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ARTICLE INFO ABSTRACT

MSC: We study a new class of Keller-Segel models, which presents a limited flux and an optimal
primary 35B44 transport of cells density according to chemical signal density. As a prototype of this class we
secondary 35Q92 study radially symmetric solutions to the parabolic-elliptic system

92C17

Keywords: u = V-(L)—)(kfv-(L‘z"), x€eQR, t>0,

Finite-time blow-up V@ +Vul? (Ve

Chemotaxis O0=A4v—pu+u, xe, t>0

Flux limitation
under no flux boundary conditions in a ball B = c RY and initial condition u(x,0) = uy(x) >
0,y >0,0a>0, k, >0 and y = ﬁ f_Q updx. Under suitable conditions on « and y, it is shown
that the solution blows up in L*-norm at a finite time 7,,,, and for some p > 1 it blows up

also in L”-norm. The proofs are mainly based on an helpful change of variables, on comparison
arguments and some suitable estimates.

1. Introduction
Let us consider the chemotaxis system with nonlinear diffusion and flux limitation,

U= V- (—) = pV-wf([Vo])Vu), x€, >0,

vV u2+\Vu\2

Ojvf:)—ld;-u, er!,)z>0, an
=Vv-v= t
Vv v-v=0, x €00, t>0,
u(x,0) = up(x) > 0, x € Q,
with Q a ball in RN, N > 3, the constant y > 0, [, vdx = 0, the initial data u, such that
ug € C2(§), radially symmetric and positive in 5, (1.2)
where
i,
W= — uy(x)dx (1.3)
12l Jo
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and
FAVUP) = k(14 |Vo[) ™ (1.4)

with some k, > 0 and « > 0.
We point out that the general structure of the model is

{u, = V- (D, v)Vu) — V(Su, v)uVv) + H,(u, v), 15

v, = D,Av + H,(u, v),

where u(x, 1) represents the cells density, v(x, ) is the density of the chemoattractant, .S measures the chemotactic sensitivity, D,, D,
are two positive functions, representing the diffusivity of the cells and of the chemoattractant respectively, H,, H, model source
terms related to interactions (see [1]).

The most investigated model has D, =S =1, H; = 0 or H, of logistic type and H, = —v +u (see [2] and the survey paper [3]).

Interesting results have been established also for the parabolic-elliptic chemotaxis systems (z = 0).

More recently nonlinear diffusion terms have been considered with D and S depending not only on u and v, but also on their
gradient.

o Winkler and Djie in [4], with the aim to study simplified models in the theoretical description of chemotaxis phenomena under
the influence of the volume-filling effect, considered (1.5) with D, = u+ 1)™?,S = (u+ 1)¢"!, D, =1, H, = u— , and proved that if
p+q < 2N then all solutions are global in time and bounded, whereas if p+¢ > 2N, ¢ > 0, and €2 is a ball, then there exist solutions
that become unbounded in finite time.

o In [5] (1.5) is investigated in 2 x (0, T) bounded in RN with D, = (u+a)"~! and S = y(u+a)™ 2, D, =1, H, = u— u, under
Neumann boundary conditions and initial conditions, « > 0, y > 0, m;,m, € R. It is proved that for some p, > %(mz — my) any
blowing up solution in L*®(£2)-norm, blows up also in L”0(£)-norm and the blow-up time is estimated.

Recently the case S = S(|Vv|) depending on the gradient of v (flux limitation term) received considerable attention in the
biomathematical literature.

Here we report only the most important results on flux limitation.

«If D,=D,=1and S = y|Vo|">, y>0, Hy=u—p, QCRN,

pe(l,oo)if N=1; pe(l, Ll)iszz,

N

Negreanu and Tello in [6] obtained uniform bounds in L*(£2) and existence of global in time solutions of (1.5) with z = 0; moreover
they prove that for the one-dimensional case there exist infinitely many non-constant steady-states for p € (1,2). As to its parabolic—
parabolic case (z = 1), Yan and Li in [7] obtained global existence of weak solutions which are uniformly bounded provided that

l1<p< N
N-1
In [8], Kohatsu and Yokota established stability of constant equilibria for small initial data and p € (1, ).
«IfD,= —“— and S = —L—, H, =0, H, = u— y, Bellomo and Winkler [1] obtained global existence of bounded

2+ Vul? AV 14|Vo)?

classical solutions for arbitrary positive radial initial data u, € C3(2) when either

N >2 and y(I, or N=1, ;()Oandm::/u0<mc,
Q

with m, 1= ———— if z> 1, and m, 1= coif y < 1.

V-1

In [9], the authors showed that the above conditions are essentially optimal in the sense that if y > 1 and

m>; if N=1; m > 0 arbitrary, if N > 2,

there exists u, € C3(Q) with Jo o = m, such that for some 7 > 0 there exists a unique classical solution blowing up at time T in
L*®(2)-norm.

«If D, =1 and S(|Vv|?) > K (1+ |Vu|2)_”, K; >0, y=1,0<a< 28,\/__—21’ Q a ball in RN, with N > 3, for a considerably
large set of radially symmetric initial data, Winkler in [10] proved that the proi)lem admits solutions blowing up in finite time in
L®-norm for the first component. Otherwise, if S(|Vo|?) < K (1+ IVo|?)™, x =1 and «a satisfies

N-2
{a> m, for N > 2,

a € R, for N =1,

in general (not symmetric setting), no blow-up solution can exist then a global bounded solution exists for arbitrary nonnegative
continuous initial data.
The case a« = % plays the role of a critical exponent and it is still an open problem.

<If D, =1and S(Vo*) = K, (1+|Vo]*)™, K; >0, y=1,0<a < 2(’;—‘_21) Q = Bp(0) c RV, with N > 3, Marras et al. in [11],
for suitable initial data, proved that a solution which blows up in L*-norm blows up also in L”-norm for some p > % Moreover,
a safe time interval of existence of the solution [0, T] is obtained, with T a lower bound of the blow-up time. Moreover the same

authors in [12] extended the results in [11] when a source term of logistic type is present in the first equation.
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u and S, |Vo|?) = ;(L, Chiyoda et al. in [13] considered the system (1.5) in a ball in RY, N € N,

2+ Vu)? V14|V

under no-flux boundary conditions and initial condition uy(x) > 0. Assuming suitable conditions for y and u, when 1 < p < ¢, they
obtained existence of blow-up solutions. When p = g = 1, the system reduces to (1.1) when « = %

If in (1.5), the source H, # 0, many interesting results on local, global existence and blow up of solutions have been derived
(see for instance [14-17] and references therein).

Main Results The present work is addressed to study the behavior in time of the solutions of (1.1) where the diffusion term is
nonlinear, depending on u and Vu, as well as the drift term, depending on v and V.

In particular in Section 2 we construct an initial data such that the solution of problem (1.1) blows up in L®-norm. We prove
that the solutions of (1.1) blow up at finite time in LP-norm, for some p > 1, if they blow up in L*-norm (Section 3).

For the proof of our results we use suitable change of variables, comparison arguments and some helpful estimates.

We want to prove the following theorems.

JIf D, =

Theorem 1.1 (Finite-time blow-up in L®-norm). Let 2 = Bx(0) CRN, N >3 and R > 0, f satisfy (1.4). Assume

N -2
O<a< ——. 1.6
AN - (1.6)
Then for all u > O there exists a radially symmetric positive initial data u, € C® () such that satisfies (1.3), and such that there exists
a radially symmetric positive classical solution (u,v) of (1.1) in 2 x (0,T,,,,) for some T,,,,. > 0 which blows up at T,,,, in the sense that

limsup [|u(:, D)|| oo () = 0.
)T

Theorem 1.2 (Finite-time blow-up in LP-norm). Let 2 = Bg(0) C RN, N > 3 and R > 0. Then, a classical solution (u, v) of (1.1), provided
by Theorem 1.1, is such that for all p > N,

lim sup |[u(-, )| Lp(o) = -
1/ Tipax

2. Blow-up in L®-norm

Before discussing blow-up in L*-norm, we give a result on local existence of classical solutions to (1.1). We note that blow-up
criterion via the standard manner (see [18, Lemma 2.1]) says that

if T, < oo, then either liminf inf u(x,?) =0 or limsup [|u(-, D)y 1.0y = 0.

XE
max t max

This includes possibility of extinction and gradient blow-up of solutions, whereas the following lemma presents a simple criterion
ruling out this possibility.

Lemma 2.1. Let 2 = BR(0) CRN, N> 1 and R > 0, f satisfy (1.4) with a > 0. Assume u, complies (1.2) and (1.3). Then there exist
T pax € (0,00] and a pair (u, v) of positive radially symmetric functions u € C>'(2x[0,T,,,,)) and v € C*°(Q x [0, T,,,,,.)) which solve (1.1)

max
classically in 2 x (0,T,,,), and moreover u satisfies that

ax

if Tyax <o, then [limsup |lu(:,t)||peo(q) = 0.
t/'T,

Proof. The claim can be proved by a pointwise lower estimate for u and by a uniform estimate for |Vu| almost in the same way as
in [18]. O

In order to obtain the blow-up phenomena in finite time of L*-norm of solutions on (1.1), we follow the proof of Theorem 1.1
in [11].

So we first transform the system (1.1) in a non local scalar parabolic equation.

Transformation of (1.1) in nonlocal scalar parabolic equation.

Assume Q = BR(0) CRY, N >3, R>0and u, € c'(Q) is radially symmetric with respect to x = 0. If (4, v) is the corresponding
radial solution in Q X (0,7,,,,), we write u = u(r,t) and v = v(r,t) with r = |x| € [0, R].

Following Jager-Luckhaus [19] we introduce the mass accumulation function

1
SN
w(s, 1) 1= / oV (o, ndp, s=rN €[0,RN], t€[0,T,,). 2.1)
0
Then we have
1 L 1 1_ 1
wy(s,t) = ﬁu(sN >0, we(s,)= FSN Iu,(sN ).

From the second equation in (1.1) we deduce

1

m (rN’IU,(r, t))r =pu—u(r1), (rN’1 v,(r, t))r = /u‘N’l —u(r,1) pN-1 (2.2)
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and by integrating (2.2),

N-1 " N-1 " N-1 M"N
r ‘ur(r,t)=/4/ p "dp—/ p "u(p,t)dp=7—w.
0 0

Using (1.1), we obtain

i

s
w,(s,1) = / rN_lu,(r, tdr
0

1 1
sN uu sN
=/ (V-1 , )rd’—)f/ (rN—lu(r, t)urf(uf)> dr
0 /uz+u3 0 r
:sl_% uu, 1-L uv,

—yk;s N ————.
/_u2+u§ ! 1+ 02)e

1
. -4 .
Since u = N w, and u, = N2s'~ N w,,, we derive

2
-1 Nwg N%'"Vw, Nw, (%5 —w)
w,(s,t)=s N = - xky : i
N2u? + N4s* N w?, L+ (LN = sV w2y
-2 U
SSTNw. w w, (W— =)
- N2 s Wss + ka . N s N

2 L—l L
w? + N2s* N w?, L+ (V¥ w= LsV))e

for s € (0, RV) and t € (0, T,,,,,.)- Thus we can conclude that w satisfies the parabolic problem

-2 K
TN w. w w, (w— +=53)
w, = N2 s Wss + ka . N s N

2 L_] 1 ’
WP+ N2 R (14N w— Lswye 23
R
w©,0=0, wRN,1= MT 1 € (0, Ty,
w(s,0) = wy(s), s€(O,RY)
with

sN
wo(S)=/ N ug(p)dp, s €0,RN].
0

N
The next step is to prove that the functional fOR s~wP(s, t)ds, with b € (0, 1), satisfies a differential inequality.
To this end we first prove the following lemma.

Lemma 2.2. Assume 2 = Bg(0) C RN with some R> 0 and N > 2. Let u, € CO(Q) be radial and let (u, v) be the solution of (1.1). Then
forall a> 0, b€ (0,1) and € > 0 the function w defined in (2.1) satisfies

N
d R

% ai /, (s + ) Wb(s, t)ds

RN |
> —N/ sl_ﬁ(s + e)_“w"_lws ds
0

_ Ry 2 RN
+Nka/0 s(z_ﬁ)"(s+e)_“wwads—y;(kf/o s(s + ) wh wds

fordllt e (0,7,

2.4

o) and C := C(R, N, u, ) a positive constant.

Proof. Following Lemma 3.2 in [12], we multiply the first equation in (2.3) by (s 4+ €)™w’~!(s, 7) and integrating from 0 to RN we
obtain
RN
1d (s + €)~wh(s,Nds
bdt /o

RN N
_2 W W,
:NZ/ S2 N(S+€)—awb—1 sHss ds
2
0 w2+ N 252°% w2,
RN w(w— Ls)
+ N yk, / (s + ) wh! ’ N s
0

[1+ s%_z(w - %s)z]a
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= I,+1,. (2.5)

To estimate 7, since w, > 0, we observe that w,w,, > —|w,,|w, and thus we obtain

WyWgs > _wslwssl

> : .
2 1——
-2
Vw2 + N2sv w2 NV |wgl

Then we can write

= ds (2.6)

RN )
1, = N2/ sz_ﬁ(s + €)"%wh!
0 _2
w2 + N2s>~ w2,

RN .
> —N/ sl_ﬁ(s + e)_“wb_lwx ds.
0

We now consider 7, and we obtain that

w(w = +5)

RN
I, = N;(kf/ (s +e)9wb! > ds 2.7)
0 [T+ 57 2w = £s2]"
w
> s ds
[1+sV 2= £52]°

RN
= Nyk, / (s +e)wh
0

w
l ds

[1+ s¥ 2w - Lsy]®

RN
—;U(kf/ s(s 4 ) wb!
0

= I, + 1,,.

2 2
To estimate the term Z,; we observe that since w < %RN and s < RN we obtain (w — ]‘V—‘s)2 <w?+ %sz < Z%RZN . So we can
write
-2y Q-3 2
221 _ 225 N > s N2 _. TR
2 -2 _ 4
(458 2w— Lo [7F +(w— s [RNZ 425 RN

1

[RZN—2+2L RZN](:
N2

. By substituting the previous estimate in 7,, we arrive at

_ [RY 2
1 > Nka/O sER (s + &) wlw,ds. (2.8)

Now we estimate 7,,.

Since 7 ! < 1, we obtain

[l4s N (-4 52

w?
: ds (2.9)

2
2 9 u a
1+sN “(w-— ﬁs)z]

RN
Iy =—pyky / s(s + e)wb!
‘ [

RN
> —;U(kf/ s(s+e)_"wb_1wsds.
“Jo
Substituting (2.6), (2.7) (with (2.8) and (2.9)) in (2.5) we obtain (2.4). []

N
In order to obtain a differential inequality for the functional /OR s~ (s, t)dt, we take into account of Lemma 2.2 and we prove
the following lemma.

Lemma 2.3. Suppose that «a fulfills (1.6). Then there exist a > 0, b € (0, 1) satisfying

N -1
1<a<2(1- R 2.10
a<2(l-a) N (2.10)
N -1
bp<b<l1, by:=2
0 0 1-2a
and some positive §,(a, b, x.ky), 85(a,b, N, k) and 85(a, b, RN, p, 1. ky) such that
1 RN 1 RN t RN
-/ s~ w(s,1ds > -/ s‘“wg(s)ds—él/ / s wh(s, 1)dsdt (2.11)
b Jo b Jo o Jo

b+1

t RN b+l
+52/ (/ s_”wb(s,'r)ds> " dr - &1,
0 0
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Proof. We recall the inequality (2.4):

RN RN
1d —a b -4 —a, b1
o (s+e) w’(s,H)ds > —N/ s TN(s+e) W w, ds (2.12)
0 0
_ [RY 1
+ Nka/ SN (s + ) whw,ds
0

RN
—y;(kf/ s(s+e)’“wb’lwsds
0

Integration by parts of I; of (2.12) leads to

RN .
I, =— N/ 5N (s+ e wh w, ds
0

N

1 N R 1
:—%[s]_ﬁ(s+e)_”wb]§ +% A %(xl_ﬁ(s+e)_“)wbds
N N [ |
=-—RV' RN + &) w (RN, ) + — / = (s""N (s + ) ) wbds
b b Jo ds
RN
_ N N-1,pN _aM'RN N d -1 —ay,.b
_—?R (R™ +¢) T+7 A a(s N(s+e) )wds
RN | RN |
=—A(e) + E(l—i)/ s_ﬁ(s+e)_”wbds—a£/ sl_ﬁ(s+€)_“_lwbds,
b N’ Jo b Jo
with A(e) = LRN-U(RY 4 ey a 2R
Thus we can write
N 1R
I, > —Ae) + 7(1 - N)/ SN (s +€)ulds (2.13)
0

N RV
—a—/ SN (s+e)whds
b Jo
N 1 RN
=A@ = le-0- ) /0 SN (s +e)whds.

Here, taking into account of (2.10) and (2.15) we observe that y < 1 — % <1- % < a, so that a — y > 0, and hence we can define
& > 0 such that § := %(u — 7). Since a > 1 by (2.10), using the Young inequality in the last term of (2.13), we have

b+l

RN
I, > —A(e)— Cj / s (5 4 €)abrDAbar =) g (2.14)
0

RN
- b-i-Llé/o (s+e)~ @b+l gs > — Ae)

RN b+1 RN
- C; / 5T (s )T gs 5 / (s + )" @HNybtlgs,
0 0

where
—ol— L _1y N2 _N-2
y =21 N)(x<2(1 N)Z(N—l)_ N <1, (2.15)
and
o 1 E _ _L b+1 b
C‘S'_b+l{b[a -l e (2.16)

We now estimate I,. Integrating by parts, we have

N

_ (R 1
I, = Nk,c/ SN (s + o) ww,ds (2.17)
0
Nk,C Nk,C [RY
_ —a,, b+I RN ! d —ay, b+l
=501 [(s"(s+e)“w™ )y - 1 /0 E(sy(s+e) Dw ' ds
Nka R 1 1y,,b+1
2= / [ys" '(s+ €)™ —as’(s + ) Nuwtlds
0
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A similar calculation of 75 of (2.12) leads to

RN
uxk N
13:—;4;(kf/ sGs+ o) wtlwds = - bf[s(s+e)’“wb]§
0
N
uxks R —a\, b HXKy N N o o HRY
-5 A E(s(s+e) )w ds=—TR (R" +¢) Nb
paky [RY

+ 5 [(s+ €)™ —as(s + )~ Nuwbds
0

uxk
> —A(e) - =L

RN
(a— l)/ (s +e)whds,
0

1+b
with A, (e) = “—ZLRN(RN + &) o &L
By replacing (2.14), (2.17) and (2.18) into (2.12) we have

1d &
b ) (s +e)~wh(s,nds

R b+l RN
> - Cs / sTN (s+e)Tgs 5 / (s +e)~@rINyb+lgg
0 0
NkfE R 1 1y, b+1
— / [ys" s+ €)™ —as’(s + ) Nuwtlds

lU(kf RN —a. b
—T(a—l)/o (s + ) *w’ds — (A(e) + Ay (¢)).

Integrating from 0 to ¢ € (0,7,,,,) we arrive to

1R 1R
= / (s +€)“w(s,nds — / (s + &) wh(s)ds
b Jo b Jo

RN + RN
b+1
> — Cyt / STN (s+e)Ttgs / / (s 4 )" ybh+lgsdr
0 o Jo
Nk;C R 1 1y, b+1
e / [ys" s+ €)™ —as’(s + &) Nuwtlds
0

uxk t pRN B
- (a-1) / / (s + & “whdsdr - A,
b 0 Jo

where A, = A(e) + A, (e).

Now, from the monotone convergence theorem, taking e \, 0, we arrive to

1R 1R
Z/o s_“wb(s,t)ds—z/o s_“wg(s)ds

RN bl Nk,C t pRN
> —Cét/ PR s 4 ( / (a—vy)— 5) / / st b dsdr
0 b+1 o Jo

uxk t RN _
——f(a—l)/ / sTwhdsdr — At,
b o Jo

with A =lim A4,.
e\0

N b+1
Note that g := (b— by — % —a)+1>0by (2.10), so that [} PR g =
1R 1R
Z/() s™wb(s, Hds — 3/0 s_“wg(s)ds
Nka o R 1 1
> ( (a—y) - 6) / / st bl gsdr
b+1 o Jo

uxk t RN _
— ! (a— 1)/ / sTwbdsdr — At
b o Jo

with
_ . RNS N_1_a MY RON RNS
A:=A+Cs— =R ¢~ —— N+ uyk,R| +Cs——
575 5 N (N ¥ sk R+ G =
Here, recalling the definition § := %(n —7), we note that I\][:flc (a—y)—6>0.

7
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(2.18)

Np
-5 Hence we have

(2.19)



M. Marras et al. Nonlinear Analysis: Real World Applications 81 (2025) 104215

N
To estimate the term /OR s'=a=1wh+1ds we apply the Holder inequality:

RN RN b b
_ - _ —a— T
/ s “wbds=/ PR 7)(37 a lwb“)H ds
0 0
RN 1 R"
— — b+1
</ galb+D+b(a+1 y)ds) + (/
0 0
RN 1 R" b
—by— b+1 —a— b+1
(/ st=br ”ds) * (/ s lw”“ds) *
0 0
R" b
- —a— b+1
-z 1(/ syalwb+lds>+
0

% and b — by —a > —1 (since b—by—a>b—by—%—a>—1). From which we derive

IN

b
e BT
§7-a lwb+1ds) +

with ¢ =

RN RN bl
/ st b+l g ZE(/ s’”wbds) b (2.20)
0 0

Substituting (2.20) in (2.19) we obtain

N

RN RN k t R
Hx
l/ s™wb(s, H)ds > l/ s‘“wg(s)ds— ) (a—l)/ / s~ whdsdr
b Jo b Jo b o Jo
bt

Nka t, RN bl _
+( (a—y)—&)?/ </ s‘“wbds> " dr - At,
b+1 0 0

ie. (2.11) with &, = %(a— 1), 8, 1= (%E(d—y)—ﬁ)? and 6, :=A. [

N
Proof of Theorem 1.1. Set y(¢) = /OR s™w"ds. In light of Lemma 2.3, we notice that the inequality (2.11) can be rewritten in the
following form :

t t
y({t) > 8y — 6, / y(2)dt + 6, / Y (n)ydr = 65t, V1€ (0, Ty, (2.21)
0 0

N
with d = 1 and &, = 1 /" s wh(s)ds.
On the other hand, there exists ¢, € (0, 5,/6,) such that

RN RN I+d
o) = / sTuwbds < e (/ s—“w”ds) +ee)) = ey @) + cley). (2.22)
0 0
Using (2.22) in (2.21) we obtain

t
y(t) > 6y + C; / YW@ dT — Cyt, V1€ (0, Ty
0

where C; := 6, — §;¢; > 0 (due to the choice of ¢), C; := §;c(e)) + 83.
Let us introduce the function

2(t) = 64 — (%)

which satisfies

1
T+d

t
+C; / y'*dr — Cyt,
0

1
20 =Gy -C, > C3<z(t) + (%‘) T )Hd —C, > Gz (), (2.23)

2(0) = 6 — (%)ﬁ

1

o )m > 0 for the hypothesis on initial

G

Following the step in the proof of Theorem 0.1 in [20] we can conclude that z(0) = §, — (
data. In fact, let us introduce the following nonnegative function
M RN +¢

s, s€[0,RN], >0,
N s+e

Y (s) i=

. . RN . .
satisfying y, /' “T as € \\ 0. From the monotone convergence theorem, since a > 1, we obtain

RN
/ s‘”q/éb(s)ds — 00, as e\ 0.
0

Finally, for some sufficiently small € > 0 we define wy(s) := y,(s), s € [0, RN] and we easily obtain z(0) > 0.
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We observe that w, belongs to C®([0, RV ]) with w,(0) = 0, wy(RY) = #RY ond Wos(s) > 0 for all s € [0, RV]. As a consequence
ug(x) := Nwg,(|x|V) for x € Q is radially symmetric, smooth and positive in Q with E Jouodx =
Since z(0) > 0, by comparison theorem z(r) is positive. The inequality (2.23) is equivalent to

IR
= >
d (Z (t)) 2 G,
from which, integrating from 0 to ¢, we obtain
—z790) < z79(t) = z79(0) < =dCst, 1 € (0, )

—d
andr < 2 — Ead VRS TP T,.qx then z — +oo with T, 0

max — dc
The proof of Theorem 1.1 is completed by the blow -up criterion in Lemma 2.1. []

3. Blow-up in LP-norm
In this section we prove by contradiction that u(x, ) blows up in L?(2)-norm for all p > N. We have the following lemma.

Lemma 3.1. Let 2 Cc RN, N > 3 be a bounded and smooth domain. Let (u, v) be a classical solution of system (1.1). Then if there exists
C > 0 such that for some p, > N,

luC, Dl <€ for any 1 € (0,7,,,,).
then, for some C > 0,

luCDll ooy < € for any 1 € (0,T,4)-

Proof. Let us consider the LP-norm of u(-,¢) of (1.1) for all p > max{p,,2N}. Using the first equation of (1.1) and then integrating
by parts, we obtain

ld u”dx:/u”_lu,dx
Q

pdt
=—/Vu”’1de+xkf/Vu”’lde
Q / Q 1+ Vo>

w2 + |Vul?

p—1 2
=—(p— 1)/ ur |Vul —————dx+ yks(p— l)/ uP~! Mdx
Q

[+ |Vul? (1 + |VoHe

We use the following inequality proved by Bellomo and Winkler in [1, Lemma 6.1]:
p—1 2
/ W |Vuldx < / i +/ Wdx.
@ @ \ur+ |Vu|? 2

Thus we have

lj, Wdx < (p—l)/ r- '|Vu|dx+(p—l)/u1’dx+J G.1
p
for all 1 € (0,7,,,.), where
J = ;(kf(p—l)/u"“ —vaz x
Q (1+ Vo)«
Integrating by parts and using the boundary conditions and the second equation of (1.1), we obtain
—1 P
J =gk o [ TV gy 3.2)
P Jo @+ Vo)
-1 P -1 \%
=—;(kf—p _wav sz dx+a)(kf—p / —U V(lel ) dx
P Ja (1+|Vu[)e P Jo (1+]|Vy 2ya+l

p—1 uP(u —u) p—1 p VU- V(|Vo]? )
=—)(kf— —2dx+a}(kf— ———dx
P Jad+|VoP)e p Jo" (1+|vU| 2ya+l

-1 -1 Vou-V(V
<ok, 22 [ v agn, 2L w dx
)2 ¥o) p .Q (A + |Vo|?yet!

where in the last step we neglected the negative term —pu vk~ ; JouPdx and we used the inequality m
To estimate the second term in (3.2) we follow the step in the proof of [12, (5.7)] and by using the radially symmetric setting
we can obtain

-1 -1 _
JSZMa)(kfIJ—/updx+;(kfp—(1+2aN(N—1)c1)/u‘”“dx 3.3)
P Je p Q

lasa>0.

9
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p+1

_ —1 oL
+2aN(N - 1)ey k2= (/ ul’+‘+€dx> P
p Q

with some constants ¢, ¢, > 0 depending on small ¢ > 0.
Taking into account of (3.3) in (3.1), we can write

1d | wax <——/|Vup|dx (3.4)
pdt

ptl

uPldx + C(/ up+1+5dx) prive
Q

+A updx+13/
Q Q

for all 1 € (0,T,,,,), where

A =p—1+2ﬂa;(kfp;
B —;(kf (1+2aN(N ey, (3.5)
C =2aN(N—1)c2)(ka

By using the Gagliardo-Nirenberg inequality and the Young inequality we estimate the term /,, wtldx as

wdx = uP|l1gy < ConIV?l?  W?II'F + Conll?ll 1, (3.6
A ) LY(Q) L%(.Q) L2(Q)

SCGN(/ |Vu"|dx)9(/ u%dx)z“"”+cGN(/ u%dx)z
Q Q Q
551/ |Vu”|dx+c(€1)(/ u%dx)z,

Q0 Q

where 6 = NLH € (0,1) and €, > 0 to be fixed later. Similarly, we obtain

p+1 ptlg p_p L
/ wldx =l Gy S Con IVl g I T Conle 37)
2 7@ L2@) L2(Q)
» 2(p+1-N) » 2(p+1)
362/ |Vu”|dx+c(62)(/ ufdx> N +CGN(/ ufdx> ’
Q Q Q
o lon N(p+2) )
where § = —— = —2=_ ¢ (0,1) and ¢, > 0 to be fixed later. Also, we have
e (NG
ptl p+l
1
(/ up“”dx) e I p+]+€ (3.8)
2 )
o+l _d m 1
< CanlIVlly, 2 Il 7+ Conll?ll 7,
L2(Q) L2(Q)
V] 2(p+1)
» J J =
563/ [Vu |dx+c(e3)</ uzdx) +CGN(/ uzdx) ,
Q Q Q
i 2+42¢) 2 1 1
5 _ ptlre . N(p+2+2e p+l - _ 2+ DI(p+1-N)—(N-D)e]
where 0 = ul = Nioriig € (0,1) and §2= € (0, 1) for sufficiently small ¢ > 0, and § = D2 M) (N —DproNe and ¢; > 0 to

be fixed later.
Substituting (3.6), (3.7), (3.8) in (3.4), and noting that 2 < @ < 2prl=N) p, we infer from the Young inequality that

p—2N
1d/u"dx< (p——Ael Bey — Cey /qupldx
p

pdt
14 » p
+c1(€1,62,€3)(/ uzdx) +62(€1,€2,€3)(/ ude) .
Q Q

Taking e, ¢,, €3 suitably small and using (3.6) in the form

2
/qu”ldec4/u”dx—cs(/ ugdx) R
Q Q Q

we arrive at

2 B
i/u"dx+/uf’dxs%p“f"’(/ ung) +c7p(/ u%dX) . (3.9
dr Jg Q Q Q

Now we define

P = pe = po2", (3.10)

10
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for nonnegative integers k and let introduce
M, = sup / uPkdx, (3.11)
1€(0.1)J @

with k > 1 and T € (0,7,,,) is fixed.
From the definition of p in (3.10) and of M, in (3.11) we have

/ugdx= / w0 <M, ,, te(T).
Q Q

This in conjunction with (3.9) implies that

d D, D, 1+N 2 B
a7 /Qu kdx+/gu kdx < cgp” " M+ oM.
By comparison arguments we obtain
Pk — Pk 1+N a2 p
uPkdx = M < max uytdx, cep T M +cepM,_ ¢ forall k> 1.
Q Q
Now, if there exists a sequence (k Djen €N such that k ;> o0asj— oo and
Pk
M, g/uofdx for all j € N,
/ Q
then we have
sup. Dl g < ol g

te(0,T

and taking j — oo, we obtain
sup [lu(-, Dl Loy < llupll Lo()-
1€(0,T)

Conversely, if no such sequence exists, then for some large k, € N we have

M, < cbp}:NMz_l + c7pka_

h for all k > k.

1
Since p; = py2¥ and 2 < f <2+ ;—2 for all k > k, with some large k, > 1, there exists a number 6 > 1 independent of T such that

8
2k

2+
M <8M,_*  forall k > k,

and by induction and limiting procedure as in [21, p. 714] we obtain
1
limsup M, < ¢q
k—o0

for some ¢y > 0. In view of the definition (3.11), this proves
sup |lu(, Dl oo () < €o-
1€(0,T)

Thus in both cases we obtain that if ||u(-, 7| 120 () is bounded for some p, > N then ||u(,?)|| () is bounded. [

Proof of Theorem 1.2. Taking into account of Lemma 3.1, if [lu(-,)|| o () < C for some py > N, then also |lu(-,?)|| L« () is bounded.

This is a contradiction since Theorem 1.1 holds. Therefore lim sup||u(-, )| ;»g) = o0 for all p> N. []
1/ Tnax

Remark 3.1. The investigation on blow-up solutions of system (1.1) goes on with the study of the behavior near the blow-up time
Tmax. Since it is not always possible to compute T, we think that deriving a lower bound is a matter of great importance as in
[12, Theorem 1.3].
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