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Abstract 

Prolonged exposure to drugs of abuse leads to severe alterations in mesocorticolimbic 

dopamine circuitry deeply implicated in substance use disorders. Despite considerable efforts, 

few medications to reduce relapse rates are currently available. To solve this issue, researchers 

are uncovering therapeutic opportunities offered by the endocannabinoid system. The 

cannabinoid receptor type 1 (CB1R), and its endogenous ligands, participate in orchestration of 

cue- and stress-triggered responses leading to obtain natural and drug rewards. Here, we review 

the evidence supporting the use of CB1R neutral antagonists, allosteric modulators, indirect 

agonists, as well as multi-target compounds, as improved alternatives compared to classical 

CB1R antagonists. The promising therapeutic value of other substrates participating in 

endocannabinoid signaling, like peroxisome proliferator-activated receptors, is also covered. 

Overall, a wide body of pre-clinical evidence avails novel pharmacological strategies 

interacting with the endocannabinoid system as clinically amenable candidates able to 

counteract drug-induced dopamine maladaptations contributing to increased risk of relapse.     
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Introduction 

With approximately 35 million regular users of abuse drugs in the world [1], drug addiction, 

also referred to as ‘substance use disorders (SUD)’, remains a serious public health issue. SUD 

is a chronic, relapsing brain disease characterized by the compulsive pursue and use of the drug 

despite its harmful consequences [2]. Despite considerable research efforts aimed at 

deciphering the neurobiological substrates underpinning SUD, few if any medications have 

been introduced clinically.  

The mesocorticolimbic dopaminergic (DA) system undergoes profound, multi-faceted 

alterations after prolonged exposure to drugs of abuse (see [3], for a recent review). The current 

framework of drug addiction includes three phases: binge/intoxication, withdrawal/negative 

affect, and preoccupation/anticipation (craving) [4]. Because of the particular etiology of each 

of these stages, new pharmacotherapies can be designed to specifically cope with each 

maladaptation [5], giving rise to identifiable points of intervention [6]. Here, we capitalize on 

the potential of the endocannabinoid (eCB) system to modulate motivation and anxiety in 

normal and physiological conditions. Specifically, we will summarize the most relevant 

evidence pointing towards the therapeutic properties of eCB-targeting compounds with 

improved features when compared to classical rimonabant-like medications. The focus of the 

present review will be on the disruption of elevated anxiety states contributing to significant 

dysphoria and increased risk of relapse [7,8] during the first abstinence attempts [9], as well as 

the prevention of conditioned responses leading to craving that characterize the pernicious 

abstinent/relapse stage of the drug addiction cycle [10].  

Brief overview of the eCB system 

Cannabinoid receptors type1 (CB1R) are predominantly expressed in the central nervous 

system (CNS) [11], comprising the most abundant G protein-coupled receptor (GPCR) brain 

system [12], whereas CB2R are preferentially found in the periphery [13]. A consensus on 

whether CB2R are expressed at a significant functional level in CNS neurons has not yet been 

achieved [14]. Both receptors are generally coupled to Gi/o proteins [16] and are activated by 

anandamide (AEA) and 2-arachidonoylglycerol (2-AG) [15]. 2-AG derives from the hydrolysis 

of 1,2-diacylglycerol (DAG) via the DAG lipase (DAGL), while its breakdown is mediated by 

the monoacylglycerol lipase (MAGL). AEA is produced from N-arachidonoyl phosphatidyl 

ethanol (NAPE) by the NAPE phospholipase D (NAPE-PLD) and metabolized by the fatty 

acid amide hydrolase (FAAH). AEA also binds to the transient receptor potential channel 1 

(TRPV1) [16], as well as the nuclear peroxisome proliferator-activated receptors alpha and 

gamma (PPARα/γ) [17]; these are often considered part of the “extended eCB system” (for a 

thorough review, see [15]).  
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Unlike classical neurotransmitters, eCBs are not stored in vesicles but are synthesized and 

released de novo in response to sustained neuronal activation [18], predominantly acting in a 

retrograde fashion. Upon activation, CB1R inhibit neurotransmitter release from the 

presynaptic compartment by inactivating N- and P/Q-type voltage-gated Ca2+ channels and 

opening inward-rectifying K+ channels [19,20]. This characteristic mode of action provides 

neurons with a negative feedback mechanism able to filter and modulate neurotransmitter 

inputs -including DA- with synaptic resolution [21]. 

eCB mechanisms with potential for therapeutic intervention 

CB1R in the mesolimbic circuitry 

CB1R and its endogenous ligands are present throughout the mesocorticolimbic circuitry [22], 

fine-tuning DA-signaled processes governing motivated behavior and decision-making [23–

25]. In the ventral tegmental area (VTA), activation of CB1R localized in GABAergic terminals 

leads to the disinhibition of VTA DA cell bodies, thereby increasing DA outflow in terminal 

regions, such as the striatum and prefrontal cortex (PFC), an adaptation further exacerbated 

following drug repeated exposure [26–28] (Figure 1b). It is hypothesized that the functional 

relevance of CB1R in animal models of drug abuse [29–34] derives from the regulation of DA 

signaling during cue-elicited behavior [28,35,36]. In this way, DA transients progressively shift 

from signaling the reward by itself to signaling the cues that predict its availability, a change 

sculpted by 2-AG/CB1R neurotransmission [37,38]. In contrast, AEA, which binds CB1R with 

sub-maximal potency [39], hinders cue-evoked DA events [37,40]. In humans, places and 

stimuli associated with drug use trigger craving and, therefore, pose a major risk factor 

contributing to relapse [41]. Hence, control of cue-elicited DA events in the presence of 

discrete associated stimuli by CB1R and 2-AG, but also AEA, is a primary target for eCB-based 

pharmacotherapies of drug addiction [42]. 

CB1R-mediated stress processing in medial prefrontal cortices 

Recent advances have extended the neuronal mechanisms by which CB1R-mediated signaling 

underlies other pathological components of SUD. Stressful events can serve as cues that 

enhance anxiety states and are associated with higher risk of relapse [43] to contribute to the 

dysphoric state experienced by addicted individuals [9,44]. Crucially, the eCB system plays a 

major role regulating these stress-induced changes in sensitivity to natural and drug rewards 

[45,46]. In cocaine-abstinent rats, stress-induced changes in corticosterone PFC levels drive 

cocaine-seeking reinstatement by mobilizing 2-AG in the prelimbic part of the medial PFC (PL 

mPFC), which in turn activates CB1R located in the pre-synaptic terminals of GABAergic 

cortical (probably cholecystokinin, CCK) interneurons [47–49] (Figure 1a). This disinhibition 

allows for amplified excitatory projections to the nucleus accumbens (NAc), eliciting 

motivated behavior towards drugs of abuse [50–52] (Figure 1c). Hence, targeting CB1R to 

counteract stress-promoted drug seeking during abstinence is a promising strategy, although 

unanswered questions remain; e.g., the mechanism by which glucocorticoids mobilize 2-AG 



4 

 

 

[53]. 2-AG also mitigates anxiety and stress-induced maladaptations through alternative 

mechanisms by activating CB1R in other brain areas [54]. These include the reduction in 

prostaglandin production [55], the normalization of stress-induced decreases in the mammalian 

target of rapamycin (mTOR) pathway [56] or the facilitation of adult HPC neurogenesis [57]. 

Although the functional relevance of such additional mechanisms has not yet been directly 

assessed in animal models of SUD, its implications warrant further examination for the 

management of hypersensitized stress responses in this disorder.  

Beyond CB1R: AEA, N-acylethanolamines and PPARα for the treatment of nicotine addiction 

Unlike 2-AG, a set of mechanistic rules for a putative role of AEA in the neurobiology of drug-

motivated behavior is still lacking [37]. Evidence that repeated drug exposure alters AEA brain 

levels in the striatum, limbic forebrain and HPC [58–60] suggests a yet to be determined 

mechanism of involvement. Interestingly, changes in AEA tone often oppose those of 2-AG 

[61]. This divergence suggests that the implications of both eCB moieties are segregated, thus 

corroborating the hypothesis that AEA and 2-AG subserve distinct physiological roles [62]. 

For instance, while the 2-AG-degrading enzyme MAGL is expressed pre-synaptically, the main 

AEA-catabolic enzyme is preferentially located in post-synaptic compartments [63]. 

Additionally, AEA targets a broader spectrum of receptors: it acts as a partial agonist of TRPV1 

channels [59,64], whose activity favors cocaine- [65] and ethanol- [66] seeking in mice. AEA 

also activates PPARα, which regulate gene transcription and control homeostatic cell functions 

such as inflammation [67,68]. Of note, PPARα activation attenuates nicotine reinforcement 

and nicotine-induced DA outflow in the NAc [69–71]. The mechanism hypothesized involves 

the interaction between cholinergic signaling and PPARα shaping DA cell activity via 

phosphorylation of β2containing-nicotinic acetylcholine receptors [72], which would prevent 

nicotine actions on DA neurons [73]. These pre-clinical studies, along with many others [74], 

support that pharmacological manipulations either elevating the tone of N-acylethanolamines 

including AEA or directly activating PPARα are potential targets for the treatment of nicotine 

use disorders.  

Drugs and phytopharmaceuticals with potential for SUD treatment 

Since the synthesis and approval for clinical use of the CB1R antagonist rimonabant 

(SR141716A), clinical studies proved that it could promote smoking cessation and reduce 

nicotine relapse rates [42]. Pre-clinical studies suggested that it could also prevent 

psychostimulant, opioid, and alcohol reinstatement [75–79]. However, its poor tolerability due 

to psychiatric side effects (e.g., anxiety, depression, suicidality) prompted its withdrawal from 

the market [80–82]. Since its side effects might relate to its inverse agonist profile [77], a great 

effort has been devoted to developing eCB-based medications with favorable risk-benefit ratios 

[83].  
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Novel CB1R-targeting compounds 

CB1R neutral antagonists and negative allosteric modulators (NAMs) are listed among the 

NIDA’s medication development priorities in response to the opioid crisis [84]. CB1R neutral 

antagonists should exert similar protective effects of rimonabant and its congeners but have 

less severe adverse effects. This is because, unlike with inverse agonists, neutral antagonists 

do not modify CB1R ligand-independent control of basal cAMP accumulation, which is thought 

to play a crucial role in maintaining cellular homeostasis [85,86]. The neutral antagonist 

AM4113 [87] does not induce forskolin-stimulated cAMP formation in vitro [88], malaise or 

anxiety-like effects [89]. AM4113 also attenuates cue-induced reinstatement of nicotine, Δ9-

tetrahydrocannabinol (THC) and cocaine operant seeking [90,91]. AM4113 treatment also 

suppresses methamphetamine, heroin and alcohol voluntary intake [92,93]. Consistently, 

AM4113 also blocks nicotine-induced increases of VTA DA neuronal activity [90] and 

alcohol-induced accumbal DA release [92]. As promising as these results may appear, there is 

an additional intrinsic caveat for CB1R antagonists: the ubiquity of its substrate. CB1R are 

expressed across most brain structures, neuron populations, and cell lines of the CNS, and can 

be coupled to various G proteins other than canonical Gi/o [94]. Therefore, systemic blockade 

of CB1Rs interferes with a considerable number of off-target circuits. For instance, AM4113 

increases stereotype-like behaviors, alters satiation and precipitates cannabinoid withdrawal 

signs [83], effects that can be ascribed to an indiscriminate blockade of CB1R function. To 

circumvent this issue, alternative approaches have been exploited to target CB1R function, 

including the development of allosteric modulators [95]. Allosteric modulation only influences 

downstream effects of CB1R upon orthosteric ligand binding without affecting CB1R activity. 

Little pre-clinical information is currently available on their therapeutic effects. Org27569, an 

atypical CB1R NAM (see [83]), reduces cue- and drug-induced reinstatement of cocaine and 

methamphetamine seeking to a similar extent than rimonabant [96], and is devoid of CB1R-

related adverse effects [97]. Its selectivity has been challenged as it reduces food intake in 

CB1R-knockout mice [97], thus suggesting that further studies are mandatory. At this stage, 

the most promising CB1R NAM appears to be the neurosteroid pregnenolone [98–100]. Vallée 

et al., [101] elegantly probed its effects in reducing voluntary intake of the cannabimimetic 

drug WIN55,212-2 and preventing THC-induced increase in both NAc DA levels and firing 

activity of VTA neurons in a CB1R-dependent manner. Pregnenolone is also well tolerated 

[102], and a FDA-approved drug in diverse clinical trials including two for the treatment of 

cannabis use disorder (NCT02439814, NCT02811939).  

Inhibition of eCB-degrading enzymes 

Nowadays, alternative pharmacological approaches, such as the use of indirect CB1R agonists 

through inhibition of either FAAH and MAGL, appear as the preferred drug pipelines for 

targeting eCB system. This intervention is theorized to only interfere at synapses where eCBs 

are released “on demand”. URB597, the ‘gold standard’ among classical FAAH inhibitors, 

heightens AEA brain levels [103] with relatively good selectivity [104], and attenuates cue-
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induced reinstatement of nicotine seeking [69,105]. URB597 also reduces both cue- and stress-

induced cocaine reinstatement of operant seeking responses [106,107] in a CB1R-dependent 

manner [105]. Paradoxically, FAAH inhibition opposes to rimonabant effects, and yet similar 

anti-abuse effects are achieved. This is probably due to sub-maximal agonist potency of AEA 

acting as a partial agonist of CB1R and competing with 2-AG [103]. Alternatively, the 

therapeutic potential of elevated AEA tone may reside in its ability to bind to other targets, 

such as PPARα/γ [108], TRPV1 channels [59] and CB2R [109], or in the modification of other 

FAAH substrates. Available studies already demonstrate that the N-acylethanolamines 

palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) [74,110], endogenous PPARα 

ligands [72,110], reduce nicotine-induced excitation of VTA DA neurons, DA concentrations 

in the NAc and prevent nicotine-seeking reinstatement [111]. Alternatively, PEA-OEA/PPARα 

signaling can also be facilitated through the inhibition of the PEA- and OEA-degrading enzyme 

N-acylethanolamine acid amidase (NAAA), a strategy that also prevents nicotine-induced DA 

activation and reward in rats [112]. Noteworthy, FAAH inhibitors reduce anxiety-related 

outcomes, a treatment priority in SUDs. In fact, both FAAH and MAGL inhibitors display 

effective anxiolytic effects in pre-clinical studies [54,113–116]. However, the use of JZL184 

for SUDs appears negligible since it facilitates cue-induced reinstatement of nicotine seeking 

[117], and increases the motivation to respond for alcohol [118].  

Finally, it is worth noting that molecules interacting with eCB-synthesizing enzymes have not 

been sufficiently regarded, unlike FAAH or MAGL blockers, mainly due to major interferents 

in their functional interaction with upstream components involved in lipid-synthesis pathways. 

Anabolic enzymes for AEA and 2-AG synthesis (NAPE-PLD and DAGL, respectively) serve 

broader functions that greatly impact the lipidome throughout the brain and other organs 

[21,55,119]. In contrast, such interactions should occur to a lesser extent with FAAH and 

MAGL inhibitors, as these enzymes are placed downstream in bran lipid synthesis pathways, 

but compound-specific unexpected interactions may arise [120]. For instance, substantial 

alterations in lipid networks of cortical neurons due to a metabolic dysregulation of the CNS 

were specifically ascribed to BIA 10-2474 but not to other FAAH inhibitors [121]. 

Consequently, one could speculate that manipulation of AEA tone via FAAH inhibition would 

be of great therapeutic efficacy, specifically when reducing craving triggered by anxiogenic 

cues during abstinence, but this intervention requires particular consideration to avoid 

lipidome-related neurological complications [121].  

Cannabidiol: One Ring to rule them all? 

The eCB-CB1R drug portfolio extends to phytocannabinoids, compounds that often exhibiting 

multi-target activity [122], such as those of cannabidiol (CBD) [123]. Unlike THC, CBD is 

devoid of psychotomimetic [124] and rewarding [125] effects, and neither directly activates 

CB1R nor CB2R [123]. Its pharmacodynamic profile includes its actions as a NAM of CB1R 

[126–129] and of CB2R [129,130] at physiologically-relevant concentrations. CBD also 
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inhibits FAAH activity [131–135] and activates both PPARγ [136–139] and TRPV1 receptors 

[131,132,140]. Of note, its pharmacodynamics combines all the appealing abovementioned 

alternative therapeutic strategies. Additionally, CBD has unrelated eCB effects, such as 

agonism at 5-HT1A receptor and blockade of adenosine reuptake [141]. Nonetheless, its anti-

relapse effects in pre-clinical studies are not definitive. Some authors report that it decreases 

cue- [142,143] and stress-induced [143] reinstatement of cocaine and alcohol seeking [143], 

attenuates alcohol- and methamphetamine-induced relapse [144–146], and cue-induced 

reinstatement of heroin responding [147]. However, other studies find that CBD does not 

modify priming-induced cocaine seeking [142,148,149], and even increased stress-induced 

cocaine-seeking reinstatement [142]. Notably, this latter study shows a bimodal effect of CBD 

on cocaine-seeking reinstatement depending on the triggering source, and that both its 

beneficial and undesirable effects were CB1R-mediated [142]. Previous work also describes a 

CBD-induced reduction of cocaine self-administration to CB2R, TRPV1 and 5-HT1A receptor 

mechanisms [150], and to facilitation of adult hippocampal neurogenesis [151]. Alternatively, 

a 5-HT1A mechanism might account for its anti-reward effects through modulation of VTA 

neuronal network dynamics [152]. Interestingly, CBD reduced attentional bias to cigarette cues 

in tobacco smokers [153], and lessened cue-induced craving and anxiety in heroin abstinent 

individuals [154]. All the remaining clinical studies (reviewed in [155]) were discouraging in 

terms of efficacy, though highlighted its safety profile [156–160]. 

Concluding remarks 

Overall, a growing body of pre-clinical evidence highlights the therapeutic opportunities 

derived from the deeper knowledge of the eCB system. CB1R, 2-AG, AEA, their metabolic 

enzymes, as well as other candidate components of the eCB signaling, such as PPAR, are key 

modulators of diverse neuronal processes involved in the orchestration of cue-directed behavior 

toward natural and drug rewards. eCBs are also efficient regulators of stress-induced responses 

at the circuit level, which might be exploited to manage deleterious behavioral consequences 

in drug addicts. Accordingly, the eCB system has been an important candidate in the search for 

new pharmacotherapies against SUDs. However, only a few compounds have reached clinical 

trial phases. Alternative eCB-targeting compounds are reinvigorating previously tempered 

expectations due to their ability to influence eCB function depending on the endogenous state 

of the targeted circuit. As presented herein, CB1R NAMs, eCB degradation inhibitors, as well 

as the phytocannabinoid CBD are among the most appealing classes of drugs filling a gap 

already shown promising for counter-rewarding effects in animal models of drug addiction. 

Finally, it is worth mentioning that the observations reported by clinical trials have been mostly 

focused on measures of craving feelings and that reductions of relapse rates are still relatively 

modest, indicating that the journey ahead in the exploration of therapeutic properties of the 

diverse compounds covered here is still long.   
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Figure legends 

Figure 1. Schematic representation of two signaling pathways by which CB1R participate in 

the regulation of cue and stress reactivity contributing to enhanced risk of drug use relapse. (a) 

In the mPFC, stressful events can trigger the release of glucocorticoids that start a series of 

intracellular downstream cascades –through an unknown receptor [53]– leading to 2-AG 

mobilization in pyramidal neurons and the inhibition of pre-synaptic GABA afferents. The 

subsequent disinhibition of NAc-projecting pyramidal neurons directs motivated behavior 

towards the procurement of the drug. (b) Following VTA DA cell activation, increased 

intracellular Ca2+ enhances DAGL activity, which may in turn produce the synthesis and 

release of 2-AG. Upon release, 2-AG binds presynaptic CB1R, mostly found in GABA 

afferents. Then, activated CB1R inhibit the release of GABA, thus disinhibiting DA neuron 

firing. 2-AG/CB1R signalling within the VTA is increasingly activated following repeated drug 

exposure. This mechanism is thought to shape cue-evoked DA transients during the pursuit of 

drugs of abuse, opening a therapeutic window to tackle cue-induced relapse. (c) A simplified 

representation of the circuitry changes undergone between the mPFC, NAc and VTA that are 

subjected to the modulatory action of the eCB system. Abbreviations: GABA, γ-aminobutyric 

acid; GC: glucocorticoids; GR, glucocorticoid receptor; PKA, protein kinase A; DAGL, 1,2-

diacylglycerol lipase; 2-AG, 2-arachidonoylglycerol; CB1R: cannabinoid receptor 1. THC; Δ9-

tetrahydrocannabinol; DA, dopamine; Glu, glutamate; VTA, ventral tegmental area; NAc, 

nucleus accumbens; mPFC, medial prefrontal cortex. Created with Biorender.com.   
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