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4Department of Chemical and Biological Engineering, Princeton University,Princeton, New-Jersey 08540,10
USA11

(Received xx; revised xx; accepted xx)12

Drainage and spreading processes in thin liquid films have received considerable attention13
in the past decades. Yet, our understanding of three-dimensional cases remains sparse,14
with only a few studies focusing on flat and axisymmetric substrates. Here, we exploit15
differential geometry to understand the drainage and spreading of thin films on curved16
substrates, under the assumption of negligible surface tension and hydrostatic gravity effects.17
We develop a solution for the drainage on a local maximum of a generic substrate. We then18
investigate the role of geometry in defining the spatial thickness distribution via an asymptotic19
expansion in the vicinity of the maximum. Spheroids with a much larger (respectively20
smaller) height than the equatorial radius are characterized by an increasing (respectively21
decreasing) coating thickness when moving away from the pole. These thickness variations22
result from a competition between the variations of the substrate’s slope and mean curvature.23
The coating of a torus presents larger thicknesses and a faster spreading on the inner region24
than on the outer region, owing to the different curvatures in these two regions. In the case25
of an ellipsoid with three different axes, spatial modulations in the drainage solution are26
observed as a consequence of a faster drainage along the short principal axis, faithfully27
reproduced by a three-dimensional asymptotic solution. Leveraging the conservation of28
mass, an analytical solution for the average spreading front is obtained. The solutions are in29
agreement with numerical simulations and experimental measurements obtained from the30
coating of a curing polymer on diverse substrates.31

1. Introduction32

Coating flows are found in many environmental, chemical and engineering processes33
(Weinstein & Ruschak 2004), such as spin coating (Scriven 1988; Schwartz & Roy 2004)34
and dip coating (Landau & Levich 1942). Additionally, coating assisted fabrication method-35
ologies recently showed potential in the fabrication of curved spherical shells (Lee et al.36
2016) and inflatable soft tentacles (Jones et al. 2021). The plethora of observed coating37
patterns motivated a great deal of studies aimed at understanding the underlying physical38
mechanisms (Weinstein & Ruschak 2004). Typical examples include inertia-driven Kapitza39
waves (Kapitza 1948; Kapitza & Kapitza 1965), Marangoni effects due to gradients in surface40
tension (Oron 2000; Scheid 2013; Hosoi & Bush 2001; Xue et al. 2020) the formation of41
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drops (Rayleigh 1882; Taylor 1950; Chandrasekhar 2013; Fermigier et al. 1992; Jambon-42
Puillet et al. 2021) and rivulets (Lerisson et al. 2019, 2020; Ledda et al. 2020; Ledda43
& Gallaire 2021) below horizontal and inclined substrates. Such formation of elongated44
structures along the streamwise direction is also typical of contact-line driven instabilities,45
often called fingering, and occurs when a fluid spreads on a dry substrate (Oron et al.46
1997; Kondic 2003; Weinstein & Ruschak 2004; Craster & Matar 2009). Such patterns are47
identified as the physical origin for several geological structures such as stalactites (Short48
et al. 2005; Camporeale & Ridolfi 2012) and flutings in limestone caves (Camporeale 2015;49
Bertagni & Camporeale 2017; Ledda et al. 2021) and due to solidification and melting of50
water (Camporeale 2015), while physical or chemical erosion leads to scallops (Meakin &51
Jamtveit 2010) or linear karren (Bertagni & Camporeale 2021) patterns. Gravity currents,52
widely encountered in environmental fluid dynamics, are flows driven by gravity differences53
typically imputed to the presence of one phase heavier than the other which spreads on54
a substrate. Examples typically involve complex rheologies (Balmforth et al. 2000, 2002,55
2006) and include oil spreading on the sea (Hoult 1972), lava (Balmforth et al. 2000) and56
pyroclastic flows due to a volcano eruption, dust storms, avalanches (Simpson 1982; Huppert57
1986; Balmforth & Kerswell 2005; Huppert 2006), slurry and sheet flows (Ancey 2007).58

The analysis of spreading of currents requires the knowledge of the position, velocity59
and thickness of the advancing front. If the inertia of the flow is negligible, the dominant60
balance to describe the viscous gravity current is given by viscosity and buoyancy. With the61
aim of comparing their results with those of Keulegan (1957), Huppert & Simpson (1980)62
investigated the two-dimensional viscous gravity current on a horizontal substrate, driven63
by hydrostatic gravity effects. By combining a lubrication approximation with the volume64
conservation, the authors determined a self-similar solution for the thickness and spreading65
front, recovering the result of Smith (1969) in the case of the release of an initial amount of66
fluid. The general problem for different initial and boundary conditions, such as continuous67
feeding (Didden & Maxworthy 1982; Huppert 1982b), was investigated by Gratton & Minotti68
(1990) via a phase-plane formalism. When the substrate is inclined, a gravity component69
parallel to the substrate is introduced, which often dominates the dynamics. Huppert (1982a)70
highlighted that the lubrication solution at the leading order presents a discontinuity at71
the front, as long as surface tension and hydrostatic pressure gradients along the film are72
neglected. The thickness distribution far from the front is recovered by only considering the73
drainage along the in-plane directions of the substrate, referred here as drainage solution74
(Huppert 1982a). For the inclined plane case, the thickness solution far from the front reads75
ℎ ∝ 𝑥1/2𝑡−1/2 and is formally analogous to the result of Jeffreys (1930). The mathematical76
derivation may be more involved when the substrate is curved, e.g. in the case of the release77
of an initial volume of fluid on the outerside of a cone (Acheson 1990), a cylinder or a78
sphere (Takagi & Huppert 2010; Lee et al. 2016; Balestra et al. 2019), or in the inside of a79
downward-pointing cone or a sphere (Xue & Stone 2021; Lin et al. 2021).80

From now on, we focus on the diverging spreading on a curved substrate away from the81
pole, while gravity points downwards (Takagi & Huppert 2010; Lee et al. 2016; Balestra82
et al. 2019), see figure 1. In this case, the drainage solution fairly reproduces the experimental83
observations since the hydrostatic pressure gradient due to the gravity component orthogonal84
to the substrate does not induce any instability of the thin film free surface. Takagi & Huppert85
(2010) studied the drainage and spreading on a cylinder and a sphere, in the vicinity of the86
pole. The drainage thickness scales as ℎ ∼ 𝑡−1/2 both for the cylinder and the sphere. More87
refined drainage solutions were obtained by Balestra et al. (2019) and Lee et al. (2016) for the88
cylinder and the sphere, respectively. In both cases, an increase of the thickness moving from89
the pole to the equator is observed. However, as highlighted by the numerical simulations90
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Figure 1: Different coated substrates considered in this work: (𝑎) spheroid, (𝑏) torus, (𝑐)
ellipsoid.

of Duruk et al. (2021), the coating of an oblate spheroid with ratio between height and91
equatorial radius of 0.5 shows a decreasing thickness moving from the pole to the equator.92

The latter example shows the effect of the substrate geometry in the resulting thickness93
distribution which stems from drainage induced by gravity. We therefore aim at exploring94
the role of the substrate in this process, which still needs to be systematically studied,95
even in the simple case of axisymmetric substrates. When the symmetry of the substrate96
is broken, spatial non-uniformities may also modify the picture previously described and97
require further investigation. Despite the abundance of studies on spreading in different98
conditions, the problem of three-dimensional drainage and spreading has been the object99
of limited studies on flat substrates (Lister 1992; Xue & Stone 2020), to the best of our100
knowledge. The role of the substrate in inducing three-dimensional drainage still needs to be101
assessed.102

A lubrication model for generic substrates was developed in Roy et al. (2002) and Howell103
(2003) by considering a generic orthogonal local coordinate system. The same result was104
obtained by Thiffeault & Kamhawi (2006) via classical differential geometry where the105
equations are written in the natural, local (general) coordinates system, not necessarily106
orthogonal. General coordinates define a local coordinate system, with the advantage of107
deriving general equations that can be used for any geometry and without the need of defining108
principal directions. The literature about the topic is extremely vast; for our purposes, the109
essential tools can be found in Deserno (2004) and Irgens (2019).110

The lubrication equation in general coordinates offers the yet unexplored opportunities111
to systematically study the three-dimensional drainage and spreading on complex substrates112
through analytical solutions. In this work, we develop analytical solutions and approximations113
for the drainage and spreading problem on several substrates, with the aim of identifying114
relevant features of coatings on curved substrates. In the spirit of Huppert (1982a), we115
consider the case in which the tangential gravity components dominate the film thickness116
dynamics and we neglect the hydrostatic pressure and surface tension effects, keeping only117
the leading order terms given by the drainage gravity components. This approach is suitable118
to obtain simple analytical expressions to shed light on the leading effect of the substrate119
on the thickness distribution. The paper is organized as follows. In Section 2, we introduce120
the coating problem of a generic substrate and the differential geometry tools necessary121
to understand the flow configuration. We then obtain a general solution in the vicinity of122
a local maximum of a diverging substrate. The following sections focus on how geometry123
influences the drainage around local maxima using the geometries reported in figure 1.124
Section 3 is devoted to the study of the drainage and spreading on a spheroid, where we125
show that depending on the aspect ratio, the film can either get thicker or thinner as we move126
away from the pole. Subsequently, Section 4 studies the problem of non-symmetric drainage127
and spreading on a torus. We conclude by studying the spatially non-uniform drainage and128
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spreading solution on ellipsoids, in Section 5. Eventually, the analytical and numerical results129
are compared to experimental measurements.130

2. The coating problem of a generic substrate131

2.1. Problem definition and metric terms in general coordinates132

In this section, we introduce the essential differential geometry tools to solve the problem of133
the coating on a generic substrate. For a complete description of differential geometry and134
general coordinates, we refer to Deserno (2004). The derivation of the lubrication equation for135
generic curved substrates can be found in Roy et al. (2002), Thiffeault & Kamhawi (2006) and136
Wray et al. (2017). The geometry is sketched in figure 2. We consider a generic substrate ℎ0,137
on which lies a fluid film of thickness ℎ, and introduce a Cartesian reference frame (𝑥, 𝑦, 𝑧).138
The substrate is identified by the position vector X

(
𝑥 {1} , 𝑥 {2} ) , where (𝑥 {1} , 𝑥 {2}) denote139

the local coordinates used to parameterize the surface (e.g. the zenith and the azimuth for140
spherical coordinates, the radial coordinate and the azimuth for a cone). The flow equations141
are solved in the local and natural reference frame of the substrate. We introduce the local142
coordinate vectors parallel to the substrate e𝑖 = 𝜕𝑖X , 𝑖 = 1, 2 (not necessarily orthonormal),143
and the normal coordinate vector e3 =

e1×e2
|e1×e2 | . From the knowledge of the local coordinate144

vectors, we introduce the 2 × 2 symmetric metric tensor G𝑖 𝑗 and the square root of the145
determinant of the metric on the substrate 𝑤, which is related to the area element on the146
surface d𝐴 through 𝑑𝐴 = 𝑤d𝑥 {1}d𝑥 {2} :147

G𝑖 𝑗 = e𝑖 · e 𝑗 = G 𝑗𝑖 , 𝑤 =
(
detG𝑖 𝑗

)1/2
. (2.1)148

The metric tensor defines the generic line element d𝑠 as d𝑠2 = G11
(
d𝑥 {1} )2+2G12d𝑥 {1}d𝑥 {2}+149

G22
(
d𝑥 {2} )2. Therefore, the dimensions of each component depend on the considered150

parameterization (𝑥 {1} , 𝑥 {2}), so that each part that composes d𝑠2 has the dimensions of151
the square of a length. We also introduce the second fundamental form and the curvature152
tensor, which respectively read, following Einstein’s notation for the summation:153

S𝑖 𝑗 = 𝜕𝑖e 𝑗 · e3, K
{ 𝑗 }
𝑖

= S𝑖𝑘G
{𝑘 𝑗 } , (2.2)154

where G{𝑖 𝑗 } is the inverse metric tensor, i.e. G{𝑖 𝑗 } = G−1
𝑖 𝑗

. The mean K and the Gaussian155

G curvatures read K = trK and G = detK, respectively. A generic vector f can be written156
in terms of its covariant and contravariant base, i.e. f = 𝑓 {𝑖}e𝑖 = 𝑓𝑖e{𝑖} , where e{𝑖} is the157
covector defined as e{𝑖} ·e 𝑗 = 𝛿𝑖 𝑗 . The two contravariant components, parallel to the substrate,158

of the gravity vector read 𝑔
{𝑖}
𝑡 = g · e{𝑖} , while the normal one reads 𝑔3 = g · e3. The gradient159

of a scalar function 𝑓 and the divergence of a generic vector f = 𝑓 {𝑖}e𝑖 respectively read160
(Irgens 2019):161

∇ 𝑓 = 𝜕𝑖 𝑓 G
{𝑖 𝑗 }e 𝑗 = 𝜕 {𝑖} 𝑓 e 𝑗 , ∇ · f = 𝑤−1𝜕𝑖 (𝑤 𝑓 {𝑖}). (2.3)162

The above-defined quantities and differential operators are enough to describe the coating163
problem on a generic substrate, introduced in the following section.164

2.2. Lubrication equation and drainage solution165

We consider a thin viscous film, flowing on a substrate ℎ0, of thickness ℎ measured along the166
direction perpendicular to the substrate itself. The constant fluid properties are the density167
𝜌, viscosity 𝜇 and the surface tension coefficient 𝛾. In the absence of inertia, the lubrication168
model for a generic curved substrate was first derived by (Roy et al. 2002) via central manifold169
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Figure 2: Sketch of the coordinates systems employed in this analysis. A global Cartesian
reference frame (𝑥, 𝑦, 𝑧) is considered. At each point, the position of the substrate is

identified by the vector X , which depends on the chosen parameterization (𝑥{1} , 𝑥{2} ) of
the substrate. The derivatives of the position vector identify the local reference frame on

the substrate, on which the lubrication equation is solved.

theory. We non-dimensionalize the thickness with ℎ𝑖 and the tangential directions with 𝑅,170
i.e. a characteristic film thickness (e.g. the initial one, if uniform) and a relevant length of171
the substrate (e.g. its equatorial radius), respectively. We introduce the drainage time scale172
𝜏 = 𝜇𝑅/(𝜌𝑔ℎ2

𝑖
). Upon non-dimensionalization, the equation in coordinate-free form reads173

(Roy et al. 2002; Howell 2003; Roberts & Li 2006; Thiffeault & Kamhawi 2006):174

(1 − 𝛿Kℎ + 𝛿2Gℎ2) 𝜕ℎ
𝜕𝑡

+ 1
3𝐵𝑜

∇ ·
[
ℎ3

(
∇𝜅 − 𝛿

2
ℎ(2KI − K) · ∇K

)]
+ 1

3
∇ ·

[
ℎ3

(
g𝑡 − 𝛿ℎ

(
KI + 1

2
K

)
· g𝑡 + 𝛿g3∇ℎ

)]
= 0,

(2.4)175

where 𝜅 = K+𝛿(K2−2G)ℎ+𝛿∇2ℎ is the free-surface curvature, 𝐵𝑜 = (𝜌𝑔𝑅2)/𝛾 is the Bond176
number, 𝛿 = ℎ𝑖/𝑅 is the aspect ratio of the thin film, and g𝑡 and g3 identify the gravity vector177
components tangent and normal to the substrate, respectively. The terms in the first and second178
bracket represent the flux induced by capillary and gravity effects, respectively. Capillary179
flow is induced, at leading order, by variations of the mean curvature of the substrate K and180
leads to film thinning and thickening in the neighborhood of local maximum and minimum181
values of the curvature (Roy et al. 2002). Corrections at order O(𝛿) introduce (i) free-surface182
curvature variations and (ii) higher order terms of the substrate curvature. Gravity-induced183
fluxes are instead related, at leading order, by the gravity components tangential to the184
substrate g𝑡 . Corrections at O(𝛿) introduce hydrostatic pressure gradients along the thin185
film. This equation can be written in compact form as follows:186

(1 − 𝛿Kℎ + 𝛿2Gℎ2) 𝜕ℎ
𝜕𝑡

+ 1
3
∇ · q = 0, (2.5)187

so-called conservation form, where q = 𝑞{1}e1 + 𝑞{2}e2 is the flux. The so-called drainage188
problem relies on two assumptions. The Bond number is assumed to be very large, i.e.189

𝑅2/ℓ2
𝑐 ≫ 1, where ℓ𝑐 =

√︁
𝛾/(𝜌𝑔) is the capillary length. After this first assumption, the190

problem accounts only for gravity effects resulting from drainage and hydrostatic pressure191
gradients. The latter terms are important when the aspect ratio 𝛿 = ℎ𝑖/𝑅 is not negligible, i.e.192
for a thick film on a large substrate (compared to the capillary length) with small radius of193
curvature (compared to the film thickness). A limit case occurs when the substrate is locally194
flat. The leading order solution is given by the hydrostatic pressure terms, since drainage is195
absent. A case in which both capillary and hydrostatic effects cannot be neglected occurs196
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instead when the radius of curvature of the substrate is comparable to the film thickness, i.e.197
regions of extremely large curvature such as the tip of a cone. In the following, we restrict198
ourselves to the situation in which the film is very thin and the substrate does not present199
regions of extremely large curvature. Therefore, also 𝛿 ≪ 1 is considered and the drainage200
problem reads:201

𝜕ℎ

𝜕𝑡
+ 1

3
∇ ·

[
ℎ3g𝑡

]
= 0. (2.6)202

In this case, the flux per unit length is defined as q = 𝑞{1}e1 + 𝑞{2}e2 = ℎ3𝑔
{1}
𝑡 e1 + ℎ3𝑔

{2}
𝑡 e2.203

The solution of the drainage problem requires only the knowledge of 𝑤 and the tangential204

gravity vector components 𝑔{𝑖}𝑡 .205
The numerical implementation of the lubrication equation (2.4) is performed in the finite-206

element solver COMSOL Multiphysics, in which the lubrication equation is implemented in207
its conservation form (2.5). Quadratic lagrangian elements are exploited for the numerical208
discretization, while the time-marching is performed with the built-in BDF solver. In the case209
of equation (2.4), we solve for the variables (ℎ, 𝜅). We refer to the corresponding sections210
for more detail about the boundary conditions for the different substrates.211

The validation procedure consists of a first mesh size validation. We thus verify the212
faithfulness of the employed parameterization X (𝑥 {1} , 𝑥 {2}) by a comparison with the213
parameterization X = (𝑥, 𝑦, ℎ0(𝑥, 𝑦)), so-called Monge parameterization (Thiffeault &214
Kamhawi 2006; Mayo et al. 2015), reported in the Electronic Supplementary Material215
(ESM) together with the other parameterizations employed in this work. We also verify216
the non-dimensionalization by solving the dimensional equation (2.4) and comparing the217
solution for each substrate with the non-dimensional model. To illustrate and complement218
the theoretical results, we finally compare in Section 6 the drainage problem results to219
experiments performed following the procedure outlined in Lee et al. (2016) and Jones et al.220
(2021), for diverse substrates.221

2.3. Asymptotic theory - general expression for the thickness at a local maximum222

The employed substrate-free expression of the lubrication equation is suitable for analytical223
results. In this section, we develop a general expression for the thickness at a local maximum224
of the substrate. In the vicinity of the local maximum, the smooth substrate is described225
through a Monge parameterization of the substrate, i.e. (𝑥 {1} = 𝑥, 𝑥 {2} = 𝑦), see ESM for226
further detail. The generic substrate position vector in the vicinity of the maximum reads227
X = (𝑥, 𝑦, ℎ0(𝑥, 𝑦)). The square root of the determinant of the metric tensor 𝑤 and the228
tangential gravity components respectively read:229

𝑤 =

√︃
1 +

(
𝜕𝑥ℎ

0)2 +
(
𝜕𝑦ℎ

0)2
, 𝑔

{1}
𝑡 = −𝜕𝑥ℎ

0

𝑤2 , 𝑔
{2}
𝑡 = −

𝜕𝑦ℎ
0

𝑤2 . (2.7)230

We expand the drainage solution in the vicinity of the maximum identified by the point231
x = (𝑥, 𝑦) = 0 by employing an asymptotic expansion in the spatial variables, i.e.232

ℎ(𝑥, 𝑦, 𝑡) = 𝐻0(𝑡) + 𝐻11(𝑡)𝑥 + 𝐻12(𝑡)𝑦 + ... (2.8)233

Upon substitution of the decomposition (2.8) in equation (2.6), the O(1) problem for 𝐻0(𝑡)234
reads:235

𝐻′
0

𝐻3
0
=

(
𝜕𝑥𝑥ℎ

0
(
1 +

(
𝜕𝑦ℎ

0
)2

)
− 2𝜕𝑥ℎ0𝜕𝑥𝑦ℎ0𝜕𝑦ℎ0 + 𝜕𝑦𝑦ℎ

0
((
𝜕𝑥ℎ

0
)2

+ 1
))

3
( (
𝜕𝑦ℎ

0)2 +
(
𝜕𝑥ℎ

0)2 + 1
)2

��������
x=0

= −
(

1
3
(g · e3) K

)
|x=0,

(2.9)236
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with the initial condition 𝐻0(0) = 1 in the case of a unitary initial thickness. At the maximum237
location, 𝜕𝑥ℎ0 = 𝜕𝑦ℎ

0 = 0, i.e. the normal vector and gravity are aligned. Therefore, the238

quantity
(

1
3 (g · e3) K

)
|x=0 simplifies to 𝜕𝑥𝑥ℎ

0 + 𝜕𝑦𝑦ℎ0 = −K𝑝, where K𝑝 is the opposite of239

the mean curvature at the maximum. The resulting problem and associated solution read:240

𝐻′
0(𝑡)

𝐻0(𝑡)3 = −1
3
K𝑝 → 𝐻0(𝑡) =

1√︃
2K𝑝 𝑡

3 + 1
. (2.10)241

A general expression for the drainage in the vicinity of a local maximum is obtained. Note242
that the mean curvature at the local maximum is negative, and thus K𝑝 > 0. The thickness at243
a local maximum depends on the mean curvature. From a geometrical point of view, the mean244
curvature represents variations of the tangential vectors along the surface. Since the normal245
to the surface and the gravity vector are aligned, the mean curvature determines the evolution246
of the tangential components of the gravity field, in the vicinity of the local maximum. In247
particular, an increase of K𝑝 implies larger values of gravity in the tangent plane of the248
substrate moving away from the pole and thus a faster drainage and a lower thickness, and249
vice versa. This solution allows one to identify the limits of the considered drainage model.250
If K𝑝 = 0, i.e. a locally flat substrate, there is no drainage and, therefore, the thickness is251
constant and equal to 𝐻0 = 1. In this case, hydrostatic effects cannot be neglected since252
they are the leading order effect and lead to a time-dependent drainage (Huppert & Simpson253
1980). Therefore, the drainage model is not suitable to describe locally flat substrates. A254
second limiting case occurs when K𝑝 → ∞, i.e. the radius of curvature in the vicinity of the255
local maximum tends to zero. A classical example is the tip of a cone, parameterized with the256
radius 𝑥 {1} = 𝑟 and the azimuth 𝑥 {2} = 𝜑. In this case, an exact solution ℎ ∝

√
𝑟 is obtained257

(see ESM), which presents a zero thickness at the pole, in accordance with solution (2.10),258
which tends to zero as K𝑝 → ∞. In that case, hydrostatic and capillary effects are crucial to259
define the thickness distribution in the vicinity of the tip. Another important limitation comes260
from the considered geometry. When the fluid is located below the substrate, the solution261
is formally analogous to equation (2.10), and predicts a progressive thinning. However, it262
is well known, in these situations, that hydrostatic pressure gradients and capillary effects263
play a key role since the Rayleigh-Taylor instability can occur (Balestra et al. 2018b). In the264
case of converging geometries with a local minimum, the solution is formally analogous,265
but with K𝑝 < 0. In this case, the thickness progressively increases and tends to infinity for266
𝑡 = −3/(2K𝑝) > 0, long after hydrostatic and capillary effects should have been considered.267
These combined effects contribute indeed to the Rayleigh Taylor instability when the fluid268
lies below the substrate and for a leveling and flattening of the interface when it lies above.269

Turning back to the situation where K𝑝 > 0 and remains finite, one can take the limit for270
𝑡 ≫ 1 of solution (2.10), leading to:271

𝐻0(𝑡) =
1√︃

2K𝑝𝑡

3

+ O
(

1
𝑡3/2

)
, (2.11)272

i.e. the solution is independent of the initial condition. This result is in agreement with the273
analysis in (Lee et al. 2016), where the authors theoretically and experimentally showed an274
insensitivity of the film thickness with respect to the initial conditions.275

In the following, we investigate the spatial evolution of the thin film thickness when moving276
away from the pole. We initially consider the case of an axisymmetric substrate, the spheroid.277
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3. Drainage and spreading on axisymmetric substrates: coating of a spheroid278

3.1. Drainage problem279

In this section, we consider the drainage of a thin film flowing on an spheroidal substrate280
of equatorial radius 𝑅 (i.e. 𝑎 = 𝑏 = 1) and height 𝑐𝑅. We non-dimensionalize the in-281
plane directions and substrate variables with the equatorial radius 𝑅. We parameterize the282
spheroidal surface via the zenith (or colatitude) 𝑥 {1} = 𝜗 and the azimuth 𝑥 {2} =𝜑:283

X (𝜗, 𝜑) = (sin 𝜗 cos 𝜑, sin 𝜗 sin 𝜑, 𝑐 cos 𝜗) (3.1)284

A complete description of the metric and curvature tensors is reported in the ESM. The285

gravity term 𝑔
{1}
𝑡 and 𝑤 are:286

𝑔
{1}
𝑡 (𝜗) = 𝑐 sin(𝜗)

𝑐2 sin2(𝜗) + cos2(𝜗)
, 𝑤(𝜗) = 1

√
2

sin(𝜗)
√︁
(1 − 𝑐2) cos(2𝜗) + 1 + 𝑐2, (3.2)287

while 𝑔
{2}
𝑡 = 0. In the case 𝑐 = 1, we recover the evolution equation for the spherical288

case, reported in the ESM. Following the previous section, we consider as initial condition289
a constant thickness on the substrate, i.e. ℎ(𝜗, 0) = 1. The problem is solved through an290
asymptotic expansion in the vicinity of the pole. We expand the solution at different orders291
in 𝜗:292

ℎ(𝜗, 𝑡) = 𝐻0(𝑡) + 𝜗2𝐻2(𝑡) + 𝜗4𝐻4(𝑡) + 𝜗6𝐻6(𝑡) + ... (3.3)293

We introduce this ansatz and expand in powers of 𝜗. At each order O(𝜗𝑛), one obtains an294
ordinary differential equation for 𝐻𝑛. The problem at order O(1) and O(𝜗2) together with295
their solution read:296

2
3
𝑐𝐻3

0 + 𝐻′
0 = 0, 𝐻0(0) = 1 → 𝐻0 =

(
4𝑐𝑡
3

+ 1
)−1/2

. (3.4)297

298

( 2𝑐
3

− 𝑐3)𝐻3
0 + 4𝑐𝐻2

0𝐻2 + 𝐻′
2 = 0, 𝐻2(0) = 0,299

→ 𝐻2 =
(3𝑐2 − 2) (64

√
3𝑐3𝑡3 + 144

√
3𝑐2𝑡2 + 108

√
3𝑐𝑡 + 27(

√
3 −

√
4𝑐𝑡 + 3))

10(4𝑐𝑡 + 3)7/2 . (3.5)300

Applying the same procedure at orders O(𝜗4) and O(𝜗6), the solution up to O(𝜗6) and at301
leading order for 𝑡 ≫ 1, reads (see Appendix A for further detail):

302

ℎ(𝜗, 𝑡) =
√︂

3
4t

1
√
𝑐

(
1 + 1

10

(
3𝑐2 − 2

)
𝜗2 −

(
336𝑐4 − 408𝑐2 + 31

)
𝜗4

4800
303

+
(
58464𝑐6 − 115368𝑐4 + 62667𝑐2 − 4576

)
𝜗6

1584000

)
+ O(𝜗8) + O

(
1
𝑡3/2

)
(3.6)304

Note that the O(1) large-time solution is formally analogous to equation (2.10) withK𝑝 = 2𝑐,305
i.e. the opposite of the mean curvature at the pole.306

We perform numerical simulations of equation (2.6), in the region 0 < 𝜗 < 𝜋/2. Owing307
to the hyperbolic nature of the equation, no boundary conditions are necessary at 𝜗 = 0 and308
𝜗 = 𝜋/2, and thus we impose only the initial condition ℎ(𝜗, 0) = 1. Numerical convergence309
is achieved with the characteristic element size Δ𝜗 = 1◦. Figure 3 shows a comparison310
of the numerical solution of equation (2.6) at 𝑡 = 100 with the analytical ones at order at311
order O(𝜗2) (solid lines) and O(𝜗6) (dashed lines), which shows an overall agreement. The312
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(𝑎) (𝑏)

Figure 3: (𝑎) Sketch of the spheroidal substrate with varying 𝑐. (𝑏) Comparison of the
numerical solution at 𝑡 = 100 of equation (2.6) (colored dots) with the analytical ones at
order O(𝜗2) (solid lines) and O(𝜗6) (dashed lines). Different colours identify different
values of 𝑐: 𝑐 = 0.4 (blue), 𝑐 = 0.6 (orange), 𝑐 = 0.8 (yellow), 𝑐 = 1 (purple), 𝑐 = 1.2

(green), 𝑐 = 1.4 (cyan).

solution at order O(𝜗6) gives a better agreement with the numerics in a larger range of 𝜗. For313
𝑐 > 1.2, the numerical and analytical solutions start to deviate for 𝜗 > 60◦. The agreement314
with the solution at second order is good in most cases for 𝜗 < 60◦. The second order term315

in equation (3.6) vanishes when 𝑐∗ =
√︁

2/3 ≈ 0.81. Under these conditions, the solution316
at O(𝜗2) is constant along the zenith. The approximation at order O(𝜗6) does not admit a317
constant solution. However, the minimum variation of its integral in the region 0 < 𝜗 < 𝜋/2,318
with respect to the constant value given by employing 𝐻0(𝑡), is obtained for 𝑐 ≈ 0.74.319
Independently of the considered order of the solution, for very small (respectively very large)320
values of 𝑐 the thickness decreases (respectively increases) when moving away from the pole.321
Moreover, for 𝑐 < 𝑐∗, the numerical solution and the analytical one at order O(𝜗6) present322
a non-monotonous behavior, as shown in figure 3 for 𝑐 = 0.4, 0.6, with an initial decrease323
followed by a slight increase for 𝜗 > 70◦. The solutions for 𝑐 > 𝑐∗ monotonically increase.324

The leading order large time analytical solution presents a temporal decay ℎ ∼ 𝑡−1/2. The325
spherical case is recovered by imposing 𝑐 = 1 (Couder et al. 2005; Lee et al. 2016; Qin et al.326
2021). The large-time solution is independent of the initial thickness ℎ𝑖 . It is interesting to note327
the good agreement between the analytical and numerical solutions for 𝑐 < 1.2 and 𝜗 > 1,328
which is out of the expected range of validity of the asymptotic expansion. The relative329
size of the terms in the asymptotic expansion decreases as higher orders are considered,330
thus suggesting that the power series expansion may converge to the exact solution in the331
considered range of 𝜗.332

A decrease of 𝑐 implies a reduction of the gravity component parallel to the substrate333
and thus a reduction of the pole thickness, for a given time horizon. The film thinning or334
thickening moving downstream of the pole is also related to the considered geometry, as the335
consequence of two competing effects, already shown close to the pole (Section 2.3), where336
the thickness evolution depends on the normal gravity component multiplied by the local337
mean curvature (g · e3)K. While at the pole gravity is aligned with the substrate normal, i.e.338
g · e3 = 1, as we move away the normal gravity component g · e3 decreases with the zenith339
owing to the slope increase of the substrate, leading to a first inhomogeneity mechanism.340
Moving away from the pole, this slope increase leads to a slower decrease of the thickness341
with time. This explains why, in the case of constant curvature, e.g. spheres or cylinders, the342
thickness increases moving toward the equator, in agreement with the results of Lee et al.343
(2016) and Balestra et al. (2018a). The second mechanism at hand is the evolution of the344
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curvature K along the zenith direction. Curvature variations induce an accumulation of fluid345
in regions of lower curvature, characterized by a slower decrease of the thickness with time.346
Spheroids with small height are characterized by a mean curvature that increases away from347
the pole, and vice versa for spheroids of large height. The former are thus likely to present348
a decreasing thickness moving downstream, and vice versa, as observed in figure 3. As a349
result, the thickness distribution is a result of the competition between variations of slope350
and mean curvature, which may induce thinning or thickening of the fluid layer.351

Therefore, the transition does not occur when the mean curvature is constant (i.e. 𝑐 = 1),352
but when there is a balance between the thickness variations due to the change in mean353
curvature and those induced by slope variations. This value can be obtained by considering354
the quantity on the RHS of equation (2.9), i.e. (g · e3) K, which, in the vicinity of the pole,355
reads:356

(g · e3) K ≈ −
(
2𝑐 − 𝑐

(
3𝑐2 − 2

)
𝜗2 + O(𝜗4)

)
, (3.7)357

which is constant for 𝑐 = 𝑐∗, i.e. the value that causes the O(𝜗2) contribute to vanish. Note358

that the same transition value can be obtained by evaluating how the quantity 1
𝑤
𝜕1(𝑤𝑔{1}

𝑡 )359
perturbs the O(1) solution. The non-monotonous behaviors at large 𝜗 for 𝑐 < 𝑐∗ are related360
to higher order terms.361

3.2. Spreading problem362

Typical coating applications involve the spreading of an initial volume of fluid located close363
to the top of the considered geometry (Takagi & Huppert 2010). Here, following previous364
works (Huppert 1982a), we recover some typical relevant quantities such as the position and365
thickness of the spreading front. An initial volume of fluid 𝑉 is released on the substrate. We366
impose the conservation of mass in general coordinates, under the assumption 𝛿 = 0 (Roy367
et al. 2002):368 ∫ ∫

S
ℎ(𝑥 {1} , 𝑥 {2} , 𝑡)𝑤d𝑥 {1}d𝑥 {2} = 𝑉, (3.8)369

where 𝑉 is the initial volume released on the substrate and S is the region of the substrate,370
parameterized with (𝑥 {1} , 𝑥 {2}), which contains the fluid and varies with time because of371
the moving front. Far from the contact line, the drainage solution ℎ(𝑥 {1} , 𝑥 {2} , 𝑡) can be372
employed, while capillary effects are relevant only in the close vicinity of the front (Huppert373
1982a). For a fixed substrate geometry, 𝑤 is known, and thus relation (3.8) is an implicit374
equation with the front position as an unknown. A typical assumption to simplify the analysis375
is the employment of the large-time drainage solution.376

We consider an initial volume of fluid of constant height ℎ𝑖 = 1 released at 𝑡 = 0 in the377
region 0 < 𝜑 < 2𝜋, 0 < 𝜗 < 𝜗0. Owing to the invariance along the azimuthal direction, the378
conservation of the initial fluid volume (equation (3.8)) reads:379 ∫ 𝜗𝐹 (𝑡 )

0
ℎ(𝜗, 𝑡)𝑤(𝜗)d𝜗 =

∫ 𝜗0

0
1𝑤(𝜗)d𝜗, (3.9)380

where 𝜗𝐹 (𝑡) is the front angle; the analytical expression (3.6) for ℎ(𝜗, 𝑡) is employed.381
Equation (3.9) is numerically solved in Matlab via the built-in function ”fsolve”. Figure 4(𝑎)382
shows the evolution of the front angle 𝜗𝐹 with time, for different values of 𝜗0 and 𝑐. An383
increase in 𝜗0 leads to larger values of 𝜗𝐹 , for fixed time. At small times, an increase in 𝑐384
leads to larger 𝜗𝐹 ; however, at large times, the opposite behavior is observed. In figure 4(𝑏)385
we report the thickness at the front ℎ𝐹 = ℎ(𝜗𝐹 (𝑡), 𝑡), which presents slight variations with 𝑐.386

We approximate these results by considering an expansion for 𝜗 ≪ 1, by employing387
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Figure 4: Spreading of an initial volume of fluid on an spheroid. (𝑎) Variation of the front
angle 𝜗𝐹 with time and (𝑏) of the thickness at the front ℎ𝐹 with 𝜗𝐹 , for different values

of 𝑐 (coloured lines) and 𝜗0 (different clusters of curves). The black dashed lines
correspond to the analytical approximation of the relation 𝜗𝐹 (𝑡) and ℎ𝐹 (𝜗𝐹 ), while the

stars are the values recovered by a numerical simulation of the complete model with
𝑐 = 0.6, 𝐵𝑜 = 500, 𝛿 = 10−3. (𝑐) Numerical thickness distribution obtained from the

complete model with 𝑐 = 0.6, 𝐵𝑜 = 500, 𝛿 = 10−3 as a function of 𝜗 at different times:
𝑡 = 20 (blue), 𝑡 = 40 (orange), 𝑡 = 60 (yellow), 𝑡 = 80 (purple), 𝑡 = 100 (green), 𝑡 = 120

(cyan), 𝑡 = 140 (maroon), 𝑡 = 160 (black). The black dashed lines denote the
corresponding leading order large time drainage solution.

equation (3.4) for 𝑡 ≫ 1, and 𝑤(𝜗) = 𝜗 + O(𝜗2). In this case, both the RHS and LHS of388
equation (3.9) can be analytically integrated and an explicit relation for 𝜗𝐹 is found, together389
with an expression of the thickness at the front ℎ𝐹 :390 √︂

3
4t

1
√
𝑐

𝜗2
𝐹

2
=
𝜗2

0
2

→ 𝜗𝐹 = 𝜗0

(
4𝑐𝑡
3

)1/4
, ℎ𝐹 =

(
𝜗0
𝜗𝐹

)2
. (3.10)391

Note that this expression with 𝑐 = 1 coincides with the solution on a sphere (Takagi &392
Huppert 2010). These results, reported in black dashed line in figure 4(𝑎, 𝑏), well agree393
with the implicit equation for small values of 𝜗. The velocity of the front 𝑈𝐹 = d𝜗𝐹/d𝑡 =394
(𝑐/192)1/4 𝑡−3/4 decreases with time. Therefore, the front slows down as moving downstream395
toward the equator, for all values of 𝑐.396

We verify the faithfulness of this approach by comparing it with the numerical results of397
the complete model (2.4) with parameters 𝑐 = 0.6, 𝐵𝑜 = 500 and 𝛿 = 10−3 (figure 4(𝑐)).398
To simulate the spreading on the substrate, we consider a precursor film of size ℎ𝑝𝑟 = 0.005399
(Troian et al. 1989b; Kondic & Diez 2002) with the following initial condition (Balestra et al.400
2019):401

ℎ(𝜗, 0) =
ℎ𝑖 − ℎ𝑝𝑟

2
(1 − tanh (100 (𝜗 − 𝜗0))) + ℎ𝑝𝑟 . (3.11)402

Figure 4(𝑐) shows the evolution with time of the film thickness, with 𝜗0 = 20◦. In the403
vicinity of the front, a capillary ridge connects the film to the precursor one. Far from the404
front, the drainage solution well approximates the thin film evolution. In figure 4(𝑎, 𝑏), we405
report also the position and the values of the maximum thickness at the ridge, with a good406
agreement with the analytical approach.407



12

The spreading velocity decreases with time and is proportional to 𝑐1/4, in the vicinity of408
the pole. As 𝑐 increases, for fixed 𝜗𝐹 , the tangential gravity component increases while the409
area invaded by the fluid does not vary, at leading order (𝑤 ≈ 𝜗), close to the pole. The410
propagation velocity therefore increases since a faster drainage is observed with increasing411
𝑐. Nevertheless, at large times, spheroids with smaller 𝑐 present larger values of 𝜗𝐹 . Close412
to the equator, the tangential gravity component is almost vertical and thus the film velocity413
is not strongly affected by 𝑐. Nevertheless, for fixed equatorial radius, the distance covered414
for a small increment d𝜗𝐹 increases with 𝑐, at large 𝜗𝐹 , therefore implying a reduction of415
the spreading velocity d𝜗𝐹/d𝑡.416

In this section, we described the competition between the substrate’s slope and curvature417
in defining the drainage and spreading patterns on an axisymmetric substrate, the spheroid.418
In the ESM, we report also the case of a paraboloid, which instead always shows a decreasing419
mean curvature and thus an increasing thickness moving away from the pole. The spheroid420
analysis was simplified thanks to the absence of odd terms in the asymptotic expansion in 𝜗.421
To better understand the role of the curvature in modifying the drainage, we now consider422
the torus, a substrate in which the symmetry with respect to 𝜗 is broken.423

4. Non-symmetric drainage and spreading: coating of a torus424

4.1. Drainage problem425

In this section, we consider the drainage of a thin film flowing on a toroidal substrate of426
tube radius 𝑅 and distance 𝑑𝑅 between the axis of revolution and the center of the tube427
(see figure 5(𝑎)). The torus is thus generated by the rotation along the azimuthal direction428
of a circular cross-section whose center is located at a distance 𝑑 from the axis of rotation.429
Non-dimensionalizing the in-plane directions and substrate variables with 𝑅, the following430
parameterization based on the zenith 𝜗 and the azimuth 𝜑 is employed:431

X (𝜗, 𝜑) = ((𝑑 + sin 𝜗) cos 𝜑, (𝑑 + sin 𝜗) sin 𝜑, cos 𝜗) (4.1)432

The position along the cylinder, at each azimuthal circular cross-section, is defined through433
the zenith 𝜗. Two limiting cases are identified; the first one occurs for 𝑑 → ∞, which leads434
to the cylindrical case, reported in the ESM. The second case occurs for 𝑑 = 1, in which the435

points at 𝜗 = −90◦ are in contact, leading to the so-called horn torus. The gravity term 𝑔
{1}
𝑡436

and 𝑤 read437

𝑔
{1}
𝑡 (𝜗) = sin(𝜗), 𝑤(𝜗) = 𝑑 + sin(𝜗). (4.2)438

The same procedure employed for the drainage solution of the spheroidal case is adopted.439
However, in this case we cannot a priori neglect the odd terms in the asymptotic expansion,440
i.e. ℎ(𝜗, 𝑡) = 𝐻0(𝑡) + 𝜗𝐻1(𝑡) + 𝜗2𝐻2(𝑡)... . The resulting problems, at different orders in 𝜗,441
are reported in Appendix B. For the sake of brevity, the large time solution at O(𝜗4) reads:

442

ℎ =

√︂
3
2𝑡

(
19377𝜗4

176000𝑑4 − 1409𝜗3

11000𝑑3 − 7477𝜗4

147840𝑑2 + 31𝜗2

200𝑑2443

+ 91𝜗3

2640𝑑
− 𝜗

5𝑑
+ 43𝜗4

10752
+ 𝜗2

16
+ 1

)
+ O(𝜗5) + O

(
1
𝑡3/2

)
(4.3)444

The cylinder thickness distribution is recovered for 𝑑 → ∞ (Balestra et al. 2018a). The445
O(1) solution is analogous to the cylinder case for any value of 𝑑. The drainage problem is446
numerically solved in the domain −𝜋/2 < 𝜗 < 𝜋/2. Numerical convergence is achieved with447
Δ𝜗 = 0.5◦. Figure 5 shows a comparison between the numerical and large-time analytical448
solutions of the drainage problem, for different values of 𝑑 in the range −𝜋/2 < 𝜗 < 𝜋/2.449
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Figure 5: (𝑎) Sketch of the axisymmetric flow configuration for the coating of a torus. (𝑏)
Drainage solution on a torus at 𝑡 = 300, numerical (colored dots) and analytical solutions

at order O(𝜗2) (solid lines) and O(𝜗4) (dashed lines), for 𝑑 = 1.1 (blue), 𝑑 = 1.25
(orange), 𝑑 = 1.5 (yellow), 𝑑 = 2.5 (purple), 𝑑 = 5 (green).

The distribution is not symmetric with respect to 𝜗 = 0. In particular, the thickness is larger450
for negative values of 𝜗, i.e. on the inner side of the torus, while for 𝜗 > 0 the thickness is451
almost constant. These differences are enhanced as 𝑑 decreases. The numerical solution well452
compares with the analytical one at O(𝜗4) while, at O(𝜗2), the agreement is good only in453
the vicinity of the top.454

At the top (𝜗 = 0), K = −1 and therefore the film drains as in the cylinder case, locally.455
The different thickness distributions in the two sides of the circular cross-section of the torus456
result from the non-symmetric drainage with respect to 𝜗. While the slope is symmetric457
with respect to 𝜗, the mean curvature decreases on the inner part and decreases on the458
outer part. Following the discussion of Section 3.1, a decreasing (respectively increasing)459
curvature induces an increasing (respectively decreasing) thickness. Therefore, much larger460
thicknesses are attained on the inner part than on the outer one, where the thickness slightly461
decreases, in the vicinity of the top. The slight increase on the outer part observed at large 𝜗462
is due to the saturation of the mean curvature value, which remains almost constant, while463
the substrate’s slope increases. From a quantitative point of view, we consider the product464
between the normal component of gravity and the mean curvature:465

(g · e3) K ≈ −
((
− 1
𝑎2 − 1

2

)
𝜗2 + 𝜗

𝑎
+ 1

)
. (4.4)466

which shows a decrease on the inner part, thus highlighting an accumulation of fluid467
downstream, and vice versa. The same result could be obtained by considering how the468
flux perturbs the O(1) solution.469

4.2. Spreading problem470

We now present the results for the spreading of a volume of fluid on a torus. We consider471
an initial volume of fluid of thickness ℎ = 1 in the region −𝜗0 < 𝜗 < 𝜗0. The breaking of472
symmetry with respect to 𝜗 = 0 results in two different spreading fronts for 𝜗 < 0 (inner side)473
and 𝜗 > 0 (outer side). However, at 𝜗 = 0, the drainage gravity component is exactly zero, i.e.474

𝑞{1} = ℎ3𝑔
{1}
𝑡 ℎ3 = 0. Therefore, the total volume on each side of the torus is conserved since475

there is no flux at 𝜗 = 0. Note that, when hydrostatic or capillary effects are considered, the476
flux is not exactly zero at the top. A preliminary analysis showed that appreciable variations477
of the mass on the two sides (of the order of 2%) are observed for 𝐵𝑜 = 250 and 𝛿 = 0.1,478
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when either pure capillary or pure hydrostatic effects are considered, in addition to drainage.479
For larger values of 𝐵𝑜 or smaller values of 𝛿, these differences rapidly decrease. In the limit480
𝐵𝑜 → ∞ and 𝛿 = 0 (i.e. the considered drainage problem), a zero flux at the top of the torus481
is numerically observed.482

The conservation of mass for the two regions reads:483 ∫ 𝜗𝑂
𝐹
(𝑡 )

0
ℎ(𝜗, 𝑡)𝑤(𝜗)d𝜗 =

∫ 𝜗0

0
𝑤(𝜗)d𝜗,

∫ 0

−𝜗𝐼
𝐹
(𝑡 )

ℎ(𝜗, 𝑡)𝑤(𝜗)d𝜗 =

∫ 0

−𝜗0

𝑤(𝜗)d𝜗,

(4.5)484
where 𝜗𝑂

𝐹
(𝑡) and 𝜗𝐼

𝐹
(𝑡) are the front angle on the outer and inner part, respectively, 𝑤(𝜗) =485

𝑑 + sin(𝜗), and ℎ(𝜗, 𝑡) is given by equation (4.3). Note that the two integrals on the RHS do486
not assume the same value, since 𝑤(𝜗) is not symmetric with respect to 𝜗 = 0. Equations487
(4.5) are implicit integrals that are solved in Matlab through the built-in function ”fsolve”. A488
first analytical approximation is found by taking the O(1) approximation, leading to:489

𝜗𝑂
𝐹

𝜗0
=
𝜗𝐼
𝐹

𝜗0
=

√︂
2𝑡
3
, (4.6)490

i.e. the solution of O(1) does not depend on 𝑑 and is analogous to the spreading on a491
cylinder (Balestra et al. 2018a). The thickness at the front thus reads ℎ𝐹 = 𝜗0/𝜗𝐹 . A better492
approximation that includes the curvature of the torus can be obtained by considering the493
O(𝜗) approximation of the integrand:

494 ∫ 𝜗𝑂
𝐹
(𝑡 )

0

√︂
3
2𝑡
( 4
5
𝜗+𝑑)d𝜗 =

∫ 𝜗0

0
(𝑑+𝜗)d𝜗 → 𝜗𝑂2

𝐹 +5𝑑
2
𝜗𝑂
𝐹 −

(
5
2

(
𝑑𝜗0 + 𝜗2

0/2
)) √︂

2𝑡
3

= 0,495

→ 𝜗𝑂
𝐹 (𝑡) = 1

2
©­«−5𝑑

2
+

√︄
25𝑑2

4
+ 4(𝑑𝜗0 + 𝜗2

0/2) 5
2

√︂
2𝑡
3

ª®¬ , (4.7)496

497 ∫ 0

−𝜗𝐼
𝐹
(𝑡 )

√︂
3
2𝑡
( 4
5
𝜗+𝑑)d𝜗 =

∫ 0

−𝜗0

(𝑑+𝜗)d𝜗 → 𝜗𝐼2
𝐹 − 5𝑑

2
𝜗𝐼
𝐹 +

(
5
2

(
𝑑𝜗0 − 𝜗2

0/2
)) √︂

2𝑡
3

= 0,498

→ 𝜗𝐼
𝐹 (𝑡) =

1
2

©­«5𝑑
2

−

√︄
25𝑑2

4
− 4(𝑑𝜗0 − 𝜗2

0/2) 5
2

√︂
2𝑡
3

ª®¬ . (4.8)499

Figure 6(𝑎, 𝑏) shows the behaviors of 𝜗𝑂
𝐹

, 𝜗𝐼
𝐹

and the front thicknesses ℎ𝑂
𝐹

and ℎ𝐼
𝐹

on500
the inner and outer sides of the torus, respectively, for different values of 𝑑 and 𝜗0. As501
concerns panel (𝑎), for a fixed time, the front angle on the inner side is always larger than502
the one on the outer side. An increase of 𝑑 leads to a decrease (respectively increase) of 𝜗𝐹503
on the inner (respectively outer) side. The front thickness does not strongly depend on 𝑑,504
even if some differences can be appreciated on the inner side, for large values of 𝜗𝑂

𝐹
. The505

O(1) approximation gives a reasonable agreement in the prediction of the front angle and506
thickness. In particular, it appears to be the lower (respectively upper) limit for the inner507
(respectively outer) sides, as 𝑑 increases. The order O(𝜗) approximations well follow the508
implicit relations (4.5). We compare these analytical results with a numerical simulation of509
the complete model (2.4) with parameters 𝑑 = 1.25, 𝐵𝑜 = 500, 𝛿 = 10−3, ℎ𝑝𝑟 = 0.005,510
initial condition511

ℎ(𝜗, 0) =
ℎ𝑖 − ℎ𝑝𝑟

2
(1 − tanh(100(𝜗 − 𝜗0)) + ℎ𝑝𝑟 , for 𝜗 > 0, (4.9)512
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Figure 6: Spreading of an initial volume of fluid on a torus. (𝑎) Variation of the front
angle 𝜗𝐹 with time and (𝑏) of the thickness at the front ℎ𝐹 with 𝜗𝐹 , for different values
of the initial angle 𝜗0 and 𝑑. The solid and dot-dashed lines denote the values of 𝜗𝐹 and
ℎ𝐹 on the outer and inner sides, respectively. The black and red dashed lines correspond

to the O(1) and O(𝜗) analytical approximations of the relation 𝜗𝐹 (𝑡) and ℎ𝐹 (𝜗𝐹 ),
respectively, while the stars are the values recovered by a numerical simulation of the

complete model with 𝑑 = 1.25, 𝐵𝑜 = 500, 𝛿 = 10−3, precursor film thickness
ℎ𝑝𝑟 = 0.005. (𝑐) Numerical thickness distribution obtained from the complete model
with 𝑑 = 1.25, 𝐵𝑜 = 500, 𝛿 = 10−3 as a function of 𝜗 at different times: 𝑡 = 10 (blue),
𝑡 = 20 (orange), 𝑡 = 30 (yellow), 𝑡 = 40 (purple). The black dashed lines denote the

corresponding large-time drainage solutions.

ℎ(𝜗, 0) =
ℎ𝑖 − ℎ𝑝𝑟

2
(1 − tanh(100(−𝜗 − 𝜗0)) + ℎ𝑝𝑟 , for 𝜗 < 0, (4.10)513

and 𝜗0 = 10◦ (see figure 6(𝑐)). The agreement between the numerical front angle, given by514
the maximum thickness location, and the theoretical one is very good, and also the maximum515
thickness well follows the front thickness predicted by the theory.516

In analogy with the drainage solution, the faster spreading attained on the inner region517
is related to the substrate geometry. For a fixed angular distance from the top, the area518
covered by the spreading fluid is larger on the outer region than on the inner one. Therefore,519
for a fixed time, the fluid spreads faster on the inner region, reaching larger values of 𝜗𝐹520
than on the outer region. Interestingly, the solution at O(1) does not capture the symmetry521
breaking, since, at the top, a torus locally coincides with a cylinder. Nevertheless, the O(𝜗)522
approximation already captures the asymmetry of the substrate.523

The torus case shows non-symmetric drainage and spreading along the zenith direction. In524
the following, we present how these analyses can be extended to non-axisymmetric substrates525
which are characterized by a three-dimensional, non-uniform along the azimuthal direction,526
drainage. We chose as a testing ground an ellipsoid with three different axes.527

5. Three-dimensional drainage and spreading: coating of an ellipsoid528

5.1. Numerical drainage solution529

In this section, we study the coating of an ellipsoidal substrate of horizontal semiaxes 𝑎𝑅,530
𝑏𝑅 and vertical semiaxis 𝑅 (see figure 1); gravity is pointing downward. In non-dimensional531
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Figure 7: Numerical solution of equation (2.6) at 𝑡 = 100 as a function of (𝜗, 𝜑), for
different values of the semiaxes 𝑎 and 𝑏, with 𝑎 ⩽ 1 and 𝑏 ⩾ 1.

form, the following parameterization holds:532

X (𝜗, 𝜑) = (𝑎 sin 𝜗 cos 𝜑, 𝑏 sin 𝜗 sin 𝜑, cos 𝜗) (5.1)533

We identify different limiting cases, depending on the values of 𝑎 and 𝑏. If 𝑎 = 𝑏 = 1, we534
recover the spherical case; if 𝑎 = 𝑏 ≠ 1 the resulting substrate is an axisymmetric ellipsoid535
of unitary height and equatorial radius 𝑎 = 𝑏, whose results can be recovered from those of536
Section 3.1. Note that the time scale is different since the in-plane directions and substrate537
variables are non-dimensionalized with the height and not with the equatorial radius, in the538
present section. When 𝑎 ≠ 𝑏 the axisymmetry is broken since the two axes at the equator are539
different. In the following, we assume that 𝑏 ⩾ 𝑎 and consider the range 0.4 < 𝑎, 𝑏 < 2. Note540
that the solutions for 𝑎 > 𝑏 can be recovered by simply translating of 𝜑 = 90◦ the solution541
for 𝑏 ⩾ 𝑎 (obtained by swapping the desired values of 𝑎 and 𝑏).542

The metric components vary along the 𝜑 direction; in particular, the metric tensor is not543
diagonal (see ESM). The local coordinates system defined by the parameterization is thus544

non-orthogonal and a second gravity component 𝑔{2}
𝑡 (𝜗, 𝜑), appears. The square root of the545

determinant of the metric and the gravity terms now read:546

𝑤(𝜗, 𝜑) =
√︂

sin4 (𝜗)
(
𝑎2 sin2 (𝜑) + 𝑏2 cos2 (𝜑)

)
+ 𝑎2𝑏2 sin2 (𝜗) cos2 (𝜗), (5.2)547

548

𝑔
{1}
𝑡 (𝜗, 𝜑) =

sin(𝜗)
(
𝑎2 sin2 (𝜑) + 𝑏2 cos2 (𝜑)

)
sin2 (𝜗)

(
𝑎2 sin2 (𝜑) + 𝑏2 cos2 (𝜑)

)
+ 𝑎2𝑏2 cos2 (𝜗)

, (5.3)549

550

𝑔
{2}
𝑡 (𝜗, 𝜑) =

sin(𝜑) cos(𝜑)
(
𝑎2 cos(𝜗) − 𝑏2 cos(𝜗)

)
𝑎2𝑏2 cos2 (𝜗) cos2 (𝜑) + 𝑎2𝑏2 cos2 (𝜗) sin2 (𝜑) + 𝑎2 sin2 (𝜗) sin2 (𝜑) + 𝑏2 sin2 (𝜗) cos2 (𝜑)

.

(5.4)551
We solve equation (2.6) by imposing periodic boundary conditions in 0 < 𝜑 < 2𝜋 and the552
initial condition ℎ(𝜗, 𝜑, 0) = 1. Numerical convergence is achieved with a characteristic553
mesh size of 0.9◦. Figure 7 and figure 8 respectively show the resulting film distributions554
and a section at 𝜗 = 𝜋/4 for different values of 𝑎 and 𝑏, at 𝑡 = 100. We first increase the555
value of 𝑏, with 𝑎 = 1. For 𝑏 = 1.2 (panel (𝑎)), the thickness presents modulations along the556
azimuthal direction, with a maximum thickness localized at 𝜑 = 𝑘𝜋 (𝑘 = 0, 1, 2), i.e. along557
the direction of the smaller axis 𝑎. These modulations are enhanced as 𝑏 increases (panel558
(𝑏)), with larger values of the attained thickness. Two regions of low thickness are localized559
at 𝜑 = 𝜋/2 + 𝑘𝜋, along the larger axis 𝑏. The same trends are observed further increasing 𝑏560
(panel (𝑐)). When 𝑏 = 1 and 𝑎 decreases (panel (𝑑)), the thickness also presents modulations561
along the azimuthal direction, but the thickness always increases moving downstream. The562
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Figure 8: Numerical solution of equation (2.6) at 𝑡 = 100 and 𝜗 = 𝜋/4 as a function of
(𝜑): (𝑎) 𝑎 = 1 and 𝑏 = 1 (blue), 𝑏 = 1.2 (orange), 𝑏 = 1.4 (yellow), 𝑏 = 1.6 (purple),
𝑏 = 1.8 (green), 𝑏 = 2 (cyan); (𝑏) 𝑏 = 1 and 𝑎 = 0.4 (blue), 𝑎 = 0.6 (orange), 𝑎 = 0.8

(yellow), 𝑎 = 1 (purple).

thickness decreases as 𝑎 decreases. Similar patterns are also obtained when small values563
of 𝑎 and large values of 𝑏 are considered. The numerical solution of equation (2.6) shows564
the presence of modulations of the thickness along the azimuthal direction. According to565
Section 3.1, spheroids with small (respectively large) height were characterized by a decrease566
(respectively increase) of the thickness. We can extend these considerations to an ellipsoid567
by considering the drainage along the principal directions defined by (𝑥, 𝑦), see figure 1(𝑐).568
Since the drainage component along the azimuthal direction is identically zero along the569
two principal semiaxes, the flow locally behaves like the spheroidal case of Section 3.1.570
Therefore, we expect to follow these trends along the two semiaxes, depending on 𝑎 and571
𝑏. In the axisymmetric case, the thickness increases downstream for height-radius ratios572
larger than 0.74, which corresponds to 𝑎, 𝑏 ⪅ 1.35. Therefore, when 𝑎, 𝑏 ⪅ 1.35 we always573
observe an increase of the thickness with 𝜗, as observed in figure 9(𝑎-𝑐) (see also figure 3574
for the cases with 𝑐 > 𝑐∗). However, the thickness presents clear modulations owing to the575
non-uniform drainage when 𝑎 ≠ 𝑏. Similarly, when 𝑎, 𝑏 ⪆ 1.35 one expects a decrease of576
the thickness followed by a slight increase at large 𝜗, with modulations if 𝑎 ≠ 𝑏, as shown in577
figure 9(𝑑-𝑔). The intermediate situation occurs when 𝑎 ⪅ 1.35 and 𝑏 ⪆ 1.35, characterized578
by an increase of the thickness along the 𝑥 direction and a decrease along the 𝑦 direction, as579
observed in figure 7(𝑏, 𝑐, 𝑔).580

The modulations of the thickness distribution are related to the variation of drainage with581
the azimuth. In the vicinity of the minor semiaxis, the tangential gravity component along582
the zenith is larger than close to the major semiaxis. Higher velocities are thus attained583
along the minor semiaxis, displacing more fluid downstream than along the major semiaxis.584
This process induces transport of fluid from progressively farther and farther regions and585
thus a secondary flow from the major semiaxis (associated with low velocities) to the minor586
semiaxis (associated with large velocities). In the light of this discussion, one may wonder if587
these patterns persist with time or merely represent a snapshot of a more intricate evolution.588
In the following, we also aim at clarifying this aspect by deriving an analytical solution for589
the drainage problem.590

5.2. Analytical drainage solution591

In this section, we derive an analytical drainage solution and compare it with the numerical592
results of the previous section. In analogy with Section 3.1, we perform an asymptotic593
expansion in powers of 𝜗, with 𝜗 ≪ 1. The solution at order O(1) does not depend on 𝜑594
since the solution at the pole has to be unique. We thus consider the following expansion, in595
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Figure 9: Numerical solution of equation (2.6) at 𝑡 = 100 as a function of (𝜗, 𝜑), for
different values of the semiaxes 𝑎 and 𝑏, with 𝑎, 𝑏 < 1 and 𝑎, 𝑏 > 1.

which the odd terms have been removed because of symmetry:596

ℎ(𝜗, 𝜑, 𝑡) = 𝐻0(𝑡) + 𝜗2𝐻2(𝜑, 𝑡) + 𝜗4𝐻4(𝜑, 𝑡) + 𝜗6𝐻6(𝜑, 𝑡) + ... (5.5)597

We expand equation (2.6) at various orders in 𝜗. At order O(1), one obtains the following598
ODE:599

1
3

(
1
𝑎2 + 1

𝑏2

)
𝐻0(𝑡)3 + 𝐻′

0(𝑡) = 0 → 𝐻0(𝑡) =
1√︂

2
3 𝑡

(
1
𝑎2 + 1

𝑏2

)
+ 1

=
1

√
𝛼𝑡 + 1

, (5.6)600

where 𝛼 = 2
3
(
1/𝑎2 + 1/𝑏2) . Also in this case, the O(1) solution reduces to

(
3

2K𝑝𝑡

)1/2
at601

late time, with K𝑝 =
(
1/𝑎2 + 1/𝑏2) . The equation at order O(𝜗2) reads:602

603

𝜕𝐻2(𝜑, 𝑡)
𝜕𝑡

=

𝐻0(𝑡)2
( (
𝑏2 − 𝑎2) sin(2𝜑) 𝜕𝐻2

𝜕𝜑
+ 2𝐻2

( (
𝑎2 − 𝑏2) cos(2𝑦) − 2

(
𝑎2 + 𝑏2) ) )

2𝑎2𝑏2604

+
𝐻0(𝑡)3 ( (

𝑎4 (
𝑏2 − 2

)
− 𝑎2𝑏4 + 2𝑏4) cos(2𝜑) + 2

(
𝑎4 (

−
(
𝑏2 − 1

) )
+ 𝑎2 (

𝑏2 − 𝑏4) + 𝑏4) )
6𝑎4𝑏4 ,

(5.7)
605

which is a parabolic PDE in 𝐻2(𝜑, 𝑡). We numerically solve equation (5.7) with initial606
condition 𝐻2(𝜑, 0) = 0. The periodic boundary conditions at 𝜑 = [0, 2𝜋] are automatically607
imposed thanks to a Fourier spectral collocation method implemented in Matlab. The time-608
stepping is performed by employing the built-in function ”ode23t”, with a tolerance of 10−6.609
Numerical convergence is achieved with 100 collocation points.610

Figure 10(𝑎) shows the spatiotemporal evolution of the second order solution 𝐻2(𝜑, 𝑡),611
for 𝑎 = 0.5 and 𝑏 = 1.5. An initial growth in absolute value until 𝑡 ≈ 0.3 is followed by612
a slow decay at large times. In figure 10(𝑏) we report the 𝐻2 profiles rescaled with 𝐻0,613
at different times in the slow-decay regime. The second-order solution 𝐻2 is 𝜋-periodic614
and the maximum is attained at 𝜑 = 𝑘𝜋, i.e. along the smaller axis of the ellipsoid. At615
𝜑 = 𝑘𝜋/2, i.e. along the larger axis of the ellipsoid, the correction reaches much smaller616
values. As time increases, the profiles collapse on a single curve, suggesting that a large-time617
solution characterized by a separation of variables is possible, i.e. 𝐻2(𝜑, 𝑡) = 𝐻0(𝑡)𝐻∗

2 (𝜑).618
We introduce this decomposition in equation (5.7). Exploiting equation (5.6), the temporal619
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Figure 10: Drainage along an ellipsoid with 𝑎 = 0.5 and 𝑏 = 1.5. (𝑎) Spatiotemporal
evolution of 𝐻2: iso-contours of 𝐻2 in the (𝜑, 𝑡) plane. (𝑏) Second order correction

𝐻∗
2 = 𝐻2/𝐻0 ≈ 𝐻2

√
𝛼𝑡 as a function of 𝜑 at different times: 𝑡 = 0.4 (blue), 𝑡 = 1 (orange),

𝑡 = 5 (yellow), 𝑡 = 10 (purple) 𝑡 = 30 (green), 𝑡 = 50 (cyan), 𝑡 = 70 (maroon), 𝑡 = 90
(black), 𝑡 = 100 (red). The black stars denote the late-time analytical solution for 𝐻∗

2 from
equation (5.9).

Figure 11: (𝑎) Second order correction 𝐻∗
2 = 𝐻2/𝐻0 ≈ 𝐻2

√
𝛼𝑡 as a function of 𝜑 at

𝑡 = 100, for 𝑎 = 0.5 and increasing 𝑏: 𝑏 = 0.6 (blue), 𝑏 = 0.8 (orange), 𝑏 = 1 (yellow),
𝑏 = 1.2 (purple), 𝑏 = 1.4 (green), 𝑏 = 1.6 (cyan), 𝑏 = 1.8 (maroon), 𝑏 = 2 (black). (𝑏) 𝐻∗

2
as a function of 𝜑 at 𝑡 = 100, for 𝑏 = 1.5 and increasing 𝑎: 𝑎 = 0.4 (blue), 𝑎 = 0.6

(orange), 𝑎 = 0.8 (yellow), 𝑎 = 1 (purple), 𝑎 = 1.2 (green), 𝑎 = 1.4 (cyan). The black stars
denote the late-time analytical solution for 𝐻∗

2 from equation (5.9).

dependence disappears and the following ODE for 𝐻∗
2 (𝜑) is obtained:

620

− 𝑎4𝑏2 cos(2𝜑) + 2𝑎4𝑏2 + 2𝑎4 cos(2𝜑) − 2𝑎4 + 𝑎2𝑏4 cos(2𝜑) + 2𝑎2𝑏4 + 3𝑎2𝑏2
(
𝑎2 − 𝑏2

)
sin(2𝜑)𝐻∗′

2 (𝜑)621

− 2𝑎2𝑏2𝐻∗
2 (𝜑)

(
3
(
𝑎2 − 𝑏2

)
cos(2𝜑) − 5

(
𝑎2 + 𝑏2

))
− 2𝑎2𝑏2 − 2𝑏4 cos(2𝜑) − 2𝑏4 = 0, (5.8)622

whose solution reads:
623

𝐻∗
2 (𝜑) = 𝐶1 sin(2𝜑) sin

− 5(𝑎2+𝑏2)
3(𝑎2−𝑏2) (𝜑) cos

5(𝑎2+𝑏2)
3(𝑎2−𝑏2) (𝜑) − 1

8𝑎2𝑏2 (
4𝑎2 + 𝑏2) (

𝑎2 + 4𝑏2) (
𝑎6

(
7𝑏2 − 4

)
624

+26𝑎4
(
𝑏4 − 𝑏2

)
+ 𝑎2𝑏4

(
7𝑏2 − 26

)
+ (𝑎2 − 𝑏2)

(
𝑎4

(
𝑏2 + 4

)
+ 𝑎2𝑏2

(
𝑏2 + 14

)
+ 4𝑏4

)
cos(2𝜑) − 4𝑏6

)
,

(5.9)
625

where 𝐶1 is a constant to be determined. However, it is observed that 𝐶1 ≠ 0 implies an626
unbounded behavior. Therefore, we impose 𝐶1 = 0 to prevent non-physical solutions. The627
analytical result for 𝐻∗

2 is reported in figure 10(𝑏), with an excellent agreement with the628
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Figure 12: Comparison at three different azimuthal sections between the numerical
(colored dots) and the quasi-analytical solution for an ellipsoid at O(𝜗2) (solid lines) and

O(𝜗6) (dashed lines) at 𝑡 = 100, for different values of 𝑎 and 𝑏.

numerical solution. We then investigate the effect of 𝑎 and 𝑏 by considering different cases629
at 𝑡 = 100, reported in figure 11. An increase of 𝑏 for fixed 𝑎 = 0.5 (panel (𝑎)) leads to630
a decrease of 𝐻∗

2 in the region 𝜑 = 𝑘𝜋/2, while an increase in 𝑎 for fixed 𝑏 = 1.5 (panel631
(𝑏)) shows an overall decrease of 𝐻∗

2. Also for these cases, an excellent agreement with the632

analytical solution is observed. At O(𝜗2), the large time analytical solution can be written633
in compact form as:634

ℎ ≈ 𝐻0(𝑡)
(
1 + ( 𝑓 (𝑎, 𝑏) + 𝑔(𝑎, 𝑏) cos(2𝜑))𝜗2

)
. (5.10)635

The modulations observed in the numerical simulations of the previous section are captured636
by the O(𝜗2) term, which is a 𝜋−periodic function of the azimuth. These modulations are637
present as long as 𝑔(𝑎, 𝑏) = (𝑎2 − 𝑏2)

(
𝑎4 (

𝑏2 + 4
)
+ 𝑎2𝑏2 (

𝑏2 + 14
)
+ 4𝑏4) ≠ 0. The only638

case in which modulations are absent occurs when 𝑔(𝑎, 𝑏) = 0 and thus 𝑎 = 𝑏, i.e. the639
spheroidal case. In the latter case, the solution reads 𝐻∗

2 = 1
10 (

3
𝑏2 − 2) and is formally640

analogous to the second order solution of the spheroid with 𝑐 = 1/𝑏 (see Section 3.1).641
The faithfulness of the analytical solution is verified against the numerical simulations of642

Section 5.1 in figure 12. For the comparison, we consider the solution at orders O(𝜗2) and643
O(𝜗6). The higher order problems, together with their solutions 𝐻4 and 𝐻6, are reported in644
Appendix C. The same large-time behavior is observed. In general, the analytical solutions645
at O(𝜗6) compare well with the numerical ones, while those at O(𝜗2) are accurate only in646
the vicinity of the pole. The analytical solution at O(𝜗6) deviates from the numerical one for647
𝑎 < 0.8. The agreement for 𝑎 > 0.8 is satisfactory for any value of 𝑏.648

In this section, we derived an analytical approximation for the drainage problem. The649
problem was solved by employing an asymptotic expansion in a first stage, followed by a650
separation of variables at each order of the expansion. The final structure of the analytical651
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Figure 13: Iso-contours of the numerical solution for the spreading of equation (2.4), at
different times, for an ellipsoid and 𝐵𝑜 = 100, 𝛿 = 10−2, precursor film ℎ𝑝𝑟 = 0.02 and

𝜗0 = 20◦. (𝑎) 𝑎 = 0.8, 𝑏 = 1, (𝑏) 𝑎 = 0.8, 𝑏 = 1.6, (𝑐) 𝑎 = 1, 𝑏 = 1.6, (𝑑)
𝑎 = 1.4, 𝑏 = 1.8.

approximation (5.10) is characterized by a time-dependence separated by the spatial one,652
similarly to the previous cases. Nevertheless, the power-series expansion presents terms that653
depend on the azimuth. The simple form of (5.10) well captures the 𝜋-periodicity of the654
drainage solution, induced by the differences in drainage along the minor and major axes. In655
the spreading problem, these modulations may play a crucial role.656

5.3. Spreading problem657

In this section, we consider the spreading of an initial volume of fluid of height ℎ𝑖 = 1658
contained in the region 0 < 𝜗 < 𝜗0, 0 < 𝜑 < 2𝜋. Figure 13 shows the evolution of the659
film thickness with time, for different values of 𝑎 and 𝑏, obtained employing the complete660
model (2.4) with initial condition formally analogous to equation (3.11), i.e. invariant along661
the azimuthal direction. For 𝑡 = 10, the maximum thickness position, at which the front is662
located, is modulated along the azimuthal direction. This modulation accentuates with time663
and a region of large thickness forms at 𝜑 = 𝑘𝜋 (along the shorter axis) while the thickness is664
much lower at 𝜑 = 𝑘𝜋/2. Therefore, the front presents two peaks of large thickness aligned665
along the shorter axis. This effect is enhanced when larger (respectively lower) values of 𝑏666
(respectively 𝑎) are considered.667

In figure 14, we report a zoom in the region 0 < 𝜑 < 𝜋 for one simulation of the complete668
model (2.4) with 𝐵𝑜 = 1000 and 𝛿 = 10−2, together with a three-dimensional rendering of669
the spreading on the ellipsoid, viewed from the top. The black lines denote the streamlines670
of the flux q = 𝑞{1}e1 + 𝑞{2}e2. The flux streamlines are almost parallel to the azimuthal671
direction at low values of 𝜗, then bend and align along the zenith direction as 𝜗 increases. An672
exception to this behavior is observed at 𝜑 = 0, 𝜋/2, in which the flow streamlines are always673
parallel to the zenith direction. The three-dimensional rendering highlights the formation of674
two, finger-like, front peaks of large thickness along the shorter axis, while the fluid slowly675
spreads along the larger axis.676



22

Figure 14: Iso-contours of the numerical spreading solution at different times of equation
(2.4) for an ellipsoid with 𝑎 = 1, 𝑏 = 1.4, 𝐵𝑜 = 1000, 𝛿 = 10−2, precursor film

ℎ𝑝𝑟 = 0.02 and 𝜗0 = 10◦. The black solid lines denote the streamlines of the volume flux
per unit length q and the white line the average front 𝜗̄𝐹 .

A scaling law for the spreading front and thickness is obtained by neglecting the677
modulations of the front, and assuming a constant average value along the azimuth, i.e.678

𝜗̄𝐹 = 1/(2𝜋)
∫ 2𝜋

0 𝜗𝐹 (𝜑, 𝑡)d𝜑. The conservation of volume reads:679 ∫ 2𝜋

0

∫ 𝜗̄𝐹 (𝑡 )

0
ℎ(𝜗, 𝜑, 𝑡)𝑤(𝜗)d𝜗d𝜑 =

∫ 2𝜋

0

∫ 𝜗0

0
𝑤(𝜗)d𝜗d𝜑, (5.11)680

where ℎ = 𝐻0(𝑡) +𝜗2𝐻2(𝜑, 𝑡) +𝜗4𝐻4(𝜑, 𝑡) +𝜗6𝐻6(𝜑, 𝑡) is the asymptotic solution obtained681
in the previous section, and 𝑤 is given by equation (5.2). Also in this case, an analytical682
approximation is found by employing the large-time O(𝜗) approximation (5.6), with 𝑤 =683
𝑎𝑏𝜗+O(𝜗2), leading to the following expressions for the average front position and thickness:684

𝜗̄𝐹 = 𝜗̄0

(
2
3

(
1
𝑎2 + 1

𝑏2

)
𝑡

)1/4
, ℎ̄𝐹 =

(
𝜗̄0

𝜗̄𝐹

)2

. (5.12)685

The azimuth-averaged numerical solution of equation (5.11) and the analytical approxi-686
mation (5.12) are reported in figure 15, displaying a good agreement for low values of 𝜗0687
and large values of 𝑎, while the results start to diverge for large 𝜗0 and small 𝑎.688

Figure 16 shows the evolution of the front position and thickness with time, obtained689
from a numerical simulation of the complete model with with 𝑎 = 1, 𝑏 = 1.4, 𝐵𝑜 = 1000,690
𝛿 = 10−2, precursor film ℎ𝑝𝑟 = 0.02 and 𝜗0 = 10◦. The values of front position and thickness691
are averaged and compared with the analytical prediction. The analytical and numerical692
simulation results show similar trends. However, at large times, the modulations of the front693
are very large and the front travels much faster along the shorter axis than along the longer694
one.695

The spreading problem on an ellipsoid is characterized by a different front speed along the696
azimuthal direction, which leads to an accumulation of fluid and a faster spreading along the697
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Figure 15: Spreading of an initial volume of fluid on an ellipsoid. (𝑎) Variation of the
average front angle 𝜗̄𝐹 with time and (𝑏) of the average thickness at the front ℎ̄𝐹 with 𝜗̄𝐹 ,
for 𝑎 = 0.6 (dash-dotted lines), 𝑎 = 1 (solid lines) and different values of the initial angle

𝜗0 and 𝑏. The black dashed lines correspond to the analytical approximation of the
relation 𝜗̄𝐹 (𝑡) and ℎ̄𝐹 (𝜗𝐹 ), while the stars are the values recovered by a numerical

simulation of the complete model with 𝑎 = 1, 𝑏 = 1.4, 𝐵𝑜 = 1000, 𝛿 = 10−2, precursor
film ℎ𝑝𝑟 = 0.02 and 𝜗0 = 10◦.

Figure 16: Maximum thickness (𝑎) position and (𝑏) value recovered from the numerical
spreading simulation with 𝑎 = 1, 𝑏 = 1.4, 𝐵𝑜 = 1000, 𝛿 = 10−2, precursor film

ℎ𝑝𝑟 = 0.02 and 𝜗0 = 10◦. Different colours denote different times 10 ⩽ 𝑡 ⩽ 120, with
step size Δ𝑡 = 10. In the insets, we report a comparison between theoretical (black dashed
line) and numerical (red dots) (𝑎) average front position and (𝑏) average front thickness.

smaller axis. Peaks of large thickness form together with a modulation of the front, prior to any698
fingering instability. These modulations are similar to those observed in the previous Section699
for the drainage solution. As already explained, larger velocities induce transport of fluid700
from regions of lower velocity to regions of larger velocity. As a result, fluid accumulates and701
forms the observed peaks of large thickness. These velocity differences lead to a progressively702
more pronounced bending of the front. Therefore, a fingering instability analysis necessarily703
needs to consider the non-uniform spreading of the fluid along the ellipsoid, which may lead704
to the preferential formation of fingers. While this analysis focused on the spreading in the705
absence of surface tension, further studies may involve the formation of fingers resulting706
from the driven contact line instability.707

In this section, we described the drainage and spreading solution for the coating on an708
ellipsoid. We obtained an analytical solution that well compares with the numerical one.709
We showed the potential of general coordinates and asymptotic expansions to obtain a two-710
dimensional analytical solution suitable for a physical interpretation of the drainage and711
spreading process, in complement to the previous results for axisymmetric geometries.712
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Figure 17: Different steps of the experimental procedure. (𝑎) 3D printing of the molds.
(𝑏) Smoothing of the mold via a first layer of polymer. (𝑐) Coating and curing of the

second layer. (𝑑) Peeling of a thin stripe, whose thickness is measured through a
microscope. The thickness of the second layer is compared with the analytical and

numerical solutions. (𝑒) Pole thickness, measurements for ellipsoids (circles), spheroids
(squares) and tori (diamonds). The black line denotes the theoretical prediction.

A large-time solution characterized by the separation of temporal and the two spatial713
dependencies was obtained. Modulations of the drainage solution and spreading front were714
explained in terms of the different slopes along the principal semiaxes, which induce an715
accumulation of fluid along the minor axis.716

6. An experimental comparison717

Our work focuses on developing analytical and numerical treatments of gravity-driven718
coatings on curved substrates. In this section, we compare our predictions to experiments.719
Rather than using Newtonian fluids, we use curable elastomers which drain until they solidify720
(Lee et al. 2016; Jones et al. 2021). As shown in Lee et al. (2016), this allows to easily measure721
the final film thickness distribution by peeling off the solidified layer. Moreover, because of722
the large amount of fluid poured on the surface (20 g, leading to an initial thickness of≈ 2 mm)723
and since the time required for the elastomer to solidify (∼ 10 min) is much longer than the724
characteristic drainage time (𝜏 ∼ 10 s), the solidified film thickness becomes insensitive to725
initial condition and does not depend on the pouring condition (see Lee et al. (2016)). The726
experimental film thickness is compared to the late time drainage solution, here modified to727
account for the change of viscosity of the elastomer melt over time (Lee et al. 2016; Jones728
et al. 2021). The experimental procedure is shown in figure 17 (and Movie 1). We start by729
3D printing a mold with the desired geometry (Anycubic i3 Mega). The resulting surface is730
rough, with vertical steps of the order of the printer layer height: 0.1mm (figure 17(𝑎)). We731
smooth the surface by applying a first coating using a rapidly curing elastomer (Zhermack732
VPS-16, see Jones et al. 2021 for more details on the elastomer mixing procedure). This first733
layer is sufficiently thin compared to the substrate characteristic size (ℎ̂/𝑅 ∼ 10−3) so that734
we assume that the substrate curvature remains unchanged after coating. After solidification735
of the first layer (figure 17(𝑏)), we proceed to the experiment and coat the sample with736
a second layer of elastomer (Zhermack VPS-32, figure 17(𝑐)). After solidification of the737
second layer, thin strips of the solid shell (containing both layers) are cut, peeled from the738
substrate and imaged with a microscope (figure 17(𝑑)). Dyes are mixed to both elastomers739
to enhance contrast thereby allowing us to automatically extract the second layer thickness740
as a function of the arc-length ℎ̂(𝑠). The errors introduced through the cutting procedure741
and subsequent image analysis are smoothed by binning the thickness over 50 pixels in742
the horizontal direction. The standard deviation within each bin defines the experimental743
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Polymer 𝜇0 ( Pa.s ) 𝛼 𝛽

(
×10−3

)
𝜏c (s)

VPS-32 7.1 ± 0.2 5.3 ± 0.7 2.06 ± 0.09 574 ± 11

Table 1: Properties of VPS-32, extracted from Lee et al. (2016).

(𝑎) (𝑏)

Figure 18: Comparison between experimental measurements of ℎ/ℎ𝑝 (colored dots) and
the theoretical prediction from (𝑎) Section 3.1 for two spheroids with 𝑐 = 0.4 and 𝑅 = 30

mm, 𝑐 = 1.6 and 𝑅 = 20 mm, and (𝑏) Section 4 for two tori with 𝑅 = 30 mm, and
𝑑 = 1.2, 1.5. The colored solid thick lines denote the analytical solutions, while the dashed

ones the numerical solutions.

uncertainty. Finally, we map the dimensionless arc-length 𝑠 back to the zenith angle 𝜗 with744
the relation:745

𝑠(𝜗) =
∫ 𝜗

0

√︃
𝑎2 sin2(𝜗′) cos2 𝜑 + 𝑏2 sin2(𝜗′) sin2 𝜑 + 𝑐2 cos2 𝜗′d𝜗′. (6.1)746

In all cases considered, the Bond number is in between 177 < 𝐵𝑜 = 𝑅2/ℓ2
𝑐 < 400, where747

ℓ𝑐 ≈ 1.5 mm is the capillary length of the polymer, while the final thickness is of order748
10−1 mm, leading to 𝛿 ∼ 10−2 − 10−3. These values of 𝐵𝑜 and 𝛿 ensure the accuracy of the749
drainage solution everywhere except close to the edge of the mold where capillary effects play750
a central role by creating a rim or bead. We exclude from our results this rim, intrinsically751
induced by capillarity. Following the results of the asymptotic expansion for 𝜗 ≪ 1, the752
dimensional large-time thickness can be written as ℎ̂ = ℎ𝑝 𝑓 (geometry), where 𝑓 embeds753
the spatial distribution and depends only on the geometry, and ℎ𝑝 is the thickness at the pole754
which depends on the rheology of the polymer melt during the drainage. For a Newtonian755

fluid the pole thickness is given by (2.11), or in dimensional units ℎ𝑝 =

√︃
3𝜇/2𝜌𝑔K̂𝑝𝑡 with756

K̂𝑝 the dimensional pole curvature. For a solidifying elastomer, we must account for the757
change of viscosity of the melt during curing 𝜇(𝑡) and the pole thickness is given by758

ℎ𝑝 =

√︄
3

2𝜌𝑔K̂𝑝

∫ ∞
𝜏𝑤

1
𝜇 (𝑡 ) d𝑡

, (6.2)759

where 𝜏𝑤 is the time after mixing at which we start the drainage, 𝜏𝑤 ≈ 6 min in our760
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(𝑎) (𝑏)

(𝑐) (𝑑)

Figure 19: Comparison between analytical (solid lines), numerical (dashed lines) solutions
and experimental measurements, in analogy with figure 19, for ellipsoids with (𝑎)

𝑎 = 0.8, 𝑏 = 1 and 𝑅 = 30 mm, (𝑏) 𝑎 = 1, 𝑏 = 1.8 and 𝑅 = 25 mm, (𝑐) 𝑎 = 0.8, 𝑏 = 1.6
and 𝑅 = 30 mm, (𝑑) 𝑎 = 1.6, 𝑏 = 2 and 𝑅 = 20 mm.

experiments.The rheology of VPS-32 is reported in Lee et al. (2016):761

𝜇(𝑡) =
{
𝜇0 exp(𝛽𝑡), if 𝑡 ⩽ 𝜏𝑐,

𝜇1𝑡
𝛼, if 𝑡 > 𝜏𝑐,

(6.3)762

with 𝜇1 = 𝜇0 exp (𝛽𝜏c) 𝜏−𝛼
c . Upon integration, the pole thickness reads: ℎ𝑝 =763 √︃

3𝜇0/(2𝜌𝑔K̂𝑝𝑡
†), where 𝑡† =

{(
𝑒−𝛽𝜏𝑤 − 𝑒−𝛽𝜏𝑐

)
/𝛽

}
+

{
𝜏𝑐𝑒

−𝛽𝜏𝑐/(𝛼 − 1)
}
. The values of764

the parameters, together with the uncertainties, are reported in table 1. In Figure 17(𝑒),765
the theoretical prediction is compared with the experimental measurements for different766
substrates, showing an overall good agreement, valid for all substrates as highlighted in767
Section 2.3.768

In the following, we rescale the measured thickness with the pole thickness so as to769
compare the spatial distributions, independently of the fluid rheology ℎ̂/ℎ𝑝 = 𝑓 (geometry).770
Figure 18 shows experimental measurements (dots) for two spheroids (𝑎) and two tori (𝑏)771
compared to the numerical (dashed line) and analytical (solid line) solutions at order O(𝜗6)772
for the spheroids, and O(𝜗4) for the tori. In all cases, the trend of analytical, numerical and773
experimental results are similar. For the spheroids, the thickness decreases when moving774
from the apex to the equator for 𝑐 = 0.4. Instead, for 𝑐 = 1.6 the thickness is found to775
increase. For the latter case, a favorable agreement for large 𝜗 is obtained with the numerical776
solution (dashed line), in agreement with previous discussions. Similar favorable agreements777
are obtained for tori. In particular, the analytical solution captures the increase in thicknesses778
observed for 𝜗 < 0, i.e. in the inner part of the torus. In figure 19, we show experimental779
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measurements (dots) for the thickness along the long (𝜑 = 𝜋/2) and short (𝜑 = 0) axis780
of ellipsoids with various aspect ratios and compare it to the numerical (dashed lines) and781
analytical (solid lines) solutions. We recover the three thickness distributions predicted, i.e.782
(𝑎) thickness increasing both on the short and long axis for 𝑎, 𝑏 ⪅ 1.35, (𝑏, 𝑐) thickness783
increasing along the short axis and decreasing on the long axis for 𝑎 ⪅ 1.35 ⪅ 𝑏, (𝑑) thickness784
decreasing along both axes 𝑎, 𝑏 ⪆ 1.35. In all cases, the experimental measurements show785
the same trends as the numerical solutions and highlight the different thickness distributions786
previously described. However, some local discrepancies can be noticed. With reference to787
figure 18, the thickness predicted from the non-linear simulations for case 𝑐 = 1.6 of panel788
(𝑎) is larger than the measured one, in the vicinity of the equator, while in case 𝑑 = 1.2 of789
figure 18(𝑏) the measured thickness is larger than the predicted one. These discrepancies790
may be induced by the previously described edge effect that creates a rim or bead, where791
capillarity and hydrostatic effects dominate. Cases (𝑏) and (𝑑) of figure 19 instead show a792
peak in the thickness for small 𝜗, with experimental values larger than the ones predicted793
by the theoretical and numerical results. These thickness variations are likely due to defects794
in the cutting process (shown in Movie 1), or to the target shape not being exactly attained,795
even after the first coating employed to smoothen the stepped surface in the vicinity of the796
pole, where the substrate inclination is small.797

7. Conclusion798

This work studied the coating problem on a generic substrate with a focus on three-799
dimensional drainage and spreading. We analyzed different substrate geometries and derived800
analytical solutions for the drainage and spreading of an initial volume of fluid, under801
the assumption of very large Bond number and very thin film compared to the substrate802
characteristic length. We derived a general solution for the thickness evolution on a local803
maximum of the substrate. The thickness was found to be inversely proportional to the804
square root of the mean curvature at the pole, i.e. ℎ =

√︁
3/(2K𝑝𝑡). The latter represents805

how the components of the gravitational field, tangential to the substrate, vary across the806
surface in the vicinity of the pole. Therefore, a larger drainage and a faster decrease of the807
thickness are obtained with increasing mean curvature. We then investigated the role of the808
substrate geometry in modifying the thickness distribution away from the local maximum.809
We considered as a test-case the coating on a spheroid of dimensionless height 𝑐, whose810
solution was derived through an asymptotic expansion in the vicinity of the pole. For 𝑐 > 𝑐∗,811
the thickness decreases as we move away from the pole while it increases for 𝑐 > 𝑐∗. These812
thickness variations result from a competition between the slope and curvature which balance813

each other for 𝑐 = 𝑐∗ =
√︁

2/3. In particular, the fluid tends to accumulate in regions of lower814
curvature while a slope increase induces film thickening. The drainage solution was then815
employed to study the spreading of an initial volume of fluid contained in a region close to the816
pole. The spreading velocity was found to increase with the spheroid height. We related this817
behavior to the increase of the drainage gravity component with 𝑐 in the vicinity of the pole.818
We then studied the coating of a substrate in which the symmetry of the spreading is broken,819
i.e. the torus. The coating solution presented much larger values of the thickness on the inner820
part than on the outer part. The inner part presents a decreasing mean curvature, thus leading821
to larger values of the thickness than those observed on the outer part, where the mean822
curvature slightly increases since gravity is symmetric. The spreading of an initial volume823
of fluid occurred much faster on the inner region than on the outer region since the area to824
be invaded is smaller on the inner region, giving rise to two different spreading fronts. We825
concluded the analysis by applying the method to the three-dimensional spreading problem826



28

on a non-axisymmetric ellipsoidal substrate, i.e. with three different axes. We first derived827
a large-time analytical drainage solution which well agrees with the numerical simulations.828
Depending on the ellipsoid geometry, the thickness can increase or decrease away from the829
pole, with a behavior similar to the spheroid one along the principal axes. The solution830
was characterized by 𝜋-periodic modulations along the azimuthal direction, related to the831
different drainage along the two principal axes of the ellipsoid, which tend to move fluid832
from the major axis to the minor one. These modulations reflect in a spreading which does833
not occur uniformly along the azimuthal direction, but shows an accumulation of fluid and834
a faster spreading along the shorter axis. These modulations in the front position occur835
prior to any fingering instability. We obtained a scaling for the average front which fairly836
agrees with numerical results. We finally compared the spreading results with experimental837
measurements and found a good agreement in terms of spatial distributions.838

The scope of the present work is to give a coherent and formal framework for the study839
of the drainage and coating on generic substrates based on the generalization and targeted840
application of previous analytical developments. These analyses show a crucial effect of the841
substrate curvature in defining the leading order thickness distribution and the spreading842
front of a gravity-driven coating. The natural extension of this work is the focus on the843
destabilization of these spreading fronts. While previous works focused on the fingering844
instability of two-dimensional fronts (Troian et al. 1989a; Bertozzi & Brenner 1997; Balestra845
et al. 2019), similar studies in which the primary front can bend and evolve together with846
fingering instabilities still need to be pursued. These analyses are not necessarily constrained847
by the considered configuration, but can be also extended to converging flows and more848
complex substrates. Besides, the performed analyses are valid in the absence of capillary849
and hydrostatic pressure effects. This assumption is respected when the film is very thin850
and the substrate does not present regions with infinite or zero curvature. If one of these851
hypotheses is violated, then other effects may play a crucial role. Hydrostatic pressure852
gradients become non negligible if the film becomes thicker or the substrate presents flat853
regions, e.g. a saddle point. Following the work of Lister (1992) for a flat substrate, the role of854
hydrostatic pressure gradients in these situations still needs to be investigated. These findings855
may find several applications both in environmental studies and thin film technologies. The856
interweaving between differential geometry and asymptotic theory showed great potential in857
the evaluation of analytical and numerical solutions for the coating on complex geometries,858
which may find further developments not only in the study of contact line instabilities, but859
in several coating flow phenomena such as Marangoni, inertia-driven and Rayleigh-Taylor860
instabilities.861
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Appendix A. Spheroid: higher order drainage problems867

In this section, the higher order drainage problems are described. We report only the ODE868
to be solved since their expressions are cumbersome. The ODE at O(𝜗4) reads:869
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𝐻2
0 ((

11𝑐
3

− 5𝑐3)𝐻2 + 6𝑐𝐻4) +
1
36

𝑐(48𝑐4 − 66𝑐2 + 19)𝐻3
0 + 6𝑐𝐻0𝐻

2
2 +𝐻′

4 = 0, 𝐻4(0) = 0.
(A 1)870

At O(𝜗6), the problem reads:871

−1
3
𝑐𝐻0𝐻2((21𝑐2 − 16)𝐻2 − 48𝐻4) + 𝐻2

0 (−7𝑐3𝐻4 + (6𝑐5 − 17𝑐3

2
+ 13𝑐

5
)𝐻2 +

16
3
𝑐𝐻4 + 8𝑐𝐻6)

(A 2)
872

+(−5𝑐7

3
+ 31𝑐5

9
− 257𝑐3

120
+ 49𝑐

135
)𝐻3

0 + 8
3
𝑐𝐻3

2 + 𝐻′
6 = 0, 𝐻6(0) = 0.

(A 3)
873

874

Appendix B. Torus: drainage solution875

Also in this section, we report only the problems when their relative solution is cumbersome.876
The problems for increasing orders read:877

𝐻0
′ (𝑡) = −1

3
𝐻0 (𝑡)3, 𝐻0 (0) = 1 → 𝐻0 (𝑡) =

1√︃
2𝑡
3 + 1

, (B 1)878

879

𝐻′
1 (𝑡) = −

(
𝐻0 (𝑡)3

3𝑑
+ 2𝐻0 (𝑡)2𝐻1 (𝑡)

)
, 𝐻1 (0) = 0,880

→ 𝐻1 (𝑡) =
−8

√
3𝑡3 − 36

√
3𝑡2 − 54

√
3𝑡 + 27

√
2𝑡 + 3 − 27

√
3

5𝑑 (2𝑡 + 3)7/2 , (B 2)881

882

𝐻′
2 (𝑡) = −

©­­«−
(
𝑑2 + 2

)
𝐻0 (𝑡)3

6𝑑2 + 𝐻0 (𝑡)2 (3𝑑𝐻2 (𝑡) + 𝐻1 (𝑡))
𝑑

+ 3𝐻0 (𝑡)𝐻1 (𝑡)2ª®®¬ , 𝐻2 (0) = 0,883

→ 𝐻2 (𝑡) =
1

50𝑑2 (2𝑡 + 3)11/2 {4
√

3
(
25𝑑2 + 62

)
𝑡5 + 30

√
3
(
25𝑑2 + 62

)
𝑡4 + 90

√
3
(
25𝑑2 + 62

)
𝑡3884

+ 27𝑡2
(
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√
3𝑑2 + 8

√
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√
3
)
+ 81𝑡

(
25

√
3𝑑2 + 8

(√
2𝑡 + 3 + 5

√
3
))

885

− 486
(√

3 −
√

2𝑡 + 3
)
}, (B 3)886

887
72𝑑3𝐻0 (𝑡)𝐻1𝐻2 − 6𝑑3𝐻0 (𝑡)2𝐻1 + 36𝑑3𝐻0 (𝑡)2𝐻3 (𝑡) + 12𝑑3𝐻3

1 + 9𝑑3𝐻′
3 (𝑡) + 9𝑑2888

𝐻0 (𝑡)𝐻2
1 + 9𝑑2𝐻0 (𝑡)2𝐻2 − 2𝑑2𝐻0 (𝑡)3 − 9𝑑𝐻0 (𝑡)2𝐻1 + 3𝐻0 (𝑡)3 = 0, 𝐻3 (0) = 0, (B 4)889

890
720𝑑4𝐻0 (𝑡)𝐻1 (𝑡)𝐻3 (𝑡) − 60𝑑4𝐻0 (𝑡)𝐻1 (𝑡)2 + 360𝑑4𝐻0 (𝑡)𝐻2 (𝑡)2 − 60𝑑4𝐻0 (𝑡)2𝐻2 (𝑡)891

+ 360𝑑4𝐻0 (𝑡)2𝐻4 (𝑡) + 𝑑4𝐻0 (𝑡)3 + 360𝑑4𝐻1 (𝑡)2𝐻2 (𝑡) + 72𝑑4𝐻′
4 (𝑡) + 144𝑑3𝐻0 (𝑡)𝐻1 (𝑡)𝐻2 (𝑡)892

− 48𝑑3𝐻0 (𝑡)2𝐻1 (𝑡) + 72𝑑3𝐻0 (𝑡)2𝐻3 (𝑡) + 24𝑑3𝐻1 (𝑡)3 − 72𝑑2𝐻0 (𝑡)𝐻1 (𝑡)2 − 72𝑑2𝐻0 (𝑡)2𝐻2 (𝑡)893

+ 20𝑑2𝐻0 (𝑡)3 + 72𝑑𝐻0 (𝑡)2𝐻1 (𝑡) − 24𝐻0 (𝑡)3 = 0, 𝐻4 (0) = 0, (B 5)894
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Figure 20: Drainage along an ellipsoid with 𝑎 = 0.5 and 𝑏 = 1.5. (𝑎) Spatiotemporal
evolution of 𝐻4: iso-contours of 𝐻2 in the (𝜑, 𝑡) plane. (𝑏) Second order correction

𝐻∗
4 = 𝐻4/𝐻0 ≈ 𝐻4

√
𝛼𝑡 as a function of 𝜑 at different times: 𝑡 = 0.4 (blue), 𝑡 = 1 (orange),

𝑡 = 5 (yellow), 𝑡 = 10 (purple) 𝑡 = 30 (green), 𝑡 = 50 (cyan), 𝑡 = 70 (maroon), 𝑡 = 90
(black), 𝑡 = 100 (red).

Appendix C. Ellipsoid: higher order drainage solutions895
The PDE for 𝐻4(𝜑, 𝑡) reads:
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whose numerical solution is reported in figures 20 and 21. Figure 20(𝑏) shows that the values906
of the rescaled fourth order solution 𝐻∗

4 = 𝐻4
√
𝛼𝑡 collapse to the same curve as time increase,907

thus suggesting that also in this case a large-time separation of variables is possible.908
Because of its size, we do not write the PDE for 𝐻6 here; however, the solutions are shown909

in figures 22 and 23. In analogy with the solutions at order O(𝜗2) and O(𝜗4), the behavior910
of the large-time solution suggests that a solution 𝐻∗

𝑛 (𝜑) = 𝐻𝑛 (𝜑, 𝑡)/𝐻0(𝑡) satisfies the911
problem.912
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Figure 21: (𝑎) Fourth order correction 𝐻∗
4 = 𝐻4/𝐻0 ≈ 𝐻4

√
𝛼𝑡 as a function of 𝜑 at

𝑡 = 100, for 𝑎 = 0.5 and increasing 𝑏: 𝑏 = 0.6 (blue), 𝑏 = 0.8 (orange), 𝑏 = 1 (yellow),
𝑏 = 1.2 (purple), 𝑏 = 1.4 (green), 𝑏 = 1.6 (cyan), 𝑏 = 1.8 (maroon), 𝑏 = 2 (black). (𝑏)
Second order correction 𝐻∗

4 as a function of 𝜑 at 𝑡 = 100, for 𝑏 = 1.5 and increasing 𝑎:
𝑎 = 0.4 (blue), 𝑎 = 0.6 (orange), 𝑎 = 0.8 (yellow), 𝑎 = 1 (purple), 𝑎 = 1.2 (green), 𝑎 = 1.4

(cyan).

Figure 22: Drainage along an ellipsoid with 𝑎 = 0.5 and 𝑏 = 1.5. (𝑎) Spatiotemporal
evolution of 𝐻6: iso-contours of 𝐻6 in the (𝜑, 𝑡) plane. (𝑏) Second order correction

𝐻∗
6 = 𝐻6/𝐻0 ≈ 𝐻6

√
𝛼𝑡 as a function of 𝜑 at different times: 𝑡 = 0.4 (blue), 𝑡 = 1 (orange),

𝑡 = 5 (yellow), 𝑡 = 10 (purple) 𝑡 = 30 (green), 𝑡 = 50 (cyan), 𝑡 = 70 (maroon), 𝑡 = 90
(black), 𝑡 = 100 (red).

REFERENCES

Acheson, DJ 1990 Elementary fluid dynamics: Oxford University Press. Oxford, England.913
Ancey, C. 2007 Plasticity and geophysical flows: a review. Journal of Non-Newtonian Fluid Mechanics914

142 (1-3), 4–35.915
Balestra, G., Badaoui, M., Ducimetière, Y-M & Gallaire, F. 2019 Fingering instability on curved916

substrates: optimal initial film and substrate perturbations. Journal of Fluid Mechanics 868, 726–917
761.918

Balestra, G., Kofman, N., Brun, P-T, Scheid, B. & Gallaire, F. 2018a Three-dimensional Rayleigh-919
Taylor instability under a unidirectional curved substrate. Journal of Fluid Mechanics 837, 19–47.920

Balestra, G., Nguyen, D. M.-P. & Gallaire, F. 2018b Rayleigh-Taylor instability under a spherical921
substrate. Physical Review Fluids 3 (8), 084005.922



32

Figure 23: (𝑎) Sixth order correction 𝐻∗
6 = 𝐻6/𝐻0 ≈ 𝐻6

√
𝛼𝑡 as a function of 𝜑 at 𝑡 = 100,

for 𝑎 = 0.5 and increasing 𝑏: 𝑏 = 0.6 (blue), 𝑏 = 0.8 (orange), 𝑏 = 1 (yellow), 𝑏 = 1.2
(purple), 𝑏 = 1.4 (green), 𝑏 = 1.6 (cyan), 𝑏 = 1.8 (maroon), 𝑏 = 2 (black). (𝑏) Second
order correction 𝐻∗

6 as a function of 𝜑 at 𝑡 = 100, for 𝑏 = 1.5 and increasing 𝑎: 𝑎 = 0.4
(blue), 𝑎 = 0.6 (orange), 𝑎 = 0.8 (yellow), 𝑎 = 1 (purple), 𝑎 = 1.2 (green), 𝑎 = 1.4 (cyan).

Balmforth, N. J., Burbidge, A. S., Craster, R. V., Salzig, J. & Shen, A. 2000 Visco-plastic models of923
isothermal lava domes. Journal of Fluid Mechanics 403, 37–65.924

Balmforth, N. J., Craster, R. V., Rust, A. C. & Sassi, R. 2006 Viscoplastic flow over an inclined surface.925
Journal of non-newtonian fluid mechanics 139 (1-2), 103–127.926

Balmforth, N. J., Craster, R. V. & Sassi, R. 2002 Shallow viscoplastic flow on an inclined plane. Journal927
of Fluid Mechanics 470, 1–29.928

Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. Journal of Fluid Mechanics929
538, 399–428.930

Bertagni, M.B. & Camporeale, C. 2021 The hydrodynamic genesis of linear karren patterns. Journal of931
Fluid Mechanics 913, A34.932

Bertagni, M. B. & Camporeale, C. 2017 Nonlinear and subharmonic stability analysis in film-driven933
morphological patterns. Physical Review E 96 (5), 053115.934

Bertozzi, A. L. & Brenner, M. P. 1997 Linear stability and transient growth in driven contact lines. Physics935
of Fluids 9 (3), 530–539.936

Camporeale, C. 2015 Hydrodynamically locked morphogenesis in karst and ice flutings. Journal of Fluid937
Mechanics 778, 89–119.938

Camporeale, C. & Ridolfi, L. 2012 Hydrodynamic-driven stability analysis of morphological patterns939
on stalactites and implications for cave paleoflow reconstructions. Physical review letters 108 (23),940
238501.941

Chandrasekhar, S. 2013 Hydrodynamic and hydromagnetic stability. Courier Corporation.942
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005 From bouncing to floating: Noncoalescence943

of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.944
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Reviews of modern physics945

81 (3), 1131.946
Deserno, M. 2004 Notes on differential geometry.947
Didden, N. & Maxworthy, T. 1982 The viscous spreading of plane and axisymmetric gravity currents.948

Journal of Fluid Mechanics 121, 27–42.949
Duruk, S., Boujo, E. & Sellier, M. 2021 Thin liquid film dynamics on a spinning spheroid. Fluids 6 (9),950

318.951
Fermigier, M., Limat, L., Wesfreid, J.E., Boudinet, P. & Quilliet, C. 1992 Two-dimensional patterns in952

rayleigh-taylor instability of a thin layer. Journal of Fluid Mechanics 236, 349–383.953
Gratton, Julio & Minotti, Fernando 1990 Self-similar viscous gravity currents: phase-plane formalism.954

Journal of Fluid Mechanics 210, 155–182.955



33

Hosoi, A. E. & Bush, J. W. M. 2001 Evaporative instabilities in climbing films. Journal of fluid Mechanics956
442, 217.957

Hoult, D. P. 1972 Oil spreading on the sea. Annual Review of Fluid Mechanics 4 (1), 341–368.958
Howell, P. D. 2003 Surface-tension-driven flow on a moving curved surface. Journal of engineering959

mathematics 45 (3), 283–308.960
Huppert, H. E. 1982a Flow and instability of a viscous current down a slope. Nature 300 (5891), 427–429.961
Huppert, H. E. 1982b The propagation of two-dimensional and axisymmetric viscous gravity currents over962

a rigid horizontal surface. Journal of Fluid Mechanics 121, 43–58.963
Huppert, H. E. 1986 The intrusion of fluid mechanics into geology. Journal of fluid mechanics 173, 557–594.964
Huppert, H. E. 2006 Gravity currents: a personal perspective. Journal of Fluid Mechanics 554, 299–322.965
Huppert, H. E. & Simpson, J. E. 1980 The slumping of gravity currents. Journal of Fluid Mechanics 99 (4),966

785–799.967
Irgens, F. 2019 Tensor Analysis. Springer.968
Jambon-Puillet, Etienne, Ledda, Pier Giuseppe, Gallaire, Fran çois & Brun, P.-T. 2021 Drops on the969
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