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Abstract:
With the advent of deep reinforcement learning, we witness the

spread of novel autonomous driving agents that learn how to drive
safely among humans. However, skilled attackers might steer the
decision-making process of these agents through minimal pertur-
bations applied to the readings of their hardware sensors. These
force the behavior of the victim agent to change unexpectedly, in-
creasing the likelihood of crashes by inhibiting its braking capa-
bility or coercing it into constantly changing lanes. To counter
these phenomena, we propose a detector that can be mounted on
autonomous driving cars to spot the presence of ongoing attacks.
The detector first profiles the agent’s behavior without attacks by
looking at the representation learned during training. Once de-
ployed, the detector discards all the decisions that deviate from
the regular driving pattern. We empirically highlight the detec-
tion capabilities of our work by testing it against unseen attacks
deployed with increasing strength.
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1 Introduction

Deep Reinforcement Learning (DRL) is used to train deep-
learning models to complete tasks by trial-and-error experi-
ence. In the context of self-driving cars, for example, a DRL
system can be used to drive without direct human supervision.
Unfortunately, DRL is subject to adversarial perturbations, i.e.
carefully-crafted inputs that cause the system to behave unex-
pectedly [1, 2]. For example, previous works [1, 3] compute
the Fast Sign Gradient Method (FGSM) against reinforcement
learning policies trained to play ATARI games or to simulate
simple physics environments. However, these strategies are
studied in very simple cases and stand more as a proof of con-
cept that needs to be adapted to the domain of choice. Detec-
tors have been proposed to counter attacks against classifica-

tion and showed promising results. They are usually designed
as separate predictors trained to detect the perturbed samples
by learning from a pre-computed dataset [4,5]. These detectors
however have been shown to be less robust to unseen adversar-
ial perturbations [6]. Furthermore, only a few approaches ap-
ply detectors to counter adversarial input attacks against DRL.
Lin et al. use a visual foresight model to check if the agents’
actions reflect the predictions [7]. Van Wyk et al. [8] lever-
age state transitions to detect the presence of hardware faults
or non-adversarial cyber-attacks against the sensors. Similarly,
Mustafa et al. [9] develop a reinforcement learning algorithm
that is tuned to detect anomalies of wireless sensors and ad-
versarial attacks, by again leveraging state-transition matrices.
These approaches, however, require a fully-observable environ-
ment in which the states are perfectly known by the agents.
In this paper, we propose an anomaly detector that promptly
signals adversarial attacks against DRL policies. We first de-
scribe the DRL components (Sect. 2), then we detail the at-
tack scenario (Sect. 3), and we apply anomaly detection algo-
rithms to prevent DRL systems to cause damage when affected
by adversarial attacks (Sect. 4). We show the effectiveness of
our method by applying it to autonomous-driving simulation
(Sect. 5), and finally, we comment on and summarize the re-
sults (Sect. 6).

2 DRL for Autonomous Driving

The goal of Reinforcement Learning (RL) is to train an agent
to complete a task within an environment E , within multiple
time steps t. At each time step t, the agent receives representa-
tions of the state of the environment called observations x. The
agent can pick an action y ∈ A to progress in the objective task.
If the actions are taken from a finite set, i.e., A = {y1, . . . , yA},
the action space is called a discrete action space. The agent



learns a behavior function called policy that, depending on the
observations and the state, picks an action y. After the ac-
tion, the environment sends the agent an immediate reward rt.
This is a scalar that indicates how well the agent is doing at
the current step. One episode is a sequence of time steps for
which states, actions, and rewards are defined. Episodes end
with a terminal state or when the maximum number of steps
is reached. The agent’s goal is to learn the optimal policy π⋆,
which makes it pick the sequence of actions that maximize the
expected cumulative reward received over episodes.

Proximal Policy Optimization (PPO) is an actor-critic,
policy-gradient method that learns directly from what the agent
encounters in the environment. More in detail, it learns by us-
ing two networks, the actor and the critic network. The ac-
tor directly implements the policy, whereas the critic estimates
how good the policy is and feeds the information back to the
algorithm for improving the actor network. In the case of the
PPO, the policy π can be parametrized through the weights
θ = (w1, . . . ,wl) of a deep neural network. The actor net-
work directly parametrizes the policy through a score function:

πθ(y|x) = f(y,x; θ), (1)

that gives each action in A a score proportional to the expected
reward of the subsequent states. Hence, the goal of a PPO al-
gorithm is to find θ⋆ that maximizes the expected cumulative
reward. In the following, we will refer to the internal represen-
tations at each layer i of the network as zi = σ(w⋆

i−1zi−1),
where σ is the activation function of the layer.

3 Sensor Attacks against Deep Reinforcement
Learning Agents

We consider attacks where the agent receives altered obser-
vations x′ = x+ δ, where δ is an additive perturbation applied
to the observations. In our settings, we assume that y′ is the
target action, i.e., the action that the agent should perform to
achieve the attacker’s goal. Then, we formalize the attack as
the following problem:

δ⋆ ∈ arg min
δ

L(x+ δ, y′; θ) (2)

s.t. ||δ||p ≤ ϵ and x+ δ ∈ [0,1]. (3)

Where the attacker is interested in optimizing a loss function
L (e.g., the cross-entropy loss) to force the model to pick the se-
lected action y′. By solving this problem, the attacker can find
the optimal perturbation δ⋆ that, added to the input observa-
tions x, will force the agent to take the desired action y′ at each
time step t. To launch more sophisticated attacks, the attacker

can perform the attack multiple times to cause a sequence of
actions that bring the agent into an unwanted state. For exam-
ple, in the case of autonomous driving, the attacker can cause
the self-driving agent to cause an accident.

The Projected Gradient Descent attack (PGD) [10] was pro-
posed to find a solution to Equation 2 via iterative steps in
the direction of the gradient ∇x. PGD computes the gradient
∇xL(x, y; θ) and iteratively sums it to the current perturbation
δ to improve the objective loss.

4 Defending Against Perturbed Observations

Anomaly detection algorithms can find out when our agent
is being attacked by altered observations. To achieve this, we
want to define a detector

D(x; θ) = g(z1, . . . , zl) (4)

that will output a score proportional to how much the model
considers each sample of the test data to be anomalous. An-
alysts can either analyze the top few anomalies, or they can
select a cutoff threshold ρ to select the number of anomalies to
flag as ground truth. Specifically, we are interested in detect-
ing unseen attacks. Thus, we leverage semi-supervised novelty
detection (SSND).

In SSND, the training data is not polluted by outliers, and
we are interested in detecting whether a new observation is
an outlier. In this context, an outlier is also called a novelty.
When a new sample falls in low-density regions of the training
data distribution, they are considered anomalies (or novelties).
Anomaly detection algorithms can be grouped into:

• Statistical methods (MCD [11], HBOS [12]). These
methods use high-breakdown estimators with good perfor-
mance under the null hypothesis, stating that no outliers
are present and labeling as anomalies the samples that fail
the statistical tests.

• Density-based techniques (kNN [13], Isolation
Forests [14], LOF [15]), CBLOF [16]. Estimate the
data distribution locally by counting how many data
objects are present in the sample in some local volume;

• Geometric-based techniques (ABOD [17], OCSVM [18],
PCA [19]). Use a geometric model and tricks to define a
frontier between the normal data and the outliers;

• Ensemble techniques (Feature Bagging [20], Aver-
ageKNN [21]). Group two or more learners and combine
their scores or their decisions.



Anomaly detectors are usually evaluated in terms of their
correct detections through the True Positive Rate (TPRs), and
false alarms through the False Positive Rate (FPRs). When
evaluating detectors, the desired characteristic is to have high
TPR, meaning that they can correctly detect anomalies, and
low FPR, hence avoiding false alarms. By observing the TPR
and FPR over different values of the detection threshold, it is
possible to build the Receiver Operating Characteristic (ROC)
curves, which describe how the classifier can distinguish be-
tween the two classes. In the absence of an analyst able to
inspect the anomalies, it is common practice to set the thresh-
old ρ to a value that fixes a specific FPR as the number of
false positives that are supposed to contaminate the dataset (the
contamination factor c ). As previously discussed, we use the
concatenation of all the activations {z1, . . . zl} of the deep neu-
ral network as features for our anomaly detectors. Note that the
detector uses representations already computed for predicting
the next action. Thus the computational cost of the detector
will only be the prediction from the anomaly detector model.
To use the detector, we combine the output layer of the actor
network with an additional score given by the detector. Hence,
we add one more action in the action space, corresponding to
the “failsafe” action, i.e., A⋆ = {a1, . . . , aA, aD}. Compared
to the DRL system without the detector, our model will output
the action corresponding to the maximum score in A⋆, thus se-
lecting the failsafe action if the detection score is greater than a
specific detection threshold ρ.

5 Experiments

We run all our experiments on a 32-cores Intel® Xeon® Gold
5217 with 188 GB of RAM, with two Nvidia RTX A6000 with
48 GB of VRAM. For testing our approach, we use the Python-
based Hiwhay-Env simulator [22], which gathers a collection
of environments for decision-making in autonomous driving.
Agent. We train an agent that uses Kinematic Observations,
i.e. a V × F array that describes a list of V nearby vehi-
cles by a set of features of size F . We select as features the
two coordinates describing the position of each vehicle (offset
on the horizontal axis, offset on the vertical axis) and the two
vectors that describe their speed in the two directions (velocity
on the horizontal and vertical axis). We use a discrete action
space that contains the actions {“lane left”, “idle”, “lane right”,
“faster”, “slower” }. We train a PPO policy network composed
of two layers of 256 weights. We train the model for 1, 000, 000
episodes, with a maximum number of steps per episode of 40.
Attacks. We design three attacks that force the choice of spe-
cific target actions. We divide them into denial-of-service at-

(a) (b)

FIGURE 1. The Brake and Lane-changing attacks. The red line stands
for steady and continuous velocity. In blue, we represent the deceleration,
while the yellow dashed line is the future trajectory.

tacks (DOS) and dangerous-driving attacks (DD). DOS attacks
are meant to make the agent useless for the task. DD attacks
are attacks designed to cause crashes or dangerous situations.
Brake (DOS). This attack causes the agent to stop in the middle
of the lane by forcing it to select always the action “slower”
(Figure 1a). This attack increases the likelihood of causing ac-
cidents as the other vehicles might impact it.
Speed (DD). This attack forces the driving agent to always pick
the action “faster”, coercing it to drive at sustained speed. This
is the most dangerous scenario, as the agent will likely impact
other vehicles on the road.
Lane-changing (DD). This attack forces the agent to pick al-
ternately the actions “lane left” and “lane right” (Figure 1b).
This scenario is unsafe and can also lead to causing the other
vehicles to crash to avoid the agent.

We implemented these attacks by using the targeted im-
plementation of PGD available in the Foolbox library [23].
We use the ℓ2 version of PGD, for which we set the num-
ber of iterations for the attack to n = 20, the step size
to α = 0.1, and we use different perturbation sizes ϵ ∈
{0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. For each attack and perturbation
size, we measure the crash rate CR as the average number of
times the agent crashes over the total number of 1000 episodes.
Detector. For implementing our detector, we collect a dataset
of 1500 episodes for the normal driving scenario and 1000
episodes for each driving scenario. We collect the inner states
of the DNN, i.e., zi for i ∈ {1, 2}, and we use these as a feature
vector for our anomaly detection.

To avoid high correlation due to taking samples from the
same episodes, we select only one random step from each
episode and use the data collected in that step for training and
evaluating our detector. This is consistent with how we plan
to use our detectors, as they will detect the attack from a sin-
gle step of the RL episode (hence it can evaluate the detector at
each step and block potential malicious actions). After this data
collection step, we preprocess the data with a Standard Scaler,
which rescales the data to fit in a Normal Distribution, i.e. a
Gaussian with zero mean and unit variance.

We take the implemented anomaly detectors available
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FIGURE 2. ROC curves of our detectors. The closer the curve is to the point TPR=1.0, FPR=0.0, the better the detector is able to distinguish between
anomalies and normal situations. The zoomed area focuses on the difference between the different models.

in the PyOD library [24]. We use the following detec-
tors, with the default hyperparameters: Angle-based Outlier
Detector (ABOD) [17], Cluster-based Local Outlier Factor
(CBLOF) [16], Feature Bagging [20], Histogram-base Out-
lier Detection (HBOS) [12], Isolation Forest [14], K Near-
est Neighbors (KNN) [13], Average KNN [21], Local Out-
lier Factor (LOF) [15], Minimum Covariance Determinant
(MCD) [11], One-class SVM (OCSVM) [18], and Principal
Component Analysis (PCA) [19].

To simulate a real-case scenario where the attacks are not
known at the training phase, we train our anomaly detectors
with 500 samples belonging to the episodes of the normal class
(the datasets containing anomalies are used only at the infer-
ence phase). Then, we test our detectors with the remaining
1000 samples from the normal scenario and the 1000 samples
taken from the attacks we implemented.

We show the ROC curves of the detectors in Figure 2. As
specified before, the best classifiers are the ones for which the
curve is close to having TPR = 1.0 and FPR = 0.0. As dis-
played in the figure, the majority of the anomaly detectors that
we trained are able to achieve good performances on the tasks.
It is worth noting here that the detectors are the same for the
three attacks, as they are only trained with normal data. For
this reason, the choice should prioritize detectors that achieve
good results in all the analyzed scenarios.

To give an overview of the performances of our detectors,
we report the Area Under the Curve (AUC) values for the com-
puted ROCs in Table 1. Again, the higher the value of the AUC,
the closer the curve is to the perfect classifier, and we are inter-

ested in models able to achieve good results in all three cases.
We observe that most models detect attacks in the three sce-
narios very well, demonstrating the usefulness and descriptive
quality of our features. Some classifiers, mostly the statisti-
cal methods, are slightly less efficient overall, suggesting that
the distributions might be skewed and require further prepro-
cessing to identify outliers better. We emphasize, however, that
even without applying additional preprocessing these features
are still sufficient to identify and prevent the threats efficiently.

TABLE 1. Performances of the outlier detectors on the tested environ-
ments, for ||δ||2 = 3.0.

Detector Brak
e

Lan
e-c

ha
ng

ing

Sp
ee

d

Angle-based Outlier Detector (ABOD) [17] 1.00 1.00 1.00
Cluster-based Local Outlier Factor (CBLOF) [16] 1.00 1.00 1.00
Feature Bagging [20] 1.00 1.00 1.00
Histogram-base Outlier Detection (HBOS) [12] 0.90 0.90 0.91
Isolation Forest [14] 0.99 0.99 0.99
K Nearest Neighbors (KNN) [13] 1.00 1.00 1.00
Average KNN [21] 1.00 1.00 1.00
Local Outlier Factor (LOF) [15] 1.00 1.00 1.00
Minimum Covariance Determinant (MCD) [11] 0.94 0.94 0.94
One-class SVM (OCSVM) [18] 1.00 1.00 1.00
Principal Component Analysis (PCA) [19] 1.00 1.00 1.00

To demonstrate the usefulness of the detectors, we show in
Figure 3 the crash rate (CR) before and after applying the de-
tector. For drawing these curves, we select one of the best-
performing models, the OCSVM, and we fix the FPR threshold
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FIGURE 3. Crash rates of our attacks (continuous lines —), and crash
rates with our OCSVM detector (dashed lines − · −). From the plot, it
is evident how a detector can prevent the crashes caused by the attacks on
the sensors.

to have 10 % FPs. When the detector triggers, we block the ex-
ecution of the scenario, and we recompute CR after detection.
This simulates a scenario in which the agent stops in the emer-
gency lane (failsafe action) as soon as the attack is detected.1

6 Conclusions

In this paper, we analyze attacks against hardware sensors
of autonomous-driving agents, and we propose a detector that
promptly stops the agent before causing damage. Our results
highlight that the detector avoids crashes against other vehicles
by looking at one single attacker-tainted observation.

We point out, however, that our method has been tested only
on sensor attacks, whereas it could also prove useful in more
complex attack scenarios, such as adversarial policies [25].
We believe our method can be further improved, by consid-
ering other contextual information as input features, like the
sequence of actions picked by the agent. Moreover, the detec-
tor could consider ensembles of multiple models to promote
diversity and improve its detection capability, and better handle
unseen-and-complex attack scenarios.

We believe that our work can serve as a starting point for
future research in DRL and trustworthy autonomous driving.
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