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Abstract: In supervised discrete event systems under attack, the goal of the supervisor, who
has a partial observation of the system evolution, is to prevent the system from reaching a set
of unsafe states. An attacker may act in two different ways: it can corrupt the observation of
the supervisor by editing the sensor readings, and it can enable events that have been disabled
by the supervisor. This is done with the aim of leading the plant to an unsafe state. A special
automaton, called attack structure is constructed as the parallel composition of two special
structures: an attacker observer and a supervisor under attack. Such an automaton can be used
by the attacker to select proper actions (if any) to lead the plant to reach the unsafe state.
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1. INTRODUCTION

Cyber-physical systems (CPS) operating in a feedback
loop are particularly vulnerable to attacks since the com-
munication between controllers and processes typically oc-
curs via a network such as the internet. Controllers collect
the data from the processes through sensors and based on
such data provide a suitable control input (Harirchi and
Ozay, 2018). Malicious attackers may corrupt the sensor
readings collected by the controller, and/or may alter the
control commands (Clark and Zonouz, 2019).

Consider a plant G modeled by a partially-observed dis-
crete event system. The open-loop behaviour of the plant,
i.e., the language L(G), may contain undesirable words
that should be prevented by a feedback controller. Thus a
partial-observation supervisor SP is introduced to restrict
L(G) within a sublanguage K ⊆ L(G) by appropriately
disabling events in the plant so that the specification is
achieved. As a special case of the specification, one may
also consider the problem of avoiding a set of unsafe states
Xus ⊆ X, where X is the state space of G. In this paper,
we deal with the problem of cyber attacks in supervisory
control systems. An attacker that is assumed to have a
full knowledge of the closed-loop system SP /G may act in
two different ways: sensor attack and actuator attack. In
the first case the attacker may corrupt the sensor channels
transmitting erroneous observations to the supervisor. In
particular, the attacker may erase the output symbols
produced by certain events, and may insert observations
corresponding to events that have not occurred. In the
� This work is partially supported by the National Key R&D Pro-
gram of China under Grant 2018YFB1700104, the Natural Sci-
ence Foundation of China under Grand No. 61873342, the ShaanXi
Huashan Scholars, the Science and Technology Development Fund,
MSAR, under Grant No. 122/2017/A3. This work is also partially
supported by Project RASSR05871 MOSIMA funded by Region
Sardinia, FSC 2014-2020, Annualita’ 2017, Area 3, Action Line 3.1.

second case the attacker corrupts the control commands
of the supervisor enabling events that were disabled by
the supervisor. Both sensor attack and actuator attack
may lead the plant to an unsafe state, thus damages to
the system may occur.

The problem of attack detection in CPS is attracting an
increasing attention in the automatic control community.
It has been investigated in (Pasqualetti et al., 2013; Fawzi
et al., 2014) in the case of time-driven continuous systems.
Interesting contributions have also been proposed in the
discrete event systems framework. As an example, in
(Thorsley and Teneketzis, 2006) the authors determine
the condition under which the supervisor can detect the
presence of an attacker and prevent the system from
generating illegal words. They use a language measure
technique to assess the damage caused by the attacker if
the supervisor cannot block the intrusion, and determine
an optimal specification for the supervisor to realize in the
presence of an attacker.

Examples of sensor attacks in discrete event systems in-
clude (Su, 2018; Wakaiki et al., 2019; Meira-Góes et al.,
2020; Meira-Góes and Lafortune, 2020; You et al., 2022).
In (Su, 2018), the author defines a robust supervisor a-
gainst bounded sensor attacks w.r.t. a set of protected
observable events that cannot be corrupted by an attacker.
Meira-Góes and Lafortune (2020) assume that a plant is
controlled by two supervisors; they develop a switching
mechanism to determine which supervisor is active at a
certain time so that different specifications (e.g. safety,
liveness, and maximally permissiveness) could be enforced.
Finally, You et al. (2022) propose control policies to en-
force safety to the plant under sensor replacement attacks
in the context of Petri nets.

Examples of actuator attacks include (Lin et al., 2020;
Zhu et al., 2019; Yao et al., 2020; Li et al., 2020). Lin
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the supervisor. Both sensor attack and actuator attack
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the system may occur.

The problem of attack detection in CPS is attracting an
increasing attention in the automatic control community.
It has been investigated in (Pasqualetti et al., 2013; Fawzi
et al., 2014) in the case of time-driven continuous systems.
Interesting contributions have also been proposed in the
discrete event systems framework. As an example, in
(Thorsley and Teneketzis, 2006) the authors determine
the condition under which the supervisor can detect the
presence of an attacker and prevent the system from
generating illegal words. They use a language measure
technique to assess the damage caused by the attacker if
the supervisor cannot block the intrusion, and determine
an optimal specification for the supervisor to realize in the
presence of an attacker.

Examples of sensor attacks in discrete event systems in-
clude (Su, 2018; Wakaiki et al., 2019; Meira-Góes et al.,
2020; Meira-Góes and Lafortune, 2020; You et al., 2022).
In (Su, 2018), the author defines a robust supervisor a-
gainst bounded sensor attacks w.r.t. a set of protected
observable events that cannot be corrupted by an attacker.
Meira-Góes and Lafortune (2020) assume that a plant is
controlled by two supervisors; they develop a switching
mechanism to determine which supervisor is active at a
certain time so that different specifications (e.g. safety,
liveness, and maximally permissiveness) could be enforced.
Finally, You et al. (2022) propose control policies to en-
force safety to the plant under sensor replacement attacks
in the context of Petri nets.

Examples of actuator attacks include (Lin et al., 2020;
Zhu et al., 2019; Yao et al., 2020; Li et al., 2020). Lin

et al. (2020) formulate the actuator attacker synthesis
problem as the Ramadge-Wonham supervisor synthesis
problem. The authors of (Zhu et al., 2019) consider actua-
tor enablement attacks, and develop a behavior-preserving
supervisor that is robust against such attacks. Yao et al.
(2020) transform the attack mitigation problem into a
tolerant control problem. Finally, in (Li et al., 2020) the
authors assume that actuator attacks and control delays
may occur simultaneously.

The simultaneous occurrence of the two kinds of attacks
has been considered in (Carvalho et al., 2018; Lima et al.,
2019; Lin and Su, 2021; Wang and Pajic, 2019). In (Car-
valho et al., 2018; Lima et al., 2019), the authors try to use
proper techniques to detect attacks, and develop the secu-
rity module against such attacks. Lin and Su (2021) ad-
dress the problem of stealthy sensor and actuator attacker
synthesis, i.e., the attacker should not be detected before
damages are caused to the system. Finally, the authors of
(Wang and Pajic, 2019) generalize the problem of attack-
resilient supervisory control by modeling the attacker and
the supervisor both using finite state transducers. They
also consider replay attack that has not been studied much
in the DES framework.

In this paper we propose an alternative approach for
solving the problem of supervisory control under attack,
that follows from the notion of joint estimator (Zhang
et al., 2021) that we have used for solving the problem
of state estimation under attack. In more detail, we derive
an attack policy associated with both sensor and actuator
attacks, based on the notion of attack structure that
simultaneously keep into account the set of states that are
consistent with the real observation generated by the plant
and the state of the supervisor based on the corrupted
observation. Such an attack structure is computed as the
parallel composition of two particular structures, called
attacker observer and supervisor under attack. The attack
structure can be used to verify the effectiveness of an
attack, which is defined via an appropriate attack function.

The remainder of the paper is organized as follows. In
Section 2, some necessary preliminaries on finite state
automata and supervisory control theory are introduced.
In Section 3, the attack model is given. In Section 4, the
problem statement is presented. In Section 5, the attacker
observer and the supervisor under attack are introduced.
In Section 6, we introduce the attack structure, which
provides the basic tool for solving the problem formalized
in Section 4. Indeed, it allows to select (potentially)
successful attacks. In Section 7, conclusions are finally
drawn and our future lines of research in this framework
are pointed out.

2. PRELIMINARIES

Let E be an alphabet, we denote as E∗ the set of all words
on the alphabet. Let σ1, σ2 ∈ E∗ be two words, we denote
as σ1σ2 their concatenation.

A deterministic finite-state automaton (DFA) is a 4-tuple
G = (X,E, δ, x0), where X is a finite set of states, E
is an alphabet of events, δ: X × E → X is a transition
function, and x0 is an initial state. The transition function
determines the dynamics of the DFA: if δ(x, e) = x′,

the occurrence of event e at state x yields state x′. The
transition function can be extended to δ∗: X × E∗ → X,
and we write δ∗(x, σ) = x′ to denote that the occurrence
of a sequence of events σ ∈ E∗ at state x yields state
x′. The language generated by G is defined as L(G) =
{σ ∈ E∗ | (∃x ∈ X) δ∗(x0, σ) = x}. We denote by
ΓG(x) = {e ∈ E | (∃x′ ∈ X) δ(x, e) = x′} the set of
events that are active at state x of G.

Given two automata G1 = (X1, E1, δ1, x01) and G2 =
(X2, E2, δ2, x02), the parallel composition of G1 and G2

is denoted as G = G1 ‖ G2 = (X1 ×X2, E1 ∪E2, δ, (x01 ×
x02)), where the transition function δ is defined as follows:



δ[(x1, x2), e]=(x′
1, x

′
2) if δ1(x1, e)=x′

1∧δ2(x2, e)=x′
2,

δ[(x1, x2), e] = (x′
1, x2) if δ1(x1, e) = x′

1 ∧ e /∈ E2,
δ[(x1, x2), e] = (x1, x

′
2) if δ2(x2, e) = x′

2 ∧ e /∈ E1,
undefined otherwise.

(1)

We point out that in the parallel composition, if there exist
states that are not reachable from the initial state, then
such states should be removed.

Consider a plant modeled by a DFA G = (X,E, δ, x0),
let E = Eo ∪ Euo = Ec ∪ Euc, where Eo is the set of
observable events, Euo is the set of unobservable events
(due to sensor limitations), Ec is the set of controllable
events, and Euc is the set of uncontrollable events (due to
actuator limitations).

Given two alphabets E′ ⊆ E, the natural projection on E′,
PE′ : E∗ → (E′)∗ is defined as (Ramadge and Wonham,
1989):

PE′(ε) := ε, PE′(σe) :=

{
PE′(σ)e if e ∈ E′,
PE′(σ) if e ∈ E\E′.

(2)

In simple words, given a word σ ∈ E∗, its natural
projection on E′ is obtained by simply removing events
that do not belong to E′. For simplicity, we use Po : E∗ →
E∗

o to denote the natural projection on Eo. The inverse
projection of Po denoted by P−1

o : E∗
o → 2E

∗
is defined as

P−1
o (s) = {σ ∈ E∗ | Po(σ) = s}, where s ∈ E∗

o .

The unobservable reach of state x is defined by a set of
states x′ ∈ X reached from state x ∈ X by executing
an unobservable word σ ∈ E∗

uo, namely, UR(x) = {x′ ∈
X | (∃σ ∈ E∗

uo) δ
∗(x, σ) = x′}.

Given a plant G = (X,E, δ, x0) with set of observable
events Eo, the observer of G (Cassandras and Lafortune,
2021) is the DFA Obs(G) = (B,Eo, δobs, b0), where:

• B ⊆ 2X is the set of states,
• δobs : B × Eo → B is the transition function defined

as:
δobs(b, eo) :=

⋃
x∈b

UR({x′ | δ(x, eo) = x′}),

• b0 := UR(x0) is the initial state.

In this paper we assume that the control action of
the supervisor is described by means of a DFA SP =
(Y,Eo, δs, y0).

We consider the following two assumptions:

(A1) Ec ⊆ Eo,
(A2) L(SP ) ⊆ Po[L(G)].
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(Wang and Pajic, 2019) generalize the problem of attack-
resilient supervisory control by modeling the attacker and
the supervisor both using finite state transducers. They
also consider replay attack that has not been studied much
in the DES framework.

In this paper we propose an alternative approach for
solving the problem of supervisory control under attack,
that follows from the notion of joint estimator (Zhang
et al., 2021) that we have used for solving the problem
of state estimation under attack. In more detail, we derive
an attack policy associated with both sensor and actuator
attacks, based on the notion of attack structure that
simultaneously keep into account the set of states that are
consistent with the real observation generated by the plant
and the state of the supervisor based on the corrupted
observation. Such an attack structure is computed as the
parallel composition of two particular structures, called
attacker observer and supervisor under attack. The attack
structure can be used to verify the effectiveness of an
attack, which is defined via an appropriate attack function.

The remainder of the paper is organized as follows. In
Section 2, some necessary preliminaries on finite state
automata and supervisory control theory are introduced.
In Section 3, the attack model is given. In Section 4, the
problem statement is presented. In Section 5, the attacker
observer and the supervisor under attack are introduced.
In Section 6, we introduce the attack structure, which
provides the basic tool for solving the problem formalized
in Section 4. Indeed, it allows to select (potentially)
successful attacks. In Section 7, conclusions are finally
drawn and our future lines of research in this framework
are pointed out.

2. PRELIMINARIES

Let E be an alphabet, we denote as E∗ the set of all words
on the alphabet. Let σ1, σ2 ∈ E∗ be two words, we denote
as σ1σ2 their concatenation.

A deterministic finite-state automaton (DFA) is a 4-tuple
G = (X,E, δ, x0), where X is a finite set of states, E
is an alphabet of events, δ: X × E → X is a transition
function, and x0 is an initial state. The transition function
determines the dynamics of the DFA: if δ(x, e) = x′,

the occurrence of event e at state x yields state x′. The
transition function can be extended to δ∗: X × E∗ → X,
and we write δ∗(x, σ) = x′ to denote that the occurrence
of a sequence of events σ ∈ E∗ at state x yields state
x′. The language generated by G is defined as L(G) =
{σ ∈ E∗ | (∃x ∈ X) δ∗(x0, σ) = x}. We denote by
ΓG(x) = {e ∈ E | (∃x′ ∈ X) δ(x, e) = x′} the set of
events that are active at state x of G.

Given two automata G1 = (X1, E1, δ1, x01) and G2 =
(X2, E2, δ2, x02), the parallel composition of G1 and G2

is denoted as G = G1 ‖ G2 = (X1 ×X2, E1 ∪E2, δ, (x01 ×
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We point out that in the parallel composition, if there exist
states that are not reachable from the initial state, then
such states should be removed.

Consider a plant modeled by a DFA G = (X,E, δ, x0),
let E = Eo ∪ Euo = Ec ∪ Euc, where Eo is the set of
observable events, Euo is the set of unobservable events
(due to sensor limitations), Ec is the set of controllable
events, and Euc is the set of uncontrollable events (due to
actuator limitations).

Given two alphabets E′ ⊆ E, the natural projection on E′,
PE′ : E∗ → (E′)∗ is defined as (Ramadge and Wonham,
1989):

PE′(ε) := ε, PE′(σe) :=

{
PE′(σ)e if e ∈ E′,
PE′(σ) if e ∈ E\E′.

(2)

In simple words, given a word σ ∈ E∗, its natural
projection on E′ is obtained by simply removing events
that do not belong to E′. For simplicity, we use Po : E∗ →
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o to denote the natural projection on Eo. The inverse
projection of Po denoted by P−1
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is defined as
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The unobservable reach of state x is defined by a set of
states x′ ∈ X reached from state x ∈ X by executing
an unobservable word σ ∈ E∗

uo, namely, UR(x) = {x′ ∈
X | (∃σ ∈ E∗

uo) δ
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Given a plant G = (X,E, δ, x0) with set of observable
events Eo, the observer of G (Cassandras and Lafortune,
2021) is the DFA Obs(G) = (B,Eo, δobs, b0), where:

• B ⊆ 2X is the set of states,
• δobs : B × Eo → B is the transition function defined

as:
δobs(b, eo) :=
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UR({x′ | δ(x, eo) = x′}),

• b0 := UR(x0) is the initial state.

In this paper we assume that the control action of
the supervisor is described by means of a DFA SP =
(Y,Eo, δs, y0).

We consider the following two assumptions:

(A1) Ec ⊆ Eo,
(A2) L(SP ) ⊆ Po[L(G)].
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The first assumption implies that unobservable events are
also uncontrollable, thus they could never be disabled by
the supervisor. The fact that the supervisor is defined
on the alphabet Eo guarantees the admissibility of the
control. We notice that Assumption (A1) is not necessary
for our approach but allows to simplify the presentation
and will be removed in our future work.

The second assumption is done for sake of simplicity but
can be easily removed by making the parallel composition
of an arbitrary supervisor and the observer of the system.

The supervisor SP computes a control function fc :
Po[L(G)] → 2E . Given a word σ ∈ E∗ generated by
the system, the corresponding control pattern is equal to
ξ = fc[Po(σ)] and coincides with the set of events enabled
by the supervisor at state y = δ∗s [y0, Po(σ)], namely, it
is ξ = ΓSP

(y). The resulting closed-loop system is an
automaton denoted as SP /G = SP ‖ G, with generated
language L(SP /G).

3. CLOSED-LOOP SYSTEM UNDER ATTACK

In this chapter we consider a closed-loop system SP /G
subject to attacks according to the scheme in Fig. 1. If σ is
a generic word generated by the plant, the observed word
is s = Po(σ). An attacker may corrupt the observation
(sensor attack), inserting fake observations or erasing some
output signals produced by events that have actually hap-
pened. Such a corrupted observation is denoted by s′ and is
still a sequence of events in Eo. The supervisor constructs
its state estimation based on s′ and elaborates its control
pattern based on it. In addition, the attacker may enable
some events that were disabled by SP (actuator attack).
We denote as ξ ∈ 2E the control pattern computed based
on s′, and denote as ξ′ ∈ 2E the corrupted control pattern
that actually restricts the behavior of G.

Fig. 1. Closed-loop system under attack.

The set of attackable events, namely the events that can
be corrupted by the attacker, is denoted by Eatt. Set Eatt

includes: events that the attacker may insert in the super-
visor observation even if they have not actually occurred,
events that the attacker may erase in the supervisor ob-
servation, and events that the attacker may enable even
if they were disabled by the supervisor. The above three
sets are denoted respectively, Eins, Eera, and Eena. In
particular, it is Eins, Eera ⊆ Eo, and Eena ⊆ Ec. We
assume that such sets are not necessarily disjoint.

We point out that the notion of attackable events was
first proposed by Meira-Góes et al. (2020). However, they
consider sensor attacks, thus events in (Meira-Góes et al.,
2020) may only be of the first two types, i.e., Eins and

Eera. In this paper, we slightly generalize such a definition
also dealing with actuator attacks. As a result, events in
Eatt may also be of the third type above, i.e., Eatt = Eins∪
Eera ∪ Eena.

The attack alphabet (Meira-Góes et al., 2020) is defined
as Ea = Eo ∪ E+ ∪ E−, and we assume that Eo, E+,
and E− are disjoint sets. The set of inserted events is
denoted as E+, namely E+ = {e+ | e ∈ Eins}. The
occurrence of e+ ∈ E+ implies that the attacker inserts
in the supervisor observation an event e that has not
actually happened. The set of erased events is denoted
by E−, namely E− = {e− | e ∈ Eera}. The occurrence
of e− ∈ E− means that the attacker erases from the
supervisor observation event e occurred in the plant. In
the following, we use w ∈ E∗

a to denote a word on attack
alphabet Ea, and call it an attack word.

In addition we assume that the following relationship
holds: Ec ⊆ Eo, namely all the events that are controllable
are also observable. This implies that Euo ⊆ Euc, i.e.,
all the unobservable events are enabled by the supervisor,
which simplifies our problem.

The following definition formalizes the notion of attacker
via the sensor and actuator attack functions.

Definition 1. Consider a closed-loop system SP /G where
G = (X,E, δ, x0), the set of attackable events is Eatt =
Eins ∪Eera ∪Eena, and the set of observable events is Eo.
An attacker is defined by a sensor attack function fsen :
Po(L(SP /G)) → E∗

a , and an actuator attack function
fact : Po[L(SP /G)] → 2E , where Ea = Eo ∪ E+ ∪ E− is
the attack alphabet, and 2E is the set of control patterns.
The attack functions satisfy the following conditions:

(a) fsen(ε) ∈ E∗
+,

(b) ∀se ∈ Po(L(SP /G)) ⊆ E∗
o :

{
fsen(se) ∈ fsen(s){e−, e}E∗

+ if e ∈ Eera,
fsen(se) ∈ fsen(s)eE

∗
+ if e ∈ Eo \ Eera.

(3)

(c) ∀s ∈ Po[L(SP /G)]:

fact(s) ⊆ ξ ∪ Eena (4)

where ξ = fc(s
′) is the control pattern computed by the

supervisor based on the corrupted word s′ corresponding
to observation s. �

In Definition 1, condition (a) means that the attacker
can insert any word in E∗

+ when no observable event has
occurred in the plant. Condition (b) indicates that if an
event e ∈ Eera happens, the attacker can either erase
event e or not erase it, and then insert any word in E∗

+.
If an event e ∈ Eo \Eera happens, the attacker can insert
any word in E∗

+ after e. Condition (c) implies that the
attacker can enable events in Eena that were disabled by
the supervisor.

Note that, based on Definition 1, the attacker can insert
an arbitrarily long sequence of events in E+ between the
occurrence of two consecutive observable events of the
plant. However, since this could be unrealistic in practice,
one can use the n-bounded attack automaton Gn proposed
in (Zhang et al., 2021) to impose that the attacker can only
insert n fake events between two consecutive observable
events.

Definition 2. Given a closed-loop system SP /G under

attack, the attacker mask P̃ : E∗
a → E∗

o is defined as:

P̃ (ε) = ε, P̃ (we′) =




P̃ (w)e if e′ = e ∈ Eo∨
e′ = e− ∈ E−,

P̃ (w) if e′ = e+ ∈ E+.

(5)

�

In plain words, the attacker knows that e− ∈ E− are events
that have been erased; thus it treats them in the same way
in case of event e ∈ Eo. Since the attacker knows that
e+ ∈ E+ are fake events that have not actually occurred
in the plant, it treats events e+ ∈ E+ as no events happen.

Definition 3. The supervisor mask P̂ : E∗
a → E∗

o is
defined as:

P̂ (ε) = ε, P̂ (we′) =




P̂ (w)e if e′ = e ∈ Eo ∨
e′ = e+ ∈ E+,

P̂ (w) if e′ = e− ∈ E−.

(6)

�

In simple words, the supervisor mask describes how the
supervisor deals with events in Ea, i.e., the supervisor
cannot distinguish event e+ ∈ E+ from the corresponding
event e ∈ Eo, and it cannot observe event e− ∈ E−. Note
that the corrupted observation s′ in Fig. 1 and eq. (4) can

be written in terms of the supervisor mask P̂ , namely it is

s′ = P̂ [fsen(s)].

Since the attacker can corrupt the observation and the
control commands of the supervisor, it may happen that
the supervisor observes a word s /∈ Po[L(SP /G)], this
means that the supervisor detects the presence of an
attacker. In the following, we assume that the supervisor
disables all the controllable events once it discovers the
presence of the attacker. This is formalized modifying the
control function fc as follows.

Definition 4. Consider a closed-loop system SP /G. Let
σ ∈ L(G) be a word generated by G, s = Po(σ), and fc be
the control function of SP . The extended control function

f̂c : Po[L(G)] → E∗
o is defined as:

f̂c(s) =

{
fc(s) if s ∈ Po[L(SP /G)]
Euc if s /∈ Po[L(SP /G)].

(7)

�
Definition 5. Consider a closed-loop system SP /G. Let
fsen be the sensor attack function, fact be the actuator

attack function, P̃ be the attacker mask, and P̂ be the
supervisor mask. The language modified by the attacker
is called language under attack La(SP /G) ⊆ E∗

a , and is
recursively defined as follows:

(1) fsen(ε) ∈ La(SP /G),

(2) w ∈ La(SP /G), e ∈ (fact[P̃ (w)]∪Euc)∩Eo, P̃ (we) ∈
Po[L(G)] =⇒ wfsen(e) ∈ La(SP /G). �

In Definition 5, item (1) provides the initial condition of
the language under attack. Item (2) means that when
word w ∈ E∗

a has been produced, the plant G receives
the corrupted control pattern computed by function fact.
Thus a new observable event e may occur only if either it
is enabled by the corrupted control pattern or it is uncon-
trollable, and furthermore the plant, which has previously

produced observation P̃ (w), should be able to generate
event e. When such event e occurs after w, the attacker
produces the new attack word wfsen(e).

The internal structure of the attacker, which in Fig. 1
is represented as a black box having the observation s
and the control pattern ξ as inputs, and the corrupted
observation s′ and the corrupted control pattern ξ′ as
outputs, is depicted in Fig. 2.

Fig. 2. Internal structure of the attacker in Fig. 1.

Fig. 2 shows how the observation s is corrupted by the
sensor attack function fsen, producing the attack word
w ∈ E∗

a . Such a sequence is projected via the supervisor

mask P̂ on Eo, generating a word s′. The supervisor
constructs its state estimation based on s′ and computes
its control pattern ξ. Such a control pattern is altered by
the actuator attack function fact, producing the corrupted
control pattern ξ′, which actually restricts the behavior of
the plant.

4. PROBLEM FORMULATION

We assume that a set of unsafe states Xus is given, which
corresponds to an undesirable or dangerous condition
for the plant G. The supervisor controls the plant with
the objective of preventing it from reaching the unsafe
state. The goal of the attacker is that of preventing
the supervisor from reaching its objective. The following
definition provides a criterion to assess the attacker.

Definition 6. Consider a closed-loop system SP /G with
set of attackable events Eatt. Let Xus be a set of unsafe
states of plant G, La(SP /G) be the language under attack,
and Obs(G) = (B,Eo, δobs, b0) be the observer. An attack
function (either a sensor attack function or an actuator
attack function) is:

• successful if ∃w ∈ La(SP /G): δobs[b0, P̃ (w)] ⊆ Xus;

• potentially successful if ∃w∈La(SP /G): δobs[b0, P̃ (w)]

∩Xus �= ∅ and δobs[b0, P̃ (w)] �⊆ Xus. �

In simple words, an attack function is successful if there
exists at least one attack word w ∈ La(SP /G) such that

executing P̃ (w) starting from the initial state b0, the
observer reaches a state that is included in the set of unsafe
states Xus. This means that the plant reaches an unsafe
state when the attack word w is generated.

An attack function is potentially successful if there exists
at least one attack word w ∈ La(SP /G) such that exe-

cuting P̃ (w) starting from b0, the observer reaches a state
that contains an element in Xus, and it is not included
in Xus. It implies that there is some possibility that the
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Definition 2. Given a closed-loop system SP /G under

attack, the attacker mask P̃ : E∗
a → E∗

o is defined as:

P̃ (ε) = ε, P̃ (we′) =
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�

In plain words, the attacker knows that e− ∈ E− are events
that have been erased; thus it treats them in the same way
in case of event e ∈ Eo. Since the attacker knows that
e+ ∈ E+ are fake events that have not actually occurred
in the plant, it treats events e+ ∈ E+ as no events happen.
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�

In simple words, the supervisor mask describes how the
supervisor deals with events in Ea, i.e., the supervisor
cannot distinguish event e+ ∈ E+ from the corresponding
event e ∈ Eo, and it cannot observe event e− ∈ E−. Note
that the corrupted observation s′ in Fig. 1 and eq. (4) can

be written in terms of the supervisor mask P̂ , namely it is

s′ = P̂ [fsen(s)].

Since the attacker can corrupt the observation and the
control commands of the supervisor, it may happen that
the supervisor observes a word s /∈ Po[L(SP /G)], this
means that the supervisor detects the presence of an
attacker. In the following, we assume that the supervisor
disables all the controllable events once it discovers the
presence of the attacker. This is formalized modifying the
control function fc as follows.

Definition 4. Consider a closed-loop system SP /G. Let
σ ∈ L(G) be a word generated by G, s = Po(σ), and fc be
the control function of SP . The extended control function
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{
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Definition 5. Consider a closed-loop system SP /G. Let
fsen be the sensor attack function, fact be the actuator

attack function, P̃ be the attacker mask, and P̂ be the
supervisor mask. The language modified by the attacker
is called language under attack La(SP /G) ⊆ E∗

a , and is
recursively defined as follows:
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(2) w ∈ La(SP /G), e ∈ (fact[P̃ (w)]∪Euc)∩Eo, P̃ (we) ∈
Po[L(G)] =⇒ wfsen(e) ∈ La(SP /G). �

In Definition 5, item (1) provides the initial condition of
the language under attack. Item (2) means that when
word w ∈ E∗

a has been produced, the plant G receives
the corrupted control pattern computed by function fact.
Thus a new observable event e may occur only if either it
is enabled by the corrupted control pattern or it is uncon-
trollable, and furthermore the plant, which has previously

produced observation P̃ (w), should be able to generate
event e. When such event e occurs after w, the attacker
produces the new attack word wfsen(e).

The internal structure of the attacker, which in Fig. 1
is represented as a black box having the observation s
and the control pattern ξ as inputs, and the corrupted
observation s′ and the corrupted control pattern ξ′ as
outputs, is depicted in Fig. 2.

Fig. 2. Internal structure of the attacker in Fig. 1.

Fig. 2 shows how the observation s is corrupted by the
sensor attack function fsen, producing the attack word
w ∈ E∗

a . Such a sequence is projected via the supervisor

mask P̂ on Eo, generating a word s′. The supervisor
constructs its state estimation based on s′ and computes
its control pattern ξ. Such a control pattern is altered by
the actuator attack function fact, producing the corrupted
control pattern ξ′, which actually restricts the behavior of
the plant.

4. PROBLEM FORMULATION

We assume that a set of unsafe states Xus is given, which
corresponds to an undesirable or dangerous condition
for the plant G. The supervisor controls the plant with
the objective of preventing it from reaching the unsafe
state. The goal of the attacker is that of preventing
the supervisor from reaching its objective. The following
definition provides a criterion to assess the attacker.

Definition 6. Consider a closed-loop system SP /G with
set of attackable events Eatt. Let Xus be a set of unsafe
states of plant G, La(SP /G) be the language under attack,
and Obs(G) = (B,Eo, δobs, b0) be the observer. An attack
function (either a sensor attack function or an actuator
attack function) is:

• successful if ∃w ∈ La(SP /G): δobs[b0, P̃ (w)] ⊆ Xus;

• potentially successful if ∃w∈La(SP /G): δobs[b0, P̃ (w)]

∩Xus �= ∅ and δobs[b0, P̃ (w)] �⊆ Xus. �

In simple words, an attack function is successful if there
exists at least one attack word w ∈ La(SP /G) such that

executing P̃ (w) starting from the initial state b0, the
observer reaches a state that is included in the set of unsafe
states Xus. This means that the plant reaches an unsafe
state when the attack word w is generated.

An attack function is potentially successful if there exists
at least one attack word w ∈ La(SP /G) such that exe-

cuting P̃ (w) starting from b0, the observer reaches a state
that contains an element in Xus, and it is not included
in Xus. It implies that there is some possibility that the
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plant reaches an unsafe state when the attack word w is
generated.

In this paper, given a closed-loop system SP /G with set
of attackable events Eatt, we want to provide a criterion
to establish if an attack strategy exists, which leads the
plant to an unsafe state.

5. ATTACKER OBSERVER AND SUPERVISOR
UNDER ATTACK

In this section we first recall the notion of attacker observer
defined in (Zhang et al., 2021), then introduce the defini-
tion of supervisor under attack, which provide the basis
for the solution of the problem formulated in the previous
section.

5.1 Attacker Observer

The attacker observer describes all words on alphabet
Ea obtained by attacking the observations and the cor-
responding state estimation of the attacker, which can be
constructed using Algorithm 1 in (Zhang et al., 2021).

Consider a plant G = (X,E, δ, x0) with set of attackable
events Eatt. First, the observer Obs(G) = (B,Eo, δobs, b0)
of the plant is constructed. The attacker observer is
denoted as Obsatt(G) = (B,Ea, δatt, b0). The set of states
of Obsatt(G) coincides with the set of states of Obs(G),
as well as the initial state. The attack alphabet Ea =
Eo ∪ E+ ∪ E−. The transition function is initialized at
δatt := δobs.

Then, for all events e ∈ Eins and for all states b ∈ B,
we add self-loops δatt(b, e+) = b. Finally, for all events
e ∈ Eera and for all states b ∈ B, whenever a transition
δatt(b, e) is defined, we impose δatt(b, e−) = δatt(b, e).

Example 1. Consider the plant G = (X,E, δ, x0) and the
observer in Figs. 3(a) and (b), respectively. Let Eo =
{a, b, c, g}, Euo = {d}, Ec = {b, g}, Euc = {a, c, d}, and
Xus = {x3}.

(a) G

(b) Obs(G)

Fig. 3. (a) Plant G and (b) Observer Obs(G) in Example 1.

Let Eins = {a} and Eera = {a, g}. The attacker observer
Obsatt(G) is visualized in Fig. 4. Since a ∈ Eins, we add

Fig. 4. Attacker observer Obsatt(G) in Example 1.

self-loops labeled a+ at all the states. Since a, g ∈ Eera,
arcs labeled a and g, respectively, are also labeled a− and
g−, respectively. �

In the following, we denote as Fsen the set of all possible
attack functions satisfying eq. (3). The union of all the
attack languages, denoted as L(Fsen, G), is defined as

L(Fsen, G) =
⋃

fsen∈Fsen

fsen(Po[L(G)]).

The following proposition provides a characterization of
the attacker observer. Its proof can be found in (Zhang
et al., 2021).

Proposition 1. Given a plant G with set of attackable
events Eatt and observer Obs(G) = (B,Eo, δobs, b0). Let
fsen be a sensor attack function, Fsen be the set of sensor
attack functions, and Obsatt(G) = (B,Ea, δatt, b0) be the
attacker observer. The following statements hold:

(a) L(Obsatt(G)) = L(Fsen, G);
(b) ∀s ∈ P (L(G)), ∀fsen ∈ Fsen with w = fsen(s) ∈ E∗

a :

δ∗att(b0, w) = δ∗obs(b0, s).

5.2 Supervisor Under Attack

The supervisor under attack SPa provides the evolution of
the supervisor on the basis of the attack words w ∈ E∗

a . It
generates two different sets of words. The first set contains
all words on Ea that may result from either an uncorrupted
observation or from a corrupted observation that keeps the
attacker covert. The second set contains all the words that
are not consistent with the uncorrupted observation. While
words in the first set lead to a state that according to the
supervisor are consistent with the perceived observation,
those in the second set lead to a dummy state denoted
by y∅. The supervisor under attack SPa can be computed
using Algorithm 1.

We briefly explain how Algorithm 1 works. Consider a
supervisor SP = (Y,Eo, δs, y0). First, the set of states
Ya is defined as Y ∪ {y∅}, where y∅ is a dummy state: the
supervisor detects the presence of an attacker when y∅ is
reached. Moreover, the attack alphabet Ea is computed,
and the transition function of SPa is initialized at δs.

Then, for all e ∈ [(Eo ∩ Euc) ∪ Eena], and for all ya ∈ Ya,
if a transition δsa(ya, e) is not defined, then we impose
δsa(ya, e) = y∅ (Step 7). Steps 4–10 ensure that the
supervisor always enables uncontrollable events. Note that
since events in Eena can be enabled by the attacker even if
they were disabled by the supervisor, such events are also
uncontrollable from the supervisor’s viewpoint.

Algorithm 1 Construction of the supervisor under attack
SPa

Input: Supervisor SP = (Y,Eo, δs, y0), event sets Eins,
Eera, and Eena.

Output: Supervisor under attack SPa = (Ya, Ea, δsa, y0).
1: Let Ya := Y ∪ y∅;
2: Let Ea := Eo ∪ E+ ∪ E−;
3: Let δsa := δs;
4: for all e ∈ [(Eo ∩ Euc) ∪ Eena], do
5: for all ya ∈ Ya, do
6: if δsa(ya, e) is not defined, then
7: δsa(ya, e) = y∅;
8: end if
9: end for

10: end for
11: for all e ∈ Eins, do
12: for all ya ∈ Ya, do
13: if δsa(ya, e) is defined, then
14: δsa(ya, e+) = δsa(ya, e);
15: else
16: δsa(ya, e+) = y∅;
17: end if
18: end for
19: end for
20: for all e ∈ Eera, do
21: for all ya ∈ Ya, do
22: if δsa(ya, e) is defined, then
23: δsa(ya, e−) = ya;
24: end if
25: end for
26: end for

Finally, for all events e ∈ Eins, and for all states ya ∈
Ya, if a transition δsa(ya, e) is defined, then we impose
δsa(ya, e+) = δsa(ya, e) (Step 14). It implies that the
supervisor cannot distinguish event e+ from the corre-
sponding event e ∈ Eins. If a transition δsa(ya, e) is not
defined, then we impose δsa(ya, e+) = y∅ (Step 16). This
means that the supervisor observes an event that has been
disabled by itself; thus it knows that the plant is under
attack. For all events e ∈ Eera, and for all states ya ∈ Ya,
whenever a transition δsa(ya, e) is defined, we add a self-
loop δsa(ya, e−) = ya (Step 23). In fact, the supervisor
cannot observe e− ∈ E−.

Example 2. Consider the supervisor in Fig. 5(a). Let
Eo = {a, b, c, g}, Euo = {d}, Ec = {b, g}, Euc = {a, c, d},
Eins = {a}, Eera = {a, g}, and Eena = {b}. The
supervisor under attack SPa is visualized in Fig. 5(b).

Since a, b, c ∈ [(Eo∩Euc)∪Eena], and transition labeled b is
not defined at state y0, we add the transition δsa(y0, b) =
y∅. Similar arguments can be used to explain the other
transitions labeled a, b and c that yield state y∅, including
self-loops at state y∅.

Since a ∈ Eins, and there is a transition δsa(y0, a) = y1,
we add the transition δsa(y0, a+) = y1. Similar arguments
can be used to explain the other transitions labeled a+.

Since a, g ∈ Eera, and there is a transition δsa(y0, a) = y1,
we add a self-loop δsa(y0, a−) = y0. Similar arguments can
be used to explain the other self-loops labeled a− and g−. �

(a) SP

(b) SPa

Fig. 5. (a) Supervisor SP and (b) Supervisor under attack
SPa in Example 2.

In order to characterize the language generated by the
supervisor under attack, we first introduce the definition
of stealthy attack function.

Definition 7. Consider a closed-loop system SP /G with
set of attackable events Eatt. Let La(SP /G) be the lan-

guage under attack, and P̂ be the supervisor mask. An
attack function is said to be stealthy if:

P̂ (La(SP /G)) ⊆ L(SP ). (8)

�

In plain words, an attack function is stealthy if the
resulting words can also be observed by the supervisor
when no attack occurs.

In the following, the set of stealthy words of the supervisor
under attacker SPa is defined as:

Ws = {w ∈ L(SPa) | P̂ (w) ∈ L(SP )}, (9)

while the set of exposing words of SPa is defined as:

We = L(SPa) \Ws. (10)

Thus Ws is the set of words that are consistent with
observations by the supervisor without the presence of an
attacker. Hence, the observation of such words does not
reveal that the closed-loop system is under attack, while
We contains words that expose the attacker.

Proposition 2. Consider a closed-loop system SP /G,
where SP = (Y,Eo, δs, y0). Let SPa = (Ya, Ea, δsa, y0) be
the supervisor under attack with a set of stealthy words
Ws and a set of exposing words We. The following two
statements hold:

(a) L(SPa) = Ws ∪We;
(b) ∀w ∈ L(SPa): if w ∈ Ws, then δ∗sa(y0, w) =

δ∗s [y0, P̂ (w)]; if w ∈ We, then δ∗sa(y0, w) = y∅.

Proof. (a) The result holds by the definition of the set of
stealthy words (eq. (9)) and exposing words (eq. (10)).
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Algorithm 1 Construction of the supervisor under attack
SPa

Input: Supervisor SP = (Y,Eo, δs, y0), event sets Eins,
Eera, and Eena.

Output: Supervisor under attack SPa = (Ya, Ea, δsa, y0).
1: Let Ya := Y ∪ y∅;
2: Let Ea := Eo ∪ E+ ∪ E−;
3: Let δsa := δs;
4: for all e ∈ [(Eo ∩ Euc) ∪ Eena], do
5: for all ya ∈ Ya, do
6: if δsa(ya, e) is not defined, then
7: δsa(ya, e) = y∅;
8: end if
9: end for

10: end for
11: for all e ∈ Eins, do
12: for all ya ∈ Ya, do
13: if δsa(ya, e) is defined, then
14: δsa(ya, e+) = δsa(ya, e);
15: else
16: δsa(ya, e+) = y∅;
17: end if
18: end for
19: end for
20: for all e ∈ Eera, do
21: for all ya ∈ Ya, do
22: if δsa(ya, e) is defined, then
23: δsa(ya, e−) = ya;
24: end if
25: end for
26: end for

Finally, for all events e ∈ Eins, and for all states ya ∈
Ya, if a transition δsa(ya, e) is defined, then we impose
δsa(ya, e+) = δsa(ya, e) (Step 14). It implies that the
supervisor cannot distinguish event e+ from the corre-
sponding event e ∈ Eins. If a transition δsa(ya, e) is not
defined, then we impose δsa(ya, e+) = y∅ (Step 16). This
means that the supervisor observes an event that has been
disabled by itself; thus it knows that the plant is under
attack. For all events e ∈ Eera, and for all states ya ∈ Ya,
whenever a transition δsa(ya, e) is defined, we add a self-
loop δsa(ya, e−) = ya (Step 23). In fact, the supervisor
cannot observe e− ∈ E−.

Example 2. Consider the supervisor in Fig. 5(a). Let
Eo = {a, b, c, g}, Euo = {d}, Ec = {b, g}, Euc = {a, c, d},
Eins = {a}, Eera = {a, g}, and Eena = {b}. The
supervisor under attack SPa is visualized in Fig. 5(b).

Since a, b, c ∈ [(Eo∩Euc)∪Eena], and transition labeled b is
not defined at state y0, we add the transition δsa(y0, b) =
y∅. Similar arguments can be used to explain the other
transitions labeled a, b and c that yield state y∅, including
self-loops at state y∅.

Since a ∈ Eins, and there is a transition δsa(y0, a) = y1,
we add the transition δsa(y0, a+) = y1. Similar arguments
can be used to explain the other transitions labeled a+.

Since a, g ∈ Eera, and there is a transition δsa(y0, a) = y1,
we add a self-loop δsa(y0, a−) = y0. Similar arguments can
be used to explain the other self-loops labeled a− and g−. �

(a) SP

(b) SPa

Fig. 5. (a) Supervisor SP and (b) Supervisor under attack
SPa in Example 2.

In order to characterize the language generated by the
supervisor under attack, we first introduce the definition
of stealthy attack function.

Definition 7. Consider a closed-loop system SP /G with
set of attackable events Eatt. Let La(SP /G) be the lan-

guage under attack, and P̂ be the supervisor mask. An
attack function is said to be stealthy if:

P̂ (La(SP /G)) ⊆ L(SP ). (8)

�

In plain words, an attack function is stealthy if the
resulting words can also be observed by the supervisor
when no attack occurs.

In the following, the set of stealthy words of the supervisor
under attacker SPa is defined as:

Ws = {w ∈ L(SPa) | P̂ (w) ∈ L(SP )}, (9)

while the set of exposing words of SPa is defined as:

We = L(SPa) \Ws. (10)

Thus Ws is the set of words that are consistent with
observations by the supervisor without the presence of an
attacker. Hence, the observation of such words does not
reveal that the closed-loop system is under attack, while
We contains words that expose the attacker.

Proposition 2. Consider a closed-loop system SP /G,
where SP = (Y,Eo, δs, y0). Let SPa = (Ya, Ea, δsa, y0) be
the supervisor under attack with a set of stealthy words
Ws and a set of exposing words We. The following two
statements hold:

(a) L(SPa) = Ws ∪We;
(b) ∀w ∈ L(SPa): if w ∈ Ws, then δ∗sa(y0, w) =

δ∗s [y0, P̂ (w)]; if w ∈ We, then δ∗sa(y0, w) = y∅.

Proof. (a) The result holds by the definition of the set of
stealthy words (eq. (9)) and exposing words (eq. (10)).
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(b) If w ∈ Ws, we prove it by induction on the length of w.

If w = ε, the result holds being P̂ (w) = ε. Consider a word
w ∈ L(SPa) with length greater than one. Let w = w′e′.
Assume that the result holds for w′. Thus δ∗sa(y0, w

′) =

δ∗s [y0, P̂ (w′)]. It is δ∗sa(y0, w) = δsa[δ
∗
sa(y0, w

′), e′] and

δ∗s [y0, P̂ (w)] = δs[δ
∗
s [y0, P̂ (w′)], P̂ (e′)]. By the definition of

supervisor mask, δ∗s [y0, P̂ (w)] = δs(δ
∗
s [y0, P̂ (w′)], e) if e′ =

e ∈ Eo ∨ e′ = e+ ∈ E+; δ
∗
s [y0, P̂ (w)] = δs(δ

∗
s [y0, P̂ (w′)], ε)

if e′ = e− ∈ E−. By Algorithm 1, the transition function
starting from a generic state ya ∈ Ya is defined in the
same way in case of e ∈ Eins and e+ ∈ E+ (Step 14), and it
corresponds to a self-loop in the case of e− ∈ E− (Step 23).

Thus, it can be concluded that δ∗sa(y0, w) = δ∗s [y0, P̂ (w)].

If w ∈ We, by Algorithm 1, all the words w end up in the
new state y∅, i.e., δ

∗
sa(y0, w) = y∅. �

6. ATTACK STRUCTURE

In this section, we introduce the notion of attack structure
which can be defined as follows.

Definition 8. Consider the closed-loop system SP /G
with a set of attackable events Eatt. Let Obsatt(G) =
(B,Ea, δatt, b0) and SPa = (Ya, Ea, δsa, y0) be the at-
tacker observer and supervisor under attack, respectively.
The attack structure A w.r.t. SP /G and Eatt is a DFA:
A = Obsatt(G) ‖ SPa = (H,Ea, δa, h0), where:

• the set of states is H = {(b, ya) | b ∈ B, ya ∈ Ya};
• the alphabet is Ea = Eo ∪ E+ ∪ E−;
• the transition function:

δa((b, ya), e) = (δatt(b, e), δsa(ya, e)) if e ∈ Γatt(b) ∩
ΓSPa

(ya), where Γatt(b) (resp., ΓSPa
(ya)) is the set of

active events at state b (resp., ya) of Obsatt(G) (resp.,
SPa);

• the initial state is h0 = (b0, y0). �

The attack structure describes the state estimation com-
puted by the attacker and the evolution of the supervisor
according to its own observation.

Now we discuss the computational complexity of building
the attack structure A. Given a plant G with set of states
X, and the supervisor SP with set of states Y . The
attacker observer Obsatt(G) has at most 2|X| states, and
the supervisor under attacker SPa has |Y |+1 states. Since
A = Obsatt(G) ‖ SPa, the complexity of constructing A is
O(2|X| · |Y |).
Theorem 1. Consider a closed-loop system SP /G with
set of attackable events Eatt. LetObs(G) = (B,Eo, δobs, b0)
be the observer of G, SP = (Y,Eo, δs, y0) be the supervi-
sor, L(Fsen, G) be the union of all the attack languages,
Ws be the set of stealthy words, We be the set of exposing
words, and A = (H,Ea, δa, h0) be the attack structure.
The following two statements hold:

(a) L(A) = L(Fsen, G) ∩ (Ws ∪We);
(b) ∀s ∈ P (L(G)), ∀fsen ∈ Fsen with w = fsen(s) ∈ E∗

a :
(i) if w ∈ Ws, then δ∗a(h0, w) = (b, ya) ⇐⇒

δ∗obs(b0, s) = b and δ∗s [y0, P̂ (w)] = ya, where
ya �= y∅;

(ii) if w ∈ We, then δ∗a(h0, w) = (b, y∅) ⇐⇒
δ∗obs(b0, s) = b and δ∗s [y0, P̂ (w)] is not defined.

Proof. (a) By Propositions 1 and 2, it is L[Obsatt(G)] =
L(Fsen, G), and L(SPa) = Ws ∪We. Since A is defined as
the parallel composition of Obsatt(G) and SPa, having the
same alphabet, L(A) is equal to the intersection of their
languages.

(b) Let us first consider the case: w ∈ Ws. (If) Assume that

δ∗obs(b0, s) = b and δ∗s [y0, P̂ (w)] = ya. By Propositions 1
and 2, it is δ∗att(b0, w) = δ∗obs(b0, s) and δ∗sa(y0, w) =

δ∗s [y0, P̂ (w)], i.e., δ∗att(b0, w) = b and δ∗sa(y0, w) = ya.
Since A = Obsatt(G) ‖ SPa, by the definition of parallel
composition, it holds that δ∗a(h0, w) = (b, ya).

(Only if) Assume that δ∗a(h0, w) = (b, ya). Since A =
Obsatt(G) ‖ SPa, by the definition of parallel composition,
it is δ∗att(b0, w) = b and δ∗sa(y0, w) = ya. By Propositions 1

and 2, it is δ∗obs(b0, s) = δ∗att(b0, w) and δ∗s [y0, P̂ (w)] =

δ∗sa(y0, w), i.e., δ
∗
obs(b0, s) = b and δ∗s [y0, P̂ (w)] = ya.

We finally consider the case: w ∈ We. The proof follows
from the definition of parallel composition and the fact
that a word w in the supervisor under attack SPa leads to

state y∅ if and only if P̂ (w) /∈ L(SP ), i.e., δs(y0, P̂ (w)) is
not defined. �

Definition 9. Let A = (H,Ea, δa, h0) be an attack struc-
ture, and Xus be the set of unsafe states of the plant G.

• The set of target states of A is Ht := {h = (b, ya) ∈
H | b ⊆ Xus};

• The set of potential target states of A is Hpt := {h =
(b, ya) ∈ H | b ∩Xus �= ∅ ∧ b �⊆ Xus}. �

The first entry of a target state is included in Xus. The
closed-loop system reaches an unsafe state when such a
state is reached.

The first entry of a potential target state contains an
element in Xus, but it is not included in Xus. The closed-
loop system may reach an unsafe state when such a state
is reached.

Theorem 2. Consider a closed-loop system Sp/G under
attack. Let Obs(G) = (B,Eo, δobs, b0) be the observer ofG,
Obsatt(G) = (B,Ea, δatt, b0) be the attacker observer, and
A = (H,Ea, δa, h0) be the attack structure. The following
two statements hold:

(a) There exists a successful attack function iff A contains
at least one target state.

(b) There exists a potentially successful attack function
iff A contains at least one potential target state.

Proof. Let us first consider item (a). (If) Assume that
A contains a target state h = ({b}, {ya}) such that
δ∗a(h0, w) = (b, ya), and b ⊆ Xus. According to Proposi-
tion 1, it is δatt(b0, w) = δ∗obs(b0, s). Based on Theorem 1,
it is δ∗obs(b0, s) = b. Since w = fsen(s), in accordance with

the definition of attacker mask P̃ , it can be concluded

that P̃ (w) = s. As a result, δ∗obs[b0, P̃ (w)] = b ⊆ Xus. By
Definition 6, we can conclude that there exists a successful
attack function.

(Only if) Assume that there exists a successful attack
function, i.e., there exists an attack word w such that

δ∗obs(b0, P̃ (w)) ⊆ Xus. Based on Proposition 1, and the def-

inition of P̃ , it is δatt(b0, w) = δ∗obs(b0, s) = δ∗obs(b0, P̃ (w)).

In accordance with Theorem 1, it is δ∗a(h0, w) = (b, ya),

and δ∗obs(b0, s) = b. Thus, δ∗obs[b0, P̃ (w)] = b ⊆ Xus, i.e.,
state h = (b, ya) is a target state.

The proof for item (b) is similar to the proof of item (a). �

Example 3. Consider again the closed-loop system SP /G
in Example 1 and Example 2. The attack structure A =
Obsatt(G) ‖ SPa = (H,Ea, δa, h0) is visualized in Fig. 6.

Fig. 6. Attack structure A in Example 3.

In A, two target states are highlighted in green: ({x3}, y∅)
and ({x3}, y4), thus the attack function is successful. When
the target state is reached, the plant is in the unsafe state
x3.

For example, at state ({x1}, y1), if event g ∈ Eera occurs
in the plant, the attacker may erase it, corresponding
to the transitions δa[({x1}, y1), g−] = ({x2}, y1). Then,
event b may occur, and the target state ({x3}, y4) will be
reached. �

7. CONCLUSIONS AND FUTURE WORK

The problem of cyber attacks has been considered in su-
pervisory control systems. We develop an attack structure
computed as the parallel composition of the attacker ob-
server and the supervisor under attack. The attack struc-
ture allows the attacker to select attacks that cause the
closed-loop system SP /G to reach an unsafe state. In the
future, on the one hand, we plan to synthesize a supervisor
that can prevent the plant from reaching the unsafe state
even with the presence of an attacker. On the other hand,
we will try to solve the problem considered in this paper
using Petri nets to see if it can provide a more efficient
solution.
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In accordance with Theorem 1, it is δ∗a(h0, w) = (b, ya),

and δ∗obs(b0, s) = b. Thus, δ∗obs[b0, P̃ (w)] = b ⊆ Xus, i.e.,
state h = (b, ya) is a target state.

The proof for item (b) is similar to the proof of item (a). �

Example 3. Consider again the closed-loop system SP /G
in Example 1 and Example 2. The attack structure A =
Obsatt(G) ‖ SPa = (H,Ea, δa, h0) is visualized in Fig. 6.

Fig. 6. Attack structure A in Example 3.

In A, two target states are highlighted in green: ({x3}, y∅)
and ({x3}, y4), thus the attack function is successful. When
the target state is reached, the plant is in the unsafe state
x3.

For example, at state ({x1}, y1), if event g ∈ Eera occurs
in the plant, the attacker may erase it, corresponding
to the transitions δa[({x1}, y1), g−] = ({x2}, y1). Then,
event b may occur, and the target state ({x3}, y4) will be
reached. �

7. CONCLUSIONS AND FUTURE WORK

The problem of cyber attacks has been considered in su-
pervisory control systems. We develop an attack structure
computed as the parallel composition of the attacker ob-
server and the supervisor under attack. The attack struc-
ture allows the attacker to select attacks that cause the
closed-loop system SP /G to reach an unsafe state. In the
future, on the one hand, we plan to synthesize a supervisor
that can prevent the plant from reaching the unsafe state
even with the presence of an attacker. On the other hand,
we will try to solve the problem considered in this paper
using Petri nets to see if it can provide a more efficient
solution.
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