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Abstract: The proliferation of sensors in smart homes makes it possible to monitor human activities,
routines, and complex behaviors in an unprecedented way. Hence, human activity recognition has
gained increasing attention over the last few years as a tool to improve healthcare and well-being in
several applications. However, most existing activity recognition systems rely on cameras or wearable
sensors, which may be obtrusive and may invade the user’s privacy, especially at home. Moreover,
extracting expressive features from a stream of data provided by heterogeneous smart-home sensors
is still an open challenge. In this paper, we investigate a novel method to detect activities of daily
living by exploiting unobtrusive smart-home sensors (i.e., passive infrared position sensors and
sensors attached to everyday objects) and vision-based deep learning algorithms, without the use
of cameras or wearable sensors. Our method relies on depicting the locomotion traces of the user
and visual clues about their interaction with objects on a floor plan map of the home, and utilizes
pre-trained deep convolutional neural networks to extract features for recognizing ongoing activity.
One additional advantage of our method is its seamless extendibility with additional features based
on the available sensor data. Extensive experiments with a real-world dataset and a comparison with
state-of-the-art approaches demonstrate the effectiveness of our method.

Keywords: sensor-based activity recognition; smart environments; trajectory mining; visual feature
extraction

1. Introduction

The ability to monitor people’s daily activities has various applications in several
fields [1]. In healthcare, human activity recognition (HAR) is currently utilized to enhance
rehabilitation, well-being, and to detect possible health issues early on [2,3]. In particular,
the significant increase in the elderly population demands innovative ambient-assisted
living tools that utilize HAR to prolong the independent lives of seniors [4]. Indeed,
according to [5], in 1980, the estimated number of people over the age of 65 was 258 million,
while in 2022 it reached 771 million. Moreover, the elderly population is expected to reach
994 million in 2030 and 1.6 billion in 2050. Older people are often physically and mentally
frail compared to the younger population and they need support on a daily basis. HAR tools
play a key role in enhancing the quality of life for this population, allowing for the monitoring
of disease progression and assisting the elderly in performing daily activities [6–8]. In this
regard, the monitoring of activities has significantly improved in recent years thanks to
the miniaturization of sensors, their increasing integration into everyday objects such as
smartphones and IoT devices, and the enhancements of AI algorithms, which allow for the
extraction of deeply hidden information for accurate detection and interpretation [9].

The HAR research field aims to analyze data or signals obtained from the user or
environment to associate them with the activities performed by the individual. According
to a device-wise analysis conducted in [10], camera-based HAR techniques were the most
popular during the period of 2011–2016, while sensor-based systems have been preferred
since 2017. The choice of the device type depends on the specific application. For instance,
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in surveillance applications involving multiple people, most HAR systems rely on cameras.
Conversely, in applications that require recognition of the daily activities of a single person,
sensor-based solutions are generally preferred due to their greater privacy-consciousness
and lower computational costs.

Nowadays, different types of sensors are used for HAR, including motion, wearable,
proximity, and environmental sensors [7]. These sensors are categorized according to
whether they are embedded in the environment or worn by the person [4,11,12]. Ambient
sensors are usually fixed to infrastructures or objects; therefore, considering triggered
sensors and user interactions with sensors, the fact that the individual uses an object or
is in a certain position can be traced back to a particular activity. Thus, all of these sensor
records can be used to distinguish specific activities [4,7]. Wearable inertial sensors, on
the other hand, are usually used to detect simpler activities, such as movement or posture,
and are worn in specific parts of the body to capture certain movements or simple actions,
such as ‘walking’. However, wearable sensors (such as wearable glasses equipped with a
camera) are also capable of assisting in recognizing complex activities [11]. One advantage
of the latter types of sensors is that they are not fixed and bound to a specific position, but
can be transported wherever the user goes [12]. Nevertheless, the use of wearable devices
is perceived as obtrusive and uncomfortable by some users, especially elderly people [13].

Sensory data analysis has several important applications in different areas, including
ambient-assisted living [4,14], physical training [15,16], managing emergency situations,
and automatic detection of abnormal activities in surveillance environments [17,18]; most of
these applications require HAR in the first step. HAR is typically addressed as a supervised
learning problem [19,20], where a mathematical model is created based on the relationship
between the raw or preprocessed input data (observations) and the output data (current
activity). In recent years, several machine learning approaches have been explored with
the aim of automatic classification of daily living activities (ADLs) based on mapping the
extracted features out of sensor data [12,21]. One of the first works on sensor-based HAR
was carried out in 1999 [22] where the authors detected movements and postures with
the use of body-worn accelerometers. Recent works proposed adopting sliding windows
and deep learning methods to extract features from wearable sensor data for activity
recognition [23,24]. However, extracting expressive features from a stream of data provided
by heterogeneous smart-home sensors is still an open research issue [25,26].

In this paper, we address the problem of extracting expressive features from an unob-
trusive sensor-based activity recognition system. We propose a novel unobtrusive HAR
system based on indoor locomotion and sensor data analyses. Our method relies on feature-
rich visual extraction to encode the inhabitant’s trajectories and manipulated objects into
images, which are processed by a pre-trained deep learning model and classified by a
supervised machine learning algorithm. As it is based only on environmental sensors,
our system is unobtrusive. Since we do not rely on video or sound data, the system is
privacy-conscious. Nonetheless, we point out that specific privacy-by-design methods
should be enforced even when only environmental sensor data are released to third parties.
Indeed, for instance, knowledge of PIR sensor data may reveal private information, such as
the current activity or the presence/absence of home inhabitants.

We developed a prototype of our system and carried out extensive experiments with a
real-world dataset gathered in a smart home’s test bed with 175 seniors. We performed an
experimental comparison with state-of-the-art techniques, which showed the superiority
of our approach. In particular, our feature-rich visual extraction method provides higher
recognition accuracy than a previously proposed image-based method. Moreover, using
a pre-trained deep learning model essentially achieves the same accuracy as a custom
convolutional neural network (CNN) architecture while incurring lower computational
costs for training. Additionally, unlike the state-of-the-art technique proposed in [27], our
visual extraction method can be seamlessly extended to incorporate additional features in
case more sensor data are available, in order to improve recognition performance.

These are the main contributions of our work:
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• In order to enhance the extraction of expressive features from sensor data streams for
HAR, we propose a novel, feature-rich visual extraction method to visually represent
the traces of sensor activations in a smart home, considering the walked trajectory,
direction, speed, and interaction with objects;

• We used a pre-trained deep learning model to extract features from the image rep-
resentation of sensor activations, and a supervised machine learning algorithm to
recognize the current activity;

• We designed and implement a working prototype of our envisioned system;
• We experimentally evaluated our method using a large real-world dataset, outper-

forming a state-of-the-art technique.

The remainder of the paper is structured as follows. Section 2 discusses the related
work. Section 3 illustrates the overall system architecture along with the techniques for
trajectory segmentation, feature-rich visual encoding, feature extraction by pre-trained
CNNs, and activity recognition utilizing classical machine learning algorithms. Section 4
presents our experimental evaluation. Section 5 discusses the results and the limitations of
this work. Finally, Section 6 concludes the paper and outlines future research directions.

2. Related Work

One of the main components of ambient-assisted living systems and smart homes
is the ability to automatically recognize which human activities are taking place. In sen-
sorized environments, HAR systems acquire data about the residents’ interactions with the
environment and objects and apply AI algorithms to detect the performed activities and
behaviors. Activity data are then used to determine the appropriate actions of the smart
system according to the current situation of the resident. For this reason, HAR methods are
essential for remote care applications in a smart home [28].

Various types of approaches have been proposed for HAR in smart homes, which can
be classified into two categories: data-driven and knowledge-based approaches [7,29]. In
data-driven approaches, activity models are built using data mining and machine learning
methods based on large sets of sensor data that capture user interactions with the environment
and objects [30,31]. These approaches can handle temporary and uncertain data and create
dynamic and personalized activity models [7]. However, they require a large amount of data
for training and learning, and learned activity models cannot be easily applied to new users,
which leads to scalability and reusability issues [29,30,32]. A challenging issue in data-driven
HAR approaches involves the extraction of expressive features from spatiotemporal sensor
data [23,33,34].

Knowledge-based approaches build activity models by exploiting prior knowledge,
using knowledge engineering and management technologies [29,32]. Their models are
easily explainable, and they do not require the collection of large amounts of data. Although
most existing knowledge-based methods miss the ability to manage non-deterministic and
temporal information, those models are often considered static and incomplete [7,32].
Furthermore, similar to data-driven approaches, they suffer from adaptability, scalability,
and reusability issues, since they cannot adapt to different variants of activity models
resulting from the behavior of different persons [29,30].

Ideally, a sensor-based HAR system should be automatically generalizable to different
smart-home layouts without the need for prior knowledge, and without the need for acquiring
a large amount of training data. A promising direction in this sense consists of tracking the
movements of smart-home residents through unobtrusive positioning technologies [35–37],
and analyzing location traces for HAR without violating the resident’s privacy [38]. In this
paper, we investigate the application of image-based trajectory classification to the domain
of HAR. To the best of our knowledge, the only previous work that adopted a similar
approach in the same domain was proposed by Gochoo et al. in [27]. In that work, the
location of the resident at a given time was represented as a point in a two-dimensional
grid, which was then represented as a binary (i.e., black and white) image. In the grid, one
dimension represents time, while the other dimension represents one-dimensional space,
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i.e., each row of the grid corresponds to a specific location in the home. To recognize the
current activity, the corresponding image was classified using deep convolutional neural
networks. However, the mapping of three-dimensional spatiotemporal trajectories into
the two-dimensional grid resulted in a loss of information. The transformation from a
two-dimensional to a one-dimensional space partially disrupts the spatial information,
as metric operations and topological relationships are not preserved. Locations that are
close to each other in the two-dimensional space of the smart home may be far apart in the
one-dimensional space of the grid. In our work, we take a different approach that aims
to retain spatial information by depicting the inhabitant’s trajectory movements on the
smart-home floor plan. Moreover, we enhance images with additional visual features that
encode low-level user interaction and sensor events. To the best of our knowledge, this is
the first work to investigate this method for HAR.

3. Methodology

Figure 1 illustrates our system’s architecture. In this paper, we assume a sensorized
smart-home infrastructure capable of continuously monitoring the inhabitant’s position
and their interactions with objects and appliances of interest. A smart home is equipped
with various types of ambient sensors, including passive infrared (PIR) motion sensors and
door sensors, to detect the inhabitant’s location. In addition, specific sensors are installed to
track the inhabitant’s interactions with objects. The sensor data are continuously collected
and used to encode the locomotion traces and interactions into trajectory images, which
are then processed by machine learning algorithms to detect the activities taking place. For
the sake of this work, we consider the case of a person living alone in the home.

Figure 1. System architecture.

3.1. Smart-Home Sensor Infrastructure

The SMART-HOME SENSOR INFRASTRUCTURE is in charge of continuously collecting
sensor data through PIR, door sensors, and manipulated objects.
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Whenever a sensor is triggered, the platform sends the following raw sensor event
to the INTEGRATED POSITIONING SYSTEM module: e = 〈t, s_id, v〉, where t is the firing
timestamp, s_id is the sensor’s unique identifier, and v is the generated value. An example
of a raw sensor event is represented in Table 1.

Table 1. Raw data from discrete sensors.

Timestamp Sensor ID Value

09:10:00.094833 M001 ON
09:10:01.014748 M023 ON
09:10:01.045917 M021 OFF
09:10:01.093183 M022 OFF
09:10:02.087933 M023 OFF
09:10:03.072194 M023 ON
09:10:05.014012 D012 OPEN
09:10:05.043057 M001 OFF
09:10:06.038858 M023 OFF
09:10:19.094168 D012 CLOSE

3.2. Integrated Positioning System

This module is in charge of relating triggered sensors to their relative positions in the
layout of the smart home, which enables us to derive spatiotemporal information from
raw sensor events. The INTEGRATED POSITIONING SYSTEM relies on the sensor position
table. For each fixed sensor s_id, the table includes a tuple 〈s_id, (x, y)〉 where x and y are
the relative coordinates of the sensors in the environment. Therefore, each time the subject
interacts with an object, the integrated positioning system receives a raw sensor event and
continuously joins the corresponding record with the sensor position table to obtain its
relative coordinates. The user’s position record represents the position of the inhabitant
and the manipulated object at a specific timestamp.

3.3. Trajectory Segmentation

This module is in charge of partitioning the temporal stream of data sent from the
INTEGRATED POSITIONING SYSTEM into trajectories. The module partitions the user’s
position records using a sliding window approach. For this work, we used a window
length of three minutes with a 20% overlap. We chose this duration because complex ADLs
typically last longer. The recognition task is to identify the activity taking place in each
3-minute time slice. If multiple activities occur in the same time slice, we assign the time
slice to the activity that was executed for the majority of the time.

3.4. Feature-Rich Visual Encoding (FVE) Method

In order to improve activity recognition, we visually encode (in images) the walked
trajectory as well as other features and events of interest. The main features that are
encoded are trajectory movements, speed of movement, stop points, manipulated objects,
and sharp angles.

As shown in Figure 2, the patient’s trajectory is traced through a blue line that takes
on different shades of color, depending on the speed at which the patient is moving. A
brighter color means that the patient’s speed is increasing, while the contrary means that
the patient’s speed is slowing down. By considering the size of our smart home’s test bed,
each pixel in the image corresponds to approximately 0.1 m2. Therefore, the size of each
image is 100 by 130 pixels and the RGB color model is used. In this color mode, each pixel
is characterized by three values for red, green, and blue ranging from 0 to 255 each.



Electronics 2023, 12, 1969 6 of 21

(a) (b)
Figure 2. (a) An example of the encoded image with door interactions and abrupt changes in
direction. Colored boxes represent areas of interest, which are zoomed in on the right. (b) Zoomed
representations of the areas surrounded by colored boxes. The shade level of the blue line depends
on the speed of movement. The black point represents a sharp angle. The vivid violet point shows a
backward directional change. The yellow point indicates the interaction with a door. The red point
indicates that the individual remained stationary.

The weight of each line is determined based on the frequency of the corresponding
path being walked. Specifically, the weight of a line is set to 1 if the path has been walked
only once, and it increases by 1 for each additional walk of the same path. Therefore, lines
corresponding to frequently walked paths are bolder than those of paths walked less fre-
quently. Moreover, when a given path is walked multiple times during the same trajectory,
we consider the most recent speed of that path for drawing the corresponding image.

Within the image, we add colored points to depict events of interest. A red point in a
trajectory indicates the position in which the patient remains stationary for more than 2 s.
Black points represent sharp-angled points, i.e., abrupt changes in direction in the trajectory.

Other colored points are added to indicate directional changes. We use brown, vivid
violet, and white points to indicate left-hand, backward, and right-hand directional changes,
respectively. Moreover, interactions with doors are indicated by yellow points. In addition,
other colored points indicate the objects used. These are very useful for the recognition
of particular activities. Table 2 reports the objects considered in our experimental setup
(Section 4) with their respective colors.

Table 2. Considered object sensors in the current paper.

Sensor ID Object Color

i001 Oatmeal Green, RGB(36, 173, 9)

i002 Raisins Orange, RGB(237, 123, 17)

i006 Medicine container Pinkish purple hue, RGB(242,
0, 255)

i010 Medicine box Pink, RGB(237, 147, 186)

3.5. Feature Extraction by Pre-Trained CNNs (pDLMs)

Convolutional neural networks (CNNs) can be used in two different ways. The first
way is to design a classification model; the second way is to extract complex features [39].
In this work, we extracted features from our trajectory images by pre-trained CNN models
(pDLMs) trained on the ImageNet dataset [40]. We extracted features from six different ar-
chitectures of pre-trained networks: VggNet, ResNet, MobileNet, DenseNet, and two variants,
which are described below.
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• Visual geometry group neural network (VggNet) [41]: The original purpose of Vgg’s
research was to understand how the depth of CNN affected the accuracy of large-scale
image classification and recognition. VggNet19 is a variant of the Vgg architecture,
with 19 deeply connected layers, which consistently achieve better performances
and enable better feature extraction compared to the simpler VggNet16. The model
consists of highly connected convolutional and fully connected (FC) layers [42].

• Residual neural network (ResNet) [43]: Was inspired by VggNet and introduced a new
architecture with a skip connection and batch normalization. This allows for deeper
networks with fewer filters and lower complexity than VggNet [44]. ResNet50 is a
variation of the ResNet architecture and has been trained on at least one million images
from the ImageNet database. ResNet50V2 [45] is a modified version of ResNet50 that
performs better than ResNet50 and ResNet101 on the ImageNet dataset, thanks to
changes in the propagation formulation of the connections between blocks [42]. Both
ResNet50 and ResNet50V2 produce the same size of feature map on their final layer.

• MobileNet [46]: It was introduced for mobile and embedded vision applications and
is widely used in many real-world applications, which include object detection, fine-
grained classifications, face attributes, and localization. MobileNet core layers are built
on depthwise separable filters. Its separable convolution has two layers: depthwise
convolution and point convolution. MobileNetV2 [47] is very similar to the original
MobileNet, except that it uses inverted residual blocks with bottleneck features. It has
a drastically lower parameter count than the original MobileNet.

• Dense convolutional network (DenseNet) [48]: It is a type of CNN that utilizes dense con-
nections between layers, through dense blocks, where all layers are directly connected
with matching feature-map sizes. In DenseNet121, all layers within the same dense
block and transition layers spread their weights over multiple inputs. This topology
allows deeper layers to use features extracted early on. DenseNet has been shown to
have better feature use efficiency and outperforms ResNet with fewer parameters [49].

In Table 3, we present a comparison between the different architectures considered in
our work. Since these networks expect input images of 224 by 224 pixels, we resized our
trajectory images accordingly.

Table 3. Comparison between the different architectures used: model size and depth.

Year Pre-Trained
Architecture

Layers Model Description

2014 VggNet19 [41] 19 16 Convolutional layers+ 3 FC layers

2016 ResNet50 [43],
ResNet50V2 [45]

50 48 Convolutional layers+ 1 MaxPool layers + 1 AveragePool layer

2017 MobileNet [46] 28 13 Depth-Wise Convolutional layers + 14 Point-Wise
Convolutional layers + 1 FC layer

2018 MobileNetV2 [47] 54 53 Convolutional layers + 1 AvgPool layer

2017 DenseNet121 [48] 121 117 Convolutional layers + 3 AvgPool layers + 1 FC layer

3.6. Locomotion-Based Activity Recognition

This module is in charge of recognizing the activities based on the feature vectors
extracted by the pDLMs algorithm from the encoded images. A supervised machine
learning algorithm classifies each feature vector based on a model trained on a sufficiently
large training set of activities and sensor data. As shown in Section 4, in our experiments,
we evaluated different machine learning classifiers.

4. Experimental Evaluation

In this section, we report our experimental evaluation, which was carried out with
real-world sensor data acquired in an instrumented smart home from 175 seniors carrying
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out 16 different activities of daily living. Therefore, in the following subsections, we explain
the used dataset, the experimental setup, and the achieved results. We also experimentally
compare our technique with an existing state-of-the-art method.

4.1. Dataset and Experimental Setup

The experiments were carried out using the real-world Kyoto dataset, http://casas.wsu.
edu/datasets/assessmentdata.zip (accessed on 1 April 2023), which was annotated and
publicly released by researchers at the Center of Advanced Studies in Adaptive Systems
(CASAS) [50] of Washington State University (WSU). The dataset collection involved 400
participants with age ranges from 18 to over 75. After obtaining informed consent, partici-
pants underwent multidimensional clinical assessments by clinicians, in order to assess
their cognitive health statuses. As a consequence of the clinical examination, each partici-
pant was classified into 1 of 10 possible categories of diagnosis. Since, for the sake of this
work, we focused on the recognition of normal activities, only subjects classified as ‘younger
adult’, ‘middle age’ (45 to 59 years old), or ‘young-old’ person (60 to 74 years old) were
included (only including cognitively healthy subjects). Therefore, out of 400 participants,
we carried out our experiments with data from 175 cognitively healthy individuals.

During data collection, each participant performed 16 different activities during a few
hours of data collection. The smart home’s testbed was equipped with several sensors,
including motion sensors, door sensors, and sensors embedded in kitchen objects. Door
sensors are reed switch sensors attached to cabinets, cutlery drawers, and room doors,
whose values can be ‘open’ or ‘closed’. They are used to detect entrances to or exits
from certain rooms, or interactions with specific furniture. Sensors embedded into objects
are based on RFID technology to detect the presence or absence of a specific item in a
specific place.

Figure 3 shows the CASAS smart-home layout. In the figure, sensors marked with ’M’
represent motion sensors, sensors marked with ’D’ represent door sensors, and sensors
marked with ’I’ represent sensors embedded into objects. The testbed is described in detail
in [50].

Figure 3. CASAS smart-home layout.

The positioning infrastructure used in our experimental test bed comprises 52 passive
infrared (PIR) motion sensors mounted on the ceiling to track the user’s position in the
home with a 1-meter resolution (approximately). Therefore, in our work, a trajectory is
a temporally contiguous sequence of approximate positions. To compute the speed of
movement, we use linear disclosure with relative coordinates. For each pair of consecutive

http://casas.wsu.edu/datasets/assessmentdata.zip
http://casas.wsu.edu/datasets/assessmentdata.zip
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positions p1 and p2, we calculate the speed of the trajectory segment 〈p1, p2〉 based on
the distance between p1 and p2 and the time spent moving from p1 to p2. Since the
spatiotemporal information provided by the PIR system is inherently approximated, the
computed speed is also an approximation. Hence, the system could be easily improved
using more accurate localization systems.

We developed all of the algorithms in Python using TensorFlow and the Python
Keras neural network library https://keras.io/ (accessed on 1 April 2023). We ran the
experiments on a departmental Linux server with four NVIDIA Tesla p6 graphic boards,
a single NVIDIA Pascal GP104 graphics processing unit (GPU), and 16 GB GDDR5 main
memory. As anticipated before, there are 16 activities to be recognized in total. Closely
inspecting the experimental testbed, we noticed that some of the considered activities are
hard to recognize based on the sensors actually available in the smart-home testbed. For
instance, the activity ‘Wash hands with soap at the kitchen sink’ can hardly be distinguished
from any other kitchen activity requiring the usage of water, since no sensor is available
for the hand soap dispenser. As a result, we identified a subset of 8 activities for which a
substantial number of sensors are available for their recognition, and we refer to these as
sensor-rich activities. The full list of activities is reported in Table 4.

Table 4. Activity list. Activities in bold are sensor-rich activities, i.e., activities for which a substantial
number of sensors is available in the considered smart-home testbed for supporting their recognition.

Activity
ID Description

1 Sweep the kitchen and dust the living room.

2 Obtain a set of medicines and a weekly medicine dispenser, and fill as per directions.

3 Write a birthday card, enclose a check, and address an envelope.

4 Find the appropriate DVD and watch the corresponding news clip.

5 Obtain a watering can and water all plants in the living space.

6 Answer the phone and respond to questions pertaining to the video from task 4.

7 Prepare a cup of soup using the microwave.

8 Pick a complete outfit for an interview from a selection of clothing.

9 Check the wattage of a desk lamp and replace the bulb.

10 Wash hands with soap at the kitchen sink.

11 Wash and dry all kitchen countertop surfaces.

12 Place a phone call to a recording and write down the recipe heard.

13 Sort and fold a basketful of clothing containing men’s, women’s, and children’s
articles.

14 Prepare a bowl of oatmeal on the stovetop from the directions given in task 12.

15 Sort and file a small collection of billing statements.

16 Set up hands for a card game, answer the phone, and describe the rules of the game.

We adopted a k-fold cross-validation approach. The dataset was divided into k =
10 folds of equal size. At each iteration, the ki fold is used for testing the recognition of the
activities, while the remaining folds are used for training the model. The folds were created
without shuffling, in order to avoid putting data from the same user into different folds.
We performed our experiments considering several classifiers, namely:

• Naive Bayes (NB);
• k-nearest neighbor (kNN) which k = 3;
• Decision tree (DT);
• Support vector machine (SVM);

https://keras.io/
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• Random forest (RF);
• Neural network, composed of 100 neurons in a hidden layer, ReLU activation function,

Adam optimizer, and trained for 1000 epochs, with the batch size equal to 200;
• AdaBoost; and
• Quadratic discriminant analysis (QDA).

4.2. Comparison with Baseline Methods

In order to experimentally compare our method with different state-of-the-art ap-
proaches, we implemented both the binary image-based feature extraction method pro-
posed by Gochoo et al. in [27] and their proposed deep convolutional neural network
(DCNN) architecture.

4.2.1. State-of-the-Art Binary-Image Method (BIM)

As a comparison, we implemented the binary-image method (BIM) for activity recog-
nition proposed by Gochoo et al. in [27]. In that work, the stream of sensor events collected
during a given time period was represented by a binary image, as illustrated in Figure 4.
Overall, the x-axis of the image represents time, while values in the y-axis represent a given
sensor in the smart home. The pixels corresponding to the 〈x, y〉 coordinates were set to
white if sensor y was activated at time x, and black otherwise. The motion and door sensors’
data collected in the environment were first divided according to the activity performed by
the user. Subsequently, further segmentation was performed using sliding time windows
with a length of 3 min and 20% overlap. The activation of each sensor within a time frame
was encoded by white points.

The activity image can be represented as a matrix in which the columns are the sensor
events and the rows are the different sensors positioned in the environment. While it is
automatic to associate the events to the columns following their temporal order, the order
in which the sensors are associated with the rows of the matrix is not obvious and it is
critical to the performance of the activity recognition system, as it affects the intra-sensory
pattern information extracted. Among the various strategies tested, the ones that gave
the best results were to have a distance of ten rows between two adjacent door sensors, a
distance of one row between two adjacent motion sensors, and a distance of more than six
rows between motion sensors in different rooms [27].

Figure 4. Example of images generated through the binary image feature extraction method [27].

4.2.2. State-of-the-Art DNN (DCNN)

In order to compare our machine learning architecture with a state-of-the-art DNN
solution, we consider the 2D DCNN proposed by Gochoo et al. in [27] and use it for
classifying our encoded images. The DCNN structure is illustrated in Figure 5. It uses three
convolutional layers followed by pooling layers to extract spatial information from the
image. Spatial information is subsequently decoded through three fully connected layers
(FCLs) to recognize the performed activity.

In [27], the network was tested with a constant size of the pooling layers of 2× 2, and
a constant number of neurons in the three FLCs, which were 254, 128, and 32, respectively.
In order to find the probability distribution of the classes, the softmax function was applied.
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However, during our evaluation, we experimented with different kernel sizes of the con-
volutional layers to improve the recognition rates. The best configurations that we could
find were:

• 5× 5 – 5× 5 – 5× 5. All layers have the same kernel sizes.
• 5× 5 – 4× 4 – 3× 3. The sizes of the kernels decrease.
• 5× 5 – 7× 7 – 9× 9. The sizes of the kernels increase.

Figure 5. The state-of-the-art DCNN used by Gochoo et al. in [27].

The first configuration exhibited an average performance, while other configurations
had varying performances depending on the activity that was recognized. Therefore, for the
purpose of this paper, we selected the first configuration. In addition, since the reference
paper [27] did not provide internal details such as the activation function, optimizer,
learning rate, or loss function used, we adopted a relatively standard configuration. We
used the rectified linear unit (ReLU) function as the activation function, the Adam optimizer
with a learning rate of 0.00001, and category cross-entropy as the loss function. This loss
function is effective for classification problems with the softmax activation function in the
output layer [51], ensuring that an image is associated with exactly one class.

4.3. Experimental Results

In the following, we report the results of our experimental evaluation.

4.3.1. Results of the BIM Method with pDLMs

In order to evaluate the effectiveness of our pre-trained DL approach, at first we
experimentally evaluated the BIM method proposed by Gochoo et al. [27] with our pDLMs
deep learning architecture. For these experiments, we used pDLMs to extract feature vectors
from BIM images, and classical machine learning algorithms for activity recognition based
on the extracted features. We experimented with the pre-trained architectures presented in
Section 3.5.

The experiments are based on two categories of activities: all 16 activities, and the
8 sensor-rich activities alone. The experimental results are reported in Tables 5 and 6.
For both categories of activities, the best results are obtained by feature vectors extracted
by MobileNet and neural network as a classifier. In particular, we obtain F1 = 68.19%
for all activities and F1 = 90.76% for sensor-rich activities. Considering all 16 activities,
MobileNetV2 and VggNet19 achieved F1 scores (i.e., 67.75% and 67.24%, respectively) close
to the ones of MobileNet, using a neural network or random forest. Regarding sensor-rich
activities, DenseNet121 and VggNet19 obtain almost the same macro F1-score results of
MobileNet using the random forest classifier (F1 = 90.53% and F1 = 90.40%, respectively).

Among the evaluated classifiers, the worst results were achieved by AdaBoost and
QDA, whose performances were poor with every considered pre-trained architecture.
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Table 5. Classification results on all sixteen activities using the BIM approach [27] and pDLMs. Bold
numbers represent the best results for each experiment.

Pre_Trained
Models Classifier Accuracy Precision Recall F1-Score

VggNet19

NB 65.28% 52.79% 56.28% 52.92%
KNN 75.03% 64.25% 64.00% 63.82%

DT 63.40% 47.71% 51.78% 46.63%
SVM 75.48% 61.93% 60.11% 60.57%
RF 78.68% 67.59% 67.84% 67.24%

Neural
Network 78.73% 65.48% 65.97% 65.50%

AdaBoost 20.61% 12.87% 12.87% 8.24%
QDA 12.74% 10.76% 5.27% 6.47%

ResNet50

NB 48.38% 40.10% 41.89% 38.84%
KNN 68.38% 59.73% 59.43% 58.99%

DT 53.91% 39.87% 40.54% 38.16%
SVM 15.03% 7.99% 12.38% 4.48%
RF 76.04% 64.94% 66.10% 65.00%

Neural
Network 58.78% 45.07% 45.65% 44.94%

AdaBoost 28.32% 20.69% 28.53% 17.72%
QDA 14.16% 11.53% 5.84% 7.01%

ResNet50V2

NB 70.25% 57.95% 59.08% 57.69%
KNN 71.78% 60.06% 60.46% 60.06%

DT 53.76% 38.86% 44.76% 38.55%
SVM 75.13% 60.54% 60.00% 60.06%
RF 77.72% 66.32% 68.01% 66.44%

Neural
Network 75.23% 63.22% 63.39% 63.20%

AdaBoost 22.28% 14.15% 20.10% 10.76%
QDA 10.36% 8.78% 4.16% 5.21%

MobileNet

NB 70.96% 58.47% 60.76% 58.42%
KNN 75.28% 65.46% 66.02% 65.33%

DT 55.89% 40.78% 43.31% 40.76%
SVM 79.14% 65.99% 62.94% 64.09%
RF 77.87% 66.55% 67.90% 66.70%

Neural
Network 77.31% 67.95% 68.82% 68.19%

AdaBoost 25.74% 18.66% 24.33% 15.20%
QDA 11.02% 10.31% 5.16% 5.87%

MobileNetV2

NB 68.02% 55.92% 59.44% 55.83%
KNN 74.11% 64.82% 64.79% 64.53%

DT 48.73% 32.89% 36.75% 30.55%
SVM 78.27% 64.84% 64.16% 63.94%
RF 76.40% 65.73% 66.96% 65.85%

Neural
Network 76.90% 67.69% 68.11% 67.75%

AdaBoost 20.46% 11.54% 15.31% 6.35%
QDA 11.12% 9.28% 4.56% 5.53%
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Table 5. Cont.

Pre_Trained
Models Classifier Accuracy Precision Recall F1-Score

DenseNet121

NB 61.62% 48.41% 57.77% 49.16%
KNN 73.45% 62.67% 63.19% 62.60%

DT 52.74% 37.70% 43.76% 36.94%
SVM 77.41% 63.43% 61.69% 62.45%
RF 78.07% 66.55% 68.10% 66.82%

Neural
Network 76.90% 66.93% 67.04% 66.70%

AdaBoost 19.54% 12.31% 7.63% 6.11%
QDA 10.36% 8.69% 3.95% 5.01%

Table 6. Classification results on the eight sensor-rich activities using the BIM approach [27] and
pDLMs. Bold numbers represent the best results for each experiment.

Pre_Trained
Models Classifier Accuracy Precision Recall F1-Score

VggNet19

NB 79.13% 77.74% 81.94% 79.23%
KNN 88.84% 88.69% 89.04% 88.76%

DT 84.16% 80.64% 81.46% 80.21%
SVM 75.38% 61.32% 59.59% 59.49%
RF 90.37% 90.01% 91.06% 90.40%

Neural
Network 89.10% 87.04% 90.02% 88.17%

AdaBoost 48.21% 43.72% 62.46% 42.44%
QDA 12.69% 15.97% 21.94% 9.76%

ResNet50

NB 72.74% 71.68% 72.21% 70.99%
KNN 89.69% 90.35% 88.95% 89.53%

DT 81.26% 78.21% 77.86% 77.42%
SVM 38.93% 28.00% 24.69% 23.30%
RF 89.44% 89.48% 89.24% 89.33%

Neural
Network 80.15% 76.72% 77.58% 76.97%

AdaBoost 51.45% 44.06% 60.19% 43.26%
QDA 12.35% 15.97% 16.48% 10.38%

ResNet50V2

NB 79.13% 73.16% 85.25% 76.58%
KNN 86.20% 85.89% 86.21% 85.93%

DT 79.30% 73.18% 73.41% 72.28%
SVM 86.97% 82.70% 88.76% 84.05%
RF 89.78% 88.95% 89.85% 89.32%

Neural
Network 89.27% 87.97% 89.89% 88.72%

AdaBoost 37.65% 29.19% 33.66% 21.80%
QDA 11.50% 15.90% 13.33% 8.83%
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Table 6. Cont.

Pre_Trained
Models Classifier Accuracy Precision Recall F1-Score

MobileNet

NB 77.26% 73.78% 83.80% 76.73%
KNN 85.35% 86.52% 85.97% 86.15%

DT 80.58% 78.34% 76.88% 77.30%
SVM 85.78% 80.83% 89.41% 82.85%
RF 90.20% 89.57% 90.48% 89.88%

Neural
Network 90.72% 90.26% 91.53% 90.76%

AdaBoost 59.80% 53.55% 57.04% 54.27%
QDA 11.58% 15.38% 15.08% 8.86%

MobileNetV2

NB 79.81% 77.80% 84.41% 80.26%
KNN 86.88% 86.83% 86.51% 86.58%

DT 83.90% 81.95% 81.83% 81.78%
SVM 88.07% 88.04% 88.87% 88.27%
RF 88.67% 87.85% 88.51% 88.12%

Neural
Network 89.35% 88.90% 89.29% 89.05%

AdaBoost 46.51% 43.62% 58.91% 39.26%
QDA 11.67% 15.44% 13.74% 9.31%

DenseNet121

NB 74.79% 70.66% 81.35% 73.70%
KNN 85.18% 84.89% 86.63% 85.40%

DT 87.56% 86.78% 86.21% 86.40%
SVM 86.29% 84.22% 88.64% 85.53%
RF 90.97% 90.53% 90.69% 90.53%

Neural
Network 89.95% 89.23% 90.87% 89.89%

AdaBoost 47.10% 39.71% 54.25% 38.38%
QDA 12.86% 17.01% 16.22% 10.12%

4.3.2. Result of FVE and pDLMs

In this set of experiments, we evaluated our FVE method together with the pDLMs
feature extraction technique and classical machine learning models for activity classification.
This setup corresponds to the architecture shown in Figure 1.

As in the previous set of experiments, we separately considered all sixteen activities
and sensor-rich activities alone. The results are reported in Table 7 and Table 8, respectively.
Considering these results, it is evident that the use of our feature-rich visual encoding
method improved the recognition performance with respect to the use of the BIM approach.
Indeed, the best macro F1-score achieved by FVE for recognizing all 16 activities is larger
than 71%, while the BIM method achieved the best macro F1-score close to 68%. With FVE
and pDLMs, the best performance is obtained with ResNet50 as a feature extractor and
random forest as a classifier. Moreover, in this case, the results obtained with the QDA
classifier are poor.

Regarding the 8 sensor-rich activities, Table 8 shows that the use of FVE in conjunction
with pDLMs leads to improvements with respect to the use of the BIM approach. Indeed,
with our method, we achieved F1 = 91.52% using DenseNet121 and the random forest
classifier. Moreover, VggNet19 and the two versions of MobileNet achieved good results
with random forest and support vector machines.
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Table 7. Classification results on all sixteen activities using our FVE method and pDLMs. Bold
numbers represent the best results for each experiment.

Pre-Trained
Models Approach Accuracy Precision Recall F1-Score

VggNet19

NB 64.37% 54.72% 58.38% 54.72%
KNN 77.41% 66.95% 67.44% 66.37%

DT 63.50% 44.57% 41.86% 41.94%
SVM 61.88% 42.88% 40.93% 40.15%
RF 82.23% 70.27% 71.06% 70.45%

Neural
Network 79.54% 66.67% 67.75% 66.59%

AdaBoost 23.20% 12.92% 8.65% 8.63%
QDA 8.98% 9.56% 10.59% 5.97%

ResNet50

NB 61.88% 52.08% 53.61% 51.45%
KNN 78.63% 68.34% 68.28% 67.77%

DT 61.17% 44.85% 48.34% 44.04%
SVM 23.25% 14.04% 15.17% 9.48%
RF 81.52% 70.05% 76.31% 71.19%

Neural
Network 72.99% 58.73% 60.66% 58.77%

AdaBoost 21.17% 11.39% 11.28% 6.23%
QDA 8.73% 10.39% 9.23% 6.23%

ResNet50V2

NB 66.65% 53.81% 63.60% 55.72%
KNN 74.06% 64.14% 64.58% 63.58%

DT 59.29% 43.27% 44.90% 41.84%
SVM 74.37% 58.43% 60.11% 58.28%
RF 80.10% 67.46% 69.22% 67.96%

Neural
Network 80.96% 68.68% 70.01% 68.99%

AdaBoost 18.83% 10.26% 7.97% 6.37%
QDA 8.27% 8.84% 7.77% 5.56%

MobileNet

NB 63.55% 51.61% 59.99% 52.96%
KNN 73.96% 63.70% 64.53% 63.19%

DT 60.71% 44.98% 49.65% 44.24%
SVM 75.13% 60.17% 60.93% 60.13%
RF 79.85% 67.28% 68.24% 67.38%

Neural
Network 80.10% 69.98% 72.22% 70.72%

AdaBoost 21.93% 12.08% 13.04% 7.64%
QDA 8.38% 9.38% 9.06% 5.51%

MobileNetV2

NB 67.87% 55.46% 61.06% 56.76%
KNN 75.53% 65.94% 66.71% 65.47%

DT 61.32% 43.52% 41.29% 41.56%
SVM 78.07% 65.16% 67.32% 65.13%
RF 79.59% 67.23% 68.56% 67.61%

Neural
Network 80.81% 69.73% 69.87% 69.56%

AdaBoost 22.69% 12.64% 13.14% 8.36%
QDA 8.32% 9.17% 7.24% 5.44%

DenseNet121

NB 58.02% 46.55% 56.00% 48.32%
KNN 74.67% 63.18% 65.31% 63.56%

DT 64.37% 45.62% 48.16% 43.75%
SVM 74.67% 61.24% 66.37% 62.44%
RF 82.34% 70.82% 72.19% 71.08%

Neural
Network 80.91% 70.49% 72.91% 71.07%

AdaBoost 24.01% 13.62% 11.30% 9.69%
QDA 8.53% 9.44% 7.98% 5.58%
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Table 8. Classification results on the eight sensor-rich activities using our FVE method and pDLMs.
Bold numbers represent the best results for each experiment.

Pre_Trained
Models Classifier Accuracy Precision Recall F1-Score

VggNet19

NB 81.43% 78.14% 86.88% 80.82%
KNN 88.07% 88.29% 88.13% 88.08%

DT 83.56% 82.93% 81.89% 82.06%
SVM 90.20% 89.87% 89.15% 89.41%
RF 91.31% 91.08% 90.71% 90.87%

Neural
Network 91.14% 91.18% 90.31% 90.68%

AdaBoost 56.13% 48.00% 67.50% 51.12%
QDA 23.17% 19.53% 8.42% 10.85%

ResNet50

NB 72.15% 70.68% 74.09% 71.99%
KNN 82.37% 83.49% 80.53% 81.52%

DT 78.02% 79.12% 75.67% 76.45%
SVM 23.08% 14.30% 16.69% 7.75%
RF 88.25% 88.03% 86.98% 87.43%

Neural
Network 74.96% 70.75% 72.05% 70.96%

AdaBoost 54.00% 45.11% 58.30% 44.82%
QDA 23.00% 19.44% 9.56% 10.42%

ResNet50V2

NB 85.26% 82.69% 89.05% 85.13%
KNN 86.46% 86.56% 85.50% 85.99%

DT 76.92% 70.55% 68.39% 67.17%
SVM 89.27% 87.01% 89.63% 87.88%
RF 89.01% 89.20% 88.81% 88.93%

Neural
Network 88.67% 88.73% 89.52% 89.02%

AdaBoost 58.01% 54.09% 62.85% 56.26%
QDA 17.80% 14.72% 5.98% 7.72%

MobileNet

NB 85.86% 82.33% 89.87% 84.92%
KNN 88.59% 88.09% 88.64% 88.32%

DT 73.59% 65.34% 67.95% 64.88%
SVM 91.48% 91.34% 89.83% 90.51%
RF 91.23% 91.03% 90.40% 90.69%

Neural
Network 90.03% 89.48% 88.99% 89.21%

AdaBoost 52.98% 43.54% 61.64% 42.81%
QDA 20.70% 18.03% 8.11% 9.87%

MobileNetV2

NB 84.33% 81.52% 88.50% 84.10%
KNN 88.42% 88.26% 88.20% 88.21%

DT 80.83% 74.22% 70.11% 70.79%
SVM 91.06% 90.94% 90.91% 90.89%
RF 89.44% 89.46% 89.74% 89.53%

Neural
Network 89.27% 89.24% 89.45% 89.27%

AdaBoost 53.92% 43.45% 59.31% 42.58%
QDA 18.82% 16.12% 6.87% 8.60%

DenseNet121

NB 76.58% 70.25% 86.70% 73.36%
KNN 87.90% 87.84% 87.97% 87.84%

DT 78.19% 71.31% 73.68% 69.50%
SVM 90.20% 89.90% 89.07% 89.42%
RF 91.57% 91.71% 91.41% 91.52%

Neural
Network 90.55% 90.64% 90.03% 90.27%

AdaBoost 53.32% 45.19% 55.80% 45.82%
QDA 19.25% 16.79% 22.74% 9.80%
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Figure 6 shows the confusion matrices obtained using our FVE method and pDLMs,
with DenseNet121 as a feature extractor and random forest as a classifier, which was
the setup providing the highest F1 score. Considering all 16 activities, we noticed that 4
activities (i.e., activities 2, 3, 10, and 12) could not be reliably recognized.

We believe that the superior performance of the FVE method relies on its ability to
encode rich and heterogeneous information in the images extracted from sensor events;
therefore, the FVE technique is suitable for applications in sensor-rich smart environments.

(a) All 16 activities. (b) Only 8 sensor-rich activities.
Figure 6. Confusion matrix of our FVE method and pDLMs using DenseNet121 as the feature
extractor and random forest as the classifier.

4.3.3. Result of BIM vs. FVE with the DCNN Architecture

In this set of experiments, we compared the performance of our FVE method with
the one of the BIM approach, using the DCNN architecture proposed in [27] instead
of our approach based on the pDLMs feature extraction and classical machine learning
classification. Table 9 shows the achieved results for all 16 activities and the 8 sensor-
rich ones.

Table 9. Classification results of BIM vs. FVE with the DCNN architecture [27]. Bold numbers
represent the best results for each experiment.

Activity Classes Approach Accuracy Precision Recall F1-Score

16 activities
BIM [27] 77.77% 64.67% 64.69% 64.46%

FVE 82.99% 71.76% 73.97% 72.42%

8 sensor-rich activities
BIM [27] 90.03% 89.68% 88.74% 89.16%

FVE 90.29% 90.78% 90.68% 90.66%

Considering all 16 activities, the use of the DCNN architecture for feature extraction
and classification emphasizes the improvement achieved by our FVE method with respect
to the BIM approach. Indeed, our method achieves F1 = 72.92%, while the BIM method
achieves F1 = 64.46%. The superiority of our technique is confirmed considering only the
eight 8 sensor-rich activities (i.e., F1 = 90.66% vs F1 = 89.16%).

Comparing the performance of the DCNN architecture with the pDLMs approach,
we observe that there is no relevant difference in terms of the F1 score. Hence, we believe
that our pre-trained approach is preferable with respect to the DCNN one in terms of
computational costs of model training, tuning, and experimentation.
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4.4. Computational Cost

With the used dataset, we noticed that the time taken to train the models and for
classification was fast. Indeed, in all of the experiments, all classifiers were trained in a
few seconds each. The classification was executed in a few milliseconds with all of the
tested models. With the configuration achieving the best classification accuracy (i.e., our
FVE method and pDLMs using DenseNet121 as the feature extractor and random forest as
the classifier), the feature extraction was completed in 4300 (±853) ms, while the training
time was 67,510 (±1754) ms, and classification was performed in 8 ms. These results were
obtained by performing 10 repetitions of each machine learning task. We believe that these
times are adequate for most activity recognition applications.

5. Discussion and Limitations

Overall, our technique outperforms other state-of-the-art methods in terms of accu-
racy while incurring lower computational costs. When considering the eight sensor-rich
activities, we achieved an accuracy greater than 91%. However, the accuracy achieved
in recognizing all sixteen considered activities is relatively low. This is due to the lack
of some sensors in the testbed that are necessary to recognize certain activities. While
for some activities, this problem could be solved by introducing additional sensors, other
activities require a different approach. For example, recognizing activities such as ‘Setup
hands for a card game, answer the phone, and describe the rules of the game’ or ’Check the
wattage of a desk lamp and replace the bulb’ solely by observing sensor data is not realistic
given the current sensor technology. To recognize such activities while preserving users’
privacy, ultra-wideband radar (UWB) technologies and deep learning algorithms would
be required [52]. UWB sensors detect solid shapes in proximity based on reflected energy,
making them different from RGB camera systems as they do not collect visual data

Our experimental evaluation was carried out with a large set of individuals. However,
each individual executed the activities only once, and for a limited time period. Moreover,
the activities were scripted, i.e., their executions were not completely naturalistic. The
lack of large datasets of naturalistic activities carried out for long time periods by different
individuals is a severe limitation for the sensor-based HAR research field [6]. In a fully
naturalistic environment, on the one hand, we expect that the inter- and intra-variability
of activity execution may negatively affect the recognition performance. On the other
hand, the availability of multiple activity instances executed by different people at different
times may enhance the generalization of the machine learning model, increasing the
recognition rates.

In this paper, we made the assumption that the smart home is inhabited by a single
individual. This is a limitation of the current work, which could be addressed by adopting
an identity-aware indoor localization system to distinguish the locomotion traces and inter-
actions of the single inhabitants or an algorithm for multi-resident data associations [53].

6. Conclusions and Future Work

Human activity recognition is increasingly being adopted to support healthcare in
several applications. In sensor-rich environments, such as smart homes, data acquired from
ambient sensors and sensors integrated into everyday objects can be exploited for activity
recognition while avoiding the use of obtrusive wearables and cameras. In this paper,
we proposed a novel method to extract expressive visual features from the inhabitant’s
trajectories and interactions with sensorized objects, which are used by a pre-trained
deep learning model and a machine learning algorithm to recognize the executed activity.
Experimental results and a comparison with the state-of-the-art show the effectiveness of
our solution.

Nevertheless, several challenges remain. Our experimental evaluation showed that
some of the considered activities could not be detected with sufficient accuracy. By closely
inspecting the experimental setup, we noticed that the testbed did not include enough sen-
sors to discriminate between activities executed in the same part of the home and requiring
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the use of the same objects. This problem could be solved by adopting additional sensors
integrated into objects, or wearable sensors to recognize basic actions that characterize the
different activities. Moreover, for the sake of this work, we assumed that the training data
used by the machine learning algorithm were acquired in the same environment as the
target user. Advanced transfer learning methods should be used to alleviate the problem
of data scarcity by allowing the reuse of training data acquired in different environments.
Finally, in future work, we plan to improve recognition rates by adding additional features
extracted from spatiotemporal data to the images, and to experiment with our techniques
in a fully naturalistic environment for longer periods of time.
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