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Abstract—The development of a device for long-term and 
continuous monitoring of epilepsy is a very challenging objective, 
due to the high accuracy standards and nearly zero false alarms 
required by clinical practices. To comply with such requirements, 
most of the approaches in the literature rely on a high number of 
acquisition channels and exploit classifiers operating on pre- 
processed features, hand-crafted considering the available data, 
currently fairly limited. Thus, they lack comfort, portability, and 
adaptability to future use cases and datasets. A step forward is 
needed towards the implementation of unobtrusive, wearable 
systems, with a reduced number of channels, implementable on ultra-
low-power computing platforms. Leveraging the promising ability of 
transformers in capturing long-term raw data depen- dencies in time 
series, we present in this work EEGformer, a compact transformer 
model for more adaptable seizure detection, that can be executed in 
real-time on tiny MicroController Units (MCUs) and operates on just 
the raw electroencephalography (EEG) signal acquired by the 4 
temporal channels. Our proposed model is able to detect 73% of the 
examined seizure events (100% when considering 6 out of 8 
patients), with an average onset detection latency of 15.2s. The 
False Positive/hour (FP/h) rate is equal to 0.8 FP/h, although 100% 
specificity is obtained in most tests, with 5/40 outliers that are 
mostly caused by EEG artifacts. We deployed our model on the 
Ambiq Apollo4 MCU platform, where inference run requires 405 
ms and 1.79 mJ at 
96 MHz operating frequency, demonstrating the feasibility of 
epilepsy detection on raw EEG traces for low-power wearable 
systems. Considering the CHB-MIT Scalp EEG dataset as a 
reference, we compare with a state-of-the-art classifier, acting on 
hand-crafted features designed on the target dataset, reaching well-
aligned accuracy results and reducing the onset detection latency by 
over 20%. Moreover, we compare with two adequately optimized 
Convolutional Neural Networks-based approaches, outperforming 
both alternatives on all the accuracy metrics. 

 
Index Terms—deep learning, electroencephalography, time traces, 

transformer 
 

I. INTRODUCTION 

Epilepsy is a chronic neurological disease affecting more 
than 50 million people in the world [1]. It manifests itself as 
recurring seizures, interfering with the normal brain electrical 
activity and potentially leading to loss of movement control, 
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or even loss of consciousness. Antiepileptic drugs are the 
most common treatment, however alternative options for drug- 
resistant cases include brain surgery, and implantable neu- 
rostimulators [2]. As seizure occurrence significantly degrades 
the quality of life, electroencephalography (EEG) monitoring 
is a topic of great interest. Furthermore, since long-term 
monitoring can only be achieved with compact, wearable 
devices, there is a need for solutions based on a reduced 
number of EEG channels for integration in low-power and 
unobtrusive embedded systems, to avoid stigma [3], [4]. 

Ref. [5] and the more recent [6] and [7] present an in- 
depth survey of the approaches to EEG processing for seizure 
detection explored in the literature. The approaches exploited 
in the last few years were multi-faceted, analyzing the EEG 
signal in the time [8], frequency [9], and wavelet [10] domains, 
or by empirical mode decomposition (EMD) [11]. Extensive 
research has also been done on the classifier design, either 
exploiting traditional machine learning methods like Support 
Vector Machines (SVMs), and Random Forests (RF) [3], [12], 
or relying on Convolutional Neural Networks (CNNs) [13]. 
Most recently, the use of transformers for the EEG signal 
processing and classification has been explored [14]–[16], 
targeting also the epilepsy monitoring field [17]–[19]. How- 
ever, the proposed transformer models in [18], [19] work on 
pre-processed features extracted through short-time Fourier 
transforms, and their memory footprint and the number of 
operations (OPs) are not affordable for embedded deployment. 
Although the work of [17] eliminates the feature extraction 
step, it does not explicitly target embedded deployment, and a 
clear indication of the model’s memory footprint and required 
OPs is missing. Furthermore, all referenced works rely on a 
complete 18/19 electrode set for data acquisition, which is not 
compatible with an unobtrusive wearable setup. 

In this work, we take inspiration from the main findings 
of [3], where the possibility of non-invasive patient monitor- 
ing through a reduced implant containing only the temporal 
electrodes is verified, as well as the need for a subject-specific 
training approach, providing up to 100% sensitivity and speci- 
ficity within a memory footprint suitable for a microcontroller, 
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thus embeddable in a device causing minimal discomfort to 
the patient [20], [21]. The classification required hand-crafted 
feature extraction, namely the energy of the signal after 4- 
level wavelet decomposition, and achieved an average onset 
detection latency of 19s, whose improvement would allow a 
more prompt alert to the patient/caregiver. Moving from such 
premises, this paper provides the following contributions: 

• the definition of EEGformer, a small-scale (50.6K pa- 
rameters and 14.7 MOPs) transformer model for online 
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channels, without handcrafted feature extractors, achiev- 
ing results comparable with state-of-art (SOA) 4-channel 
feature-based classifiers with a 20% lower detection la- 
tency; 

• the evaluation of an effective training strategy, demon- 
strating a specificity improvement up to 100% thanks to 
global pre-training and subject-specific fine-tuning; 

• comparison of our EEGformer with two CNN models, 
representative of alternative deep neural network-based 
(DNN) detectors for low channel count; 

• the implementation on a MicroController Unit (MCU), 
where inference execution requires 405ms and 1.79mJ, 
showing its feasibility for real-time monitoring. 

II. CLASSIFICATION MODEL 

We address the seizure detection task as a binary classi- 
fication problem between a non-seizure and a seizure class. 
We describe in the following the architecture of our proposed 
EEGformer. To enable a comparison with alternative DNN 
approaches, we also describe two CNN-based architectures 
we considered as possible alternatives. To the best of our 
knowledge, there is no literature exploiting CNNs to perform 
seizure detection from a reduced number of input channels. 
We thus performed a design exploration to optimize their 
architectures, considering an implementation working on raw 
EEG signal and one working on features extracted through 
wavelet-based processing. Since we target wearable moni- 
toring devices, we only consider data acquisition from the 
temporal channels: F7-T7, T7-P7, F8-T8, T8-P8, according 
to the 10-20 international system. We chose these channels 
because they are well-suited for embedding in common long- 
term wearable devices such as over-the-ear headphones or 
eyeglasses, thus avoiding stigma [4], [20]. 

A. EEGformer. 

The EEGformer architecture is inspired by the Vision 
Transformer (ViT) [22], whose key feature is the attention 
mechanism [23], allowing us to evaluate the mutual relation 
between any pair of points in a time series. The attention layer 
evaluates three different projections of the input, called query 
q, key k and value v, and computes the attention scores as: 

qkT 
Attention(q, k, v) = Softmax( √

d 
) ∗ v (1) 

where d is the size of each projection. Different projections of 
the input can be examined with Multi-Head-Attention (MHA), 

Fig. 1: EEGformer architecture. 

 
where each head represents a parallel execution of the attention 
mechanism, and the output is finally linearly projected to the 
original input dimension. The core of the ViT architecture is 
represented by the encoder structure, whose simplest block 
consists of an attention layer, followed by a feed-forward 
network. 

Figure 1 shows the architecture considered in this work, 
which was selected through an exploration process exploiting 
the BioFormer structure [24] as a starting point, and further 
optimized for the EEG seizure detection task. Figure 2 sum- 
marizes the outcome of the exploration, aiming at accuracy 
optimization with a higher focus on specificity. The selected 
design embeds N = 1 encoder blocks, with H = 8 heads in 
the MHA layer (Figure 2a). Based on the exploration outcome, 
it operates on signal windows of 8s (Figure 2b), processed 
through an embedding layer including two 1D convolutional 
layers, with kernel size K = 5 and stride s = 5 (Figure 2c), 
reducing the size of the input to the encoder layer. The size of 
keys, queries, and values was selected to be d = 32, whereas 
the hidden layer size of the encoder feed-forward network is 
h = 128 (Figure 2d). The token provided to the Multi-Layer- 
Perceptron (MLP) for classification is obtained as the mean 
across the sequence of tokens produced by the encoder block. 
The examined architecture exploits 50.6 K parameters and 14.7 
MOPs. 

B. CNN on raw EEG signal. 

As an example of CNN working on raw EEG signal, we 
considered the model described in Table I, where all the 
convolutional layers (Conv#) are followed by Rectified Linear 
Unit (ReLU) activation functions, and Fully Connected layers 
are reported as FC#. It was obtained through an analogous 
exploration process, and exploits some architectural features 
which resulted successful for the EEGformer: it works on 8s 
input windows and the first feature-extracting layer reproduces 
the one exploited in the input embedding layer. The network 
processes raw EEG input signal, exploiting 325 KB of param- 
eters with 8-bit representation, and 2.22 MOPs. 

C. CNN on preprocessed input features. 

Table II summarizes the parameters of the CNN model con- 
sidered to assess the impact of pre-calculating input features. 
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Fig. 2: EEGformer architecture parameter exploration. The selected solution is highlighted in bold: tests on two records were 
considered to select between 4s and 8s window size. 

 

As reported, the input to the network is a 3D tensor of shape 
(channels, height, width) (C,H,W), where each item of size 
(H,W) is obtained as 8 columns, representing the energy of 
8 wavelet levels on different temporal frames. The wavelet 
is evaluated on 8s wide windows, overlapped with a 1s step 
size. The window size, the number of wavelet levels H, and 
stacked temporal frames W were subject to exploration. The 
convolutional layers are followed by ReLU activation. The 
memory footprint of the model, with 8-bit representation, is 
105.3 KB, whereas the number of OPs required is 12.5 MOPs. 

TABLE I: CNN architecture with raw signal input 

Layer Input 
Features 

Output 
Features 

Input 
Size 

Kernel 
Size 

Stride 

Conv1 4 32 1x2048 1x5 5 
Maxpool 32 32 1x405 1x2 2 
Conv2 32 32 1x203 1x5 2 

Maxpool 32 32 1x102 1x2 2 
FC1 1632 200 1x1   

FC2 200 2 1x1   

TABLE II: CNN architecture with pre-processed input 
 

Layer Input 
Features 

Output 
Features 

Input 
Size 

Kernel 
Size 

Stride 

Conv1 4 16 8x8 3x3 1 
Conv2 16 32 8x8 3x3 1 
Conv3 32 64 8x8 3x3 1 
Conv4 64 64 8x8 3x3 1 
Conv5 64 64 8x8 3x3 1 

Maxpool 
FC1 

64 
1024 

64 
2 

8x8 
1x1 

2x2 2 

 
III. ASSESSMENT ON CHB-MIT DATASET 

In this section, we evaluate the classification performance 
of the DNN models described in Section II on the CHB-MIT 
Scalp EEG dataset for seizure detection [25], [26]. 

TABLE III: EEGformer training strategy evaluation 
 

 Evaluation 
Period 

Sensitivity Specificity FP/h Detected 
Seizures 

w/o Pre-Training 2s 95.4 99.9 0.9 7/7 
Pre-Training 2s 86.6 100 0 7/7 

Training strategy. We compared a plain subject-specific 
training with a two-step training, consisting of a 100 epochs 
subject-independent pre-training and 50 epochs of subject- 
specific fine-tuning. A leave-one-out strategy is exploited for 

the definition of the test set, whereas 20% of the available 
training data is exploited as a validation set. Non-overlapping 
windows of signal are used as training data, whereas during 
the test phase we consider a sliding windowing of the input 
signal, with an evaluation period of 2s. Table III shows the 
performance of the EEGformer with both training approaches, 
with and without (w/o) pre-training, targeting the seizure 
detection of CHB patient 1. In this phase, the pre-training pool 
contains all the available data from 7 patients, subjects 2 to 
8. The training strategy exploration shows that the specificity 
of the EEGformer, as well as the False Positive/hour (FP/h) 
rate, benefit from the pre-training phase. Despite the drop in 
sensitivity observed, 100% of the tested seizure events were 
detected. Furthermore, the approach with pre-training appears 
more suitable for the actual deployment in clinical settings, 
where patients and caregivers require a zero false alarm rate. 

Classifier selection. We proceeded at this point with the 
assessment of the considered classifiers. We referenced a sig- 
nificant subset of the CHB-MIT dataset, consisting of subjects 
1 to 8. The pre-training phase was also exploited to improve 
the performance of the CNN alternatives considered. The pre- 
training pool contains all patients, except for the one that is 
being tested. We repeated the leave-one-out test until all of the 
available seizure records were evaluated. Table IV summarizes 
the performance of the examined classifiers, based on the 
cumulative evaluations of the tests performed, considering 
also the direct comparison with the SOA AdaBoost (AB) 
model operating on the temporal channels. The reported results 
refer to post-processed outputs, obtained with moving averages 
between successive windows. We consider 3 windows for 
the EEGformer and for the model in [3], whereas for the 
CNN on the raw input signal (CNN B) and the CNN on 
pre-processed input features (CNN C) 5 output windows are 
averaged. The detection latency is defined based on the first 
window correctly classified as seizure, and accounting for 
the averaging delay. Furthermore, as the EEG signal remains 
unstable for several minutes after the occurrence of a seizure, 
we neglect in the reported results the FPs occurring within 15 
minutes after the seizure ended. All the classifiers resulting 
from our exploration reached over 99% window-level test 
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accuracy, allowing us to detect up to 32 of the 44 seizures 
in the test set. The EEGformer provides the shortest detection 
latency and is well-aligned with the SOA, especially if the 
possibility of an artifact-removal stage is considered, demon- 
strating that acceptable performance can be obtained without 
relying on handcrafted feature extractors. Other works [27], 
[28] obtained a further reduction of the detection latency, but 
this advancement results in a lower specificity, which is crucial 
for the practical use of the device. 

For the sake of completeness, a more general summary of 
the unconstrained SOA is reported in Table V, where the size 
of the models in [29], [30] is not explicitly reported and 
KNN stands for K-nearest-neighbor. Despite the difficulties 
in comparing results obtained with different testing and post- 
processing strategies, we see that indeed low-channel count 
detection is more challenging, but EEGformer is not too far 
even from unconstrained, full-channel count detectors. 

FP analysis. As it is highlighted in the boxplot in Figure 3, 
representing the distribution of the FP/h on the 40 records 
tested, the average FP rate for the EEGformer is 0 FP/h, 
except for 5/40 outliers. Based on visual analysis, 2/5 are due 
to signal artifacts mistakenly detected as seizures. Removing 
those two records from the pre-training and training sets, 
the number of tests resulting in FP is further reduced by 
one, revealing the importance of an artifact removal stage 
before the epilepsy detection [31]. Finally, as summarized 
in Table VI, the proposed model allows the detection of 
100% of the seizures reported for 6/8 patients, whereas the 
average sensitivity value drops dramatically when considering 
the data from patient 6, which proved to be highly challenging 
with all of the classifiers listed in Table IV due to the short 
duration of the seizure events. We consider it as an indication 
that, although our proposed architecture and training strategy 
perform generally well on multiple patients, in some cases a 
more subject-specific approach should be adopted. 

TABLE IV: Performance comparison on CHB-MIT dataset 
considering acquisition from temporal channels. 

 

 Evaluation 
Period 

Sensitivity; 
Specificity 

FP/h; Average 
Latency 

Detected 
Seizures 

EEGformer 2s 65.5; 99.9 0.8 15.2s 32/44 
EEGformer*1 2s 66; 99.9 0.12 15.2s 32/42 

CNN B 2s 65.3; 99.9 2.8 18.2s 32/44 
CNN C 2s 53.5; 99.7 8.2 22.6s 30/44 
AB [3] 4s-8s 72; 99.9 0.5 19s 38/44 

TABLE V: SOA on the CHB-MIT dataset. 
 

 Sensitivity; 
Specificity 

FP/h # acquisition 
channels 

needs pre- 
processing 

# params 

EEGformer 65.5; 99.9 0.8 4 ✗ 50.6 K 
EEGformer*1 66; 99.9 0.12 4 ✗ 50.6 K 

AB [3] 72; 99.9 0.5 4 ✓ 4 K 
SVM [30] 97.34; 97.5 0.63 18-23 ✓ - 
KNN [29] 98.4; 99.1 - 18-23 ✓ - 
CNN [32] 88.14; 99.62 0.2 18-23 ✗ 105 K 

 
IV. DEPLOYMENT 

To validate the EEGformer for real-life on-edge perfor- 
mance, we considered its deployment on the Ambiq Ultra- 

1Results excluding the two records with the recognized artifacts. 

 
20 
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Fig. 3: Record-wise FP/h with the EEGformer. 

TABLE VI: Percentage of detected seizures per patient. 
 

Patient 1 2 3 4 5 6 7 8 
Detected % 100 100 100 50 100 0 100 100 

 
Low-Power Apollo4 MCU [33]. It exploits a 32-bit ARM 
Cortex-M4 processor, working at up to 192 MHz clock fre- 
quency, accessing a 2MB MRAM and a 1.8 MB SRAM. 
Power-efficiency ensuring as low as 5µA/MHz makes this 
platform particularly suitable for battery-powered health mon- 
itoring devices. To reduce the memory footprint of the 
model we performed quantization to 8-bit precision, exploiting 
the Quantlab software package for quantization-aware fine- 
tuning [34]. Finally, for efficient deployment, we exploited the 
CMSIS-NN library, specifically optimized for ARM Cortex- 
M processors [35], as it is described in [36]. As reported in 
Table VII, inference execution requires 405 ms and 1.79mJ, 
based on the average power consumption measured with the 
Keysight N6715C DC power analyzer, with a clock frequency 
of 96 MHz, sufficient to run 1 inference/s. 

TABLE VII: Inference execution on Apollo4. 
 

 EEGformer 
Time/inference 

Power 
Energy/inference 

405 ms 
4.4 mW 
1.79 mJ 

 
V. CONCLUSIONS 

We presented a transformer model for non-invasive epilepsy 
monitoring, performing seizure detection on raw EEG signals 
collected from temporal electrodes. We explored the training 
strategy, showing the advantages of a two-step approach, 
with a global pre-training phase and a subject-specific fine- 
tuning. The EEGformer reaches a performance comparable 
with the SOA, exhibiting a 65.5% sensitivity, with a new 
SOA 15.2s average onset detection latency. Excluding 5/40 
outliers, most of which are caused by EEG artifacts, 0 FP can 
be achieved. The EEGformer is suitable for deployment on 
unobtrusive devices: inference run on the Apollo4 MCU, re- 
quires 405ms and 1.79mJ at 96MHz operating frequency. This 
work demonstrates the feasibility of employing transformers 
on raw EEG traces for seizure detection with reduced latency, 
in the context of resource-constrained wearable devices for 
long-term continuous monitoring at low power consumption. 
The results obtained on this limited exploration pave the way 
for the exploitation of their robustness and flexibility in future, 
more complex, and variable data environments. 
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