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Abstract
In this paper, we analyze Drawdown-based risk measures for an equity portfolio with
high-frequency data. The returns of individual stocks aremodeled throughmultivariate
weighted-indexed semi-Markov chains with a copula dependence structure. Through
this recently published model, we show that the estimate of Drawdown-based risk
measures ismore faithful than that obtainedwith the application of classic econometric
models.
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1 Introduction

Financial markets have always been characterized by sudden fluctuations, both up and
down, such as happens in the prices of high-frequency assets. This makes investments
in asset portfolios extremely risky, and it becomes extremely important for the investor
to develop adequate risk measures to quantify the losses caused by adverse events in
the asset markets. The choice of an appropriate risk measure, therefore, takes on an
extremely relevant aspect. In this context, in addition to the classic risk measures such
as the Value-at-Risk or the Expected Shortfall used in the Basel agreements, which
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represent quantile-based risk measures, new risk measures based on the concept of
drawdown have been created. For example, we consider the drawdown of fixed level,
the time to crash, the speed of crash, the recovery time, and the speed of recovery
(D’Amico et al. 2020). More precisely, the drawdown process represents the distance
of the price process from the so-called running maximum (see Zhang and Hadjiliadis
2012; Zhang 2018).

Risk measures based on drawdown have been addressed in the literature under var-
ious aspects and objectives that differ substantially from those applied in this work.
For instance, Casati and Tabachnik (2012) analyze the properties of the maximum
drawdown in time series. Charwand et al. (2017) applied optimization tools for solv-
ing the portfolio allocation problem in the framework of the electricity market through
drawdown measure maximizing rate of return. An application in the energy markets
sector was carried out by Gatfaoui (2019). The author applies the expected maximum
drawdown as a measure of portfolio risk. Goldberg and Mahmoud (2017) develop a
new tail risk measure called Conditional Expected Drawdown and they find evidence
that this measure is more sensitive to serial correlation than the classical Expected
Shortfall. The definition introduced by the authors has been taken up again in the fol-
lowing Sect. 2. Mendes and Lavrado (2017) investigate the Maximum Drawdown at
Risk and they find evidence that this riskmeasure has some better properties than tradi-
tional measures, this is why we applied this risk measure in our application. Yao et al.
(2013) approached the optimal portfolio selection problem in a mean-variance frame-
work by inserting a drawdown constraint. The authors deduce remarkable properties
of the efficient frontier obtained with this approach and this aspect could represent
a future development of our work with the considered WISMC models. Since our
work is aimed at drawdown-based risk measures applied to a high-frequency asset
portfolio, we, therefore, propose to enrich the scope of these risk measures in an
original way also through modelling with multivariate WISMC processes. After iden-
tifying the most suitable risk measures, the second fundamental aspect concerns the
modeling of asset returns. In this regard, we can include in the literature traditional
econometric models (see Engle 1982; Nelson 1991; Vrontos et al. 2001), or diffusive
models (Andersen et al. 2010; Pospisil et al. 2009). Furthermore, a new model class
based on weighted-indexed semi-Markov chains (WISMC) has been developed with
good results (D’Amico and Petroni 2011, 2012a, b). The WISMC models were sub-
sequently extended to the multivariate case, thanks to the use of copula functions, in
order to faithfully replicate the complex dependency structure between asset returns
(see D’Amico and Petroni 2020).

Regarding the specific case of high-frequency data, used in this work, the WISMC
model is suitable to reproduce faithfully the statistical properties of one-dimensional
return financial data (for example, the clustering of volatility and the autocorrelation of
squared returns at a one-minute frequency). TheWISMCmodel furnishes an accurate
probabilistic description of the asset return evolution, which accounts for the serial
dependence of asset returns by including past events (trade times and return sizes)
through an index process that increases the memory of the process (see D’Amico and
Petroni 2020) for more details and a comparison with other traditional models).

In this paper, we investigate some drawdown-based risk measures by considering a
multivariate weighted-indexed semi-Markov chain model which is applied to an asset
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portfolio from the Dow Jones with high-frequency (1-min scale) data. In particular,
we present an empirical analysis on 10 assets of the Dow Jones market covering the
period February 10, 2022–July 19, 2022.

Specifically, taking an asset portfolio, we calculate the returns of the individual
stocks with a multivariate model that foresees a WISMC process for the marginals,
which will be linked by a copula function. We then determine, through Monte Carlo
simulations, the prices and returns of our portfolio.We then estimate the risk measures
based on the drawdown. At first, we compute the drawdown of the fixed level for
several values of given thresholds. We deduce the optimal time to crash distribution
and its associated parameters through the well-known AIC criterion. For this purpose,
we take into account right-censored data in the maximum likelihood estimates of the
parameters as data are censored as a consequence of the observation period. Next,
we use the Kullback–Leibler divergence to select the distribution that best fits the
empirical data. Next, we compute the speed of crash and the time to crash. Finally, we
apply the same procedure for the recovery time and the speed of recovery.

To obtain a term of comparison, the entire procedure is compared with the results
obtained with a classical econometric model, for which the marginals are estimated
with various classes of GARCH processes with appropriate variants and linked by a
copula function. In this way, a classic multivariate model is obtained which takes into
account the characteristics of the individual series and their dependence structure.

The original aspect of our work consists in having considered drawdown-based
risk measures to assess the riskiness of an equity portfolio, whose returns have been
modeled through a multivariate WISMC model, and comparison with other classical
models.

We find evidence that, in general, drawdown-based risk measures estimated with
WISMC model more faithfully reproduce the similar risk measures estimated with
classical econometricmodels used as a reference benchmark.Thepractical application,
carried out using ten Dow Jones assets, is particularly significant as it is applied to a
reference market for finance. Furthermore, these results support, in the more complex
multivariate case, what was found in the univariate case (D’Amico et al. 2020). The
proposed study is also extremely interesting because it represents a valid empirical
support regarding the efficiency of the WISMC models developed in D’Amico and
Petroni (2012b, 2020).

The paper is structured as follows. In Sect. 2, we describe the drawdown-based
risk measures. In Sect. 3, we present the multivariate stochastic models (WISMC and
classic econometric model). We present in Sect. 4 the empirical analysis with the
database description, the model parameters estimation and the censoring problem. In
Sect. 5, we present the results of our analysis and a comparison between the WISMC
and the benchmark models. Finally, Sect. 6 concludes.

2 Risk measures

Riskmeasures play a fundamental role in the theory of financial risk and count an ever-
increasing number in the literature. Traditional risk measures such as Value-at-Risk
(see Jorion 2007) and Conditional Value-at-Risk (see Rockafellar and Uryasev 2002)
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have been used fundamentally by the Basel Committee on Banking Supervision for the
drafting of the “Market risk capital requirements” (see BCBS 2013). These measures
have the disadvantage of being defined through the quantiles of the distributions and
therefore do not take into account the time sequence of the data. To remedy this prob-
lem, new ad hoc risk measures have been created based on the concept of Drawdown
(see D’Amico et al. 2020; Maier-Paape and Zhu 2018; Zhang and Hadjiliadis 2012;
Zhang 2018).

Let us consider the discrete-time varying asset price process X(t) and introduce its
running maximum process Y (t) as

Y (t) = max
s∈{0,1,...,t}{X(s)}.

The Drawdown process

D(t) = Y (t) − X(t), t ≥ 0 (1)

represents then the correction of the asset price with respect to a previous relative
maximum. Given a time horizon {0, 1, . . . , t}, the Maximum Drawdown is defined as
the highest value of the drawdown achieved in the predetermined horizon, that is:

MD{0,1,...,t} = sup
s∈{0,1,...,t}

{D(s)}. (2)

We are now introducing several Drawdown-based risk measures related to market
crashes: theDrawdown of fixed level, the time to crash, the speed of crash, the recovery
time and the speed of recovery (see at this purpose (D’Amico et al. 2020)).

(1) The Drawdown of fixed level τ(K ) represents the first time that the Drawdown
process attains or overcomes a given threshold K :

τ(K ) := min{t ≥ 0 | D(t) ≥ K } where K ≥ 0

(2) Given the last visit time of the maximum before the stopping time τ(K ) as

ρ(K ) := max{t ∈ [0, τ (K )] | Y (t) = X(t)}

we deduce the time to crash Tc(K ) as

Tc(K ) := τ(K ) − ρ(K )

that represents the time the Drawdown process needs to experience the first drop
of level K .

(3) The speed of crash Sc(K ) is the speed at which the first K -change occurs, that is

Sc(K ) := K

τ(K ) − ρ(K )
= K

Tc(K )
.
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Given now two thresholds K and K ′, we define the quantity

γ
(
K , K ′) := min

{
t > τ(K ) | D(t) ≤ K ′} with K > K ′

that represents the first time in which the Drawdown process drops below the
threshold K ′ after crossing the threshold K for the first time. This simply means
that the asset goes from a more risky situation (the threshold K is exceeded), to a
less risky one (the threshold K ′ is attained).

(4) The recovery time Rt
(
K , K ′) is given as

Rt
(
K , K ′) := γ

(
K , K ′) − τ(K )

and represents the time to experience the first K ′-descent in the Drawdown process
following the first K -ascent.

(5) The speed of recovery Sr
(
K , K ′) is

Sr
(
K , K ′) := K − K ′

γ (K , K ′) − τ(K )
= K − K ′

Rt (K , K ′)

and represents the speed at which a
(
K − K ′) variation takes place. These

drawdown-based risk measures provide risk managers with an alternative tool
with which to assess the riskiness of an investment portfolio. For example, τ(K )

represents the riskness of an asset and it is a function of the threshold K -value (a
low value of K denotes low risk events while a high value of K denotes riskier
events). Consequently, Tc(K ) and Sc(K )measure how long these risky events last
and how quickly they take place. Contrary to the previous measures, Rt

(
K , K ′)

and Sr
(
K , K ′) represent the behavior of an asset after reaching a certain threshold

of K in its drawdown, therefore they are linked to both the K threshold and the sec-
ond K ′ threshold. More specifically, the recovery time and recovery speed denote
how long the drawdown process holds the first K change before experiencing a(
K − K ′) drop and the speed with which this drop takes place. Furthermore, to
define the measure Rt

(
K , K ′) we must consider the K ′ threshold in addition to

the K threshold. Thus, the speed of recovery Sr
(
K , K ′) indicates the speed at

which we cross the space
(
K − K ′) in the range

[
τ(K ), γ

(
K , K ′)]. We observe

that the crash is interpreted as a decline in the price process whose magnitude is
represented by the K threshold chosen in a subjective way. For example, a large
value for K means a very large decrease in prices. Finally, we introduce some tail
risk measures based on the drawdown process D(t) introduced in (1) but defined
this time on the returns of the portfolio rather than on its price.

(6) The Maximum Drawdown distribution, introduced in (2), plays a crucial role for
risk management. To build this distribution, we can calculate the MD on a time
windowoffixedwidth and then execute a rollingwindow in order to cover the entire
available dataset. In this waywe get a set of values for theMD. The quantile of this
distribution, for a confidence level α ∈ (0, 1), represents theMaximumDrawdown
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at Risk defined as (see Goldberg and Mahmoud 2017)

DaRα = inf {m | P (MD > m) ≤ 1 − α} .

This definition is very similar to the classical Value-at-Risk, and it represents
the smallest maximum drawdown m such that the probability that the maximum
drawdown MD exceeds m is at most 1 − α.

(7) The Conditional Expected Drawdown for a confidence level α ∈ (0, 1) is the
expected maximum drawdown given that the maximum drawdown threshold at α
is breached. We can set

CDaRα = 1

1 − α

1∫

α

DaRu du = E (MD | MD > DaRα) .

The latter definition is similar to the Conditional Value-at-Risk. A detailed analysis
with related properties was conducted by Goldberg and Mahmoud (2017).

3 Asset returns’ model

3.1 The weighted-indexed semi-Markov Chain Model

Following D’Amico and Petroni (2011, 2012a, b) we use, in this paper, a Weighted-
Indexed Semi-Markov Chain (hereafter "WISMC") to model the marginal distribution
of asset returns. According to D’Amico and Petroni (2020), the dependency structure
between asset returns is implemented by using a copula function. The WISMCmodel
has been chosen because it is able to reproduce faithfully the long-term dependence
of stock returns which is an important aspect when dealing with drawdown-based risk
measures. Here we give just a short description of the model, for further details the
reader can refer to the original papers where the model has been introduced D’Amico
and Petroni (2020). If X(t) is the price of an asset at time t ∈ N, the associated log
return is defined as R(t) = log(X(t)/X(t − 1)). Then, returns are discretized into a
returns’ series {Jn}n∈N with the associated jump times {Tn}n∈N of the asset returns.
The index process is defined as follows:

V λ
n =

n−1∑

k=0

Tn−k−1∑

a=Tn−1−k

(
λTn−a J 2n−1−k

∑Tn
a=1 λa

)

. (3)

were λ is a memory parameter estimated from the data. With these definitions, the
probability structure of the processes takes the form:

P
[
Jn+1 = j, Tn+1 − Tn ≤ t |Jn, Tn, V λ

n , Jn−1, Tn−1, V
λ
n−1, . . .

]

= P
[
Jn+1 = j, Tn+1 − Tn ≤ t |Jn, V λ

n

] := Qλ
jn j

(
V λ
n ; t) . (4)
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Then, a copula function is used to build the joint distribution of asset returns (see at
this purpose Joe (1997) and Nelsen (2006)). The marginal distributions is compatible
with a WISMC process and the dependence structure among m assets is respected.

3.2 Traditional econometric models

To compare the WISMC model with traditional econometric models, we use the fam-
ily of GARCH processes (see for example Engle 1982; Nelson 1991) with some
variants of it such as EGARCH (exponential generalized autoregressive conditional
heteroscedastic, see Tsay 2010) and GJR (Glosten, Jagannathan, and Runkle, see
Glosten et al. 1993) processes. A more general framework was considered by Burda
and Bélisle (2019) where the authors applied a C-MGARCH model with a dynamic
copula. Parameter estimation can be easily carried out with theMatlab ‘estimate’ com-
mand. We will be able to identify, for each marginal, the best process through the AIC
(Akaike’s Information Criterion) minimization (see Ljung 1999). Once the appropri-
ate process has been chosen, we can proceed to Monte Carlo simulations using this
time the ‘simulate’ Matlab command. We note that the returns of the series used are
correlated therefore we cannot independently simulate the individual series. We will
have to use a multivariate model that takes into account not only the characteristics
of the individual marginals but also their complex dependency structure. An efficient
and well-established way in the literature to achieve the intended purpose is to make
use of the copula functions.

4 Empirical analysis

4.1 Database

The dataset used in our application consists of ten assets that are part of the DJ index
and were downloaded through Refinitiv. The 10 assets are chosen to represent the
most important industry sectors. We consider a time horizon from February 10, 2022,
to July 19, 2022 with a frequency equal to one minute. Regarding the calculation of
returns, we have removed the opening and closing values for each trading day to avoid
a discontinuity in the calculation of returns. We also reworked the dataset to match the
trading days for each asset. At the end 41,730 data are obtained for the high frequency
return for each asset; the main statistics are inserted in Table 1. We show in Fig. 1 the
histogram of the price series.
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Table 1 Main statistics of the assets returns with 1-min frequency

Stock Mean Std. dev. Skewness Kurtosis

UnitedHealth Group Inc 4.57E−06 7.75E−04 0.15 4.64

Johnson & Johnson 1.89E−06 5.78E−04 0.06 7.42

Walmart Inc 1.51E−06 6.64E−04 0.08 5.61

Verizon communications Inc 1.16E−06 6.03E−04 −0.57 27.89

McDonald’s Corp 5.61E−07 6.04E−04 0.06 4.22

Nextera energy Inc 4.21E−07 7.97E−04 0.11 5.19

Duke energy corp 1.58E−06 6.64E−04 −0.01 13.36

Southern Co 3.00E−06 6.88E−04 0.09 12.58

Dominion energy Inc 7.12E−07 6.73E−04 0.08 12.13

Consolidated Edison Inc 2.50E−06 7.12E−04 0.12 14.08

Fig. 1 Histograms of returns for each asset

The chosen asset are correlated to each other, the correlationmatrix is shown below:

ρ =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1.00 0.48 0.39 0.34 0.42 0.39 0.37 0.38 0.38 0.35
0.48 1.00 0.43 0.41 0.38 0.37 0.45 0.47 0.46 0.43
0.39 0.43 1.00 0.36 0.42 0.37 0.38 0.38 0.40 0.36
0.34 0.41 0.36 1.00 0.35 0.34 0.43 0.45 0.44 0.42
0.42 0.38 0.42 0.35 1.00 0.38 0.34 0.35 0.36 0.33
0.39 0.37 0.37 0.34 0.38 1.00 0.49 0.51 0.51 0.46
0.37 0.45 0.38 0.43 0.34 0.49 1.00 0.77 0.74 0.72
0.38 0.47 0.38 0.45 0.35 0.51 0.77 1.00 0.75 0.72
0.38 0.46 0.40 0.44 0.36 0.51 0.74 0.75 1.00 0.72
0.35 0.43 0.36 0.42 0.33 0.46 0.72 0.72 0.72 1.00

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

From the descriptive statistics it can be observed that the asset returns do not follow
Gaussian distributions. In fact, the kurtosis is always far from 3 that is the value for a
Gaussian distribution.
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Fig. 2 Efficient frontier and target portfolio

To choose the target portfolio of our study, we constructed the classic efficient
Markowitz frontier based on the criteria of mean and variance (without short sales)
and arbitrarily selected an efficient portfolio. The efficient frontier and the chosen
portfolio are shown in Fig. 2.

4.2 Parameters’ estimation

We apply the multivariate WISMC model to the target portfolio described in the pre-
vious section. Following D’Amico and Petroni (2020) returns are discretized into five
symmetrical states. Also, the index process V λ is discretized into five states (low,
medium-low, medium, medium-high and high volatility). Using the optimization pro-
cedure described in D’Amico and Petroni (2020) we found the optimal parameter
λ = 0.97 for all stocks.We used a t-copula to reproduce the cross-correlation between
the assets. The parameters of the copula are estimated by maximum likelihood esti-
mators. Next, we apply Monte Carlo simulations to derive synthetic time series.

4.3 Censoring problem and divergencemeasure

The problem of censored data has already been highlighted in the univariate case in
D’Amico et al. (2020). We briefly report below the description of this problem as it
will be clearly addressed also in the multivariate case.

Weobserve that drawdown-based riskmeasures are right-censored as a consequence
of the observation period. Specifically, the Type-1 right censoring occurs. This happens
when an experiment, where a certain number of subjects or objects are observed, is
stopped after reaching a given observation time limit. Subjects still alive at the given
time limit (in our case, the number of minutes in a typical trading day) are called
censored on the right. The problem, therefore, occurs in the estimation of the following
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risk measures: the drawdown of fixed level, the time to crash, and the recovery time.
Furthermore, to determine the distributions with relative parameters that represent
these risk measures, we will need to take into account that we are using right-censored
data. In this regard, we use special algorithms present inMatlab (specifically, the fitdist
command admits ‘censoring’ as option). Finally, to compare the relative distributions
of risk measures for the different models used (i.e., to make a comparison between
the WISMC model and the traditional models used as a benchmark), we use the
Kullback–Leibler measure Kullback and Leibler (1951).

The Kullback–Leibler divergence of the distribution Q from the distribution P is
denoted DKL (P||Q) and it represents the measure of the information lost when we
approximate P with Q. It is defined as:

DKL (P||Q) =
+∞∫

−∞
p(x)log2

(
p(x)

q(x)

)
dx

where p and q represent the probability densities of P and Q respectively. Here, p
and q denote respectively the simulated and the empirical distributions of the specified
risk measures.

5 Results

We consider the target portfolio described before. After having determined the log
returns for each asset, the prices of the assets are rescaled considering an initial value
equal to 100. The initial value of the portfolio will therefore be equal to 100. Let’s
compare the characteristics of the empirical portfolio with the portfolio simulated with
theWISMCmodel, as opposed to the classic multivariate model used as a benchmark,
which foresees the marginals modelled with an EGARCH(1, 1) process and linked
by a t-copula.

We show in Fig. 3 the price, running maximum and Drawdown processes for the
empirical series and a single simulation through the multivariate models (WISMC
and econometric). From this figure, we can get an idea and a comparison of the price
trend, running maximum and Drawdown process for the empirical series and those
simulated with the various multivariate models.

5.1 Risk measures

(1) The Drawdown of fixed level τ(K ) Descriptive statistics of Drawdown of fixed
level τ and related censored units computed on real data as a function of K are given in
Table 2. We observe that the average value for the drawdown of fixed level τ increases
as the K threshold increases. This is a predictable result as extreme events take longer
to occur. For example, we go from an average of 81.3646 min. for K = 0.005 to
108.6538 min. for K = 0.0065. The percentage of right-censored values clearly
increases with the K threshold, in fact, more extreme events occur less frequently in
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Fig. 3 Price process X(t), Running maximum process Y (t) and Drawdown process D(t)

Table 2 Drawdown of fixed level as a function of K

K Mean Std. dev. Skew. Kurtosis Cens. (%)

0.0050 81.3646 100.3007 1.6135 4.3905 10.28

0.0060 104.1954 114.7291 1.2984 3.3540 18.69

0.0065 108.6538 113.8960 1.3287 3.5551 27.10

the chosen horizon. The percentage of right-censored data is 10.28% for K = 0.005
while it rises to 27.10% for K = 0.0065. (2) The time to crash Tc(K ) Descriptive
statistics of the time to crash Tc and related censored units computed on real data as
a function of K are given in Table 3. We deduce from the given table that the average
value for the time to crash Tc increases as the K threshold increases. This is, here
again, a predictable result as extreme events take longer to occur. For example, we go
from an average of 37.3333 min. for K = 0.005 to 62.8590 min. for K = 0.0065.
The percentage of right-censored values clearly increases with the K threshold, in fact,
more extreme events occur less frequently in the chosen horizon. The percentage of
right-censored data is 10.28% for K = 0.005while it rises to 27.10% for K = 0.0065,
exactly as in the case of the drawdown of fixed level. From the analysis of the skewness
coefficient and kurtosis, it is evident that these distributions are far from Gaussianity
therefore it is extremely important to determine the most appropriate distributions to
represent these data.

The selection of the best parametric model for the measure Tc on both real and
simulated data is performed by means of the AIC criterion, considering several K
values. In this regard, we use Matlab ‘fitdist’ command which allows examining the
right censoreddata across a set of traditional distributions.The results are given inTable
4 (‘EV’ is the Extreme Value distribution, ‘Exp’ is the exponential distribution). We
note that the EV distribution has two parameters (which we have denoted ‘param1’
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Table 3 Time to crash as a function of K

K Mean Std. dev. Skew. Kurtosis Cens. (%)

0.0050 37.3333 43.8302 2.2959 8.6336 10.28

0.0060 62.2529 77.8366 2.1218 7.0817 18.69

0.0065 62.8590 72.1079 2.0340 6.4715 27.10

Table 4 Best parametric model for the measure Tc

Model AIC (K = 0.005) Distrib. Param. 1 Param. 2

Empirical −1302.6211 EV 150.6920 171.3742

cop+garch(1,1) −1301.1419 EV 98.9753 130.2638

cop+garch(2,2) −1244.5315 EV 72.7516 95.4108

cop+egarch(1,1) −940.1275 EV 40.8430 19.1214

cop+gjr(1,1) −1244.5119 EV 74.6161 95.1342

WISMC −1310.5669 EV 122.1279 143.8698

Model AIC (K = 0.006) Distrib. Param. 1 Param. 2

Empirical −1235.7997 EV 228.4803 194.7849

cop+garch(1,1) −1302.7175 EV 136.9011 144.0285

cop+garch(2,2) −1297.9397 EV 123.2429 131.1367

cop+egarch(1,1) −1024.6219 EV 56.8701 28.9030

cop+gjr(1,1) −1293.2421 EV 118.6123 123.8756

WISMC −1286.9165 EV 176.7879 164.9346

Model AIC (K = 0.0065) Distrib. Param. 1 Param. 2

Empirical −1149.0292 EV 282.2619 214.0872

cop+garch(1,1) −1270.8293 EV 187.3219 168.6682

cop+garch(2,2) −1293.8433 EV 131.0815 128.0311

cop+egarch(1,1) −1243.5072 EV 83.8218 93.5161

cop+gjr(1,1) −1290.8825 EV 164.3094 153.8274

WISMC −1228.4062 EV 232.0630 187.0452

and ‘param2’) while the exponential distribution has only one parameter (denoted
‘param1’).

We find evidence that for the selected values of K (K = 0.005, K = 0.006, and
K = 0.0065), both for the empirical data and for the data simulated with the model
WISMC and with classical econometric models, the optimal distribution is always the
‘Extreme Value’.

The Kullback–Leibler divergence computed for the risk measure Tc, considering
different levels of K , is given in Table 5.

We have indicated in bold, for each value of the K threshold, the minimum value
of the Kullback–Leibler measure. We note that for all the selected values of the K
threshold (i.e., K = 0.005, K = 0.006 and K = 0.0065), the WISMC model is more
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Table 5 Kullback–Leibler indicator for the measure Tc

Model K = 0.005 K = 0.006 K = 0.0065

cop+garch(1,1) 0.1176 0.2001 0.1490

cop+garch(2,2) 0.4191 0.3013 0.5392

cop+egarch(1,1) 8.2224 6.8541 1.3778

cop+gjr(1,1) 0.4112 0.3627 0.2555

WISMC 0.0374 0.0272 0.0415

Fig. 4 Probability density function for Tc with K = 0.0065

suitable and therefore preferable in the case of situations with greater risk (denoted
with a high value of the K threshold). We represent in Fig. 4 the probability density
functions for the various models in the case K = 0.0065. In this case, we highlight
an optimal fitting between the WISMC model and empirical values.

(3) The speed of crash Sc(K ) The Descriptive statistics of the speed of crash Sc and
related censored units computed on real data as a function of K are given in Table 6.

We deduce from this table that the average value for the speed of crash Sc decreases
as the K threshold increases. This is a predictable result as assets reach high thresholds
slower than low thresholds. For example, we go from an average of 0.000381 for
K = 0.005 to 0.000264 for K = 0.0065. The percentage of right-censored values
follows the same profile as in previous cases as we always have a single K threshold
to reach.

(4) The recovery time Rt (K , K ′) Descriptive statistics of the recovery time Rt and
related censored units for real data as a function of K and K ′ are given in Table 7.

Compared to the previous risk measures, this time wemust consider the two thresh-
olds to be reached called K and K ′. We highlight that the mean value for the recovery
time Rt depends on both thresholds K and K ′. In these applications, we have chosen
the threshold pairs K = 0.005 & K ′ = 0.0045, K = 0.006 & K ′ = 0.0055, and
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Table 6 Speed of crash as a function of K

K Mean Std. dev. Skew. Kurtosis Cens. (%)

0.0050 0.000381 0.000415 2.287602 9.728872 10.28

0.0060 0.000326 0.000356 1.737450 5.547645 18.69

0.0065 0.000264 0.000242 1.468253 4.697550 27.10

Table 7 Recovery time as a function of K and K ′

K–K ′ pair Mean Std. dev. Skew. Kurtosis Cens. (%)

0.005−0.0045 42.3976 76.3987 2.4490 8.3439 22.43

0.006−0.0055 37.3600 70.3535 2.9842 11.7699 29.91

0.0065−0.00625 26.5385 60.5808 3.4080 14.4554 39.25

K = 0.0065 & K ′ = 0.00625. We also deduce that the percentage of right-censored
values is higher with respect to the time to crash Tc because both thresholds K and
K ′ must be attained.

The selection of the best parametric model for the measure Rt on both real and
simulated data by mean of AIC criterion, fixing K and K ′ is given in Table 8.

We observe that for the selected values of K and K ′ (K = 0.005 & K ′ = 0.0045,
K = 0.006& K ′ = 0.0055, and K = 0.0065& K ′ = 0.00625), both for the empirical
data and for the data simulated with the modelWISMC andwith classical econometric
models, the optimal distribution is always the ‘Extreme Value’ distribution.

The Kullback–Leibler divergence computed for the risk measures Rt is given in
Table 9.

We have indicated in bold, for each pair of values of the K and K ′ thresholds,
the minimum value of the Kullback–Leibler measure. We note that for all pairs of
thresholds K = 0.005 & K ′ = 0.0045, K = 0.006 & K ′ = 0.0055, and K =
0.0065 & K ′ = 0.00625 the WISMC model is more suitable. Indeed, the WISMC
is preferable in the case of situations with high risk (denoted with high values of the
K threshold). We represent in Fig. 5 the probability density functions for the various
models in the case K = 0.0065 and K ′ = 0.00625.

(5) The speed of recovery Sr (K , K ′) The descriptive statistics of the speed of
recovery Sr and related censored units for real data as a function of K and K ′ are
given in Table 10.

We observe that the mean value for the speed of recovery Sr is rather stable. We
also note that the percentage of right-censored values is higher with respect to the
time to crash Tc because both thresholds K and K ′ must be attained, exactly as for
the recovery time Rt (we actually used the same K and K ′ thresholds).

The Selection of the best parametric model for the measure Sr on both real and
simulated data by mean of AIC criterion, fixing K and K ′ is given in Table 11.

We highlight that for the selected values of K and K ′ (K = 0.005 & K ′ = 0.0045,
K = 0.006& K ′ = 0.0055, and K = 0.0065& K ′ = 0.00625), both for the empirical
data and for the data simulated with theWISMCmodel and with classical econometric
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Table 8 Best parametric model for the measure Rt

Model AIC (K = 0.005; K ′ = 0.0045) Distrib. Param. 1 Param. 2

Empirical −1325.6255 EV 218.9804 187.8786

cop+garch(1,1) −1367.9196 EV 141.5697 171.0066

cop+garch(2,2) −1387.9332 EV 147.2492 163.4690

cop+egarch(1,1) −1382.5227 EV 125.5154 156.7407

cop+gjr(1,1) −1375.9840 EV 124.6280 158.5580

WISMC −1366.3313 EV 183.6025 181.4620

Model AIC (K = 0.006; K ′ = 0.0055) Distrib. Param. 1 Param. 2

Empirical −1245.5752 EV 261.8739 205.7650

cop+garch(1,1) −1358.5374 EV 181.5568 183.8243

cop+garch(2,2) −1366.3014 EV 156.2543 175.7412

cop+egarch(1,1) −1382.3260 EV 124.5572 15.6872

cop+gjr(1,1) −1369.8892 EV 149.9985 171.5238

WISMC −1321.7333 EV 239.6906 193.5962

Model AIC (K = 0.0065; K ′ = 0.00625) Distrib. Param. 1 Param. 2

Empirical −1154.0111 EV 313.6571 221.8711

cop+garch(1,1) −1305.7149 EV 205.0306 202.0902

cop+garch(2,2) −1363.6874 EV 150.0867 174.2163

cop+egarch(1,1) −1377.9828 EV 120.7965 160.3426

cop+gjr(1,1) −1325.5283 EV 154.6649 183.0795

WISMC −1247.7591 EV 270.9300 208.3139

Table 9 Kullback–Leibler indicator for the measure Rt

Model K = 0.005 K = 0.006 K = 0.0065
K ′ = 0.0045 K ′ = 0.0055 K ′ = 0.00625

cop+garch(1,1) 0.1169 0.1002 0.1329

cop+garch(2,2) 0.1075 0.1681 0.3322

cop+egarch(1,1) 0.1755 38.6607 0.5007

cop+gjr(1,1) 0.1753 0.1918 0.2923

WISMC 0.0345 0.0027 0.0069

Table 10 Speed of recovery as a function of K and K ′

K–K ′ pair Mean Std. dev. Skew. Kurtosis Cens.

0.005−0.0045 0.0000778 0.0000735 1.0053 3.1207 22.43%

0.006−0.0055 0.0000746 0.0000710 1.0393 3.1815 29.91%

0.0065−0.00625 0.0000538 0.0000429 0.5067 1.9148 39.25%
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Fig. 5 Probability density function for Rt with K = 0.002 & K ′ = 0.0015

Table 11 Best parametric model for the measure Sr

Model AIC (K = 0.005; K ′ = 0.0045) Distrib. Param. 1 Param. 2

Empirical −1339.5401 EV 191.2040 204.6934

cop+garch(1,1) −1377.0100 EV 126.2270 179.6442

cop+garch(2,2) −1395.1800 EV 117.8461 172.8009

cop+egarch(1,1) −1392.7414 EV 105.2921 166.0346

cop+gjr(1,1) −1385.9192 EV 106.0475 167.4439

WISMC −1377.5219 EV 165.2634 193.1554

Model AIC (K = 0.006; K ′ = 0.0055) Distrib. Param. 1 Param. 2

Empirical −1258.6551 EV 243.2014 223.1514

cop+garch(1,1) −1369.2965 EV 166.4749 194.8876

cop+garch(2,2) −1375.3702 EV 138.3117 185.1247

cop+egarch(1,1) −1392.7414 EV 105.2921 166.0346

cop+gjr(1,1) −1380.1930 EV 131.8173 181.6805

WISMC 1332.9637 EV 228.0861 206.0922

Model AIC (K = 0.0065; K ′ = 0.00625) Distrib. Param. 1 Param. 2

Empirical −1163.1222 EV 305.1799 235.8772

cop+garch(1,1) −1313.2006 EV 196.0062 210.7437

cop+garch(2,2) −1372.6038 EV 132.8293 183.3052

cop+egarch(1,1) −1385.9192 EV 106.0475 167.4440

cop+gjr(1,1) −1333.8220 EV 138.6158 192.1594

WISMC −1256.3923 EV 263.3080 219.3289
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Table 12 Kullback–Leibler indicator for the measure Sr

Model K = 0.005 K = 0.006 K = 0.0065
K ′ = 0.0045 K ′ = 0.0055 K ′ = 0.00625

cop+garch(1,1) 0.0960 0.0957 0.1319

cop+garch(2,2) 0.1208 0.1692 0.3462

cop+egarch(1,1) 0.1629 0.3112 0.5081

cop+gjr(1,1) 0.1587 0.1916 0.3036

WISMC 0.0235 0.0031 0.0247

Fig. 6 Probability density function for Sr with K = 0.0065 & K ′ = 0.00625

models, the optimal distribution is always the ‘Extreme Value’ distribution as we have
also deduced for the previous risk measures, with no exceptions.

Finally, theKullback–Leibler divergence computed for the riskmeasures Sr is given
in Table 12.

We have indicated in bold, for each pair of values of the K and K ′ thresholds, the
minimum value of the Kullback–Leibler measure. We note that for all the given pairs
of thresholds, the WISMC model is always the more suitable one. We represent in
Fig. 6 the probability density functions for the various models in the case K = 0.0065
and K ′ = 0.00625.

Overall, through the analysis of the Kullback–Leibler measure, the multivariate
WISMCmodel is on the whole the most suitable for representing the drawdown-based
risk measures for an asset portfolio.

(6) TheMaximumDrawdown atRisk and theConditional ExpectedDrawdown
Below, inTables 13, 14, 15, 16 and17, the results of the DaRα andCDaRα are reported
with confidence levels of 95%, 97.5% and 99% and with a time horizon of one to 5
days.

The empirical results of the tail riskmeasures are comparedwith the results obtained
with the WISMC model and with the classic econometric models. From these results,
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Table 18 Backtesting results for 1-day horizon: number and percentage of exceptions

α WISMC egarch(1,1) gjr(1,1) garch(1,1) garch(2,2)

95% 14 (2.8%) 22 (4.4%) 163 (32.6%) 119 (23.8%) 57 (11.4%)

97.5% 14 (2.8%) 14 (2.8%) 117 (23.4%) 96 (19.2%) 22 (4.4%)

99% 12 (2.4%) 14 (2.8%) 80 (16.0%) 95 (19.0%) 14 (2.8%)

it is clear that the estimates obtainedwith theWISMCmodelmore faithfully reproduce
the empirical results. Regarding the benchmark models, the copula-egarch(1,1) model
is generally the best while the more traditional copula-gjr(1,1) model gives the worst
results.

To verify the correctness of the DaRα estimate, we set up a backtesting analysis as
in the typical case of Value-at-Risk. For this purpose, we estimate the DaRα in a time
window of 30 days and compare it with the Maximum Drawdown actually achieved
and deduced from the empirical data. An exception occurs whenever the empirical
Maximum Drawdown exceeds the DaRα value. So let’s consider a rolling window
with a forward shift of a certain amount. At the end of the process, we deduce the
percentage of exceptions, which should ideally be equal to 1 − α where α represents
the chosen confidence threshold. We report the results in Table 18 for a 1-day DaRα .
We perform a total of 500 backtesting with confidence thresholds of 95%, 97.5% and
99%.

We note that for the higher threshold of 99%, theWISMCmodel has amore reliable
number of exceptions than the classic models. Regarding the estimation of the DaR,
theWISMCmodel is thereforemore reliable than the benchmarkmodels for the higher
thresholds, which are of greater interest from a risk management perspective.

6 Discussion

In this paper, we presented an empirical analysis with the joint use of the multivariate
WISMCmodel for asset returns and drawdown-based risk measures. In particular, we
investigate several drawdown-based risk measures useful in managing market crises
(namely, the drawdown of fixed level, the time to crash, the speed of crash, the recovery
time, and the speed of recovery). We applied these risk measures to an equity portfolio
with high-frequency data, included in the Dow Jones and representative of the most
important industrial sectors. This target portfolio was selected amongst the efficient
portfolios built with available assets. We modelled the returns of our portfolio through
a multivariate WISMC model and a Student copula from which we deduced synthetic
series through Monte Carlo simulations.

Our elaborations show that the risk measures estimated through our multivariate
WISMC model turned out, in general, to be more reliable than the analogous mea-
sures estimated through a classical model used as a reference benchmark. Indeed,
the distributions used to represent the drawdown-based risk measures turned out to
be more similar to their respective empirical distributions in the case of the WISMC
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model. Similarly, drawdown-based tail risk measures such as DaRα and CDaRα are
estimated more effectively in the case of the WISMC model, especially with high
confidence thresholds, as we could also observe from the backtesting analyzes.
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