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Abstract. As a consequence of the current edge-processing trend, Con-
volutional Neural Networks (CNNs) deployment has spread to a rich
landscape of devices, highlighting the need to reduce the algorithm’s com-
plexity and exploit hardware-aided computing, as two prospective ways
to improve performance on resource-constrained embedded systems. In
this work, we refer to a compression method reducing a CNN computa-
tional workload based on the complexity of the data to be processed, by
pruning unnecessary connections at runtime. To evaluate its efficiency
when applied on edge processing platforms, we consider a keyword spot-
ting (KWS) task executing on SensorTile, a low-power microcontroller
platform by ST, and an image recognition task running on NEURAghe,
an FPGA-based inference accelerator. In the first case, we obtained a
51% average reduction of the computing workload, resulting in up to
44% inference speedup, and 15% energy-saving, while in the latter, a
36% speedup is achieved, thanks to a 44% workload reduction.

Keywords: Convolutional Neural Networks · Pruning · Hardware ac-
celeration

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have reached outstanding levels of ac-
curacy [1], favoring their success in multiple application fields, from natural lan-
guage processing, to image classification, and object detection. A turning point
was represented by the design of deeper and complex architectures [2], hav-
ing pushing requirements in terms of storage and computing capabilities. Their
deployment on edge resource-constrained systems, encouraged by bandwidth,
security, and privacy concerns, poses many challenges and has been a prolific
field of research. On the one hand, more efficient hardware architectures, specif-
ically targeting neural networks, have been designed. Industry and academia
have proposed multiple dedicated processors and accelerators [3] [4] [5] [6] [7]
and embedded GPUs [8], and heterogeneous computing systems exploiting FP-
GAs and All-Programmable-SoCs to combine parallelism and flexibility [9] [10].
On the other hand, optimized software libraries, specifically targeting a class
of devices, have been developed and released, such as CU-DNN for NVIDIA
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platforms [11], CMSIS [12], targeting class-M ARM low-power microprocessors,
and ARM-NN [13], targeting more high-end architectures. Moreover, multiple
approaches have been focusing on the simplification of the computing model, to
reduce the footprint, or the computing workload of CNNs [14] [15].

In this work, we mean to leverage the combination of such approaches. We
take as a reference a technique, proposed in [16], performing an online pruning
of a CNN’s connections, reducing the computational load associated with con-
volutional layers, based on run-time processing of the input data. We test its
implementation on a resource-constrained commercial platform based on ARM
Cortex-M, the ST SensorTile, considering a CNN for a keyword spotting (KWS)
task, and evaluating the obtained improvement in terms of execution time and
power consumption. We also present an image recognition use case, exploiting a
custom network architecture built for CIFAR-10 [17], to evaluate the feasibility
of dynamic pruning on a hardware-assisted computing platform, considering as
a target NEURAghe, an FPGA-based inference accelerator.

2 Related Work

The efficient execution of CNNs on resource-constrained systems requires care-
ful optimization, both of the computational workload and of the number of
accesses to the off-chip memory. The community has addressed this matter by
either designing shallower and optimized network architectures [18] [19], or by
developing several compression techniques, reducing the number of network’s
parameters or the precision of their representation [20]. In Table 1 we list some
of the most recent works on network compression. For each one, we define in
Column 1 the dominant compression method resulting in most of the reported
advantages, while in Column 2 we report whether the compression strategy is
static or dynamic, thus evaluated at runtime based on the complexity of the in-
put to be classified. In Column 3 we define the granularity and structure level of
the pruning action. In Column 4 we report the performance metrics considered
to evaluate and refine the CNN architecture, and finally in Column 5 we list the
hardware architectures considered for the analysis.

In [21], the authors present an hybrid neural network, combining the advan-
tages of Strassen representation for matrix multiplications [24] and of Bonsai
decision trees [25]. Their proposed compression method exploits ternary repre-
sentation for most of the weights in convolutional layers, keeping only a few
full precision weights, which can be further quantized to 16 or 8-bit precision.
The ST-HybridNet reaches 94.71% accuracy, using 2.4 MOPS and requiring
a 41.8 kB memory footprint. The compression method exploited in this work
is static, and its advantages are mainly due to compression through quantiza-
tion rather than connections pruning, and the possibility to replace most of the
resource-hungry multiplications with additions. Thus, it can be considered as an
orthogonal technique to classical pruning methods, and especially to dynamic
ones. Furthermore, the advantages of compression are only indirectly analyzed
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Work Compression Static/ Structure Performance Hardware
Strategy Dynamic Level Metric Platform

Transformation, Accuracy,
[21] Quantization Static not applicable OPS, ✗

Footprint
Pruning, Group of Accuracy, ASIC,

[22] Quantization Dynamic channels OPS, GPU,
Power CPU

Group of Accuracy,
[23] Pruning Dynamic channels OPS, GPU

Power
Single Accuracy, FPGA,

this work Pruning Dynamic channel inference time, µC
Power

Table 1: Comparison with state of the art works on CNN compression.

in terms of OPS and footprint reduction, which cannot always be translated into
performance improvements, depending on the flexibility of the target library.

In [22], the authors explore channel gating as a dynamic pruning method, to
reduce at runtime the network’s complexity based on the input’s content. Given
a baseline network architecture, two different paths are identified, a base path,
and a conditional path. The first one is always computed, and such a partial sum
is exploited as an activation rule for the conditional path, which is either skipped
or selectively executed. In the case of skipped computations, the partial sum is
used as an approximation of the final value, thus the workload reduction is not
inherited by the successive layers. Thus, in the resulting channel gating networks
(CGNets) a structured pruning is enforced, which allows for efficient inference,
even on a hardware accelerator. The authors report a 2.8× FLOPS reduction on
ResNet-18, resulting in a 2.3× inference speedup on their CGNet accelerator.

In [23], the authors present a dynamic pruning strategy based on reinforce-
ment learning, exploiting a decision network to evaluate the pruning actions
on the convolutional layers of the network. For each layer, the output features
are grouped into a certain number, k, of sets, and the decision establishes how
many of such ordered sets are to be evaluated based on the desired trade-off
between performance and accuracy. Thus, it is still possible to define a base and
a conditional path, and the enforced pruning can be defined as structured.

In this work, we consider a dynamic pruning technique [16], which can be
exploited concurrently with other compression methods, to further reduce the
workload of an efficient network based on the content of the specific input to
be processed. Compared to [22] and [23], we focus on a less structured pruning
strategy, where the activation rule is applied independently to the single out-
put features of a convolutional layer, and all the combinations can be in theory
obtained. The compression effect also impacts the following layers, resulting in
fewer valid input features to be computed in the successive convolutions. The
work we reference [16] represents an extreme case of dynamic pruning, thus we
mean to evaluate whether the resulting OPS reduction can still produce perfor-
mance improvement. We consider an efficient state-of-the-art library, as CMSIS-
NN, enabling it to support the selective evaluation of convolutional kernels, and
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finally evaluate the advantages of the dynamic pruning on on-hardware direct
measurements of inference time and energy consumption. We also consider a
convolution accelerator implemented on FPGA and evaluate how the workload
reduction impacts its performance.

In the following, we show that significant performance improvement can be
achieved by introducing the required support in the hardware architecture or
software library performing the convolutions. Our purpose is to:

– test the pruning method in [16] on two use-cases, KWS and image recogni-
tion;

– evaluate its effect on two reference hardware platforms, the ST SensorTile
and NEURAghe;

– present a method to estimate the Parsimonious Inference’s (PI) impact on
power consumption.

3 Reference methodology

The common inspiration for pruning methods is CNN computations are often
redundant, and some of them can be skipped with little effect on the accuracy.
[16] focuses on convolutional layers, which represent the main source of work-
load for several CNN architectures, and aims at adapting the complexity of the
network to the particular item to be classified. The approach exploits a special-
ized training procedure, where the network model is changed into one enforcing
PI through dynamic pruning. As shown in Figure 1, the network architecture
is distorted through the insertion of a dedicated software module, the Learning
Kernel Activation Module (LKAM), which can be associated with one or more
convolutional layers along the network. The LKAM reproduces a simple network
model, consisting of a 1x1 convolution, average pooling, and a sigmoid activation,
followed by a threshold step. During the inference execution, this lightweight
processing is applied to the convolutional layer’s input features, resulting in a
set of activation flags, provided as an additional input. In detail, given a layer
with OF output features, the LKAM computes OF activation flags. At runtime,
convolution is evaluated only on the active output features, thus skipping the
computations associated with particular sets of weights. Since the LKAM output
is data-dependent, different levels of deactivation can be obtained for different
input items. The computation savings also involve the following layer, which
will receive a reduced number of valid input features. The LKAM parameters
are learned during the training procedure, aiming at preserving the network’s
accuracy while maximizing the sparsity of the activation flags. To that end, the
chosen loss function, Lt(w, b), needs to be modified through an additional term,
indicated as Laug(sw), to consider the LKAM output.

L(w, b, sw) = Lt(w, b) + Laug(sw)

Such new term is defined as:

Laug(sw) =
Gi

2m

∑
i

|swi|
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Fig. 1: a) Network architecture for the KWS use-case; b) Parsimonious model
obtained through retraining with LKAMs.

where sw represents the LKAM output before the threshold is applied, m is the
length of such vector and Gi is a gain factor, that can be tuned independently
for each layer of the network. The tool output is a set of new models, integrating
different numbers of trained LKAMs in different positions. When a target accu-
racy is set, the selected model is the one with the highest deactivation percentage
within the target accuracy.

When trying to exploit this technique on hardware-aided or parallel com-
puting devices, the main challenge is posed by the need to selectively perform
computations, and keep track of the deactivated features when retrieving the
appropriate kernels to evaluate across the various layers of the network. A pos-
sible drawback is represented by the additional storage space required by the
LKAM’s parameters. Loss of precision, due to the need for data quantization,
is another issue to be considered in both the implementations evaluated in this
paper.

4 Reference computing platforms

We present in the following the main features of the platforms considered in this
paper, the ST SensorTile and NEURAghe, and the modifications we introduced
to support PI.

4.1 SensorTile

The SensorTile is an IoT module, developed by STMicroelectronics, embedding
an 80 MHz ARM Cortex-M4 32-bit low-power micro-controller. The system ar-
chitecture exploits a Real-Time lightweight Operating System (RTOS), support-
ing multi-threading and scheduling of the different application tasks on defined
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timings. To reduce power consumption, it can switch between two main operating
states, run mode and sleep mode, exploited whenever possible in our application,
through a specific idle task that is entered every time none is pending.

Support for PI. Given the real-time constraints of the KWS task on Sen-
sorTile, we exploited CMSIS, a library specifically targeting Cortex-M Pro-
cessing Cores, including several NN utilities and designed to maximize perfor-
mance [12]. To obtain the results presented in the last section, we used the
basic version of the 8-bit square convolution function provided by the library,
”arm convolve HWC q7 basic” and customized it to make it able to receive and
use the deactivation information produced by the LKAMs. As a first attempt at
supporting PI, after scanning the activation flags we split the convolution exe-
cution into separate layers, of width given by the number of consecutive active
output features.

As shown in Figure 2, where the execution time of layer Conv2 in Table 2
is plotted as a function of the kernels’ deactivation percentage, such a solution
is not very efficient, preventing the processor to take advantage of the opti-
mized sequence of operations. As an alternative, we acted on the function itself,
to introduce the selective evaluation of computational units, while preserving
the computational efficiency. We replaced the weight tensor with an array of
addresses, each pointing to the active filtering kernels. During convolution exe-
cution, the read pointer of weights is assigned a new value from the next location
of the addresses tensor. As can be derived from Figure 2, introducing kernel deac-
tivation inside a knowingly optimized function allows obtaining a linear speedup
with the deactivation percentage.

4.2 NEURAghe

NEURAghe is a CNN inference accelerator that can be ported with different
parameters on different FPGA devices [10]. The results disclosed in this work
come from its implementation on a Xilinx Z-7020 SoC mounted on a Zedboard
by Digilent. It exploits a Convolution Engine (CE) embedding a matrix of multi-
pliers, and a programmable micro-controller, efficiently scheduling convolutions
and data transfers towards the local storage space accessed by the CE, dedi-
cated to the convolutional weights and activations. In this work, we only refer
to the hardware acceleration of convolutional layers, with kernel size 3x3 or 5x5.
When receiving the offload command, the micro-controller is provided with the
layer’s parameters, and the memory addresses from which to read the network’s
parameters and write the computed results. According to the internal structure
of the CE and the size of the local storage space, the micro-controller groups
the layer’s input and output features, and handles a task-level pipeline, made
up of three main stages: 1) load of weights and input features; 2) setup and run
of the CE; 3) store of the computed results. The disclosed results refer to a CE
implementation embedding a single SoP module, processing 2 output pixels per
cycle, and performing three convolutions with 3x3 filtering kernels, or one with
5x5 kernels, in 16-bit fixed-point precision.
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Fig. 2: Execution time of Conv2 layer in the KWS network model, considering
different percentages of deactivated kernels and exploiting the two solutions de-
veloped to support kernel deactivation.

Support for PI. To efficiently support PI, the hardware/ software architec-
ture needs to selectively load only the sets of weights corresponding to active
kernels, while exploiting at best the hardware resources, by setting up the en-
gine with the optimal number of inputs and weights, from the scheduling point of
view. First, the layer’s description provided to the micro-controller is enriched
with two fields, carrying kernel activation information, and consisting of two
arrays of flags, storing the output of the LKAM associated with the current
layer, and with the preceding one. Given such information, the micro-controller
needs to program the CE to only perform the computations corresponding to
a valid input feature and active output feature. Furthermore, in the baseline
architecture, weight transfers are handled in batches, while PI requires treating
each kernel independently, to freely discard those that have been deactivated.
To enable this, we changed weight transfer granularity and added the memory-
mapped programmable registers needed to control the number of elements to
be expected per transfer, and the position of the element that should be inter-
preted as bias. We also introduced some changes in the middleware executed by
the micro-controller, to evaluate the activation flags before the data transfers
are programmed. An outer loop scans the flags associated with the input and
output features: only when both flags are set to true the address is evaluated,
and the transfer is programmed. Finally, we introduced two inner loops on the
activation flags, to keep track of the number of programmed transfers, until the
necessary number of features, required to run the accelerator at full speed, has
been reached.

5 EXPERIMENTAL RESULTS

5.1 KWS on SensorTile

To evaluate the advantages of PI in terms of power consumption, we selected a
KWS use-case, deployed on ST SensorTile. Classification is performed through
a simple CNN model architecture, trained on the Speech Commands dataset
[26], and whose structure is described in Table 2. We refer to the model enriched
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Conv1; Input Size = 32 × 32 Kernel Size = 3 × 3
Convolution Input Features = 1 Output Features = 32

Conv2; Input Size = 16 × 16 Kernel Size = 3 × 3
Convolution Input Features = 32 Output Features = 64
Fc1; Fully Input Size = 64 × 8 × 8 Output Size = 64
Connected
Fc2; Fully Input Size = 64 Output Size = 10
Connected

Table 2: Architectural model of the reference CNN for the KWS task.

Accuracy
Baseline 94,43%

PI 90,54%

Table 3: Accuracy of the baseline and PI version of the CNN for KWS.

Idle Power: Pidle = 28,78 mW
Audio Processing Energy Contribution: Epr = 3,48 mJ
CNN Classifier Energy Contribution: Ecnn = 8,67 mJ

Table 4: On-hardware measurements of power consumption and energy contri-
butions of the examined tasks, performed on the ST SensorTile.

with an LKAM associated with Conv2 as the PI model, resulting in the accuracy
drop reported in Table 3. Figure 3a reports the different percentages of deac-
tivation obtained over the dataset, showing an average deactivation of 51% of
the convolutional kernels in Conv2, and evaluated on a 16-bit implementation.
To assess how power consumption is affected, we refer to an 8-bit implementa-
tion, running on the reference platform. We exploited the CMSIS library [12],
introducing the modifications described in Section 4.1 to support the selective
evaluation of kernels. Figure 3b reports the inference time as a percentage of the
baseline execution time, considering the kernels activation percentages in Figure
3a. To translate processing time savings into a reduction of power consumption,
we considered a simple application model, involving three main tasks:

– Get Data, performing data acquisition with the desired sampling frequency;
– Audio Processing, evaluating the Mel-spectrogram of the sampled audio,

provided as input to the CNN;
– CNN Classifier, executing the network model for recognition.

The audio processing is performed by evaluating 32 Mel features through 32
temporal frames, covering 1s of sampled audio. Considering real-time execution,
processing and classification need to be performed periodically. Since the audio
processing time was evaluated to be 104 ms at an 80 MHz working frequency,
and the worst-case inference time, required by the baseline model without de-
activation, is 290 ms, we considered a fixed execution period of 400 ms. When
no software task is executing, the RTOS switches the operating state from run
to sleep mode. As shown in Figure 4, the idle time grows with the percentage
of kernel deactivation produced by the input. The effect on the system’s power
consumption can be estimated through a simple model [27]:

P = Pidle + Egd × fgd + (Epr + Ecnn)× fpr
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Fig. 3: a)Kernel deactivation percentage through the Speech Commands dataset,
and average deactivation; b)Percentage execution time over the baseline model
execution time, for different kernel activation levels; c)Percentage energy saving
over the baseline model power consumption, for different percentages of kernel
deactivation.

Fig. 4: Real-time inference cycle, considering the baseline model and a case of
50% deactivation in Conv2, allowing to save power by entering the sleep mode.

where fpr is the execution frequency of processing and classification, while with
Epr and Ecnn we refer to the energy contribution of the different tasks, that add
up to the idle power consumption of the system. Table 4 reports the idle power
consumption and the energy contribution of the considered tasks, evaluated by
measuring with an oscilloscope the current absorbed by the device in different
working conditions. Figure 3c reports the energy consumption, as a percentage
of Ecnn in Table 4, based on the fixed deactivation patterns in Figure 3a, and
referring to a loop execution of the CNN classifier. The results in this section
show that the examined pruning method can produce remarkable hardware per-
formance improvements, despite the high level of granularity.

5.2 CIFAR-10 on NEURAghe

Here we explore the feasibility of applying PI on a hardware assisted architecture,
considering an image recognition task executing on NEURAghe, and exploiting
a simple network model, LeNet, trained on CIFAR-10 [17]. The network struc-
ture is summarized in Table 5. The PI version of the model was obtained by
associating LKAMs to the second and third convolutional layers, with an accu-
racy drop of around 3%. Table 6 reports three test cases, producing different
deactivation patterns, and resulting in a different inference speedup, evaluated
considering: 1) software execution on ARM Cortex A9 processor (667 MHz); 2)
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Conv1; Input Size = 32 × 32 Kernel Size = 5 × 5
Convolution Input Features = 3 Output Features = 32

Conv2; Input Size = 16 × 16 Kernel Size = 5 × 5
Convolution Input Features = 32 Output Features = 32

Conv3; Input Size = 8 × 8 Kernel Size = 5 × 5
Convolution Input Features = 32 Output Features = 64
Fc1; Fully Input Size = 64 × 4 × 4 Output Size = 64
Connected
Fc2; Fully Input Size = 64 Output Size = 10
Connected

Table 5: Architectural model of the considered LeNet for CIFAR-10.

Test 1 Test 2 Test 3
Conv 2 Conv 3 Tot Conv 2 Conv 3 Tot Conv 2 Conv 3 Tot

Deactivation 31.3% 31.3% 30.3% 43.8% 48.1% 45.3% 40.6% 40.6% 39.4%
ARM speedup 30% 27% 29% 43% 44% 43% 40% 36% 39%
CE speedup 19% 24% 22% 33% 36% 35% 31% 30% 30%

Table 6: Kernel deactivation percentage in the three test cases, and PI execution
speedup on ARM Cortex A9 (667 MHz) and NEURAghe Convolution Engine
on Xilinx Zynq Z-7020.

hardware execution exploiting NEURAghe’s CE. As shown in the Table, in the
case of software execution the additional overhead introduced by dynamic prun-
ing is completely compensated by the reduction of computations to be performed,
producing significant advantages in the overall execution. When convolutions are
handled on FPGA, kernel deactivation still results in performance improvement,
but it is less effective, because of a programming overhead, whose burden does
not depend on the size of the workload.

6 CONCLUSION

In this work, we presented the implementation of dynamic neural network prun-
ing through data-driven kernel deactivation on two resource-constrained plat-
forms, exploiting different computing units, SensorTile and NEURAghe. We
referred to two common application fields of CNNs, such as image recognition
and KWS, and considered custom network architectures. Referring to common
datasets, we found that the method allows an average deactivation of 51% of the
convolutional kernels in the KWS task. The experimental results show that the
reduced computational load creates the possibility to reduce the system’s power
consumption, up to 15% of energy-saving, corresponding to a 44% speedup. The
data on NEURAghe implementation show it is possible to exploit dynamic de-
activation even when adopting FPGA acceleration, although with less effective
improvements. In this case, a maximum 36% speedup due to a 44% deactivation
is obtained.
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