
ψ(Q

2t + su)t
[
2Q4t2 − 2Q2t(t2 − su + tu) + s(s − t)u(t + u)

]
,

ŵ⊥
∆∆ = M2

ψ(Q
2t + su)t

{
− 4Q6t2 + Q4

[
− 4stu + 4t2(t + u)

]
+ Q2

[
2s3t − 2s2(t2 + u2) + 2stu(t + u)

]
+ s2(s + t + u)(s2 + u2)

}
.

(B.46)

• γ∗ + g → cc̄[ 3S(8)
1 ] + g:

ŵP
Λ [

3S(8)
1 ] =

15
8

ŵP
Λ [

3S(1)
1 ] . (B.47)
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• γ∗ + g → cc̄[ 3P(8)
J ] + g:

The formulae for the P-wave components of ŵP
L and ŵP

T are not reported here,
but they are available upon request as a Wolfram Mathematica notebook file.
Only ŵP

∆ and ŵP
∆∆ are given below in an analytical form.

F = − 192
√
(Q2t + su)t e2

c αα2
s

s2t2(s + t)3(s + u)4(t + u)3 [4Q2t + (s + u)2] M2
ψ

,

ŵ∆ = 8Q2t
{

32Q8t3(s3t − st2u − s2u2 + tu3)− 8Q6t2
[
2s5u + s4(6t2 − 2tu + 6u2)

+ s3(5t3 + 11t2u + 10u3)− s2(t4 + 7t3u + 6tu3 − 4u4)

+ su(−6t4 − 11t3u + 5t2u2 − 2tu3 + 2u4) + tu2(−t3 + 5t2u + 10tu2 + 2u3)
]

− 4Q4t
[
2s7(t + u) + 2s6(2t2 + 2tu + 5u2) + s5(−5t3 + 10t2u − 4tu2 + 20u3)

+ s4(−8t4 − 8t3u + 18t2u2 − 7tu3 + 24u4)

− s3(t5 + 9t4u + 14t3u2 − 15t2u3 + 11tu4 − 14u5)

+ s2(2t6 + 15t5u + 23t4u2 + 16t3u3 + 41t2u4 + 5tu5 + 6u6)

+ stu(4t5 + 23t4u + 29t3u2 + 23t2u3 + 27tu4 + 3u5)

+ t2u2(2t4 + 3t3u − 7t2u2 − 12tu3 − 3u4)
]
+ 2Q2

[
2s8(t2 − tu − 2u2)

+ s7(7t3 + 9t2u + 6tu2 − 12u3) + s6(3t4 + 27t3u + 20t2u2 + 28tu3 − 20u4)

+ s5u(16t4 + 42t3u + 21t2u2 + 43tu3 − 20u4)

+ s4(4t6 + 8t5u + 33t4u2 + 54t3u3 + 18t2u4 + 37tu5 − 12u6)

+ s3(2t7 + 6t6u − t5u2 + 8t4u3 + 27t3u4 − 11t2u5 + 11tu6 − 4u7)

+ s2tu(6t6 + 20t5u + 19t4u2 + 25t3u3 + 39t2u4 + 4tu5 + 5u6)

+ st2u2(6t5 + 22t4u + 37t3u2 + 52t2u3 + 44tu4 + 9u5)

+ t4u3(2t3 + 4t2u + tu2 − u3)
]
+ s(s + u)

[
s7(3t2 + 10tu + 7u2)

+ s6(8t3 + 26t2u + 30tu2 + 20u3) + s5(7t4 + 20t3u + 43t2u2 + 42tu3 + 32u4)

+ 2s4(t5 + 9t4u + 27t3u2 + 35t2u3 + 23tu4 + 15u5)

+ s3u(20t5 + 48t4u + 56t3u2 + 45t2u3 + 26tu4 + 17u5)

+ 2s2u(3t6 + 7t5u + 7t4u2 + 14t3u3 + 24t2u4 + 12tu5 + 3u6)

+ stu2(8t5 + 32t4u + 57t3u2 + 60t2u3 + 37tu4 + 6u5) + 2t3u3(t3 + 2t2u − u3)
]}

,
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ŵ⊥
∆ = t

{
64Q10t3(s3t − st2u − s2u2 + tu3)− 16Q8t2

[
2s5u + s4(6t2 − 2tu + 6u2)

+ s3(5t3 + 11t2u + 10u3)− s2(t4 + 7t3u + 6tu3 − 4u4)

+ tu2(−t3 + 5t2u + 10tu2 + 2u3) + su(−6t4 − 11t3u + 5t2u2 − 2tu3 + 2u4)
]

− 8Q6t
[
2s7(t + u) + 2s6(t2 + tu + 5u2) + s5(−5t3 + 6t2u − 6tu2 + 20u3)

+ s4(−8t4 − 8t3u + 18t2u2 − 5tu3 + 24u4)

− s3(t5 + 9t4u + 14t3u2 − 19t2u3 + 9tu4 − 14u5)

+ s2(2t6 + 15t5u + 23t4u2 + 16t3u3 + 43t2u4 + 5tu5 + 6u6)

+ stu(4t5 + 23t4u + 29t3u2 + 23t2u3 + 27tu4 + 3u5)

+ t2u2(2t4 + 3t3u − 7t2u2 − 12tu3 − 3u4)
]
+ 4Q4

[
s8(6t2 − 4u2)

+ s7(15t3 + 23t2u + 12tu2 − 12u3) + s6(17t4 + 37t3u + 32t2u2 + 32tu3 − 20u4)

+ s5(6t5 + 28t4u + 40t3u2 + 21t2u3 + 39tu4 − 20u5)

+ s4(4t6 + 10t5u + 33t4u2 + 56t3u3 + 6t2u4 + 31tu5 − 12u6)

+ s3(2t7 + 6t6u − 3t5u2 − 4t4u3 + 17t3u4 − 25t2u5 + 9tu6 − 4u7)

+ s2tu(6t6 + 20t5u + 13t4u2 + 11t3u3 + 31t2u4 + 5u6)

+ st2u2(6t5 + 22t4u + 37t3u2 + 52t2u3 + 44tu4 + 9u5)

+ t4u3(2t3 + 4t2u + tu2 − u3)
]
+ 2Q2s

[
s8(−5t2 + 12tu + 9u2)

+ s7(−13t3 + 9t2u + 43tu2 + 29u3) + s6(−19t4 + 2t3u + 35t2u2 + 64tu3 + 52u4)

+ s5(−9t5 + t4u + 53t3u2 + 83t2u3 + 88tu4 + 62u5)

+ s4u(16t5 + 60t4u + 110t3u2 + 145t2u3 + 80tu4 + 45u5)

+ s3u(6t6 + 34t5u + 68t4u2 + 105t3u3 + 127t2u4 + 47tu5 + 21u6)

+ s2u2(14t6 + 52t5u + 95t4u2 + 114t3u3 + 105t2u4 + 28tu5 + 6u6)

+ stu3(10t5 + 47t4u + 83t3u2 + 79t2u3 + 45tu4 + 6u5) + 2t3u4(t3 + 2t2u − u3)
]

− s2(s2 − u2)
[
s6(−t2 + 10tu + 3u2) + s5(t3 + 28t2u + 33tu2 + 6u3)

+ s4(3t4 + 45t3u + 49t2u2 + 41tu3 + 6u4) + t2u3(t3 + 3t2u + tu2 − u3)

+ s3(t5 + 30t4u + 46t3u2 + 40t2u3 + 41tu4 + 6u5)

+ s2u(7t5 + 22t4u + 46t3u2 + 49t2u3 + 33tu4 + 3u5)

+ stu2(7t4 + 30t3u + 45t2u2 + 28tu3 + 10u4)
]}

,
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ŵ∆∆ = 16Q2Mψt
√
(Q2t + su)t

{
8Q6t2(s3t − s2u2 − st2u + tu3)

− 2Q4t
[
2s5(t + u) + 4s4(t2 + u2) + s3(5t3 + 9t2u + 2tu2 + 8u3)

− s2(t4 + 3t3u + 4tu3 − 4u4) + su(−6t4 − 7t3u + t2u2 − 2tu3 + 2u4)

+ tu2(−t3 + 5t2u + 6tu2 + 2u3)
]
− 2Q2

[
2s6u(t + u) + s5u(t2 + tu + 4u2)

+ s4(−t4 + t3u + 4t2u2 + tu3 + 6u4) + s3u(−t4 + t3u + 4t2u2 − 2tu3 + 4u4)

+ s2(t6 + 8t5u + 9t4u2 + 10t3u3 + 9t2u4 + tu5 + 2u6)

+ stu(2t5 + 10t4u + 11t3u2 + 13t2u3 + 7tu4 + u5)

+ t2u2(t4 + 2t3u − tu3 − u4)
]
+ s(s + u)

[
3s5(t + u)2

+ s4(4t3 + 9t2u + 10tu2 + 5u3) + s3u(6t3 + 15t2u + 14tu2 + 7u3)

+ s2(−t5 + 2t4u + 12t3u2 + 13t2u3 + 5tu4 + 3u5)

− su(t5 + 6t4u + 6t3u2 + 4t2u3 − tu4 − 2u5) + 2tu4(2t2 + 2tu + u2)
]}

.

ŵ⊥
∆∆ = 2Mψ

√
(Q2t + su)t

{
16Q8t3(s3t − s2u2 − st2u + tu3)

− 4Q6t2
[
2s5(t + u) + 4s4(t2 + u2) + s3(5t3 + 9t2u + 2tu2 + 8u3)

− s2(t4 + 3t3u + 4tu3 − 4u4) + tu2(−t3 + 5t2u + 6tu2 + 2u3)

+ su(−6t4 − 7t3u + t2u2 − 2tu3 + 2u4)
]
− 4Q4t

[
s6(t2 + tu + 2u2)

+ s5(−2t3 + 3t2u − 2tu2 + 4u3) + s4(−t4 + t3u + 8t2u2 − 2tu3 + 6u4)

+ s3u(t4 + t3u + 6t2u2 − 3tu3 + 4u4) + t2u2(t4 + 2t3u − tu3 − u4)

+ s2(t6 + 8t5u + 9t4u2 + 8t3u3 + 10t2u4 + tu5 + 2u6)

+ stu(2t5 + 10t4u + 11t3u2 + 13t2u3 + 7tu4 + u5)
]

− 2Q2st
[
2s7t + s6(3t2 + 3tu − 5u2) + 2s5(2t3 − t2u − tu2 − 7u3)

+ s4(5t4 + 5t3u − 12t2u2 − 6tu3 − 18u4) + s3(5t4u − 16t2u3 − 5tu4 − 12u5)

+ s2u2(11t4 + 9t3u + t2u2 + 3tu3 − 5u4)− 2tu5(2t2 + 2tu + u2)

+ su3(11t4 + 10t3u + 6t2u2 − tu3 − 2u4)
]
− s2(s + u)

[
s6t(−t + u)

− 2s5(t − u)2(t + u) + s4(t4 + 9t3u − 3t2u2 − 3tu3 − 4u4)

+ s3u(12t4 + 3t3u − 12t2u2 − 3tu3 − 2u4) + t2u4(t2 − 2tu − u2)

+ s2tu(2t4 + 6t3u + 3t2u2 − 3tu3 + 2u4)

+ stu2(2t4 + 12t3u + 9t2u2 + 2tu3 + u4)
]}

, (B.48)

B.2.4 Partonic unpolarized structure functions

For completeness, we present the partonic amplitudes squared appearing in the un-
polarized J/ψ production, where all azimuthal dependencies are integrated over
(see Eq. (2.24)). These quantities are obtained by combining the amplitudes squared
M(a)

µν [n] (for the process γ∗ a → cc̄[n] a) with the projectors ϵ
µν
P (with P =⊥, ∥),
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where ϵ
µν
⊥ = −η

µν
⊥ and ϵ

µν

∥ = 4 ϵ
µ

∥ϵν
∥, namely

∣∣∣M(a)
P [n]

∣∣∣2 =
1
2

ϵ
µν
P M(a)

µν [n], (B.49)

as also done in Eq. (3.24).
In particular, we decompose them as∣∣∣M(a)

P [n]
∣∣∣2 = F(a)[n] M(a)

P [n], (B.50)

where F(a)[n] is a prefactor independent of the photon polarization.
In the following, we adopt the modified Mandelstam variables defined in

Eq. (2.69), and we will drop the superscript (a) and the n state dependence, if not
otherwise stated.

• γ∗ + q(q̄) → cc̄[ 1S(8)
0 ] + q(q̄):

F = − 64 e2
c αα2

s

3 Mψ s2 t (s + u)2 ,

M⊥ = 2 Q4t2 + 2 Q2 s t (s + u) + s2 (s2 + u2) ,

M = 8 Q2 t
(
Q2t + su

)
. (B.51)

• γ∗ + q(q̄) → cc̄[ 3S(8)
1 ] + q(q̄):

F = −
32 e2

q αα2
s

9 M3
ψ s2 (Q2 − s)2 (Q2 − u)2 ,

M⊥ = 2Q6t2 (2s + t) + 2Q4s
[
s2u − st (3t − 2u)− 2t3]

+ Q2s2
[
s2 (t − 2u) + 2s

(
t2 − 4tu − u2)+ t

(
2t2 − 2tu − u2) ]

+ s3u
(
s2 + 2st + 2t2 + 2tu + u2) ,

M = 8 Q2 (Q2 − s
)2

t (s + t)2 . (B.52)

• γ∗ + q(q̄) → cc̄[ 3P(8)
J ] + q(q̄):

F =
256 e2

c αα2
s

3 M3
ψ s2 t (s + u)4 ,

M⊥ = 8Q6t
[
2s2 + st + t (2t + u)

]
− 2Q4

[
4s4 + 12s3t

+ s2 (19t2 + 8tu + 4u2)+ 2st
(
6t2 + tu − 2u2)+ t2 (8t2 + 12tu + 7u2) ]

+ 2Q2s
[
6s4 + s3 (7t + 6u) + s2 (4t2 + 3tu + 6u2)− su

(
8t2 + 3tu − 6u2)

− tu
(
8t2 + 12tu + 7u2) ]− s2 (s + u)

[
7s3 + s2 (12t + 7u)

+ s
(
8t2 + 16tu + 7u2)+ s

(
8t2 + 16tu + 7u2)+ u

(
8t2 + 12tu + 7u2) ],
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M = −32Q6t
[
s2 − st − t (2t + u)

]
+ 8Q4

[
2s4 + 4s3t

+ s2 (5t2 + 8tu + 2u2)− 2st
(
6t2 + tu − 2u2)− t2 (8t2 + 12tu + 7u2) ]

− 8Q2s (s + u)
[
2s3 + 2s2t + s

(
8t2 + 5tu + 2u2)+ t

(
8t2 + 12tu + 7u2) ].

(B.53)

• γ∗ + g → cc̄[ 1S(8)
0 ] + g:

F =
96 e2

c αα2
s

Mψ s2 t (s + t)2 (s + u)2 (t + u)2 ,

M⊥ = 2Q6t3u2 + 2Q4st2u
[
s (t + u) + t2 + tu + 2u2

]
+ Q2s2t

[
s4 + 2s3 (t + u) + 3s2 (t + u)2 + 2s

(
t3 + 3t2u + 4tu2 + 2u3)

+ t4 + 2t3u + 5t2u2 + 4tu3 + 3u4
]
+ s3u

[
s4 + 2s3 (t + u)

+ 3s2 (t + u)2 + 2s (t + u)3 +
(
t2 + tu + u2)2

]
,

M = 8Q6t3u2 + 8Q4st2u
[
s (t + u) + t2 + tu + 2u2

]
+ 4Q2s2t

[
s2 (t + u)2

+ 2s
(
t3 + 2t2u + 2tu2 + u3)+ t4 + 2t3u + 3t2u2 + 2tu3 + 2u4

]
. (B.54)

• γ∗ + g → cc̄[ 3S(1)
1 ] + g:

F =
256 e2

c αα2
s

27Mψs2 (s + t)2 (s + u)2 (t + u)2 ,

M⊥ = −4Q6t2 (s2 + t2)
+ 2Q4t

[
s3 (3t − 2u) + 3s2t (t + u) + 2st2 (t − u) + 2t3 (t + u)

]
− 2Q2s

[
s3 (t − u)2 − 2s2tu (t + u)− st2u (2t − u)− 2t3u (t + u)

]
+ 2s2

[
s3 (t2 + tu + u2)+ s2 (t + u)3 + stu

(
t2 + 3tu + u2)+ t2u2 (t + u)

]
,

M = 8Q6t2 (s2 − 2t2)− 8Q4t
(
s2 − 2t2) [s (t − u) + t (t + u)

]
+ 4Q2s

[
s3 (t2 + u2)+ 2s2t2 (t + u) + st2 (t2 + 6tu + u2)+ 4t3u (t + u)

]
.

(B.55)

• γ∗ + g → cc̄[ 3S(8)
1 ] + g:

F[ 3S(8)
1 ] =

15
8

F[ 3S(1)
1 ],

M⊥[
3S(8)

1 ] = M⊥[
3S(1)

1 ],

M [ 3S(8)
1 ] = M [ 3S(1)

1 ]. (B.56)
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• γ∗ + g → cc̄[ 3P(8)
J ] + g:

F =
384 e2

c αα2
s

M3
ψs2t (s + t)3 (s + u)4 (t + u)3 ,

M⊥ = −8Q8t2
[
2s5t − 2s4u2 + s3t2(2t − 3u)− s2tu(t2 + 3tu − 3u2)

− stu(2t3 + t2u − tu2 − u3) + t2u3(2t + u)
]
+ 2Q6t

[
4s7(t + u)

+ 4s6(5t2 + 2u2) + 4s5(5t3 + 6t2u − 2tu2 + 4u3) + 2s4(9t4 − 9t3u

+ 4t2u2 − 6tu3 + 4u4) + s3(12t5 − 2t4u − 29t3u2 + 33t2u3 − 12tu4 + 4u5)

− s2t(2t5 + 20t4u + 25t3u2 − t2u3 − 16tu4 + 4u5)− st2u(12t4 + 26t3u

+ 2t2u2 + tu3 + u4)− t3u2(2t3 − 6t2u − 15tu2 − 7u3)
]

− 2Q4
[
2s8(3t2 + tu − 2u2) + s7(21t3 + 3t2u + 10tu2 − 8u3)

+ s6(28t4 + 15t3u − 15t2u2 + 22tu3 − 12u4) + s5(27t5 + 11t4u + 8t3u2

− 20t2u3 + 26tu4 − 8u5) + s4(16t6 + 17t5u − 20t4u2 + 2t3u3 − 33t2u4

+ 18tu5 − 4u6) + s3t(2t6 + 8t5u − 3t4u2 − 19t3u3 − 19t2u4 − 17tu5 + 6u6)

− s2t2(2t6 + 14t5u + 30t4u2 + 33t3u3 + 46t2u4 + 21tu5 + 4u6)

− 2st3u(2t5 + 10t4u + 16t3u2 + 20t2u3 + 19tu4 + 7u5)− 2t6u2(t + u)2
]

+ Q2s
[
s8(7t2 − 5tu − 12u2) + s7(25t3 + 3t2u − 18tu2 − 36u3)

+ s6(37t4 + 25t3u − 12t2u2 − 20tu3 − 60u4) + s5(39t5 + 39t4u + 16t3u2

− 18t2u3 − 6tu4 − 60u5) + s4(29t6 + 83t5u + 72t4u2 + 88t3u3 + 40t2u4

+ 22tu5 − 36u6) + s3(9t7 + 75t6u + 148t5u2 + 176t4u3 + 178t3u4 + 102t2u5

+ 22tu6 − 12u7) + s2tu(22t6 + 107t5u + 199t4u2 + 211t3u3 + 177t2u4

+ 73tu5 + 9u6) + st2u2(17t5 + 69t4u + 107t3u2 + 105t2u3 + 71tu4 + 21u5)

+ 4t5u3(t + u)2
]
+ s2(s + u)

[
7s7u(t + u) + s6u(25t2 + 38tu + 21u2)

+ s5(2t4 + 47t3u + 88t2u2 + 78tu3 + 35u4) + s4(4t5 + 63t4u + 132t3u2

+ 156t2u3 + 98tu4 + 35u5) + s3(2t6 + 47t5u + 136t4u2 + 190t3u3 + 156t2u4

+ 78tu5 + 21u6) + s2u(13t6 + 70t5u + 136t4u2 + 132t3u3 + 88t2u4

+ 38tu5 + 7u6) + stu2(13t5 + 47t4u + 63t3u2 + 47t2u3 + 25tu4 + 7u5)

+ 2t4u3(t + u)2
]
,
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M = +32Q8t2
[
s5t − s4u2 − 2s3t3 + s2t2u(t + 3u) + stu(2t3 + t2u − tu2 − u3)

− t2u3(2t + u)
]
− 8Q6t

[
2s7(t + u) + 4s6(2t2 + u2)− s5(t3 − t2u + 2tu2 − 8u3)

− s4(21t4 + 13t3u + 18t2u2 − 2tu3 − 4u4)− 2s3(6t5 + 10t4u + t3u2 + 4t2u3

− 6tu4 − u5) + 2s2t(t5 + 10t4u + 11t3u2 + 9t2u3 + 6tu4 + 5u5)

+ st2u(12t4 + 26t3u + 2t2u2 + tu3 + u4) + t3u2(2t3 − 6t2u − 15tu2 − 7u3)
]

+ 16Q4
[
s8(t2 − u2) + s7(3t3 + tu2 − 2u3)− s6(2t4 + 2t3u + 2t2u2 − tu3 + 3u4)

− s5(12t5 + 16t4u + 16t3u2 − t2u3 + tu4 + 2u5)− s4(10t6 + 28t5u + 28t4u2

+ 13t3u3 − 7t2u4 + 3tu5 + u6)− s3t(t6 + 9t5u + 18t4u2 + t3u3 − 15t2u4

− 10tu5 + 2u6) + s2t2(t6 + 7t5u + 13t4u2 + 18t3u3 + 35t2u4 + 24tu5 + 6u6)

+ st3u(2t5 + 10t4u + 16t3u2 + 20t2u3 + 19tu4 + 7u5) + t6u2(t + u)2
]

+ 8Q2s(s + u)
[
2s7u(t + u) + 2s6u(3t2 + 3tu + 2u2)

+ s5(5t4 + 15t3u + 18t2u2 + 14tu3 + 6u4) + s4(15t5 + 38t4u + 53t3u2

+ 40t2u3 + 22tu4 + 4u5) + s3(15t6 + 52t5u + 88t4u2 + 81t3u3

+ 47t2u4 + 19tu5 + 2u6) + s2t(5t6 + 32t5u + 78t4u2 + 90t3u3 + 68t2u4

+ 34tu5 + 9u6) + st2u(7t5 + 31t4u + 47t3u2 + 39t2u3 + 23tu4 + 7u5)

+ 2t5u2(t + u)2
]
. (B.57)
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Kinematic constraints

In Chapter 2 we derived the differential cross section for J/ψ-meson production in-
cluding its subsequent decay into a ℓ+ℓ−-pair. In particular, we showed how to eval-
uate the different helicity structure functions when adopting the NRQCD approach
combined with the collinear factorization, providing numerical results for the EIC
kinematics. In this appendix, we want to gather some useful constraints specific for
the SIDIS process.

The first class of constraints, denoted here as theoretical, derive from the phys-
ical region available for each Mandelstam variable. The second one, related to the
numerical computation, is due to the fact that all SIDIS variables are somehow con-
nected to each other; thus, a constraint on one variable automatically limits all the
others.

Theoretical constraints

Starting from the first class, in Sec. 2.1 we introduced the Mandelstam variables in
Eq. (2.55), while their explicit formulae are given in Eq. (2.57). In the same section,
the reasonable threshold condition for ŝ, related to the quarkonium mass Mψ, was
also introduced (Eq. (2.58)). Here, we present similar constraints for the remaining
Mandelstam variables, related to the partonic process

γ∗(q) + a(pa) → J/ψ(Pψ) + a(p′a). (C.1)

It is easier to consider a specific frame, and then write the results in terms of
invariant quantities.
In the γ∗ p cm frame, the initial particles are back-to-back, so the photon and parton
three-momenta cancel each other out,1 leading to

ŝ = (q + pa)
2 = (Eq + Epa)

2 + (q + pa)
2 = (Eq + Epa)

2. (C.2)

Moreover, the three-momenta equivalence implies a relation between the two ener-
gies

q = −pa ⇒ E2
q + Q2 = E2

pa
. (C.3)

From the previous equations, it is straightforward to derive the relation between the
energy component of the initial particles with ŝ and Q; therefore,

qµ =

(
ŝ − Q2

2
√

ŝ
, 0, 0,

ŝ + Q2

2
√

ŝ

)
,

pµ
a =

ŝ + Q2

2
√

ŝ
(1, 0, 0, −1) . (C.4)

1We are considering the collinear factorization framework, for which Eq. (2.53) holds.
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Similar relations to Eqs. (C.2) and (C.3) hold for the final state J/ψ + a, from which
one easily obtains the J/ψ energy explicit form. Moreover, introducing the scattering
angle θψ, evaluated respect to the photon direction, and imposing that the J/ψ does
not have a component along the Y-axis, the J/ψ four-momentum is given by

Pµ
ψ =

(
ŝ + M2

ψ

2
√

ŝ
,

ŝ − M2
ψ

2
√

ŝ
sin θψ, 0,

ŝ − M2
ψ

2
√

ŝ
cos θψ

)
. (C.5)

Using these momenta explicit forms, it is possible to write the Mandelstam variables
t̂ and û in terms of ŝ and the scattering angle θψ, namely

t̂ = (q − Pψ)
2 = M2

ψ − Q2 − 2q · Pψ

= M2
ψ − Q2 − 1

2ŝ

[
(ŝ − Q2)(ŝ + M2

ψ)− (ŝ + Q2)(ŝ − M2
ψ) cos θψ

]
= M2

ψ − Q2 − 1
2ŝ

[
ŝ (M2

ψ − Q2)(1 + cos θψ) + (ŝ2 − M2
ψQ2)(1 − cos θψ)

]
(C.6)

and

û = (pa − Pψ)
2 = M2

ψ − 2pa · Pψ

= M2
ψ − ŝ + Q2

2ŝ

[
(ŝ + M2

ψ) + (ŝ − M2
ψ) cos θψ

]
= M2

ψ − ŝ + Q2

2ŝ

[
ŝ(1 + cos θψ) + M2

ψ(1 − cos θψ)
]

. (C.7)

The two extreme values of the Mandelstam variables are obtained by imposing θψ =
0 and θψ = π. The former gives

t̂max = 0, ûmin = −(ŝ − M2
ψ)− Q2; (C.8)

while for θ = π we have

t̂min = −
(ŝ − M2

ψ)(ŝ + Q2)

ŝ
, ûmax = −

M2
ψ Q2

ŝ
. (C.9)

All together, the Mandelstam variables are constrained according to

ŝ ≥ M2
ψ, 0 ≥ t̂ ≥ −

(ŝ − M2
ψ)(ŝ + Q2)

ŝ
, −

M2
ψ Q2

ŝ
≥ û ≥ −(ŝ − M2

ψ)− Q2.
(C.10)

Notice that the condition
ŝ + t̂ + û = M2

ψ − Q2 (C.11)

is always fulfilled.

Numerical computation constraints

Moving to the numerical computation point of view, by evaluating one of the vari-
able in a defined range, we indirectly impose limitations for all the others.

Before that, we introduce another useful quantity. Complementary to the photon
virtual mass Q2 = −q2, and the Lorentz-invariant quantities xB, y and z defined in
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Eq. (2.4), we have the invariant mass W of the photon-proton system,

W2 = (q + P)2 = m2
p − Q2 + 2 P · q. (C.12)

Notice that the scalar product P · q is involved in the xB, y and z definitions, see
Eq. (2.4). Moreover, it is related to the cm energy of the process S via

P · q = y P · l = y
S − m2

e − m2
P

2
, (C.13)

where S is the total cm energy. In the previous equations we kept all the masses,
although the the total cm energy of the process is usually much bigger compared to
them, S ≫ me, mp.

Thus, it is possible to identify relations among Q2, W and the typical SIDIS vari-
ables

Q2 = xB y
(

S − m2
p − m2

e

)
,

Q2 = xB

(
W2 + Q2 − m2

p

)
,

W2 + Q2 − m2
p = y

(
S − m2

p − m2
e

)
,

W2 − m2
p = (1 − xB) y

(
S − m2

p − m2
e

)
. (C.14)

Explicit relations can be found also for z, but they require a specific choice of the
reference frame.

In the proton rest frame, where its momentum is given by

P = (mp, 0), (C.15)

z is obtained from the ratio between the quarkonium and photon energies, respec-
tively Eψ and ν,

z =
mp Eψ

P · q
=

Eψ

ν
. (C.16)

Moreover, the photon energy is related to the electron beam energy E by

ν = y E. (C.17)

At the same time, the hadron energy can be written in terms of more convenient
quantities, corresponding to the quarkonium mass and momentum components

E2
ψ = M2

ψ + P2
L + P2

T, (C.18)

with the longitudinal momentum PL that is related to the Feynman-x variable

xF = 2
PL√

S
. (C.19)
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Alternatively, one can consider the cm frame, where the proton and the electron
in the initial state are back-to-back, namely2

P∗ = (Ep, 0, p), l∗ = (E∗, 0,−p); (C.20)

in the previous definition we are imposing that the beams are along the Ẑ-axis, with
the proton moving in the positive direction. Notice that the energies of the two
beams are correlated, since √

S = Ep + E∗, (C.21)

and the modulus p of the three-momentum can be derived from one of the energies,
e.g.

p =
√

Ep − m2
p. (C.22)

In this frame, z is given by

z =
Ep E∗

ψ − p P∗
L

P · q
, (C.23)

where P∗
L can always be recast into xF according to Eq. (C.19).

It is now clear that, via Eq. (C.14) and including Eq. (C.16) or (C.23) (or analogous
equations), all variables are connected.

Moreover, each variable presents an upper and lower limit given by experimen-
tal conditions,

xB
exp
min ≤ xB ≤ xB

exp
max, yexp

min ≤ y ≤ yexp
max, zexp

min ≤ z ≤ zexp
max,

Qexp
min ≤ Q ≤ Qexp

max, Wexp
min ≤ W ≤ Wexp

max, xF
exp
min ≤ xF ≤ xF

exp
max. (C.24)

If these experimental boundaries are absent, the above conditions coincide with their
(theoretical) physical limits. Once we have identified the available region for each
variable, it is finally possible to understand how the boundaries of one variable in-
fluence the others.

Suppose for example to integrate the differential cross section over z, y, xB in the
cm frame. Integration over z will be then limited by (see also Eq. (C.23))

max

(
zmin,

2Ep
(
Eψ − PL

)
min

W̃2
max + Q2

max

)
≤ z ≤ min

(
zmax,

2Ep
(
Eψ − PL

)
max

W̃2
min + Q2

min

)
, (C.25)

while xB integration will be performed in the region

max

(
xBmin,

Q2
min

W̃2
max + Q2

min

,
z Q2

min
2Ep(Eψ − PL)max

)
≤ xB ≤

min

(
xBmax,

Q2
max

W̃2
min + Q2

max
,

z Q2
max

2Ep(Eψ − PL)min

)
, (C.26)

2The superscript "∗" implies that the quantity is measured in the cm frame.
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and finally y boundaries are given by

max

(
ymin,

W̃2
min + Q2

min
S

,
Q2

min
xBS

,
W̃2

min
(1 − xB)S

,
2Ep

S
(Eψ − PL)min

zh

)
≤ y ≤

min

(
ymax,

W̃2
max + Q2

max
S

,
Q2

max
xBS

,
W̃2

max
(1 − xB)S

,
2Ep

S
(Eψ − PL)max

zh

)
, (C.27)

where W̃2 = W2 − m2
p.

This example can be extended to other integration and applied to different
frames.
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