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Abstract

We study the boundary weighted regularity of weak solutions u to a s-fractional p-Laplacian equation 
in a bounded C1,1 domain � with bounded reaction and nonlocal Dirichlet type boundary condition, with 
s ∈ (0, 1). We prove optimal up-to-the-boundary regularity of u, which is Cs(�) for any p > 1 and, in the 
singular case p ∈ (1, 2), that u/ds

�
has a Hölder continuous extension to the closure of �, d�(x) meaning 

the distance of x from the complement of �. This last result is the singular counterpart of the one in [30], 
where the degenerate case p � 2 is considered.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

1.1. Main result

In the present paper we study a form of fine boundary regularity for nonlinear, nonlocal ellip-
tic equations of fractional order, coupled with a Dirichlet condition. Precisely, we consider the 
following nonlocal Dirichlet type problem:{

(−�)sp u = f (x) in �

u = 0 in RN \ �.
(1.1)

Here � ⊂ RN is a bounded domain with a C1,1-smooth boundary ∂�, p > 1, s ∈ (0, 1), and 
the leading operator is the s-fractional p-Laplacian, defined for any u in the fractional Sobolev 
space Ws,p(RN) as the gradient of the functional

u �→ 1

p

¨

RN×RN

|u(x) − u(y)|p
|x − y|N+ps

dx dy.

Also, the reaction is a function f ∈ L∞(�), and the Dirichlet condition prescribes vanishing 
of u a.e. in RN \ �. By classical variational arguments, problem (1.1) admits a unique weak 
solution u lying in a convenient fractional Sobolev space Ws,p

0 (�) incorporating the Dirichlet 
condition. Such solution is Hölder continuous in � (see [29]) and nothing more in general, so we 
are interested in a form of fine (or weighted) Hölder regularity involving the distance function

d�(x) = dist(x,RN \ �).

Our result is the following:

Theorem 1.1. Let p > 1, s ∈ (0, 1), � ⊂ RN be a bounded domain with a C1,1-smooth bound-
ary ∂�. Then, there exist α ∈ (0, s), C > 0, depending on N , p, s, and �, with the following 
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property: for all f ∈ L∞(�), if u ∈ W
s,p

0 (�) is the weak solution of problem (1.1), then u/ds
�

admits a α-Hölder continuous extension to � and it satisfies the uniform bound

∥∥∥ u

ds
�

∥∥∥
Cα(�)

� C‖f ‖
1

p−1
L∞(�).

1.2. Related results

In order to fully understand the meaning of Theorem 1.1, we will now draw a brief résumé of 
some relevant regularity results for nonlocal elliptic operators. First, let us consider the equation

Lu = f (x) in �, (1.2)

where L denotes a linear elliptic operator with fractional order of differentiation 2s (s ∈ (0, 1)), 
including the model case of the fractional Laplacian L = (−�)s . Regularity of the solutions of 
(1.2) is well understood. In the model case L = (−�)s , Schauder estimates follow from standard 
potential theory and ensure:

• u ∈ C2s+α(�) as long as f ∈ Cα(�) and 2s + α /∈N;
• u ∈ C2s(�) if f ∈ L∞(�) (except for s = 1/2, in which case u ∈ C2s−ε(�) ∀ε > 0).

A similar result holds for far more general fractional linear operators L which are translation 
invariant, meaning Lu(· + z) = Lu, arising as infinitesimal generators of 2s-stable Lévy pro-
cesses (see [4,16,47] and also [22,44] for the regional fractional Laplacian, corresponding to a 
censored Lévy process). When the linear fractional operator L is not translation invariant due to 
the presence of coefficients, one has a corresponding notion of divergence versus non-divergence 
form of the equation. If no assumption is made on the coefficients beyond boundedness and 
measurability, the best one can expect is α-Hölder regularity in the interior with a small, not ex-
plicit α (see [17,33,43] for the divergence case and [51] for the non-divergence case). When the 
coefficients are assumed to be α-Hölder continuous, the initial Schauder type interior regularity 
statements holds true in the non-divergence case, see [3,20,23], and have to be naturally modified 
for divergence form operators [23].

Now let us couple equation (1.2) with a nonlocal, homogeneous Dirichlet condition:{
Lu = f (x) in �

u = 0 in RN \ �,
(1.3)

where, in the following discussion, ∂� is assumed to be smooth. The regularity up to the bound-
ary for problem (1.3) differs substantially from the interior one, as is clear observing that the 
function u(x) = (x+)s solves (−�)su = 0 in (0, ∞). For the fractional Laplacian the optimal 
global regularity is u ∈ Cs(RN) and the same holds true for the translation invariant fractional 
operators discussed above. One is then led to study the fine boundary regularity of u, i.e., the 
boundary regularity of u/ds

�. If f ∈ L∞ in (1.3), then u/ds
� ∈ Cs−ε(�) for ε > 0 arbitrarily 

small (see [47]). For more regular f , the corresponding Schauder theory is developed in [1,2]. 
Fine boundary regularity for different classes of linear elliptic fractional operators involve u/dβ

�

for β 
= s, see for instance [16,21,22].
324



A. Iannizzotto and S. Mosconi Journal of Differential Equations 412 (2024) 322–379
Fully nonlinear, uniformly elliptic operators of fractional order have been studied in the pio-
neering papers [9,10], and the corresponding interior Schauder theory has reached substantially 
optimal results, see [36,48]. The boundary regularity in the fully nonlinear case also parallels 
the linear one, with some technical restrictions, see [46]. For more precise statements and wider 
bibliographic references, we refer to [24].

The picture for degenerate and singular fractional operators such as (−�)sp for p 
= 2 is less 
clear. On one hand, there are many available definitions of what may be considered a fractional 
version of the p-Laplacian. While the Gagliardo semi-norm

[u]s,p :=
⎛⎜⎝ ¨

RN×RN

|u(x) − u(y)|p
|x − y|N+ps

dx dy

⎞⎟⎠
1
p

has a long history as an object of interest in the theory of Besov spaces, the operator (−�)sp, 
defined as the differential of u �→ [u]ps,p/p, has been considered for the first time in [32] as 
an approximation of the standard p-Laplacian for s → 1−. Other definitions of fractional p-
Laplacians are proposed and studied in [5,6,11,42] and are more related to the viscosity frame-
work. In the variational framework (which is the one we adopt here) the most closely related 
operator is the so-called Hs,p-fractional Laplacian introduced in [49,50].

Here, we are instead interested in the Ws,p-fractional Laplacian operator (−�)sp defined as 
above and the related equation

(−�)sp u = f (x) in �. (1.4)

For such an equation, interior Hölder regularity has been established for the first time in [14,15]
for the homogeneous case, and in [38] for the non-homogeneous case. These results also cover 
variants of the operator having bounded measurable coefficients, and in this setting the most 
recent developments are achieved through a new class of fractional De Giorgi classes introduced 
in [13] and exhibiting a purely nonlocal regularizing effect. In these latter works the Hölder 
exponent obtained is unexplicitly small, but for the model case of the fractional p-Laplacian 
considered here a precise, and in many cases optimal, Hölder exponent can be derived. Indeed, 
in [8] (see also [19]) it was proved that if u solves (1.4) with f ∈ L∞(�), then u ∈ Cα

loc(�) for 
any

0 < α < min
{ ps

p − 1
, 1
}
.

The same result has recently been extended to the singular case p ∈ (1, 2) in [26]. For smoother 
f ’s, higher interior regularity can be obtained, we refer to [7,18] for recent results in this direction 
and related literature. Global regularity (i.e., up to the boundary) for the Dirichlet problem (1.1), 
still with a small Hölder exponent, is the subject of [29,34]. Combining this regularity with the 
results of [8,26] ensures that if f ∈ L∞(�), then u ∈ Cs(RN) (which is optimal also for the 
fractional Laplacian), see Theorem 2.7. It therefore makes sense to study the fine, or weighted, 
boundary regularity of solutions to (1.1), in the sense of [45]. In [30] it has been proved that 
indeed, if p � 2 and f ∈ L∞(�), then u/ds

� admits a Hölder continuous extension to � (and 
hence to RN ), with an undetermined small Hölder exponent and a uniform estimate of the Hölder 
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norm of such extension. Our aim in this paper is to prove an analogous result for the singular
case p ∈ (1, 2), which turns out to be much more delicate and requires a substantially different 
approach.

1.3. Motivations and applications

The motivation for considering this type of weighted boundary regularity is the following. 
Given the possibly singular behavior of u near ∂�, Hölder continuity of u/ds

� is the natural frac-
tional counterpart of global C1,α-regularity for the classical p-Laplace equation, obtained under 
very general conditions in [41]. The analogy is intuitive as soon as we consider the fractional 
order derivative at a point x ∈ ∂� along the inner normal direction ν

∂u

∂νs
(x) = lim

t→0+

u(x + tν)

ts
∼ lim

y→x

u(y)

ds
�(y)

.

The applications of Theorem 1.1, similar to those of the result of [41] in the local case, are mostly 
related to the following generalization of problem (1.1):{

(−�)sp u = f (x,u) in �

u = 0 in RN \ �,
(1.5)

where f : � × R → R is a Carathéodory mapping subject to a subcritical or critical growth 
condition (see [27] for a detailed functional-analytic framework for such problems). For all α ∈
[0, 1] define the weighted Hölder space

Cα
s (�) =

{
u ∈ C0(�) : u

ds
�

has a α-Hölder continuous extension to �
}
.

Clearly, Cα
s (�) is compactly embedded into C0

s (�) for all α > 0. This, in conjunction with the 
uniform estimate of Theorem 1.1 and the a priori bound of [12], gives rise for instance to the 
following interesting applications:

(a) Sobolev vs. Hölder minima. Using Theorem 1.1, it can be seen that the local minimizers of 
the energy functional corresponding to (1.5) in the Sobolev space Ws,p

0 (�) and in C0
s (�), 

respectively, coincide. This is a valuable information in nonlinear analysis, when aiming 
at multiplicity results via variational methods (see [31] for the case p � 2, while the case 
p ∈ (1, 2) will be considered in a forthcoming paper).

(b) Strong minimum/comparison principles. In [28] some general minimum and comparison 
results have been proved for sub-supersolutions of fractional p-Laplacian problems, for 
instance we recall the following Hopf-type lemma: under very general conditions on f , 
for any solution u of problem (1.5) we have

inf
�

u

ds
�

> 0.

By Theorem 1.1, the above information rephrases in the topological form u ∈ int(C0
s (�)+), 

which again can be used in several existence and multiplicity results.
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(c) Extremal solutions in an interval. Let u � u be a sub-supersolution pair for (1.5). Then, 
using Theorem 1.1 it can be seen that the set of all solutions u s.t. u � u � u in � is 
nonempty, compact in both Ws,p

0 (�) and in C0
s (�), and it admits a smallest and a largest 

element with respect to the pointwise ordering. Such structural properties have wide use in 
topological methods (see [25] for the case p � 2).

1.4. Sketch of the proof

For p � 2, Theorem 1.1 is simply [30, Theorem 1.1]. Thus, we will prove only the case 
p ∈ (1, 2), which requires a wholly different approach.

The strategy of proof is initially based on the barrier techniques introduced in [30]. The main 
point is to construct lower and upper estimates in the form of weak Harnack inequalities for the 
function u/ds

� in terms of its nonlocal excess

L(u,x0,m,R) =
[

−
ˆ

B̃x0,R

∣∣∣ u

ds
�

− m

∣∣∣p−1
dx
] 1

p−1

where x0 ∈ ∂�, m ∈ R, R > 0, and B̃x0,R is a ball contained in � ∩B2R(x0) of radius comparable 
to R and satisfying (see Fig. 1)

dist
(
B̃x0,R,BR(x0)

) R,

so that in particular B̃x0,R is disjoint from BR(x0). It turns out that the size of the excess of 
u/ds

�, which measures its behavior outside the ball BR(x0), provides quantitative estimates on 
its behavior inside BR(x0) when coupled with a bound on (−�)sp u. This is possible due to the 
non-local nature of (−�)sp .

Precisely, we will prove the following. Let DR = BR(x0) ∩ �, K > 0, and m � 0, then{
(−�)sp u � −K in DR

u � mds
� in RN

=⇒ inf
DR/2

( u

ds
�

− m
)
� σL(u,x0,m,R) − C(m,K,R) (1.6)

with a fixed σ > 0 only depending on the data N , p, s, and �. Similarly, for any M � 0{
(−�)sp u� K in DR

u� Mds
� in RN

=⇒ inf
DR/2

(
M − u

ds
�

)
� σL(u,x0,M,R) − C(M,K,R). (1.7)

The assumption of a global point-wise control of u by multiples of ds
� is needed to apply compar-

ison principles for the nonlocal operator (−�)sp and represents the main difference from the local 
case, as well as the source of many new difficulties which will be detailed below. In order to prove 
these Harnack inequalities we will have to distinguish the cases when the excess is comparatively 
large or small, according to the size of the ratio L(u, x0, m, R)/m (resp. L(u, x0, M, R)/M). It 
is worth mentioning that, differently from what happens in the local case, the proof of (1.7) is 
considerably more involved than the one of (1.6), essentially because the condition u � Mds

�

gives no sign information on u near x0, which can then be very small in absolute value in rela-
tively large subsets of BR . Since the operator (−�)s is singular precisely when u  0, it is then 
p
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more delicate to infer bounds on u from bounds on (−�)sp u, compared to the degenerate case 
p � 2.

The peculiar form of the constants C(m, K, R), C(M, K, R) appearing in (1.6), (1.7) respec-
tively, is discussed in Example 3.1 below and plays a major role. We just note here that we must 
aim at its optimal form, in terms of asymptotic behavior with respect to its arguments. The reason 
is the following. In order to infer from (1.6), (1.7) the desired Hölder regularity result we adapt 
Krylov’s method (see [37]), applying these inequalities at the scales Rn = R0/2n to deduce a de-
cay in oscillation for u/ds

� on the corresponding sets DRn . Indeed, from (1.6), (1.7) one readily 
derives for the solutions of {

|(−�)sp u| � K in DR

mds
� � u � Mds

� in RN
(1.8)

the following estimate, holding for suitable θ ∈ (0, 1):

osc
DR/2

u

ds
�

� θ osc
DR

u

ds
�

+ C(m,R,K) + C(M,R,K). (1.9)

On one hand, (1.9) looks promising: if one can prove good controls on the last two terms as 
R → 0, the claimed decay in oscillation will follow. On the other hand, an iterative argument 
ensures that for suitable mn, Mn it holds mnds

� � u � Mnds
�, but only in DRn , thus prejudicing 

the global bound in (1.8). Therefore we have to apply the weak Harnack inequalities to the 
truncated function

ũn = max
{

min{u,Mnds
�}, mnds

�

}
,

with mn, Mn iteratively determined at scale Rn, which satisfies the bilateral bound in the 
whole RN . Due to the nonlocal nature of (−�)sp , however, these truncations worsen the bound 
|(−�)sp u| � K , so that ũn satisfies{

|(−�)sp ũn| � K̃n in DR

mnds
� � ũn � Mnds

� in RN ,

for a possibly much bigger K̃n. Therefore (1.9) holds true with constants depending on K̃n (which 
is rather implicitly constructed by induction), and these have to be iteratively estimated. This 
purely non-local phenomenon and the corresponding issues have been faced and overcome for 
the first time in [45], dealing with the linear case p = 2, through a strong induction argument 
taking advantage of the simple form of the constants C(m, R, K), C(M, R, K) appearing in the 
corresponding weak Harnack inequalities. In the nonlinear case, the asymptotic behavior of these 
constants with respect to their arguments is rather more involved, but still the case p > 2 has been 
dealt with in [30]. The singular case p ∈ (1, 2) considered here turns out to be even more delicate 
and requires a different argument based on the co-area formula.

1.5. Plan of the paper

The structure of the paper is the following: in Section 2 we collect some useful results and 
definitions; in Section 3 we prove a lower bound for supersolutions of fractional p-Laplacian 
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equations; in Section 4 we prove an upper bound for subsolutions; in Section 5 we prove an os-
cillation bound for functions with a bounded fractional p-Laplacian, and finally obtain weighted 
Hölder regularity; Appendix A is devoted to the proof of some elementary inequalities, and Ap-
pendix B to the proof of a barrier proposition (integrating a similar result of [30]).

Notations. Throughout the paper, for any U ⊂ RN we shall set Uc = RN \ U and χU denotes 
the characteristic function of U . If U is measurable, |U | stands for its N -dimensional Lebesgue 
measure. Open balls in RN with center x and radius R will be denoted by BR(x), omitting the 
x-dependence if x = 0. We denote by dist(x, U) the infimum of |x − y| as y ∈ U , and we set 
dU(x) = dist(x, Uc). For any two measurable functions u, v : U → R, u � v in U will mean that 
u(x) � v(x) for a.e. x ∈ U (and similar expressions). The positive (resp., negative) part of u is 
denoted u+ (resp., u−), while u ∧ v = min{u, v} and u ∨ v = max{u, v}. For brevity, we will set 
for all x ∈ R, q > 0

xq =
{

|x|q−1x if x 
= 0

0 if x = 0.

Moreover, C will denote a positive constant whose value may change case by case and whose 
dependance on the parameters will be specified each time.

2. Preliminaries

In this section we recall some notions and results that will be used in our argument.

2.1. Properties of the distance function

We begin with some geometrical remarks, referring to [30] for details. Since � is C1,1-
smooth, it satisfies the interior sphere property with optimal (half) radius

ρ� = sup
{
R > 0 : for all x ∈ ∂� there is y ∈ � s.t. B2R(y) ⊆ �, x ∈ ∂B2R(y)

}
> 0.

The distance function d� fulfills |∇d�| = 1 a.e. and it is globally C1,1 on the closure of {x ∈ � :
0 < d�(x) < ρ�}. Moreover, the nearest point projection

(x) = Argmin{|x − y| : y ∈ ∂�}
is well defined and uniformly Lipschitz on {x ∈ � : 0 < d� < ρ�} (see [39]). For all x0 ∈ ∂�, 
R ∈ (0, ρ�) we denote

DR(x0) = BR(x0) ∩ �,

omitting the dependance on x0 when x0 = 0. In addition, there exists a ball B̃x0,R ⊂ � (see Fig. 1
below), with radius R/4, s.t. B̃x0,R ⊂ D2R(x0) \ D3R/2(x0) and

inf
x∈B̃

d�(x) � 3R

2
. (2.1)
x0,R
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x

�

B̃x,R

DR

2R

R

Fig. 1. The ball B̃x,R , with center on the normal direction.

Clearly, the boundary of DR fails to be smooth in general, hence the interior sphere property does 
not hold. So, in our following results, we will need to use the regularized set AR(x0), defined as 
in [30, Lemma 3.1] by

AR(x0) =
⋃{

Br(y) : r � R

8
, Br(y) ⊂ DR(x0)

}
(2.2)

(see Fig. 2 below). By construction, AR(x0) satisfies the interior sphere property with ρAR(x0) �
R/16. Also, this set enjoys some useful properties:

Lemma 2.1. Let x0 ∈ ∂�, R ∈ (0, ρ�), AR(x0) ⊆ � be defined as in (2.2). Then

(i) D3R/4(x0) ⊂ AR(x0) ⊂ DR(x0);
(ii) for all x ∈ D3R/4(x0)

d�(x)

6
� dAR(x0)(x) � d�(x).

Proof. For simplicity, let x0 = 0 ∈ ∂� and omit the center in all notations. Note that AR ⊆ DR

by construction and dAR
� d� trivially from AR ⊆ �. Fix x ∈ D3R/4, and distinguish two cases:

(a) If d�(x) > R/8, then BR/8(x) ⊆ �, and for all z ∈ BR/8(x) we have

|z| � |z − x| + |x| � R

8
+ 3R

4
< R.

So, BR/8(x) ⊆ DR , hence BR/8(x) ⊆ AR by (2.2), in particular x ∈ AR , proving (i). This in 
turn implies

dAR
(x) � R

8

while in D3R/4 it holds d�(y) � 3R/4. Chaining these inequalities proves the first inequality 
in (ii).
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Fig. 2. The regularized set AR in gray satisfies D3R/4 ⊂ AR ⊂ DR .

(b) If d�(x) � R/8, then let x̄ ∈ ∂� be one point s.t.

d�(x) = |x − x̄| = r,

and ȳ ∈ � be s.t. BR/8(ȳ) is tangent to ∂� at x̄. Since Br(x) is tangent to ∂� at x̄ as well 
and r < R/8, we infer Br(x) ⊂ BR/8(ȳ) and |x − ȳ| � R/8. For all z ∈ BR/8(ȳ) we have

|z| � |z − ȳ| + |ȳ − x| + |x| < R

8
+ R

8
+ 3R

4
= R.

So x ∈ BR/8(ȳ) ⊆ DR , hence x ∈ AR , which proves (i). Also, from Br(x) ⊆ AR we get

dAR
(x) � r = d�(x),

proving the first inequality in (ii).

In both cases we conclude. �
At some step of our proof we will need to estimate the (N − 1)-dimensional Hausdorff mea-

sure (denoted HN−1) of the level set

SR,ξ (x0) = {
x ∈ DR(x0) : d�(x) = ξ

}
,

for some x0 ∈ ∂�, R ∈ (0, ρ�), and ξ ∈ (0, R). We have the following result:

Lemma 2.2. Let x0 ∈ ∂�, R ∈ (0, ρ�), and ξ > 0. Then, there exists C = C(�) > 0 s.t.

HN−1(SR,ξ (x0)) � CRN−1.

Proof. Since d�(x) � ρ� for all x ∈ DR(x0), we may assume ξ � ρ�. By the implicit func-
tion theorem SR,ξ (x0) is a Lipschitz (N − 1)-dimensional submanifold of RN and the metric 
projection � : DR(x0) → ∂� has a uniform Lipschitz bound. By the area formula

HN−1(SR,ξ (x0)) � CHN−1(�(SR,ξ (x0))) � CHN−1(�(DR(x0))),
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for some C > 0 depending on �. Also, by the Lipschitz continuity of �, we can find η � 1
depending on � s.t.

�(DR(x0)) ⊆ BηR(x0) ∩ ∂�.

Therefore, by the regularity of ∂� we infer

HN−1(SR,ξ (x0)) � CHN−1(BηR(x0) ∩ ∂�) � CRN−1,

with C > 0 depending on �. �
2.2. Functional setting

We will now introduce the functional spaces that we are going to work with, referring to [40]
for details. Fix p > 1, s ∈ (0, 1), U ⊆ RN and for all measurable u : U → R define the Gagliardo 
seminorm

[u]s,p,U =
[ ¨
U×U

|u(x) − u(y)|p
|x − y|N+ps

dx dy
] 1

p
.

The basic fractional Sobolev space is defined by

Ws,p(U) = {
u ∈ Lp(U) : [u]s,p,U < ∞}

,

while we set

W
s,p

0 (U) = {
u ∈ Ws,p(RN) : u = 0 in Uc

}
.

If U has finite measure, the latter is a uniformly convex, separable Banach space under the norm 
‖u‖ = [u]s,p,U , with dual space W−s,p′

(U) = (W
s,p

0 (U))∗. Also, if U is bounded we define

W̃ s,p(U) =
{
u ∈ L

p

loc(R
N) : u ∈ Ws,p(V ) for some V � U ,

ˆ

RN

|u(x)|p−1

(1 + |x|)N+ps
dx < ∞

}
.

Such space is the natural framework for the study of the fractional p-Laplacian. Indeed, by [29, 
Lemma 2.3] we can define a continuous, monotone operator (−�)sp : W̃ s,p(U) → W−s,p′

(U)

by setting for all u ∈ W̃ s,p(U), ϕ ∈ W
s,p
0 (U)

〈(−�)sp u,ϕ〉 =
¨

RN×RN

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x − y|N+ps
dx dy.

Such definition agrees with the one given in Section 1, since the restriction of (−�)sp to Ws,p
0 (�)

coincides with the gradient of the functional u �→ [u]s,p,RN /p. We note that, at least for p � 2
and u smooth enough, the fractional p-Laplacian allows for the following formulation:
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(−�)sp u(x) = 2 lim
ε→0+

ˆ

Bc
ε (x)

(u(x) − u(y))p−1

|x − y|N+ps
dy.

Let us focus on the equation

(−�)sp u = f (x) in U (2.3)

(without Dirichlet conditions), with f ∈ L∞(U) and u ∈ W̃ s,p(U). We say that u is a (weak) 
supersolution of (2.3) if for all ϕ ∈ W

s,p
0 (U)+

〈(−�)sp u,ϕ〉�
ˆ

U

f (x)ϕ(x) dx.

The definition of a subsolution is analogous. Finally, we say that u is a (weak) solution of (2.3)
if it is both a super- and a subsolution. Accordingly, a solution of the Dirichlet problem (1.1) is a 
function u ∈ W

s,p

0 (�) s.t. for all ϕ ∈ W
s,p

0 (�)

〈(−�)sp u,ϕ〉 =
ˆ

�

f (x)ϕ(x) dx.

All similar expressions throughout the paper will be meant in such weak sense.
For the reader’s convenience, we will finally recall some useful properties of (super-, sub-) 

solutions. Such properties are proved in [30], but we remark that they hold for any p > 1. We 
begin with a weak comparison principle:

Proposition 2.3. [30, Proposition 2.1] Let u, v ∈ W̃ s,p(U) satisfy{
(−�)sp u� (−�)sp v in U

u � v in Uc.

Then, u � v in RN .

The next result is a nonlocal superposition principle:

Proposition 2.4. [30, Proposition 2.6] Let U ⊂ RN be bounded, u ∈ W̃ s,p(U), v ∈ L1
loc(R

N), 
V = supp(v − u) satisfy U � V c and

ˆ

V

|v(y)|p−1

(1 + |y|)N+ps
dy < ∞.

Set for all x ∈ RN

w(x) =
{

u(x) if x ∈ V c

v(x) if x ∈ V .
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Then w ∈ W̃ s,p(U) and

(−�)sp w(x) = (−�)sp u(x) + 2
ˆ

V

(u(x) − v(y))p−1 − (u(x) − u(y))p−1

|x − y|N+ps
dy

weakly in U .

Finally, for all measurable function u, x ∈ RN , m ∈ R, and R > 0, we define the nonlocal 
excess as in Section 1:

L(u,x,m,R) =
[

−
ˆ

B̃x,R

∣∣∣ u(y)

ds
�(y)

− m

∣∣∣p−1
dy
] 1

p−1
. (2.4)

The quantity L(u, x, m, R) will play a crucial role in the subsequent arguments. Also, for all 
q > 0, s ∈ (0, 1) we borrow from [15] the (slightly modified) definition of the nonlocal tail

tailq(u, x,R) =
[ ˆ

�∩Bc
R(x)

|u(y)|q
|x − y|N+s

dy
] 1

q
. (2.5)

As usual, we omit x whenever x = 0.

2.3. Optimal regularity up to the boundary

As pointed out in Section 1, combining interior Hölder estimates from [8,26] and boundary 
estimates from [30] we can obtain an optimal global regularity result for solutions of (1.1). Here 
we prove this assertion.

First we recall a special case of the more general results obtained for the degenerate and 
singular cases, respectively, in [8,26], using the following definition of nonlocal tail for any u, 
x1 ∈RN , R > 0:

Tail(u, x1,R) =
[
Rps

ˆ

Bc
R(x1)

|u(x)|p−1

|x − x1|N+ps
dx
] 1

p−1
.

Proposition 2.5. Let U ⊂ RN be open and bounded, u ∈ W̃ s,p(U) be a local weak solution of 
(2.3), with f ∈ L∞(U), and let γ satisfy

0 < γ < min
{

1,
ps

p − 1

}
.

Then, u ∈ C
γ

loc(U) and there exists C = C(N, p, s, γ ) > 0 s.t. for all x1 ∈ U , R > 0 s.t. 
B4R(x1) ⊆ U

[u]Cγ (BR/8(x1)) �
C [

‖u‖L∞(BR(x1)) + R
ps

p−1 ‖f ‖
1

p−1
L∞(U) + Tail(u, x1,R)

]
. (2.6)
Rγ
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We also recall a technical lemma, contained in the proof of [45, Theorem 1.2], which will also 
be used to prove our main result:

Lemma 2.6. Let � ⊂ RN be a bounded domain with C1,1-smooth boundary, v ∈ L∞(�), γ ∈
(0, 1), M > 0, ν � 0 satisfy

(i) ‖v‖L∞(�) � M;
(ii) for all x1 ∈ � s.t. d�(x̄) = 4R, v ∈ Cγ (BR/8(x1)) with

[v]Cγ (BR/8(x1)) � M(1 + R−ν);
(iii) for all x0 ∈ ∂�, r > 0 small enough

osc
Dr(x0)

v � Mrγ .

Then v ∈ Cα(�) with α = γ 2/(γ + ν) ∈ (0, 1) and there exists C = C(M, γ, ν) > 0 s.t.

[v]Cᾱ(�) � C.

Here follows the optimal regularity result:

Theorem 2.7. Let � ⊂ RN be a bounded domain with C1,1-smooth boundary, f ∈ L∞(�), u ∈
W

s,p

0 (�) be a weak solution of (1.1). Then, u ∈ Cs(RN) and there exists C = C(N, p, s, �) > 0
s.t.

‖u‖Cs(RN) � C‖f ‖
1

p−1
L∞(�).

Proof. Assume u 
= 0, and by (p − 1)-homogeneity of (−�)sp we may as well assume 
‖f ‖L∞(�) = 1. By [29, Theorem 4.4] there exists C = C(N, p, s, �) > 0 s.t. for all u ∈RN

|u(x)| � Cds
�(x). (2.7)

We aim at applying Lemma 2.6 to u, with γ = s, ν = 0 and a convenient M > 0 depending on 
N , p, s, and �. First, from (2.7) and boundedness of � we have

‖u‖L∞(�) � Cdiam(�)s,

hence u satisfies hypothesis (i) of Lemma 2.6 with M = Cdiam(�)s . Also, for all x0 ∈ ∂� and 
r ∈ (0, ρ�) we have by (2.7)

osc
Dr(x0)

u� 2C sup
Dr(x0)

u � 2Crs,

hence u satisfies (iii) as well, with a possibly bigger M . In order to check hypothesis (ii), we 
fix x1 ∈ � s.t. d�(x1) = 4R, set γ = s again, and invoke Proposition 2.5 (with U = �), getting 
u ∈ Cγ (BR/8(x1)). Besides, from (2.6), (2.7), and ‖f ‖L∞(�) = 1 we have
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[u]Cγ (BR/8(x1)) �
C

Rs

[
Rs + R

ps
p−1 + Tail(u, x1,R)

]
, (2.8)

with C = C(N, p, s, �) > 0. The second term in the right hand side is estimated as

R
ps

p−1 � diam(�)
s

p−1 Rs.

For the tail term, let x̄ ∈ ∂� be one point minimizing the distance from x1, and for all x ∈ RN

we have

d�(x) � |x − x̄|� |x − x1| + 4R,

which by subadditivity of t �→ t s in [0, ∞) and (2.7) again implies

|u(x)| � C
(|x − x1|s + Rs).

Using the above estimate (and different subadditivity properties depending on p � 2 or 1 < p <

2, respectively) we have

ˆ

Bc
r (x1)

|u(x)|p−1

|x − x1|N+ps
dx � C

ˆ

Bc
R(x1)

|x − x1|(p−1)s + R(p−1)s

|x − x1|N+ps
dx

� C

ˆ

Bc
R(x1)

dx

|x − x1|N+s
+ CR(p−1)s

ˆ

Bc
R(x1)

dx

|x − x1|N+ps
� C

Rs
,

still with C > 0 depending on N , p, s, and �. So

Tail(u, x1,R) � CRs.

Plugging these estimates into (2.8) we get

[u]Cs(BR/8(x1)) � C(N,p, s,�).

So hypothesis (ii) is satisfied (with ν = 0). By Lemma 2.6 we get u ∈ Cs(�) and [u]Cs(�) � C, 
with C = C(N, p, s, �) > 0. Recalling (2.7) once again and u = 0 in �c, we conclude. �
2.4. Torsion functions and barriers

An important auxiliary problem, in the study of nonlocal regularity, is the following Dirichlet 
problem for the torsion equation: {

(−�)sp v = 1 in U

v = 0 in Uc.
(2.9)

According to the shape of U , the (unique) solution of (2.9) enjoys useful properties, including a 
Hopf type lemma and a global subsolution property:
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Proposition 2.8. Let U ⊂ RN be bounded and satisfy the interior sphere property with radius 
ρU > 0, v ∈ W

s,p
0 (U) ∩ C0(U) be the solution of (2.9). Then:

(i) there exists C = C(N, p, s) > 1 s.t. for all x ∈RN

v(x) � 1

C
ρ

s
p−1
U ds

U (x);

(ii) v satisfies weakly in RN

(−�)sp v � 1;

(iii) there exists C = C(N, p, s) > 0 s.t. for all x ∈ U

v(x)� Cdiam(U)
ps

p−1 .

Proof. Properties (i), (ii) are proved exactly as in [30, Lemmas 2.3, 2.4]. Regarding (iii), let 
diam(U) = 2R > 0 and find x0 ∈ RN s.t. U ⊆ BR(x0). Further, let uR ∈ W

s,p
0 (BR(x0)) be the 

solution of the torsion problem {
(−�)sp uR = 1 in BR(x0)

uR = 0 in Bc
R(x0).

Arguing as in [30, Lemma 2.2] we find C = C(N, p, s) > 1 s.t. for all x ∈RN

1

C
R

s
p−1 ds

BR(x0)
(x) � uR(x) � CR

s
p−1 ds

BR(x0)
(x).

By (ii) we have {
(−�)sp v � 1 = (−�)sp uR in BR(x0)

v = 0 � uR in Bc
R(x0).

By Proposition 2.3, we have v � uR in RN . In particular, for all x ∈ U we have

v(x) � uR(x) � CR
s

p−1 ds
BR(x0)

(x) � CR
ps

p−1 ,

which implies (iii). �
Finally, we recall some technical results which play a crucial role in the construction of barri-

ers. The first comes from [30]:

Proposition 2.9. [30, Lemma 4.1] Let U ⊂ RN have a C1,1-smooth boundary, 0 ∈ ∂U , R ∈
(0, ρU/4), and x0 ∈ BR/2 ∩U . Then, there exist v ∈ W

s,p
0 (U) ∩C0(RN), C = C(N, p, s, U) > 1

s.t.
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(i) |(−�)sp v| � CR−s in B2R ∩ U ;
(ii) |v| � CRs in B2R ∩ U ;

(iii) v � C−1ds
U in (BR ∩ Uc);

(iv) v(x0) = 0.

The second is a slightly modified version of [30, Lemma 3.4], whose proof is postponed to 
Appendix B as it is only loosely related to the main subject of the present work:

Proposition 2.10. Let U ⊂ RN have a C1,1-smooth boundary, 0 ∈ ∂U , ϕ ∈ C∞
c (B1) be s.t. 0 �

ϕ(x) � 1 for all x ∈ B1, and for all λ ∈R, R > 0, and x ∈ RN set

vλ(x) =
(

1 + λϕ
( x

R

))
ds
U (x).

Then, there exist ρ′
U, λ0, C > 0 depending on N , p, s, U and ϕ, s.t. for all R � ρ′

U , |λ| � λ0

|(−�)sp vλ|� C
(

1 + |λ|
Rs

)
weakly in Bρ′

U
∩ U .

3. Lower bound

In this section we prove a lower bound for supersolutions of (1.1)-type problems in domains 
of the type DR , globally bounded from below by a positive multiple of the function ds

�, which 
corresponds to the weak Harnack inequality (1.6) seen in Section 1. The peculiar form of the 
involved constant C(m, K, R) can be inferred via the following representative example, in which 
we assume K = 1 for simplicity:

Example 3.1. Let � = B1, x0 ∈ ∂�, 0 < m < μ, and set for all x ∈ RN

u(x) =
{

mds
�(x) if x ∈ B̃c

x0,R

μds
�(x) if x ∈ B̃x0,R .

Then, the left hand side of (1.6) vanishes, so that for any choice ensuring (−�)sp u � −1 in 
DR(x0), the optimal constant C(m, 1, R) in (1.6) must fulfill

C(m,1,R)  L(u,x0,m,R).

For R > 0 small enough, an explicit computation yields

L(u,x0,m,R)  μ − m, inf
DR(x0)

(−�)sp u� mp−1 − μ − m

μ2−pRs
.

We can choose μ > m according to the following cases:
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(a) If m � 1, then we choose μ − m  mRs , so that for small R we have in DR(x0)

(−�)sp u� mp−1 − mμp−2 � −1.

Therefore, if (1.6) holds true, the optimal constant must satisfy C(m, 1, R)  mRs .

(b) If R
s

p−1 � m � 1, then we let μ −m  m2−pRs . Then μ �m and, since p − 2 < 0, we have 
in DR(x0)

(−�)sp u� −m2−pμp−2 �−1.

As before, this implies C(m, 1, R)  m2−pRs .

(c) Finally, if m � R
s

p−1 � 1, then we choose μ − m  R
s

p−1 , so that μ � R
s

p−1 and hence in 
DR(x0)

(−�)sp u� −R−sR
s

p−1 μp−2 � −1

In this case we thus have C(m, 1, R)  R
s

p−1 .

In conclusion, to cover these three possible scenarios, we expect the constant C(m, 1, R) in (1.6)
to have the form

C(m,1,R)  R
s

p−1 + m2−pRs + mRs.

For simplicity we will assume henceforth 0 ∈ ∂� and we choose 0 as the center of balls. We 
must distinguish two cases according to the size of the excess (defined in (2.4)), so we prefer to 
use different symbols in the differential inequalities to keep track of the differences.

We begin with a lower bound for supersolutions with large excess:

Lemma 3.2. Let R > 0 be small enough depending on N , p, s, and �, and let u ∈ W̃ s,p(DR), 
m, K > 0 satisfy {

(−�)sp u� −K in DR

u� mds
� in RN .

(3.1)

Then, there exist γ1, C1 > 1 > σ1 > 0, depending on N , p and s, s.t. if L(u, m, R) � mγ1 then

inf
DR/2

( u

ds
�

− m
)
� σ1L(u,m,R) − C1(KRs)

1
p−1 . (3.2)

Proof. Let R ∈ (0, ρ�/4), with ρ� defined as in Section 2. We define the regularized domain 
AR as in (2.2) (with x0 = 0). Consider the torsion problem{

(−�)sp v = 1 in AR

v = 0 in Ac .
(3.3)
R
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By Proposition 2.8 (i), the solution v ∈ W
s,p

0 (AR) of (3.3) satisfies for all x ∈ RN

v(x) � 1

C
ρ

s
p−1
AR

ds
AR

(x)

for C = C(N, p, s) > 0. It has already been pointed out that ρAR
� R/16. By Lemma 2.1 (ii), 

d� � 6 dAR
in DR/2, so we can find c = c(N, p, s) > 0 s.t. for a.e. x ∈ DR/2

v(x) � cR
s

p−1 ds
�(x). (3.4)

Besides, by Proposition 2.8 (ii) we have in all of RN

(−�)sp v � 1.

Fix λ > 0 (to be determined later) and set for all x ∈RN

wλ(x) = λ

R
s

p−1
v(x) + χ

B̃R
(x)u(x).

By Proposition 2.4 and the inequality above, we have wλ ∈ W̃ s,p(DR) and for all x ∈ DR

(−�)sp wλ(x) � λp−1

Rs
+ 2

ˆ

B̃R

(wλ(x) − u(y))p−1 − w
p−1
λ (x)

|x − y|N+ps
dy.

We need to estimate the integrand above. To this purpose, we use Proposition 2.8 (iii) and the 
construction of wλ to see that for all x ∈ DR

wλ(x) = λ

R
s

p−1
v(x) � CλRs.

Now fix x ∈ DR , y ∈ B̃R . Using (A.1) with a = wλ(x), b = u(y) we get

(wλ(x) − u(y))p−1 − w
p−1
λ (x) � w

p−1
λ (x) − up−1(y)

� Cλp−1R(p−1)s − (u(y) − mds
�(y))p−1.

Besides we have R/2 � |x − y| � 3R and 3R/2 � d�(y) � 2R (see (2.1)), so continuing from 
the estimate of (−�)sp wλ(x) and recalling (3.1) we get for all x ∈ DR

(−�)sp wλ(x) � λp−1

Rs
+ C

ˆ

B̃R

(λRs)p−1

|x − y|N+ps
dy − 1

C

ˆ

B̃R

(u(y) − mds
�(y))p−1

|x − y|N+ps
dy

� λp−1

Rs
+ C

λp−1

RN+s
|B̃R| − 1

C

R(p−1)s

RN+ps

ˆ

˜

( u(y)

ds
�(y)

− m
)p−1

dy
BR
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� (C + 1)
λp−1

Rs
− 1

CRs
−
ˆ

B̃R

( u(y)

ds
�(y)

− m
)p−1

dy

�
[
(C + 1)λp−1 − L(u,m,R)p−1

C

] 1

Rs
,

with C = C(N, p, s) > 1. Note that λ > 0 is arbitrary so far. Now fix it s.t.

(C + 1)λp−1 = L(u,m,R)p−1

2C
,

so we have for all x ∈ DR

(−�)sp wλ(x) � −L(u,m,R)p−1

2CRs
. (3.5)

Let c > 0 be the constant in (3.4), and set

σ1 = 1

γ1
= c

2(2C2 + C)
1

p−1

, C1 = σ1(2C2 + C)
1

p−1 .

So we have C1, γ1 > 1 > σ1 > 0, depending on N , p, s. We distinguish two cases:

(a) If L(u, m, R) < (2CKRs)
1

p−1 , then by choice of σ1, C1 the right hand side of (3.1) is nega-
tive, and hence for all x ∈ DR/2

u(x)

ds
�(x)

− m� 0 > σ1L(u,m,R) − C1(KRs)
1

p−1

(even if L(u, m, R) < mγ1).

(b) If L(u, m, R) � (2CKRs)
1

p−1 , then by (3.5) we have{
(−�)sp wλ �−K � (−�)sp u in DR

wλ = χ
B̃R

u� u in Dc
R .

By Proposition 2.3 we have wλ � u in RN . Therefore, by the choices of λ, σ1, γ1, and C1, 
we get for all x ∈ DR/2

u(x) � λ

R
s

p−1
v(x)

� c

(2C2 + C)
s

p−1
L(u,m,R)ds

�(x) =
(
σ1 + 1

γ1

)
L(u,m,R)ds

�(x).

Using the assumption L(u, m, R) �mγ1 we have for all x ∈ DR/2

u(x) �
(
m + σ1L(u,m,R)

)
ds (x),
�
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which in turn implies

u(x)

ds
�(x)

− m � σ1L(u,m,R).

In both cases we deduce (3.2). �
Next we prove a lower bound for supersolutions with small excess. Due to the singular nature 

of the operator, we get a slightly different inequality involving a free parameter γ > 0 and two 
different positive powers of m:

Lemma 3.3. Let R > 0 be small enough depending on N , p, s, and �, and let u ∈ W̃ s,p(DR), 
m, H > 0 satisfy {

(−�)sp u �−H in DR

u �mds
� in RN .

(3.6)

Then, for all γ > 0 there exist Cγ > 1 > σγ > 0, depending on N , p, s, �, and γ , s.t. if 
L(u, m, R) � mγ then

inf
DR/2

( u

ds
�

− m
)
� σγ L(u,m,R) − Cγ (m + Hm2−p)Rs. (3.7)

Proof. Fix ϕ ∈ C∞
c (B1) s.t. 0 � ϕ � 1 in RN and ϕ = 1 in B1/2. Let ρ� > 0 be defined as in 

Section 2 and ρ′
� > 0 be as in Proposition 2.10 (with U = �), then fix R satisfying

0 < R < min
{ρ�

8
, ρ′

�

}
.

Also fix λ > 0 (to be determined later) and set for all x ∈RN

vλ(x) = m
(

1 + λϕ
( x

R

))
ds
�(x).

By Proposition 2.10 there exist λ0 > 0 and C > 0 (both depending on N , p, s, �, and ϕ) s.t. for 
all λ ∈ (0, λ0] we have for all x ∈ DR

(−�)sp vλ(x) � Cmp−1
(

1 + λ

Rs

)
.

Further, set for all x ∈ RN

wλ(x) =
{

vλ(x) if x ∈ B̃c
R

u(x) if x ∈ B̃R .

By Proposition 2.4 we have wλ ∈ W̃ s,p(DR) and for all x ∈ DR
342



A. Iannizzotto and S. Mosconi Journal of Differential Equations 412 (2024) 322–379
(−�)sp wλ(x) = (−�)sp vλ(x) + 2
ˆ

B̃R

(vλ(x) − u(y))p−1 − (vλ(x) − vλ(y))p−1

|x − y|N+ps
dy (3.8)

� Cmp−1
(

1 + λ

Rs

)
− 2

ˆ

B̃R

(u(y) − vλ(x))p−1 − (vλ(y) − vλ(x))p−1

|x − y|N+ps
dy.

This time estimating the integrand requires some more labor than in Lemma 3.2. Set

λ′
0 = min

{
λ0,

1

2

(3s

2s
− 1

)}
> 0,

depending on N , p, s, and �. Assume from now on λ ∈ (0, λ′
0], and fix x ∈ DR , y ∈ B̃R . By 

(3.6) we have

u(y) � mds
�(y) = vλ(y).

By (2.1) we have

inf
B̃R

vλ = inf
B̃R

mds
� � m

3s

2s
Rs,

as well as

sup
DR

vλ � sup
DR

m(1 + λ′
0)d

s
� � m

(
3s

2s+1 + 1

2

)
Rs,

which imply

u(y) − vλ(x) � vλ(y) − vλ(x)

� m
(3s

2s
− 1

)Rs

2
> 0.

Now, for all x ∈ DR , y ∈ B̃R set a = u(y) − vλ(x), b = vλ(y) − vλ(x) � m(2R)s (both non-
negative). By Lagrange’s theorem and monotonicity of t �→ tp−2 in (0, ∞) we have

(u(y) − vλ(x))p−1 − (vλ(y) − vλ(x))p−1 � (p − 1) min
a�t�b

|t |p−2(u(y) − vλ(y))

= (p − 1)
u(y) − vλ(y)

(u(y) − vλ(x))2−p
.

Further, apply inequality (A.2) with an arbitrary θ > 0 (to be determined later) to get
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(u(y) − vλ(x))p−1−(vλ(y) − vλ(x))p−1

� p − 1

(θ + 1)2−p

[
θ2−p(u(y) − vλ(y))p−1 − θ(vλ(y) − vλ(x))p−1]

� p − 1

(θ + 1)2−p

[
θ2−p(u(y) − vλ(y))p−1 − θmp−1(2R)(p−1)s

]
.

Besides, by (2.1) we have R/2 � |x − y| � 3R for all x ∈ DR , y ∈ B̃R . Therefore, continuing 
from (3.8), we have for all x ∈ DR

(−�)sp wλ(x) � Cmp−1
(

1 + λ

Rs

)
− 2(p − 1)

(θ + 1)2−p

ˆ

B̃R

θ2−p(u(y) − vλ(y))p−1 − θ(2sRsm)p−1

|x − y|N+ps
dy

� Cmp−1
(

1 + λ

Rs

)
− 1

C

( θ

θ + 1

)2−p R(p−1)s

RN+ps
−
ˆ

B̃R

( u(y)

ds
�(y)

− m
)p−1

dy

+ Cθmp−1

(θ + 1)2−p

R(p−1)s

RN+ps
|B̃R|

� Cmp−1 +
[
C(λ + θ)mp−1 − 1

C

( θ

θ + 1

)2−p

L(u,m,R)p−1
] 1

Rs
,

with C = C(N, p, s, �) > 1 and θ > 0 still to be chosen. Now let γ > 0 come into play, and 
assume L(u, m, R) � mγ . Since p ∈ (1, 2), we can find δ ∈ (0, 1) (depending on N , p, s, �, and 
γ ) s.t.

Cδ � δ2−p

2C(γ + 1)2−p
.

Pick such a δ and set

θ = δL(u,m,R)

m
.

Clearly we have θ ∈ (0, γ ). By the relations above,

Cθmp−1 = Cδ
L(u,m,R)

m2−p

� δ2−p

2C(γ + 1)2−p

L(u,m,R)

m2−p

� 1

2C

( θ

γ + 1

)2−p

L(u,m,R)p−1.

Plugging this into the estimate of (−�)sp wλ, we have for all x ∈ DR

(−�)sp wλ(x) � Cmp−1 +
[
Cλmp−1 − 1 ( θ )2−p

L(u,m,R)p−1
] 1

s
.

2C γ + 1 R
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Set for simplicity

κ = δ2−p

2C(γ + 1)2−p
∈ (0,1).

Then, the last term of the inequality above rephrases as follows, adjusting the exponent of the 
excess:

1

2C

( θ

γ + 1

)2−p

L(u,m,R)p−1 = κθ2−p

δ2−p
L(u,m,R)p−1

= κ

m2−p
L(u,m,R).

Therefore we have for all λ ∈ (0, λ′
0] and all x ∈ DR

(−�)sp wλ(x) � Cmp−1 +
[
Cλmp−1 − κ

m2−p
L(u,m,R)

] 1

Rs
. (3.9)

We can now establish the constants appearing in the conclusion:

σγ = min
{λ′

0

γ
,

κ

2C

}
, Cγ = 2Cσγ

κ
,

so that Cγ > 1 > σγ > 0 and both depend on N , p, s, �, and γ . Also set

λ = σγ

m
L(u,m,R).

By assumption L(u, m, R) � mγ and definition of σγ we have λ ∈ (0, λ′
0]. Besides, the second 

term in (3.9), for this choice of λ, satisfies

Cλmp−1 � κ

2m2−p
L(u,m,R).

Summarizing, we have for all x ∈ DR

(−�)sp wλ(x) � Cmp−1 − κ

2m2−p

L(u,m,R)

Rs
. (3.10)

Now we distinguish two cases (in which we let H > 0 be as in (3.6)):

(a) If

L(u,m,R) � 2

κ
(Cm + Hm2−p)Rs,

then by (3.10) we have for all x ∈ DR

(−�)sp wλ(x) � Cmp−1 − Cm + Hm2−p

= −H,

m2−p
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while for all x ∈ Dc
R

wλ(x) =
{

u(x) if x ∈ B̃R

mds
�(x) if x ∈ B̃c

R .

Thus, by (3.6) we have {
(−�)sp wλ � (−�)sp u in DR

wλ � u in Dc
R .

Proposition 2.3 now implies wλ � u in RN , in particular for all x ∈ DR/2

u(x)

ds
�(x)

− m � wλ(x)

ds
�(x)

− m = λm = σγ L(u,m,R).

(b) If on the contrary

L(u,m,R) <
2

κ
(Cm + Hm2−p)Rs,

then by the choice of σγ , Cγ we have

σγ L(u,m,R) − Cγ (m + Hm2−p)Rs � 2σγ

κ
(Cm + Hm2−p)Rs − 2σγ

κ
C(m + Hm2−p)Rs

= 2σγ

κ
(1 − C)Hm2−pRs < 0.

Thus, (3.7) trivially holds since its right hand side is negative.

In both cases, we deduce (3.7). �
We can now prove our lower bound for subsolutions of fractional p-Laplacian equations. 

We will use a right hand side of the type − min{K, H }, which might seem redundant since one 
could equivalently take H = K . The reason for such a choice is instrumental to the proof of the 
oscillation estimate on u/ds

�, where for suitable truncations of u we will compute two different 
lower bounds for their fractional p-Laplacians:

Proposition 3.4. Let R > 0 be small enough depending on N , p, s, and �, and let u ∈
W̃ s,p(DR), m, K, H > 0 satisfy{

(−�)sp u � −min{K,H } in DR

u � mds
� in RN .

(3.11)

Then, there exist C > 1 > σ > 0, depending on N , p, s, and �, s.t.

inf
D

( u

ds − m
)
� σL(u,m,R) − C(KRs)

1
p−1 − C(m + Hm2−p)Rs. (3.12)
R/2 �
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Proof. Let R > 0 be small enough s.t. both Lemma 3.2 and Lemma 3.3 apply. By (3.11) we see 
that u satisfies (3.1). Thus, by Lemma 3.2 there exist γ1, C1 > 1 > σ1 > 0 s.t. if L(u, m, R) �
mγ1 then

inf
DR/2

( u

ds
�

− m
)
� σ1L(u,m,R) − C1(KRs)

1
p−1 .

Besides, u also satisfies (3.6). Thus, by Lemma 3.3 with γ = γ1 there exist Cγ1 > 1 > σγ1 > 0
s.t. if L(u, m, R) � mγ1 then

inf
DR/2

( u

ds
�

− m
)
� σγ1L(u,m,R) − Cγ1(m + Hm2−p)Rs.

All constants depend on N , p, s, and �. Now set

σ = min{σ1, σγ1}, C = max{C1, Cγ1}.

Then, C > 1 > σ > 0 depend on N , p, s, and � and (3.12) follows from either the first or the 
second of the bounds above, according to the value of the excess L(u, m, R) � 0. �
4. Upper bound

In this section we prove an upper bound for subsolutions of (1.1)-type problems in domains 
of the type DR , globally bounded from above by Mds

� (M > 0). This bound is equivalent to 
the weak Harnack inequality (1.7) stated in Section 1, with the constant C(M, K, R) taking the 
same form as in Example 3.1. Again we assume 0 ∈ ∂� and center balls at 0, and we distinguish 
between subsolutions with large and small excess, respectively.

We begin with a local negativity property, that is, subsolutions with large excess are in fact 
negative on a smaller set:

Lemma 4.1. Let R > 0 be small enough depending on N , p, s, and �, and let u ∈ W̃ s,p(DR), 
M, K > 0 satisfy {

(−�)sp u� K in DR

u� Mds
� in RN.

(4.1)

Then, there exists C̃2 > 1, depending on N , p, s, and � s.t. if

L(u,M,R) � C̃2
(
M + (KRs)

1
p−1

)
,

then u � 0 in DR/2.

Proof. First let R ∈ (0, ρ�/4), then fix x0 ∈ DR/2 (possibly excluding a subset with zero mea-
sure). By Proposition 2.9, there exist v ∈ W

s,p
0 (�) ∩ C0(RN), C = C(N, p, s, �) > 1 satisfying 

v(x0) = 0 and
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
|(−�)sp v|� C

Rs
in D2R

|v|� CRs in D2R

v �
ds
�

C
in Dc

R .

(4.2)

Comparing (4.1) and (4.2) we get for all x ∈ Dc
R

u(x) � Mds
�(x) � CMv(x).

Now set for all x ∈RN

w(x) =
{

CMv(x) if x ∈ B̃c
R

u(x) if x ∈ B̃R .

By Proposition 2.4 we have w ∈ W̃ s,p(DR) and for all x ∈ DR

(−�)sp w(x) = (CM)p−1(−�)sp v(x)

+ 2
ˆ

B̃R

(CMv(x) − u(y))p−1 − (CMv(x) − CMv(y))p−1

|x − y|N+ps
dy.

We need to estimate the integrand. Fix x ∈ DR , y ∈ B̃R . By (A.3) with

a = CMv(x) − CMv(y), b = CMv(y) − u(y) � 0

and the second relation of (4.2), we have

(CMv(x) − u(y))p−1 − (CMv(x) − CMv(y))p−1

� (CMv(y) − u(y))p−1 − |CMv(x) − CMv(y)|p−1

� (CMv(y) − u(y))p−1 − C′Mp−1R(p−1)s ,

with both C, C′ > 0 depending on N , p, s, and �. Recalling (2.1), for all x ∈ DR , y ∈ B̃R we 
have R/2 � |x − y| � 3R and R/2 � d�(y) � 2R. Therefore, using also the third inequality in 
(4.2), for all x ∈ DR we have

ˆ

B̃R

(CMv(x) − u(y))p−1 − (CMv(x) − CMv(y))p−1

|x − y|N+ps
dy �

� 1

CRN+ps

ˆ

B̃R

(Mds
�(y) − u(y))p−1 dy − C′Mp−1

RN+s
|B̃R|

� RN+(p−1)s

CRN+ps
−
ˆ

˜

(
M − u(y)

ds
�(y)

)p−1
dy − C′Mp−1

Rs
BR
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� L(u,M,R)p−1

CRs
− C′Mp−1

Rs
.

Plugging the last inequality into the estimate of (−�)sp w and using the first relation of (4.2), we 
get for all x ∈ DR

(−�)sp w(x) � L(u,M,R)p−1

CRs
− CMp−1

Rs
,

for a suitable C = C(N, p, s, �) > 1. Clearly we can find C̃2 = C̃2(N, p, s, �) > 1 s.t.

C̃2
(
M + (KRs)

1
p−1

)
�
(
C2Mp−1 + CKRs

) 1
p−1 ,

with K > 0 as in (4.1). Now assume

L(u,M,R) � C̃2
(
M + (KRs)

1
p−1

)
.

Then, for all x ∈ DR we get

(−�)sp w(x) � C2Mp−1 + CKRs

CRs
− CMp−1

Rs
= K.

Summarizing, by (4.1) and the definition of w we have

{
(−�)sp u� K � (−�)sp w in DR

u� w in Dc
R .

Proposition 2.3 now implies u �w in all of RN . In particular we have

u(x0) � CMv(x0) = 0,

and conclude. �
We can now prove the upper bound for subsolutions with large excess, partially analogous to 

Lemma 3.2 above. Note that, due to the different approach followed here, the upper bound only 
holds in the smaller set DR/4.

Lemma 4.2. Let R > 0 be small enough depending on N , p, s, and �, and let u ∈ W̃ s,p(DR), 
M, K > 0 satisfy (4.1). Then, there exist γ2, C2 > 1 > σ2 > 0, depending on N , p, s, and �, s.t. 
if L(u, M, R) � Mγ2 then

inf
D

(
M − u

ds

)
� σ2L(u,M,R) − C2(KRs)

1
p−1 . (4.3)
R/4 �
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Proof. Fix R ∈ (0, ρ�/4), and let C̃2 > 1 be as in Lemma 4.1. Fix γ2, C2 > 1 > σ2 > 0 (to be 
determined later) s.t.

min
{C2

σ2
, γ2

}
� 2C̃2. (4.4)

Assume from the start L(u, M, R) �Mγ2 and

σ2L(u,M,R) � C2(KRs)
1

p−1 , (4.5)

otherwise the conclusion is trivial due to (4.1) (the right hand side of (4.3) becomes negative). 
Therefore, we have

L(u,M,R) � Mγ2

2
+ C2

2σ2
(KRs)

1
p−1

� C̃2
(
M + (KRs)

1
p−1

)
.

By Lemma 4.1, we have u � 0 in DR/2. We define AR/2 as in (2.2) (centered at 0), so by 
Lemma 2.1 (note that R < ρ�) we have D3R/8 ⊆ AR/2 ⊆ DR/2, and 6 dAR/2 � d� in DR/4. 
Next, let ϕ ∈ W

s,p
0 (AR/2) be the solution of the torsion problem{

(−�)sp ϕ = 1 in AR/2

ϕ = 0 in Ac
R/2.

(4.6)

By Proposition 2.8 (ii) we have (−�)sp ϕ � 1 in all of RN , while Proposition 2.8 (i) (iii) and the 
relations above imply for all x ∈ DR/4

R
s

p−1

C
ds
�(x) � ϕ(x) � CRs,

with C = C(N, p, s) > 1. Now fix λ > 0 (to be determined later) and set for all x ∈ RN

vλ(x) =
{

−λR
− s

p−1 ϕ(x) if x ∈ DR/2

Mds
�(x) if x ∈ Dc

R/2.

Reasoning as in [30, eq. (4.19)] (an argument which holds for any p > 1) and exploiting (4.6), 
we have for all x ∈ AR/2

(−�)sp vλ(x) � − C

Rs
(λp−1 + Mp−1), (4.7)

with C = C(N, p, s, �) > 1. Further set for all x ∈RN

wλ(x) =
{

vλ(x) if x ∈ B̃c
R

u(x) if x ∈ B̃R .
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(

By Proposition 2.4 we have wλ ∈ W̃ s,p(AR/2) and, using also (4.7) and the definition of vλ, we 
have for all x ∈ AR/2

(−�)sp wλ(x) = (−�)sp vλ(x) + 2
ˆ

B̃R

(vλ(x) − u(y))p−1 − (vλ(x) − vλ(y))p−1

|x − y|N+ps
dy

� 2
ˆ

B̃R

(vλ(x) − u(y))p−1 − (vλ(x) − Mds
�(y))p−1

|x − y|N+ps
dy − C

Rs
(λp−1 + Mp−1).

As in previous cases, we will now estimate the integrand. By the properties of ϕ, by taking 
C = C(N, p, s, �) > 1 even bigger if necessary, we have for all x ∈ DR/4

wλ(x) = − λ

R
s

p−1
ϕ(x) � − λ

C
ds
�(x). (4.8)

Besides, for all x ∈ DR/2

|wλ(x)| = |vλ(x)| � CλRs.

Fix x ∈ AR/2, y ∈ B̃R . By (A.3) with a = vλ(x) −Mds
�(y), b = Mds

�(y) −u(y) � 0 (see (4.1)), 
we have

vλ(x) − u(y))p−1 − (vλ(x) − Mds
�(y))p−1 � (Mds

�(y) − u(y))p−1 − |vλ(x) − Mds
�(y)|p−1

� (Mds
�(y) − u(y))p−1 − C(λp−1 + Mp−1)R(p−1)s .

Taking into account the usual bounds on |x − y|, d�(y), and recalling the estimate above on 
(−�)sp wλ, we have for all x ∈ AR/2

(−�)sp wλ(x) � 2
ˆ

B̃R

(Mds
�(y) − u(y))p−1 − C(λp−1 + Mp−1)R(p−1)s

|x − y|N+ps
dy

− C

Rs
(λp−1 + Mp−1)

� R(p−1)s

CRN+ps

ˆ

B̃R

(
M − u(y)

ds
�(y)

)p−1
dy − C(λp−1 + Mp−1)

[
R(p−1)s

RN+ps
|B̃R| + 1

Rs

]

� L(u,M,R)p−1

CRs
− C

Rs
(λp−1 + Mp−1),

for a suitable C = C(N, p, s, �) > 1. We can now fix the constants involved in the conclusion, 
setting

γ2 = max
{
2C̃2, (4C2)

1
p−1

}
,
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and accordingly

σ2 = 1

C(4C2)
1

p−1

, C2 = σ2 max
{
2C̃2, (2C)

1
p−1

}
,

so γ2, C2 > 1 > σ2 > 0 depend on N , p, s, and � and satisfy (4.4). Also set

λ = L(u,M,R)

(4C2)
1

p−1

> 0.

By (4.5) and the assumption L(u, M, R) �Mγ2, we have for all x ∈ AR/2

(−�)sp wλ(x) � L(u,M,R)p−1

CRs
− C

Rs

[L(u,M,R)p−1

4C2 + L(u,M,R)p−1

γ
p−1
2

]

� L(u,M,R)p−1

2CRs

�
C

p−1
2 KRs

2Cσ
p−1
2 Rs

� K.

Besides, for all x ∈ Ac
R/2 we distinguish three cases:

(a) If x ∈ Dc
R/2 ∩ B̃c

R , then by definition of wλ and (4.1) we have

wλ(x) = vλ(x) = Mds
�(x) � u(x).

(b) If x ∈ B̃R , then simply

wλ(x) = u(x).

(c) If x ∈ DR/2 ∩ Ac
R/2, then by Lemma 4.1

wλ(x) = vλ(x) = − λ

R
s

p−1
ϕ(x) = 0 � u(x).

Summarizing, we have

{
(−�)sp u � K � (−�)sp wλ in AR/2

u � wλ in Ac
R/2.

By Proposition 2.3, u � wλ in all of RN . Recalling (4.8), for all x ∈ DR/4 we have
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u(x) � − λ

C
ds
�(x)

= −L(u,M,R)

C(4C2)
1

p−1

ds
�(x) = −σ2L(u,M,R)ds

�(x).

Therefore, we have for all x ∈ DR/4

M − u(x)

ds
�(x)

� − u(x)

ds
�(x)

� σ2L(u,M,R),

hence we deduce (4.3). �
Next we prove the upper bound for subsolutions with small excess, analogous to Lemma 3.3

above. In this case, the argument is closer to the one for lower bound:

Lemma 4.3. Let R > 0 be small enough depending on N , p, s, and �, and let u ∈ W̃ s,p(DR), 
M, H > 0 satisfy {

(−�)sp u� H in DR

u� Mds
� in RN .

(4.9)

Then, for all γ > 1 there exist Cγ > 1 > σγ > 0, depending on N , p, s, �, and γ , s.t. if 
L(u, M, R) � Mγ then

inf
DR/2

(
M − u

ds
�

)
� σγ L(u,M,R) − Cγ (M + HM2−p)Rs. (4.10)

Proof. Since the argument closely follows that of Lemma 3.3, we sketch it quickly. Let R > 0
satisfy

R < min
{ρ�

8
, ρ′

�

}
(ρ′

� > 0 being defined as in Proposition 2.10). We define ϕ ∈ C∞
c (B1) as in Lemma 3.3, then we 

fix λ < 0 and set for all x ∈ RN

vλ(x) = M
(

1 + λϕ
( x

R

))
ds
�(x),

so vλ ∈ W̃ s,p(DR). By Proposition 2.10, there exists λ0 > 0 s.t. whenever λ ∈ [−λ0, 0), we have 
for all x ∈ DR

(−�)sp vλ(x) �−CMp−1
(

1 + |λ|
Rs

)
,

with C > 1, λ0 > 0 depending on N , p, s, and �. Next we define wλ ∈ W̃ s,p(DR) as in 
Lemma 4.2 and get for all x ∈ DR
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(−�)sp wλ(x) � 2
ˆ

B̃R

(vλ(y) − vλ(x))p−1 − (u(y) − vλ(x))p−1

|x − y|N+ps
dy −CMp−1

(
1+ |λ|

Rs

)
. (4.11)

This time the estimate of the integrand must be performed in two different ways, due to the 
singularity of t �→ |t |p−2 at 0. Fix x ∈ DR , y ∈ B̃R , and distinguish two cases:

(a) If u(y) � vλ(x), then we argue as in Lemma 3.3. We set

a = vλ(y) − vλ(x), b = u(y) − vλ(x),

so a, b � 0 and a � b thanks to vλ(y) = Mds
�(y) � u(y). Then we use Lagrange’s theorem 

and monotonicity of t �→ tp−2 in (0, ∞) to get

(vλ(y) − vλ(x))p−1 − (u(y) − vλ(x))p−1 � (p − 1) min
b�t�a

|t |p−2(vλ(y) − u(y))

= (p − 1)
vλ(y) − u(y)

(vλ(y) − vλ(x))2−p
.

Further, by inequality (A.2) with an arbitrary θ > 0, we get

(vλ(y) − vλ(x))p−1 − (u(y) − vλ(x))p−1

� p − 1

(θ + 1)2−p

[
θ2−p(vλ(y) − u(y))p−1 − θ(vλ(y) − vλ(x))p−1]

� p − 1

(θ + 1)2−p

[
θ2−p(vλ(y) − u(y))p−1 − θ(MRs)p−1].

(b) If u(y) < vλ(x), note that by (4.9) and (2.1)

vλ(x) � Mds
�(x) �MRs �Mds

�(y) = vλ(y).

Then, by subadditivity of t �→ tp−1 in [0, ∞) we have

(vλ(y) − u(y))p−1 � (vλ(y) − vλ(x))p−1 + (vλ(x) − u(y))p−1

which, since p ∈ (1, 2), implies that for any θ > 0

(vλ(y) − vλ(x))p−1 − (u(y) − vλ(x))p−1 � (p − 1)

(
θ

θ + 1

)2−p

(vλ(y) − u(y))p−1.

All in all, for any x ∈ DR , y ∈ B̃R we have

(vλ(y)−vλ(x))p−1 −(u(y)−vλ(x))p−1 � p − 1

(θ + 1)2−p

[
θ2−p(vλ(y)−u(y))p−1 −θ(MRs)p−1].

Now we plug such estimate into (4.11), recall that vλ = Mds in B̃R and find for all x ∈ DR
�
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(−�)sp wλ(x) �
[ 1

C

( θ

θ + 1

)2−p

L(u,M,R)p−1 − C(|λ| + θ)Mp−1
] 1

Rs
− CMp−1,

with C > 1, λ ∈ [−λ0, 0), and θ > 0 still to be chosen. Now we fix γ > 1 and assume 
L(u, M, R) � Mγ . As in Lemma 3.3 we define δ, κ ∈ (0, 1) (depending on γ ), and accordingly 
set

θ = δL(u,M,R)

M
∈ (0, γ ],

which also satisfies

CθMp−1 � 1

2C

( θ

θ + 1

)2−p

L(u,M,R)p−1.

Using the above relations and setting

σγ = min
{λ0

γ
,

κ

2C

}
, Cγ = 2Cσγ

κ
,

we see that Cγ > 1 > σγ > 0 depend on N , p, s, �, and γ . Moreover, setting

λ = −σγ

M
L(u,M,R) ∈ [−λ0,0),

we get for all x ∈ DR

(−�)sp wλ(x) � −CMp−1 + κ

2M2−p

L(u,M,R)

Rs
. (4.12)

Now, like in Lemma 3.3 we let H > 0 be as in (4.9) and distinguish two cases according to the 
size of L(u, M, R):

(a) If

L(u,M,R) � 2

κ
(CM + HM2−p)Rs,

then we apply (4.12) and the definition of wλ to see that

{
(−�)sp u� H � (−�)sp wλ in DR

u� wλ in Dc
R ,

hence by Proposition 2.3 u � wλ in RN and in particular for all x ∈ DR

M − u(x)
s � −Mλ = σγ L(u,M,R).
d�(x)
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(b) If

L(u,M,R) <
2

κ
(CM + HM2−p)Rs,

then from the choice of constants we have

σγ L(u,M,R) < Cγ (M + HM2−p)Rs,

hence the conclusion is trivial, since the right hand side in (4.10) is negative.

In both cases we deduce (4.10) and conclude. �
Finally we prove the upper bound for any subsolution:

Proposition 4.4. Let R > 0 be small enough depending on N , p, s, and �, and let u ∈
W̃ s,p(DR), M, K, H > 0 satisfy{

(−�)sp u� min{K,H } in DR

u� Mds
� in RN .

(4.13)

Then, there exist C > 1 > σ > 0, depending on N , p, s, and �, s.t.

inf
DR/4

(
M − u

ds
�

)
� σL(u,M,R) − C(KRs)

1
p−1 − C(M + HM2−p)Rs. (4.14)

Proof. The argument goes exactly as in Proposition 3.4. Let γ2 > 1 be as in Lemma 4.2:

(a) If L(u, M, R) � Mγ2, then we use Lemma 4.2: by (4.13) u satisfies (4.1), so (4.3) holds.
(b) If instead L(u, M, R) < Mγ2, then we use Lemma 4.3: by (4.13) u satisfies (4.9) as well, 

so (4.10) holds.

Taking the smallest σ and the biggest C, in either case we deduce (4.14) and conclude. �
5. Oscillation estimate and conclusion

The core of our result is the following oscillation estimate for the quotient u/ds
�, where u

is a function s.t. (−�)sp u is bounded (in a weak sense) in �. The next result is analogous to 
[30, Theorem 5.1], but the proof here follows a different path due to the singular nature of the 
operator for p ∈ (1, 2) (see the discussion in Section 1).

Proposition 5.1. Let u ∈ W
s,p

0 (�), K > 0 satisfy

{
|(−�)sp u| � K in �

u = 0 in �c.
(5.1)
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Then, there exist α ∈ (0, s), C, R0 > 0 depending on N , p, s, and �, s.t. for all x0 ∈ ∂� and all 
r ∈ (0, R0)

osc
Dr(x0)

u

ds
�

� CK
1

p−1 rα.

Proof. Up to a translation we may assume x0 = 0. Also, since (−�)sp is (p − 1)-homogeneous, 
we assume K = 1. Set for all x ∈RN

v(x) =
⎧⎨⎩

u(x)

ds
�(x)

if x ∈ �

0 if x ∈ �c.

We fix a radius R0 = R0(N, p, s, �) satisfying

0 < R0 < min
{ρ�

8
, ρ′

�, 1
}

(with ρ′
� > 0 defined by Proposition 2.10). Then, for all n ∈ N we set Rn = R0/8n and as in 

Section 2

Dn = DRn, B̃n = B̃Rn/2,

so that B̃n ⊂ Dn. For future use, we set for all m ∈R, R > 0

E+(u,m,R) = 2 sup
x∈DR/2

ˆ

{u<mds
�}

(mds
�(y) − u(x))p−1 − (u(y) − u(x))p−1

|x − y|N+ps
dy,

E−(u,m,R) = 2 sup
x∈DR/2

ˆ

{u>mds
�}

(u(y) − u(x))p−1 − (mds
�(y) − u(x))p−1

|x − y|N+ps
dy,

and we note the symmetry relation

E+(u,m,R) = E−(−u,−m,R). (5.2)

We claim that there exist α ∈ (0, s), R0 > 0 (obeying the limitations above), and μ > 1, depend-
ing on N , p, s, and �, and two sequences (mn), (Mn) in R \ {0} (possibly depending also on u) 
s.t. (mn) is nondecreasing, (Mn) is nonincreasing, and for all n ∈N

mn � inf
Dn

v � sup
Dn

v � Mn, Mn − mn = μRα
n . (5.3)

We argue by (strong) induction on n. First, let n = 0. By [29, Theorem 4.4] there exists C0 =
C0(N, p, s, �) > 1 s.t. for all x ∈ �

|v(x)| � C0.
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For α ∈ (0, s), R0 > 0 to be better determined later, choose

μ = 2C0

Rα
0

> 1,

and set M0 = −m0 = μRα
0 /2. Then clearly we have (5.3) at step 0.

Now fix n � 0, and assume that sequences (mk), (Mk) are defined for k = 0, . . . n and satisfy 
(5.3). In particular, for all k ∈ {0, . . . n} we have

|Mk| + |mk| � |M0| + |m0| � μRα
0 = 2C0. (5.4)

By (5.3) (at step n) we have u � mnds
� in Dn. So, by Proposition 2.4 we have (u ∨ mnds

�) ∈
W̃ s,p(DRn/2). Using also (5.1) (recall that K = 1), we see that for all x ∈ DRn/2

(−�)sp (u ∨ mnds
�)(x)

= (−�)sp u(x) + 2
ˆ

{u<mnds
�}

(u(x) − mnds
�(y))p−1 − (u(x) − u(y))p−1

|x − y|N+ps
dy

� −1 − E+(u,mn,Rn).

Similarly we get (u ∧ Mnds
�) ∈ W̃ s,p(DRn/2) and for all x ∈ DRn/2

(−�)sp (u ∧ Mnds
�)(x) � 1 + E−(u,Mn,Rn).

In the next lines, we will provide some estimates for the quantities E+(u, mn, Rn) and 
E−(u, Mn, Rn), assuming when necessary some restrictions on mn, Mn, respectively. By the 
symmetry relation (5.2), any estimate on E+ will reflect on an analogous estimate on E−. Pre-
liminarily, as in [30, Theorem 5.1], for all q > 0, α ∈ (0, s/q) we set

Sq(α) =
∞∑

j=0

(8αj − 1)q

8sj
,

and note that the series above converges uniformly with respect to α and

lim
α→0+ Sq(α) = 0. (5.5)

First we focus on E+(u, mn, Rn) and prove for such quantity an estimate involving Sp−1(α). 
Fix x ∈ DRn/2, y ∈ RN s.t. u(y) < mnds

�(y), hence in particular y ∈ Dc
n (by (5.3) at step n). 

Elementary geometric observations lead to

|x − y| � |y|
2

, |y| � d�(y).

By inequality (A.5) with a = u(x), b = u(y), and c = mnds (y) (note that b � c) we have
�
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(mnds
�(y) − u(x))p−1 − (u(y) − u(x))p−1 � 22−p(mnds

�(y) − u(y))p−1.

So, for all x ∈ DRn/2 we have

ˆ

{u<mnds
�}

(mnds
�(y) − u(x))p−1 − (u(y) − u(x))p−1

|x − y|N+ps
dy

� C

ˆ

{u<mnds
�}

(mnds
�(y) − u(y))p−1

|y|N+ps
dy

� C

ˆ

�∩Dc
n

(mn − v(y))
p−1
+

|y|N+s
dy = Ctailp−1

p−1((mn − v)+,Rn),

where the tail is defined as in (2.5) with q = p − 1, and C = C(N, p, s, �) > 0. Note that the 
last quantity does not depend on x. We split the integral defining

A1 = � \ D1, Ak = Dk−1 \ Dk (k = 2, . . . n),

and noting that for some C = C(N, p, s) > 0

ˆ

Ak

1

|y|N+s
dy �

ˆ

Dc
k

1

|y|N+s
dy � C

Rs
k−1

.

Then, for all k ∈ {1, . . . n}, y ∈ Ak , we apply (5.3) and monotonicity of the sequences (mn), (Mn)

to get

mn − v(y) � mn − mk−1

� (mn − Mn) + (Mk−1 − mk−1) = μ(Rα
k−1 − Rα

n ).

Also, recall that Sp−1(α) converges due to α < s/(p − 1). Therefore, splitting the integral, we 
have the following estimate for the tail:

tailp−1
p−1

(
(mn − v)+,Rn

)=
n∑

k=1

ˆ

Ak

(mn − v(y))
p−1
+

|y|N+s
dy

�
n∑

k=1

ˆ

Ak

μp−1(Rα
k−1 − Rα

n )p−1

|y|N+s
dy

� Cμp−1
n∑

k=1

(Rα
k−1 − Rα

n )p−1

Rs
k−1

= Cμp−1Sp−1(α)R
(p−1)α−s
n .
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Going back to E+(u, mn, Rn), we have found C = C(N, p, s, �) > 0 s.t.

E+(u,mn,Rn) � Cμp−1Sp−1(α)R
(p−1)α−s
n . (5.6)

The estimate in (5.6), though fairly general, is not fully satisfactory, as it involves an exponent 
of the radius which is less than α − s. So we need another estimate of E+(u, mn, Rn) involving 
S1(α), which we first prove under the assumption mn > 0. For any x ∈ DRn/2 we split the integral 
appearing in E+(u, mn, Rn), defining the subdomains Ak (k = 1, . . . n) and recalling that {u <
mnds

�} ⊆ Dc
n:

ˆ

{u<mnds
�}

(mnds
�(y) − u(x))p−1 − (u(y) − u(x))p−1

|x − y|N+ps
dy

�
n∑

k=1

ˆ

Ak

[
(mnds

�(y) − u(x))p−1 − (u(y) − u(x))p−1
]
+

|x − y|N+ps
dy =

n∑
k=1

Ik(x).

For all x ∈ DRn/2, y ∈ Ak we have

|x − y|� Rk − Rn

2
� Rk

2
= Rk−1

16

and by (5.3) at step k − 1 it holds u(y) � mk−1ds
�(y). So we find C = C(N, p, s) s.t.

Ik(x) � C

R
N+ps

k−1

ˆ

Ak

[
(mnds

�(y) − u(x))p−1 − (mk−1ds
�(y) − u(x))p−1]dy

We recall that mn > 0, while we have no sign information on mk−1. So we distinguish two cases:

(a) If mk−1 � mn/2 (including mk−1 � 0), then we have

mn − mk−1 �
mn

2
.

So for all y ∈ Ak we use (A.5) with a = u(x), b = mk−1ds
�(y), and c = mnds

�(y) (b � c) to 
find

(mnds
�(y) − u(x))p−1 − (mk−1ds

�(y) − u(x))p−1 � 22−p(mn − mk−1)
p−1d(p−1)s

� (y)

� 42−p mn − mk−1

m
2−p
n

d(p−1)s
� (y).

Plugging such inequality into the previous estimate of Ik(x) we get, for k > 1,
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Ik(x) � C

R
N+ps

k−1

ˆ

Ak

mn − mk−1

m
2−p
n

d(p−1)s
� (y) dy

� C

Rs
k−1

mn − mk−1

m
2−p
n

with C = C(N, p, s, �) > 0. Besides, for k = 1 we have

I1(x) � C

R
N+ps

0

ˆ

�

mn − m0

m
2−p
n

d(p−1)s
� (y) dy

� C

R
N+(p−1)s

0 Rs
0

mn − m0

m
2−p
n

,

again with C = C(N, p, s, �) > 0. Since R0 < 1, in both cases we find C = C(N, p, s, �) >
0 s.t.

Ik(x) � C

R
N+(p−1)s
0 Rs

k−1

mn − mk−1

m
2−p
n

.

(b) If mn/2 < mk−1 � mn, then necessarily k > 1 (since mn > 0 > m0). Set for x ∈ DRn/2 and 
y ∈ Ak

hx(y) = (mnds
�(y) − u(x))p−1 − (mk−1ds

�(y) − u(x))p−1 � 0.

Recall that |∇d�| = 1 a.e. in Ak . Therefore, by the coarea formula we have for all x ∈ DRn/2

ˆ

Ak

hx(y) dy =
ˆ

Ak

hx(y)|∇d�(y)|dy =
ˆ

R

ˆ

Ak∩{d�=ξ}
hx(y) dHN−1 dξ, (5.7)

where HN−1 is (N − 1)-dimensional Hausdorff measure on Ak ∩ {d� = ξ}. By Lemma 2.2, 
there exists C = C(�) > 0 s.t. for all k > 1 and all ξ > 0

HN−1(Ak ∩ {d� = ξ})� CRN−1
k−1 .

Using the above measure-theoretic bound in (5.7), we find C = C(N, p, s, �) > 0 s.t. for 
all x ∈ DRn/2

ˆ

Ak

hx(y) dy � CRN−1
k−1

Rk−1ˆ

0

[
(mnξ

s − u(x))p−1 − (mk−1ξ
s − u(x))p−1]dξ.

Set for all m > 0, t ∈R

ψk(m, t) =
Rk−1ˆ

(mξs − t)p−1 dξ.
0
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Then we have ψk(·, t) ∈ C1(0, ∞) with derivative

∂ψk

∂m
(m, t) = (p − 1)mp−2

Rk−1ˆ

0

∣∣∣ξ s − t

m

∣∣∣p−2
ξ s dξ.

We estimate the last integral by using the change of variable ξ = Rk−1η:

Rk−1ˆ

0

∣∣∣ξ s − t

m

∣∣∣p−2
ξ s dξ = R1+s

k−1

1ˆ

0

∣∣∣Rs
k−1η

s − t

m

∣∣∣p−2
ηs dη

= R
(p−1)s+1
k−1

1ˆ

0

∣∣∣ηs − t

mRs
k−1

∣∣∣p−2
ηs dη.

By the further change of variable θ = ηs and (A.5), we have for all τ ∈R

1ˆ

0

|ηs − τ |p−2ηs dη �
1ˆ

0

|ηs − τ |p−2ηs−1 dη

=
1ˆ

0

|θ − τ |p−2 dθ

s

= (1 − τ)p−1 − τp−1

(p − 1)s
� 22−p

(p − 1)s
.

In conclusion, there exists C = C(p, s) > 0 s.t. for all m > 0, t ∈ R, k > 1

∂ψk

∂m
(m, t) � CR

(p−1)s+1
k−1 . (5.8)

We now go back to Ik(x). We apply Lagrange’s theorem to ψk(·, u(x)) in the interval 
[mk−1, mn] ⊂ (0, ∞), along with (5.8) and the previous relations, to get

Ik(x) � C

R
N+ps
k−1

ˆ

Ak

hx(y) dy

�
CRN−1

k−1

R
N+ps

k−1

[
ψk(mn,u(x)) − ψk(mk−1, u(x))

]
� C

R
1+ps
k−1

max
mk−1�m�mn

∂ψk

∂m
(m,u(x))(mn − mk−1)

� C

Rs
k−1

mn − mk−1

m
2−p
k−1

.
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Since mk−1 � mn/2, we conclude that there exists C = C(N, p, s, �) > 0 s.t.

Ik(x) � C

Rs
k−1

mn − mk−1

m
2−p
n

.

In both cases (a), (b), recalling that R0 < 1, we have reached the same estimate of Ik(x), which 
is independent from x ∈ DRn/2 and of the form

Ik(x) � C

R
N+(p−1)s

0 Rs
k−1

mn − mk−1

m
2−p
n

,

for C = C(N, p, s, �) > 0 independent of R0. Thus, by (5.3) at steps k = 0, . . . n we have

E+(u,mn,Rn)�
n∑

k=1

C

R
N+(p−1)s
0 Rs

k−1

mn − mk−1

m
2−p
n

� Cμ

R
N+(p−1)s
0 m

2−p
n

n∑
k=1

Rα
k−1 − Rα

n

Rs
k−1

.

Recalling the definition of S1(α), whenever mn > 0 we have the following alternative estimate 
involving a constant C = C(N, p, s, �) > 0:

E+(u,mn,Rn) �
Cμ

m
2−p
n

S1(α)

R
N+(p−1)s
0

Rα−s
n . (5.9)

Next we focus on the quantity E−(u, Mn, Rn). Recalling the symmetry relation (5.2), we have

E−(u,Mn,Rn) = E+(−u,−Mn,Rn).

Note that the function −u ∈ W
s,p

0 (�) satisfies (5.1), and by (5.3) at step n we have for all x ∈ Dn

−u(x) �−Mnds
�(x).

So, arguing exactly as in (5.6) we find C = C(N, p, s, �) > 0 s.t.

E−(u,Mn,Rn)� Cμp−1Sp−1(α)R
(p−1)α−s
n . (5.10)

The argument for a (5.9)-type estimate for E−(u, Mn, Rn) is slightly different. We assume Mn >

0 and for all x ∈ DRn/2 we define Ak (k = 1, . . . n) as above and split the corresponding integral 
as follows:

ˆ

{u>M ds }

(u(y) − u(x))p−1 − (Mnds
�(y) − u(x))p−1

|x − y|N+ps
dy �
n �
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�
n∑

k=1

ˆ

Ak

[
(u(y) − u(x))p−1 − (Mnds

�(y) − u(x))p−1
]
+

|x − y|N+ps
dy

�
n∑

k=1

C

R
N+ps

k−1

ˆ

Ak

[
(Mk−1ds

�(y) − u(x))p−1 − (Mnds
�(y) − u(x))p−1]dy.

For k > 1 we can argue as in case (b) above to get, thanks to Mk−1 � Mn and (5.8), that for all 
x ∈ DRn/2

C

R
N+ps
k−1

ˆ

Ak

[
(Mk−1ds

�(y) − u(x))p−1 − (Mnds
�(y) − u(x))p−1]dy

� C

R
1+ps

k−1

max
Mn�m�Mk−1

∂ψk

∂m
(m,u(x))(Mk−1 − Mn)

� C

Rs
k−1

Mk−1 − Mn

M
2−p
n

.

Now turn to k = 1. First, by [35, Corollary 2] we have the following uniform bound for all ξ � 0
and some C = C(N, �) > 0:

HN−1({d� = ξ})� C.

We apply the coarea formula as in case (b) above to get

ˆ

A1

[
(M0ds

�(y) − u(x))p−1 − (Mnds
�(y) − u(x))p−1]dy � C

[
ψ1(M0, u(x)) − ψ1(Mn,u(x))

]
,

where C = C(N, p, s, �) > 0 and for all m > 0, t ∈R

ψ1(m, t) =
diam (�)ˆ

0

(mξs − t)p−1 dξ.

Arguing as in (5.8), we find C = C(N, p, s, �) > 0 s.t. for all m > 0, t ∈R

∂ψ1

∂m
(m, t) � C

m2−p
.

So, by Lagrange’s theorem we get

ˆ

A1

(M0ds
�(y) − u(x))p−1 − (Mnds

�(y) − u(x))p−1 dy � C max
Mn�m�M0

∂ψ1

∂m
(m,u(x))(M0 − Mn)

� C
M0 − Mn

M
2−p

.

n
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Since R0 < 1, we have

ˆ

{u>Mnds
�}

(u(y) − u(x))p−1 − (Mnds
�(y) − u(x))p−1

|x − y|N+ps
dy � C

R
N+(p−1)s

0

n∑
k=1

1

Rs
k−1

Mk−1 − Mn

M
2−p
n

.

Thus, whenever Mn > 0 we have the following estimate, with C = C(N, p, s, �) > 0:

E−(u,Mn,Rn) �
Cμ

M
2−p
n

S1(α)

R
N+(p−1)s

0

Rα−s
n . (5.11)

All the estimates (5.6), (5.9), (5.10), and (5.11) hold if 0 < mn < Mn. We briefly hint at the 
remaining cases (recalling that by (5.3) at step n we have mn, Mn 
= 0 and mn < Mn).

(A) If mn < Mn < 0, then conversely 0 < −Mn < −mn, so we turn to the function −u which 
solves (5.1) and satisfies for all x ∈ Dn

−Mnds
�(x) � −u(x) �−mnds

�(x).

Arguing as above and using (5.2), we find estimates of the type (5.6) - (5.11) for the quan-
tities

E+(u,mn,Rn) = E−(−u,−mn,Rn), E−(u,Mn,Rn) = E+(−u,−Mn,Rn).

(B) If mn < 0 < Mn, then we can derive (5.10), (5.11) as above. Besides, passing to −u and 
noting that −mn > 0, we find estimates like (5.6), (5.9) for

E+(u,mn,Rn) = E−(−u,−mn,Rn).

Summarizing, in any case we find C = C(N, p, s, �) > 0 s.t.

E+(u,mn,Rn)� C min
{
μp−1Sp−1(α)R

(p−1)α−s
n ,

μ

|mn|2−p

S1(α)

R
N+(p−1)s

0

Rα−s
n

}
,

E−(u,Mn,Rn) � C min
{
μp−1Sp−1(α)R

(p−1)α−s
n ,

μ

|Mn|2−p

S1(α)

R
N+(p−1)s

0

Rα−s
n

}
.

The next step consists in applying the lower and upper bounds proved in Sections 3, 4 to the 
functions u ∨ mnds

�, u ∧ Mnds
�, respectively. To this end, note that both Proposition 3.4 and 

Proposition 4.4, while separately proved in the case m, M > 0, actually hold true together for 
arbitrary m, M 
= 0: indeed, if (u, m) fulfill the assumptions of Proposition 3.4 for some m < 0, 
then Proposition 4.4 applies to (−u, −m), and (4.14) is then equivalent to (3.12) with |m| on the 
right hand side; similarly, if (u, M) satisifes the assumptions of Proposition 4.4 for some M < 0, 
then Proposition 3.4 applies to (−u, −M), giving (4.14) with |M| on the right hand side.

Set then, for C = C(N, p, s, �) > 1 given in the previous bounds for E±,

Kn = 1 + Cμp−1Sp−1(α)R
(p−1)α−s
n ,
365



A. Iannizzotto and S. Mosconi Journal of Differential Equations 412 (2024) 322–379
hn = 1 + Cμ

|mn|2−p

S1(α)

R
N+(p−1)s
0

Rα−s
n ,

Hn = 1 + Cμ

|Mn|2−p

S1(α)

R
N+(p−1)s
0

Rα−s
n .

By the previous bound on (−�)sp (u ∨ mnds
�) and the estimates on E+(u, mn, Rn) in (5.6) and 

(5.9), we have the following (3.11)-type inequality:{
(−�)sp (u ∨ mnds

�) � −min{Kn,hn} in DRn/2

u ∨ mnds
� � mnds

� in RN .

We apply Proposition 3.4 with R = Rn/2, m = mn, K = Kn, H = hn. Recalling that Rn/8 =
Rn+1 and that u � mnds

� in Dn by (5.3) at step n, with slightly rephrased constants, we find 
C > 1 > σ > 0, depending on N , p, s, and � (but not on R0), s.t.

inf
Dn+1

(
v − mn

)
� σL

(
u,mn,

Rn

2

)
− C(KnR

s
n)

1
p−1 − C(|mn| + hn|mn|2−p)Rs

n.

Similarly, by (5.10) and (5.11) we have the (4.13)-type inequality{
(−�)sp (u ∧ Mnds

�) � min{Kn,Hn} in DRn/2

u ∧ mnds
� � Mnds

� in RN .

By Proposition 4.4, for C > 1 even bigger and σ ∈ (0, 1) even smaller if necessary, all depending 
on N, p, s, � (but not on R0), we have

inf
Dn+1

(
Mn − v

)
� σL

(
u,Mn,

Rn

2

)
− C(KnR

s
n)

1
p−1 − C(|Mn| + Hn|Mn|2−p)Rs

n.

Comparing the definitions of Kn, hn, and Hn with the lower-upper bounds above, we realize that 
the latter show a certain degree of homogeneity, which we are now going to exploit in the final 
steps of the proof. We proceed to estimating the oscillation of v = u/ds

� in Dn+1 (recalling the 
definition of the excess in (2.4)):

osc
Dn+1

v = sup
Dn+1

v − inf
Dn+1

v

� (Mn − mn) − inf
Dn+1

(
v − mn

)− inf
Dn+1

(
Mn − v

)
� (Mn − mn) − σ

[
L
(
u,mn,

Rn

2

)
+ L

(
u,Mn,

Rn

2

)]
+ C(KnR

s
n)

1
p−1 + C

[|mn| + hn|mn|2−p + |Mn| + Hn|Mn|2−p
]
Rs

n

� (Mn − mn) − σ
[(

−
ˆ

˜
(v(x) − mn)

p−1 dx
) 1

p−1 +
(

−
ˆ

˜
(Mn − v(x))p−1 dx

) 1
p−1

]
+

Bn Bn
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+ CμS
1

p−1
p−1(α)Rα

n + C
μS1(α)

R
N+(p−1)s
0

Rα
n + CμRα

0 Rs
n,

where in the last step we used (5.4). By subadditivity of t �→ tp−1 on [0, ∞), for all x ∈ B̃n it 
holds

(Mn − mn)
p−1 � (Mn − v(x))p−1 + (v(x) − mn)

p−1.

Using inequality (A.4), we thus have

(
−
ˆ

B̃n

(v(x) − mn)
p−1 dx

) 1
p−1 +

(
−
ˆ

B̃n

(Mn − v(x))p−1 dx
) 1

p−1

� 2
p−2
p−1

[
−
ˆ

B̃n

(v(x) − mn)
p−1 dx + −

ˆ

B̃n

(Mn − v(x))p−1 dx
] 1

p−1

� 2
p−2
p−1

[
−
ˆ

B̃n

(Mn − mn)
p−1 dx

] 1
p−1 = 2

p−2
p−1

(
Mn − mn

)
.

Plugging this inequality into the previous oscillation estimate, using (5.3), and recalling that 
Rn � R0 and μ > 1, we have

osc
Dn+1

v �
(

1 − 2
p−2
p−1 σ

)
(Mn − mn) + Cμ

[
S

1
p−1
p−1(α) + S1(α)

R
N+(p−1)s
0

]
Rα

n + CμRα
0 Rs

n

�
[
1 − 2

p−2
p−1 σ + CS

1
p−1
p−1(α) + C

S1(α)

R
N+(p−1)s

0

]
8αμRα

n+1 + CμRs
0R

α
n+1,

where in the last passage we used the inequality

Rα
0 Rs

n � 8αRs
0R

α
n+1.

So far, α ∈ (0, s) and R0 > 0 (obeying the initial bounds) are not subject to any further restriction. 
We now choose R0 = R0(N, p, s, �) > 0 small enough s.t.

CRs
0 � 2

p−2
p−1 −1

σ,

and correspondingly, thanks to (5.5), choose α = α(N, p, s, �) ∈ (0, s) so small that

[
1 − 2

p−2
p−1 σ + CS

1
p−1
p−1(α) + C

S1(α)

R
N+(p−1)s
0

]
8α < 1 − 2

p−2
p−1 −1

σ.

By virtue of such relations we have
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osc
Dn+1

v � μRα
n+1.

Therefore, we may fix mn+1, Mn+1 ∈ [mn, Mn] s.t.

mn+1 � inf
Dn+1

v � sup
Dn+1

v �Mn+1, Mn+1 − mn+1 = μRα
n+1,

thus proving (5.3) at step n + 1.
Finally, let r ∈ (0, R0). Then, there exists n ∈N s.t. Rn+1 � r < Rn. By (5.3) we have

osc
Dr

v � osc
Dn

v � μRα
n � μ8αrα.

Thus, the conclusion holds with α ∈ (0, s) and C = μ8α > 1, both depending on N , p, s, and 
�. �

We can now prove our main result. The argument is in fact identical to that of [30, Theorem 
1.1], but we include it here for completeness.

Proof of Theorem 1.1. As said in Section 1, case p � 2 is just [30, Theorem 1.1], so we assume 
p ∈ (1, 2). Let f ∈ L∞(�), u ∈ Ws,p(�) be a solution of (1.1). Set K = ‖f ‖L∞(�), so u satisfies 
(5.1). By homogeneity of (−�)sp , we may assume K = 1. Set as before for all x ∈ RN

v(x) =
⎧⎨⎩

u(x)

ds
�(x)

if x ∈ �

0 if x ∈ �c.

For α ∈ (0, s) being given in Proposition 5.1, we aim at applying Lemma 2.6 to v with γ = α. 
As already recalled (see (2.7)), we have v ∈ L∞(�) and there is C = C(N, p, s, �) > 0 s.t.

‖v‖L∞(�) � C,

hence v satisfies hypothesis (i) of Lemma 2.6. In order to check (ii), let x1 ∈ � be s.t. d�(x1) =
4R, and arguing as in Theorem 2.7 (with γ = α) we get

[u]Cα(BR/8(x1)) � CRs−α,

with C = C(N, p, s, �) > 0. Besides, by [45, p. 292] we have[ 1

ds
�

]
Cα(BR/8(x̄))

� C

Rα+s
.

Combining the previous properties, we have for all x, y ∈ BR/8(x̄)

|v(x) − v(y)|
|x − y|α � |u(x) − u(y)|

|x − y|α
1

ds
�(x)

+ |u(y)|
|x − y|α

∣∣∣ 1

ds
�(x)

− 1

ds
�(y)

∣∣∣
� [u]Cα(BR/8(x̄))

∥∥∥ 1
s

∥∥∥
L∞(B (x̄))

+ ‖u‖L∞(BR/8)

[ 1
s

]
Cα(B (x̄))
d� R/8 d� R/8
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� CRs

Rα

( 8

R

)s + CRs C

Rα+s
� C

Rα
.

So, v satisfies hypothesis (ii) of Lemma 2.6 with ν = γ = α. Finally, fix x0 ∈ ∂�, r > 0, and let 
C, R0 > 0 be as in Proposition 5.1. We distinguish two cases:

(a) If r < R0, then by Proposition 5.1 we have

osc
Dr(x0)

v � Crα.

(b) If r � R0, then simply

osc
Dr(x0)

v � 2‖v‖L∞(�) �
C

Rα
0

rα.

In any case, v satisfies hypothesis (iii) of Lemma 2.6 with γ = α and M = M(N, p, s, �) > 0. 
The corresponding exponent in Lemma 2.6 turns out to be α/2 ∈ (0, s), therefore

[v]Cα/2(�) � C,

for C = C(N, p, s, �) > 0, which, along with the previous bound on ‖v‖L∞(�), yields the con-
clusion, up to replacing α with α/2. �
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Appendix A. Some elementary inequalities

Here we recall some useful inequalities, specifically designed to deal with the singular case. 
In the following, we’ll assume p ∈ (1, 2).

• For all a, b � 0 we have

ap−1 − bp−1 � (a − b)p−1 − ap−1. (A.1)
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Indeed, if a > b then by monotonicity of t �→ tp−1 we have

ap−1 � (a − b)p−1, −bp−1 � −ap−1,

hence (A.1). If a � b, then by subadditivity of t �→ |t |p−1 we have

bp−1 � (b − a)p−1 + ap−1,

hence

ap−1 − bp−1 � (a − b)p−1,

which in turn implies (A.1).
• For all a, b � 0, θ > 0 we have

a

(a + b)2−p
�
( θ

θ + 1

)2−p

ap−1 − θ

(θ + 1)2−p
bp−1. (A.2)

Indeed, if a < θb then

( θ

θ + 1

)2−p

ap−1 <
θ

(θ + 1)2−p
bp−1,

so (A.2) is trivial. If a � θb then

(a + b)2−p �
(

1 + 1

θ

)2−p

a2−p,

which in turn implies (A.2).
• For all a ∈R, b � 0 we have

(a + b)p−1 − ap−1 � bp−1 − |a|p−1. (A.3)

Indeed, if a � 0 then by monotonicity of t �→ tp−1 (A.3) is trivial. If −b � a < 0 then by 
subadditivity of t �→ tp−1 on [0, ∞) we have

bp−1 � (a + b)p−1 + (−a)p−1,

hence (A.3). Finally, if a < −b then by monotonicity again

(a + b)p−1 + (−a)p−1 � ap−1 + bp−1,

which is equivalent to (A.3).
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• For all a, b � 0 we have

(a + b)
1

p−1 � 2
2−p
p−1

(
a

1
p−1 + b

1
p−1

)
. (A.4)

Indeed, let q = 1/(p − 1) > 1, then by convexity of t �→ tq in [0, ∞) we have

(a + b)q = 2q
(a

2
+ b

2

)q

� 2q−1(aq + bq),

hence (A.4).
• For all a, b, c ∈R, b � c we have

(c − a)p−1 − (b − a)p−1 � 22−p(c − b)p−1. (A.5)

Indeed, by the rearrangement inequality for integrals we have

a−bˆ

a−c

|t |p−2 dt �
(c−b)/2ˆ

(b−c)/2

|t |p−2 dt,

which rephrases as

(a − b)p−1

p − 1
− (a − c)p−1

p − 1
� 1

p − 1

[(c − b

2

)p−1 −
(b − c

2

)p−1]
= 22−p

p − 1
(c − b)p−1,

hence (A.5).

Appendix B. Proof of Proposition 2.10

Here we give a sketch of the proof of Proposition 2.10. In fact, the original argument of [30, 
Lemma 3.4] only works for domains with a C2,1-smooth boundary, as it requires that the metric 
projection onto the boundary be C1,1 (see [39]). We modify the argument in order to include 
C1,1-smooth domains, and so we correct the gap of the original proof.

Proof of Proposition 2.10. The idea is the following: first, we rephrase vλ by means of a con-
venient diffeomorphism and a distance function; then, we prove the desired bound on (−�)sp vλ

as in [30, Lemma 3.4].
First we introduce a signed distance from ∂U by setting for all x ∈RN

d(x) =
{

dU(x) if x ∈ U

−dUc(x) if x ∈ Uc.

By the regularity of ∂U , d is a C1,1-function in a convenient tubular neighborhood of ∂U , satis-
fying |∇d| = 1. Up to a rotation of axes, we may assume that eN is the interior normal to ∂U at 
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0, so ∇d(0) = eN . By the regularity of d there exist R0, C > 0 only depending on U (which will 
be tacitly assumed henceforth), s.t. for all x ∈ B2R0

|∇d(x) − eN |� C|x|, |d(x) − xN | � C|x|2. (B.1)

Also, there exists a C1,1-diffeomorphism � : B2R0 → �(B2R0) (meaning that both � and �−1

are C1,1) with the following properties: �(0) = 0, D�(0) = D�−1(0) = Id, and

�(B2R0 ∩ U) ⊂ RN+ , �(B2R0 ∩ ∂U) ⊂ ∂RN+ ,

where we have set

RN+ = {
x′ ∈RN : x′

N > 0
}
.

Besides, we have

‖�‖C1,1(B2R0 ) + ‖�−1‖C1,1(�(B2R0 )) � C,

and for all x ∈ B2R0 , x′ ∈ �(B2R0)

|D�(x) − Id| + |D�−1(x′) − Id|� CR0, |�(x) − x| + |�−1(x′) − x′| � CR2
0 .

Set for all x′ ∈ �(B2R0)

d′(x′) = d(�−1(x′)).

By (B.1) and the bounds on �, d′ ∈ C1,1(�(B2R0)) and for all x′ ∈ �(B2R0) we have

|∇d′(x′) − eN | � CR0, |d′(x′) − x′
N | � CR2

0 . (B.2)

Fix λ0 ∈ (0, 1/2) (to be determined later). Then set for all |λ| � λ0, R ∈ (0, R0/2], and x′ ∈
�(B2R0)

ψλ(x
′) =

(
1 + λϕ

(�−1(x′)
R

)) 1
s
.

So ψλ ∈ C1,1(�(B2R0)) satisfies for all x′ ∈ �(B2R0)

|ψλ(x
′) − 1|� C|λ|χ�(BR)(x

′), |∇ψλ(x
′)| � C

|λ|
R

χ�(BR)(x
′),

and almost everywhere

|D2ψλ(x
′)| � C

λ2

R2 χ�(BR)(x
′).

Next we define another local diffeomorphism. Set for all x′ ∈ �(B2R )
0
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�λ(x
′) = (

x′
1, . . . x

′
N−1,ψλ(x

′)d′(x′)
)
,

so that �λ : �(B2R0) → RN is a C1,1-map s.t. �λ(�(B2R0) ∩ ∂RN+) ⊂ ∂RN+ . We compute the 
first-order derivatives of �λ at x′ ∈ �(B2R0). Clearly, for all j ∈ {1, . . .N − 1}

∇�
j
λ(x

′) = ej .

For the N -th component, noting that |d′| � CR in �(BR), using (B.2) and the estimates on ψλ

we have

|∇�N
λ (x′) − eN |� |∇ψλ(x

′)||d′(x′)| + |ψλ(x
′) − 1||∇d′(x′)| + |∇d′(x′) − eN |

� C
|λ|
R

|d′(x′)|χ�(BR)(x
′) + C|λ|χ�(BR)(x

′) + CR0

� C|λ|χ�(BR)(x
′) + CR0.

Taking λ0, R0 even smaller if necessary (still depending on U ), we may assume that ‖D�λ −
Id‖L∞(�(B2R0 )) is sufficiently small, so that �λ is a C1,1-diffeomorphism. A similar argument 
leads for a.e. x′ ∈ �(B2R0) to the following estimate of the second-order derivatives:

|D2�λ(x
′)| � C

[ λ2

R2 |d′(x′)| + |λ|
R

+ |λ|
]
χ�(BR)(x

′) + C

� C
|λ|
R

χ�(BR)(x
′) + C.

Now set for all x ∈ B2R0

�λ(x) = �λ(�(x)).

By the previous estimates �λ : B2R0 → �λ(B2R0) is a C1,1-diffeomorphism s.t. for all x ∈ B2R0 , 
x̃ ∈ �λ(B2R0)

|D�λ(x
′) − Id| + |D�−1

λ (x̃) − Id| � C(λ0 + R0), (B.3)

and for a.e. x ∈ B2R0

|D2�λ(x)| � C
|λ|
R

χBR
(x) + C. (B.4)

Also, for all x ∈ B2R0 a direct computation yields

vλ(x) = (�N
λ )s+(x). (B.5)

We aim at extending �λ to a global diffeomorphism, keeping uniform estimates with respect to 
λ, R. Note that for all |λ| � λ0 we have �λ = �0 in B2R0 \ BR0/2, while by (B.1) we have for all 
x ∈ B2R \ BR /2
0 0
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|�0(x) − x| � CR2
0 .

So we pick a cut-off function η ∈ C∞
c (B2R0) s.t. 0 � η � 1 in RN , η = 1 in BR0 , and

R0|∇η| + R2
0 |D2η| � C(N)

in B2R0 \ BR0 . Then, set for all x ∈RN

�̂λ(x) = η(x)�λ(x) + (1 − η(x))x.

Clearly we have �̂λ(x) = �λ(x) for all x ∈ BR0 , as well as �̂λ(x) = x for all x ∈ Bc
2R0

. Also, 
for all x ∈ B2R0 \ BR0/2 the previous relations and (B.3) imply

|D�̂λ(x) − Id| � |∇η(x)||�0(x) − x| + η(x)|D�λ(x) − Id|

� C

R0
R2

0 + C(λ0 + R0) � C(λ0 + R0).

Moreover, a similar estimate holds for D�̂−1
λ and D2�̂λ satisfies (B.4) a.e.. Adjusting λ0, 

R0 again, and setting for simplicity �̂λ = �λ, we deduce that �λ : RN → RN is a C1,1-
diffeomorphism satisfying (B.3) (B.4) in RN , and (B.5) in BR0 , which concludes the first part of 
our argument.

Now we aim at proving the bound on (−�)sp vλ in DR0/2 = BR0/2 ∩U , by means of (B.5) and 
the properties of �λ. Recall that |λ| � λ0, R ∈ (0, R0/2]. Set for all ε ∈ (0, 1), x ∈ BR0/2 ∩ U

fε(x) =
ˆ

{|�λ(x)−�λ(y)|�ε}

(vλ(x) − vλ(y))p−1

|x − y|N+ps
dy

(we omit henceforth the dependance on λ, R for brevity). We claim that for any such λ and R
there exists f0 ∈ L∞(DR0/2) s.t.

fε → f0 in L1
loc(DR0/2) as ε → 0+ and ‖f0‖L∞(DR0/2) � C

(
1 + |λ|

Rs

)
. (B.6)

First note that it suffices to prove the claim for

f̃ε(x) =
ˆ

BR0∩{|�λ(x)−�λ(x)|�ε}

(vλ(x) − vλ(y))p−1

|x − y|N+ps
dy.

Indeed, for all ε ∈ (0, 1), x ∈ DR0/2, y ∈ Bc
R0

we have |x − y| � |y|/2, hence

|fε(x) − f̃ε(x)| �
ˆ

Bc

|vλ(x) − vλ(y)|p−1

|x − y|N+ps
dy
R0
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� C diam(U)(p−1)s

ˆ

Bc
R0

dy

|y|N+ps
� C,

for a suitable C = C(N, p, s, U, ϕ) > 0 (such dependance of C will be assumed henceforth). So, 
fε − f̃ε converges in L∞(DR0/2) to some universally bounded limit function, i.e., with a bound 
on the L∞-norm independent of λ, R.

Focusing on f̃ε , we use the change of variables x̃ = �λ(x), ỹ = �λ(y) and recall (B.5) to get

f̃ε(x) =
ˆ

�λ(BR0 )∩Bc
ε (x̃)

((x̃N )s+ − (ỹN )s+)p−1

|�−1
λ (x̃) − �−1

λ (ỹ)|N+ps
|detD�−1

λ (ỹ)|dỹ

for all x ∈ DR0/2. We split the integral by setting for all x̃ ∈ �λ(DR0/2), ỹ ∈ �λ(BR0)

gε(x̃) =
ˆ

Bc
ε (x̃)

((x̃N )s+ − (ỹN )s+)p−1

|D�−1
λ (x̃)(x̃ − ỹ)|N+ps

dỹ,

hε(x̃) =
ˆ

�c
λ(BR0 )∩Bc

ε (x̃)

((x̃N )s+ − (ỹN )s+)p−1

|D�−1
λ (x̃)(x̃ − ỹ)|N+ps

dỹ,

and

H(x̃, ỹ) = |detD�−1
λ (ỹ)| − |detD�−1

λ (x̃)| |�
−1
λ (x̃) − �−1

λ (ỹ)|N+ps

|D�−1
λ (x̃)(x̃ − ỹ)|N+ps

.

Indeed, a direct computation shows for all x ∈ DR0/2, x̃ = �λ(x)

f̃ε(x) = |detD�−1
λ (x̃)|(gε(x̃) − hε(x̃)) +

ˆ

�λ(BR0 )∩Bc
ε (x̃)

((x̃N )s+ − (ỹN )s+)p−1

|�−1
λ (x̃) − �−1

λ (ỹ)|N+ps
H(x̃, ỹ) dỹ.

By [29, Lemma 3.2] we have gε → 0 in L∞
loc(R

N+) as ε → 0+. Also, a similar argument to that 
used above for fε − f̃ε shows that hε converges in L∞(�λ(DR0/2)) to a function with a universal 
L∞-bound.

So we turn to the last quantity. We claim that there exists C = C(N, p, s, U, ϕ) > 0 s.t. for all 
|λ| � λ0, R ∈ (0, R0/2] we have for all x̃ ∈ �λ(DR0/2)

ˆ

�λ(BR0 )

|(x̃N )s+ − (ỹN )s+|p−1

|�−1
λ (x̃) − �−1

λ (ỹ)|N+ps
|H(x̃, ỹ)|dỹ � C

(
1 + |λ|

Rs

)
. (B.7)

We go back to the original variables using (B.5):

ˆ

� (B )

|(x̃N )s+ − (ỹN )s+|p−1

|�−1
λ (x̃) − �−1

λ (ỹ)|N+ps
|H(x̃, ỹ)|dỹ =

ˆ

B

|vλ(x) − vλ(y)|p−1

|x − y|N+ps
|K(x,y)|dy,
λ R0 R0
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where we have set for all x ∈ DR0/2, y ∈ RN

K(x, y) = 1 − |detD�λ(y)|
|detD�λ(x)|

|x − y|N+ps

|D�λ(x)−1(�λ(x) − �λ(y))|N+ps
.

We estimate K arguing as in [30, Lemma 3.4]. First we split and use (B.3):

|K(x,y)| �
∣∣∣∣ |detD�λ(x)| − |detD�λ(y)|

|detD�λ(x)|
∣∣∣∣

+ |detD�λ(y)|
|detD�λ(x)|

∣∣∣∣1 − |x − y|N+ps

|D�λ(x)−1(�λ(x) − �λ(y))|N+ps

∣∣∣∣
� C |detD�λ(x) − detD�λ(y)| + C

∣∣∣∣1 − |x − y|N+ps

|D�λ(x)−1(�λ(x) − �λ(y))|N+ps

∣∣∣∣
= K1(x, y) + K2(x, y).

Focusing on K1, we use (B.3) and (B.4) to get

K1(x, y) � C

∣∣∣∣∣∣
1ˆ

0

d

dt
detD�λ(x + t (y − x)) dt

∣∣∣∣∣∣
� C

1ˆ

0

|D2�λ(x + t (y − x))||x − y|dt

� C |x − y|
1ˆ

0

[ |λ|
R

χBR
(x + t (y − x)) + 1

]
dt

� C |λ|min
{ |x − y|

R
, 1
}

+ C |x − y|.

Considering now K2, using Taylor’s expansion with integral remainder, (B.3) and (B.4) we obtain 
a formally analogous estimate:

K2(x, y) � C

∣∣∣∣1 − |x − y|2
|D�λ(x)−1(�λ(x) − �λ(y))|2

∣∣∣∣
� C

∣∣D�λ(x)−1(�λ(x) − �λ(y)) + (x − y)
∣∣ ∣∣D�λ(x)−1(�λ(x) − �λ(y)) − (x − y)

∣∣
|D�λ(x)−1(�λ(x) − �λ(y))|2

� C
|�λ(x) − �λ(y)| + |D�λ(x)(x − y)|

|�λ(x) − �λ(y)|2
∣∣�λ(x) − �λ(y) − D�λ(x)(x − y)|

� C

|x − y|

∣∣∣∣∣∣
1ˆ
(1 − t)

d2

dt2 �λ(x + t (y − x)) dt

∣∣∣∣∣∣

0
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� C

|x − y|
1ˆ

0

[ |λ|
R

χBR
(x + t (y − x)) + 1

]
|x − y|2 dt

� C |λ|min
{ |x − y|

R
, 1
}

+ C |x − y|.

Therefore, for all x ∈ DR0/2, y ∈ RN we have

|K(x,y)| � C |λ|min
{ |x − y|

R
, 1
}

+ C |x − y|,

with C = C(N, p, s, U, ϕ) > 0. Moreover, from (B.3) we infer a Lipschitz bound on �λ indepen-
dent on λ and R as long as |λ| � λ0 and R ∈ (0, R0/2], hence (B.5) shows that vλ has s-Hölder 
modulus of continuity in BR0 uniformly bounded in λ and R under these conditions. Therefore

|vλ(x) − vλ(y)|p−1

|x − y|N+ps
� C

|x − y|s(p−1)

|x − y|N+ps
= C

|x − y|N+s
.

Plugging these estimates into the integral we have

ˆ

BR0

|vλ(x) − vλ(y)|p−1

|x − y|N+ps
|K(x,y)|dy

�
ˆ

BR0

C

|x − y|N+s

[
|λ|min

{ |x − y|
R

, 1
}

+ |x − y|
]
dy

� C
|λ|
R

ˆ

BR0

min{|x − y|, R}
|x − y|N+s

dy + C

ˆ

BR0

dy

|x − y|N+s−1

� C
|λ|
R

ˆ

BR(x)

dy

|x − y|N+s−1 + C |λ|
ˆ

BR0∩Bc
R(x)

dy

|x − y|N+s
+ C

� C
|λ|
Rs

+ C |λ|
ˆ

Bc
R(x)

dy

|x − y|N+s
+ C � C

|λ|
Rs

+ C.

Thus we have proved (B.7). In turn, that implies (B.6) (the stated convergence is actually in 
L∞

loc(DR0/2) as ε → 0+).
Finally, [29, Lemma 2.5] can be applied to vλ in DR0/2 with the sets

Aε =
{
(x, y) ∈ RN ×RN : |�λ(x) − �λ(y)| < ε

}
thanks to the global Lipschitzianity of �−1

λ granted by (B.3). Therefore (−�)sp vλ = f0 weakly 
in DR0/2 and the bound on f0 in (B.6) concludes the proof of the Proposition with ρ′

U = R0/2
and λ0 as before. �
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