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A Boolean algebra A equipped with a (finitely-additive) positive probability 
measure m can be turned into a metric space (A, dm), where dm(a, b) = m((a ∧
¬b) ∨ (¬a ∧ b)), for any a, b ∈ A, sometimes referred to as metric Boolean algebra. 
In this paper, we study under which conditions the space of atoms of a finite metric 
Boolean algebra can be isometrically embedded in RN (for a certain N) equipped 
with the Euclidean metric. In particular, we characterize the topology of the positive 
measures over a finite algebra A such that the metric space (At(A), dm) embeds 
isometrically in RN (with the Euclidean metric).

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Every Boolean algebra A equipped with a positive probability measure m is a metric space, where the 
Kolmogorov distance between two elements a, b ∈ A is given by the value (in [0, 1]) assigned by m to the 
symmetric difference between a and b, namely the element (a ∧ ¬b) ∨ (¬a ∧ b). Algebras “metrized” by 
positive measures are called metric Boolean algebras, a nomenclature introduced by Kolmogorov [15], or 
normed Boolean algebras [21].

The main mathematical interest around metric (or normed) Boolean algebras mainly arises from prob-
ability theory and its subfield of stochastic geometry [8]. Moreover, these structures have recently found 
interesting applications in the theory of random sets (see e.g. [18]), which can be represented as a random 
element taking values in a normed Boolean algebra [7,21]. However, the observation that positive probability 
measures turn an algebra into a metric space adds an importance going far beyond logic and probability. 
Indeed, in the last few years, the interest around the geometry of discrete metric spaces has relevantly 
increased. Due to innovative ideas of Gromov [9] and others [1,3,13], the study of traditionally relevant 
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geometrical properties usually conceived for Riemannian manifolds, such as length of curves, measures, 
sectional and Ricci curvatures, has been fruitfully extended to discrete spaces. In this context, the present 
work focuses on expanding the geometry of metric Boolean algebras and, in particular, to understand for 
which measures m these metric spaces resemble Euclidean spaces, in the sense that the subspace of atoms 
of a metric Boolean algebra can be isometrically embedded in the prototypical example of metric space, RN

(for some N) equipped with the Euclidean metric. The choice of the space of the atoms (forcing to confine 
our attention to atomic algebras only) is driven, on the one side, by its relevance in probability theory, as, in 
an atomic σ-algebra of events, the probability of any event depends on the probability distribution on the 
set of atoms and, on the other, by the impossibility of getting an isometric embedding of the entire algebra 
(see Remark 5).

The paper is structured as follows. In Section 2 are introduced all the preliminary notions necessary to go 
through the reading of the whole paper. Section 3 discusses the details of isometric embeddings of generic 
metric spaces into Euclidean spaces (ruled by Morgan’s theorem) and shows the existence of a probability 
measure allowing the embedding of the atoms of a metric Boolean algebra in RN , for an appropriate N
(Corollary 13). Section 4 contains the main contribution of the paper, namely the study of the topology of the 
space of the measures for which the metric space of the atoms of a finite Boolean algebra can be isometrically 
embedded in RN , for some N : the main finding is that this space is contractible, while its complement is 
simply connected but not contractible. Finally, Section 6 contains the proof of the very useful technical 
Lemma 11, which is applied throughout the whole paper, for establishing the existence/non-existence of 
isometric embeddings in RN .

2. Preliminaries: metric Boolean algebras

Let A be a Boolean algebra equipped with a strictly positive (finitely additive) probability measure, i.e. 
a map m : A → [0, 1] such that:

(1) m(�) = 1,
(2) m(a ∨ b) = m(a) + m(b), for every a, b ∈ A such that a ∧ b =⊥,
(3) m(a) > 0, for every a ∈ A, a �=⊥,

where we indicate with � and ⊥ the top and bottom element, respectively, of a Boolean algebra (to avoid 
confusion with the numbers 0, 1).

The following recalls the well-known properties of probability measures.

Proposition 1. Let m be a finitely additive probability measure over a Boolean algebra A, then the following 
hold, for every a, b ∈ A:

(1) m is monotone, i.e. if a ≤ b then m(a) ≤ m(b);
(2) m(a) + m(b) = m(a ∨ b) + m(a ∧ b);
(3) m(a ∨ b) ≤ m(a) + m(b);
(4) m(¬a) = 1 −m(a);
(5) if m is strictly positive, a < b implies m(a) < m(b);

(6) If A is finite then 
k∑

i=1
m(ai) = 1, where {a1, . . . , ak} is the set of atoms of A.

Remark 2. Let A be a Boolean algebra equipped with a strictly positive (finitely additive) probability 
measure m. Then (A, dm) is a metric space (as observed by Kolmogorov [15]), where
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dm(a, b) := m(a � b) = m((a ∧ ¬b) ∨ (¬a ∧ b)),

for every a, b ∈ A. �
From now on, we always intend a Boolean algebra A equipped with a strictly positive (finitely additive) 

probability measure m and refers to it as metric Boolean algebra, namely as the metric space (A, dm) (we 
will not make explicit reference to the metric dm). Observe that the assumption that m is strictly positive is 
crucial to have a metric space: in case m is not strictly positive then (A, dm) is just a pseudo-metric space.

In general, not every Boolean algebra can be equipped with a strictly positive (finitely additive) proba-
bility measure: a characterization of those Boolean algebras for which such measures exist is due to Kelley 
[14, Theorem 4] (see also [12]). For the purpose of the present paper, we observe that every atomic Boolean 
algebra whose sets of atoms are numerable admits a strictly positive measure [11, Theorem 2.5].

The basic properties of the term-operation � are recalled in the following.

Proposition 3. Let A be a Boolean algebra and a � b := (a ∧ ¬b) ∨ (¬a ∧ b), for every a, b ∈ A. Then the 
following hold:

(1) a �⊥= a,
(2) a � � = ¬a,
(3) ¬a � ¬b = a � b,
(4) a � ¬a = �.

We now prove an easy fact about atoms of (atomic) Boolean algebras that will be used in the next 
section. We indicate by At(A) the set of atoms of an atomic Boolean algebra A.

Lemma 4. Let A be an atomic metric Boolean algebra and let a, b ∈ At(A) (with a �= b). Then dm(a, b) =
m(a) + m(b).

Proof. Let a, b ∈ At(A), with a �= b. Since a ∧ b =⊥, then a ≤ ¬b and b ≤ ¬a; thus dm(a, b) = m((a ∧¬b) ∨
(¬a ∧ b)) = m(a ∧ ¬b) + m(¬a ∧ b) = m(a) + m(b). �
3. Isometric embeddings in RN

It is natural to wonder whether the metric space (A, dm) embeds isometrically into RN (for some N) 
with the Euclidean metric. Unfortunately this is never the case.

Remark 5. A Boolean algebra A (with |A| > 2) can not be isometrically embedded in RN , for any N ∈ N, 
equipped with the Euclidean distance. Indeed, let a ∈ A be any element different from the constants. Then 
dm(a, 0) = m(a), dm(a, 1) = m(¬a) = 1 −m(a) and dm(0, 1) = 1, which implies that any isometric embed-
ding maps a, 0, 1 on the same line, where (for analogous reasoning) should lie also ¬a. Since dm(a, ¬a) = 1, 
the only possibility is setting ι : A → RN , ι(a) = ι(0) and ι(¬a) = ι(1) (or, viceversa), but such an 
embedding can not be isometric, as |ι(a) − ι(0)| = 0 while dm(a, 0) �= 0. �

We now turn our attention to a relevant subspace of a metric atomic Boolean algebra, namely the space 
At(A) of its atoms (with the metric dm).

Question. Is there a (finitely additive) strictly positive probability measure m such that the space 
(At(A), dm) can be isometrically embedded in RN , for some N?
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Embeddings of generic metric spaces into RN are ruled by a theorem of Morgan [19]. We recall some 
notions relevant for its introduction.

Definition 6. A metric space (X, d) is flat if the determinant of the n × n matrix M(x0, . . . , xn), whose 
generic entry is 〈xi, xj , x0〉 = 1

2 (d(x0, xi)2 + d(x0, xj)2 − d(xi, xj)2), is non-negative for every n-simplex, 
namely every choice of n + 1 points {x0, . . . , xn} in X.

Example 7. The space RN with the Euclidean metric is flat; the same holds for any subset of RN with the 
metric induced by the Euclidean one. So, for example, the unit circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1} is 
flat with the distance between two points given by the length of the segment in R2 connecting them. On 
the other hand, S1 equipped with the geodesic distance is not flat.

Definition 8. The dimension of a space (X, d) is the greatest N (if exists) such that there exists a N -simplex 
whose determinant (according to Definition 6) is positive.

Theorem 9 (Morgan [19]). A metric space (X, d) embeds in RN if and only if it is flat and has dimension 
less or equal to N .

Morgan’s theorem is constructive. Indeed, given (X, d) flat and with dimension N , then the embedding 
into RN is given by:

f : X → RN

x �→ (〈x, x1, x0〉, . . . , 〈x, xN , x0〉),

for a generic n-simplex {x0, x1, . . . , xN}.

From now on, our analysis will be confined to finite metric Boolean algebras.

Remark 10. In order to simplify notation, given a (finite) metric Boolean algebra A with k + 1 atoms 
At(A) = {a0, a1, . . . , ak}, we set xα = m(aα) (thus xα > 0, for every α ∈ {0, 1, . . . , k}). The matrix 
M(x0, . . . , xn), 2 ≤ n ≤ k, introduced in Definition 6, associated to A has generic entry

〈xi, xj , x0〉 = (x0 + xi)2δij + (x2
0 + x0xi + x0xj − xixj)(1 − δij). (1)

Indeed, 〈xi, xj , x0〉 = 1
2 (dm(a0, ai)2 + dm(a0, aj)2 − dm(ai, aj)2), and, for i = j, dm(ai, aj) = 0, hence, by 

Lemma 4, 〈xi, xj , x0〉 = 1
2 (2(x0 +xi)2) = (x0 +xi)2. Else, for i �= j, 〈xi, xj , x0〉 = 1

2 ((x0 +xi)2 +(x0 +xj)2−
(xi + xj)2) = 1

2 (x2
0 + x2

i + 2x0xi + x2
0 + x2

j + 2x0xj − x2
i − x2

j − 2xixj) = x2
0 + x0xi + x0xj − xixj . �

Lemma 11. Let A be a finite metric atomic Boolean algebra with k+1 atoms and M(x0, . . . , xn), 2 ≤ n ≤ k

be the matrix defined above. Then

det(M(x0, . . . , xn)) = 2n−1

⎡
⎣( n∑

α=0
x0 · · · · · x̂α · · · · · xn

)2

− (n− 1)
(

n∑
α=0

x2
0 · · · · · x̂2

α · · · · x2
n

)⎤
⎦ , (2)

where x̂i means that xi has to be omitted.

Proof. It is displayed in Section 6. �
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Remark 12. In the proof of Lemma 11, it is actually enough to assume that x0, . . . , xn satisfies the property 
introduced in (1); thus from now on, we will weaken the assumption that x0, . . . , xn are probabilities: we 
will just assume that they are elements in (0, 1) satisfying equation (1).

Lemma 11 allows to provide a positive answer to the above stated question. Indeed, as a corollary we 
get the embedding of the atoms from a finite metric Boolean algebra which are assigned with the same 
probability, according to the principle of indifference.

Corollary 13. Let A be a finite metric Boolean algebra with k + 1 atoms (|A| = 2k+1) and m a finitely 
additive probability measure such that xi = m(ai) = 1

k+1 , for every ai ∈ At(A). Then At(A) embeds in Rk

with the Euclidean metric.

Proof. In virtue of Theorem 9, it is enough to show that At(A) is flat and has dimension k. By assumption 
x0 = x1 = · · · = xk = 1

k+1 > 0. Hence, applying Lemma 11, we get

det(M(x0, . . . , xn)) =2n−1
[
((n + 1)xn

0 )2 − (n− 1)(n + 1)x2n
0

]
=2n−1 [(n + 1)2x2n

0 − (n2 − 1)x2n
0
]

=2n−12nx2n
0 > 0,

for every 2 ≤ n ≤ k. �
It follows from Theorem 9 and Lemma 11 that the space At(A) of a Boolean algebra A with 3 atoms 

(|A| = 8) embeds in R2 (it always true that a metric space of cardinality 3 embeds isometrically in R2!).

Remark 14. It is easy to check that det(M(x0, x1, x2)) > 0, a property that we will apply insofar with no 
explicit mention.

Remark 15. Observe that for any λ ∈ R, det(M(λx0, . . . , λxn)) = λ2n det(M(x0, . . . , xn)). Moreover, ∀n

(2 ≤ n ≤ k), M(x0, . . . , xn) ≥ 0 if and only if 
(

n∑
α=0

1
xα

)2

−(n −1) 
n∑

α=0

1
x2
α

≥ 0. Indeed, by applying equation 

(2) in Lemma 11, we get

(
n∑

α=0

x0 · · · x̂α · · ·xn

x0 · · ·xn

)2

− (n− 1)
n∑

α=0

(
x0 · · · x̂α · · ·xn

x0 · · ·xn

)2

=

⎛
⎜⎜⎜⎜⎝

n∑
α=0

x0 · · · x̂α · · ·xn

x0 · · ·xn

⎞
⎟⎟⎟⎟⎠

2

−

− (n− 1)

n∑
α=0

(x0 · · · x̂α · · ·xn)2

(x0 · · ·xn)2
=

(
n∑

α=0

1
xα

)2

− (n− 1)
n∑

α=0

1
x2
α

. �

It is not always the case that the space of atoms of a (finite) metric Boolean algebra embeds in RN . In 
the following we consider the probability assignment in accordance with the binomial distribution.

Example 16. The binomial distribution (with parameters n and p) is the probability distribution of the 
number of successes in a sequence of n independent experiments (Bernoulli process), each asking a “yes-no” 
question, and each with a two-valued outcome: success (with probability p) or failure (with probability 
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q = 1 − p). Thus the Boolean algebra of events is P(Ω), where Ω = {1, . . . , n} and atoms consist of all the 
sequences (regardless of the order) of successes and failures. The probability xα = m(aα) of an atom aα of 
P(Ω) is:

xα =
(
n

α

)
pα(q)n−α,

with p ∈ (0, 1) and q = 1 − p. For the sake of simplicity, we set p = q = 1
2 . Relying on Remark 15, it is easy 

to check that M(x0, . . . , x3), M(x0, . . . , x4) > 0. On the other hand, for n = 5, we have (1 + 1
5 + 1

10 + 1
10 +

1
5 + 1)2 − 4(1 + 1

25 + 1
100 + 1

100 + 1
25 + 1) = −41

25 .

4. Main results

Let M(A) be the space of probability measures over a finite Boolean algebra A, with |A| = 2k+1 and 
M(At(A)) the space of probability measures over the atoms of A (|At(A)| = k+1). M(At(A)) ⊂ (0, 1)k+1

is a convex (open) subspace of (0, 1)k+1 (we are considering only the positive measures). M(At(A)) can be 
naturally identified with the space (0, 1)k+1 = (0, 1) × · · · × (0, 1) by identifying a measure m ∈ M(At(A))
with its values �x = (x0, x1, . . . , xk) ∈ Rk+1

+ , xα = m(aα), α = 0, . . . , k.
The space M(At(A)) can be described as:

M(At(A)) = (0, 1)k+1 ∩ Πk,

where Πk is the interior of the standard k-simplex (or probability simplex) of Rk+1, namely

Πk = {�x ∈ (0, 1)k+1 |
k∑

α=0
xα = 1}.

At the light of the above discussion, we define the space of measures Mind(At(A)) induced by the flat 
metric of RN , namely those measures m such that (At(A), dm) admits an isometric embedding into some 
Euclidean space RN . By Morgan’s theorem, m ∈ Mind(At(A)) if and only if the metric space (At(A), dm)
is flat, hence:

Mind(At(A)) =
k⋂

n=3
Cn ∩ Πk, (3)

where

Cn = {�x ∈ Rk+1
+ | det(M(x0, . . . , xn)) ≥ 0}, with 3 ≤ n ≤ k. (4)

Notice that we are taking �x ∈ Rk+1
+ and not �x ∈ (0, 1)k+1. We are interested in the solution of the 

following.

Problem. Study the topology of Mind(At(A)), and of its complement M(At(A)) \Mind(At(A)), with the 
topology induced by (0, 1)k+1 ⊂ Rk+1

+ .

The main contribution of the present paper is the solution to the above mentioned problem (see Theo-
rem 21). In order to tackle it, we begin by analyzing the topology of Cn.

Lemma 17. For each 3 ≤ n ≤ k, the space Cn
∼= Hn ×Rk−n

+ where Hn is a solid half-hypercone in Rn+1
+ .
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Proof. Consider the involutive homeomorphism

Φ : Rk+1
+ → Rk+1

+ , �x = (x0, . . . , xk) �→ ( 1
x0

, . . . ,
1
xk

). (5)

In view of Lemma 11 and Remarks 14 and 15 the image of Cn via Φ is given by

Φ(Cn) = {(z0, . . . , zk) ∈ Rk+1
+ | (z0 + · · · + zn)2 − (n− 1)(z2

0 + · · · + z2
n) ≥ 0, 3 ≤ n ≤ k}.

Equivalently,

Φ(Cn) = {(z0, . . . , zk) ∈ Rk+1
+ | (n− 2)

n∑
α=0

z2
α − 2

n∑
α,β=0
α<β

zαzβ ≤ 0}.

We claim that, for every 3 ≤ n ≤ k, Φ(Cn) is affinely homeomorphic the product of a solid half-hypercone 
Hn ⊂ Rn+1

+ with Rk−n
+ , i.e. Φ(Cn) ∼= Hn ×Rk−n

+ ⊂ Rk+1
+ . In order to show the claim, observe that

Φ(Cn) = {(z0, . . . , zk) ∈ Rk+1
+ | �z tA�z ≤ 0},

where A is the matrix (of order n + 1)

A =

⎛
⎜⎜⎝
n− 2 −1 · · · −1
−1 n− 2 · · · −1
...

...
. . .

...
−1 −1 · · · n− 2

⎞
⎟⎟⎠ .

It is not difficult to check that the eigenvalues of A are λ0 = λ1 = · · · = λn−1 = n − 1 and λn = −2 and an 
orthonormal basis of eigenvectors

v0 = 1√
2

⎛
⎜⎜⎜⎜⎝

1
−1
0
...
0

⎞
⎟⎟⎟⎟⎠ , vi = ci

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

−(i + 1)
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, vn = 1√
n + 1

⎛
⎜⎜⎜⎜⎝

1
1
1
...
1

⎞
⎟⎟⎟⎟⎠ ,

with ci = 1√
(i+1)(i+2) , for i = {1, . . . , n − 1}, and 1 in the first i + 1 entries. Thus if P = (v0 . . . vn) is the 

associated orthogonal matrix and D the diagonal matrix of eigenvalues we can write

Φ(Cn) = {(z0, . . . , zk) ∈ Rk+1
+ | �z tPDP t�z ≤ 0} = {(y0, . . . , yk) ∈ Rk+1 | �y tD�y ≤ 0} ∩ {P�y > 0}

= {(y0, . . . , yk) ∈ Rk+1 |(n− 1)2(y2
0 + · · · + y2

n−1) − 2y2
n ≤ 0} ∩ {P�y > 0},

with �y = P t�z. The affine transformation P−1 = P t : Rk+1 → Rk+1 shows that, for every 3 ≤ n ≤ k, Φ(Cn)
is affinely homeomorphic to

(Hn ∩Rn+1
+ ) ×Rk−n

+ ,

where Hn = {(y0, . . . , yn) ∈ Rn+1 |(n − 1)2(y2
0 + · · · + y2

n−1) − 2y2
n ≤ 0} is a solid hypercone in Rn+1. In 

order to prove the claim we have to show that Hn ⊂ Rn+1
+ .
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Observe that Hn is indeed obtained by a rotation around the line generated by (0, . . . , 0, 1) of angle α, 
with cos(α) =

√
n−2
n . Hence P (Hn) is a solid hypercone obtained by a rotation around the line generated 

by (1, . . . , 1, 1) ∈ Rn+1 of the same angle. On the other hand, the angle αi between the vector (1, . . . , 1)
and each vectors of the canonical basis ei of Rn+1 satisfies cos(αi) = 1√

n+1 , for every i ∈ {0, . . . , n}. Thus, 
since n ≥ 3,

√
n− 2
n

= cos(α) > cos(αi) = 1√
n + 1

, i = 0, . . . , n.

It follows that α < αi therefore P (Hn) ⊂ Rn+1
+ proving our claim and concluding the proof of the lemma. �

In order to provide an answer to the above stated problem, we need to prove some rather technical 
lemmas, whose proofs consist of adaptations of the proof techniques used in a standard results for compact 
convex subsets (with non-empty interior) in Rk (see e.g. [16, Proposition 5.1]).

Recall that a set X ⊆ Sk in the unit k-dimensional sphere Sk ⊂ Rk+1 is geodesically convex if, for every 
x1, x2 ∈ X there exits a (unique) minimal geodesic connecting them in X.

Lemma 18. Let X ⊆ Sk
+ = Sk ∩ Rk+1

+ be a compact, geodesically convex set with Int(X) �= ∅. Then any 
geodesic ray starting at p ∈ Int(X) intersects X in exactly one point.

Proof. Let g be a geodesic ray starting at p ∈ Int(X). Since X is compact, then X ∩ g is compact and thus 
bounded. So let x0 be the point having the maximal (spherical) distance from p, x0 = max{d(x, p) | x ∈ X}. 
It is immediate to verify that x0 ∈ ∂X (x0 belongs to the boundary of X). Thus, in order to show that 
X ∩ g = {x0} one needs to verify that g \ {x0} ⊂ Int(X). Let Br(p) an open (spherical) ball contained in 
X and Ic = {yx0 | y ∈ Br(p) and yx0 the geodesic segment connecting y to x0} (Ic is the “ice-cream cone” 
formed by the geodesic from Br(p) to x0). Clearly, g ⊂ Ic ⊂ X, where the last inclusion holds since X is 
geodesically convex. For every x ∈ g \ {x0}, there is an open ball Brx(x) ⊆ Ic \ {x0} ⊂ X. This shows that 
x ∈ Int(X) and concludes the proof. �
Lemma 19. Let K ⊂ Rk+1 be a compact, star-shaped space with respect to 0, with Int(K) �= ∅ and such that 
any ray from 0 intersects K in exactly one point. Then there exists a homeomorphism F : B1(0) → K such 
that F (Sk) = ∂K, where B1(0) ⊂ Rk+1 denotes the open unit ball centered at the origin.

Proof. Define f : ∂K → Sk, x �→ f(x) = x
|x| , i.e. f(x) is the intersection of the ray (from O) with the sphere 

Sk. By definition, f is continuous and, since any ray from 0 intersects S in exactly one point, is also bijective. 
Since ∂K is compact, f is a homeomorphism by the closed map lemma. We then define F : B1(0) → K as 

x �→
{
|x|f−1( x

|x| ) if x �= 0,
0, if x = 0.

F takes every radial segment 0x with x ∈ Sk−1 in the radial segment 0f−1(x)

in K, with f−1(x) ∈ ∂K (it is well defined since S is star-shaped in 0). F is continuous as f−1 is and 
lim
x→0

F (x) = 0; it is injective as any ray from 0 intersects K in exactly one point and surjective as any y ∈ K

belongs to some ray. Finally, since K is compact, F is a homeomorphism by the closed map lemma. �
Lemma 20. Let K1, K2 ⊆ Rk+1 be compact, star-shaped spaces with respect to 0, with Int(Ki) �= ∅ (for 
i = 1, 2), K1 ⊂ Int(K2) and such that any ray from 0 intersects ∂Ki (for i = 1, 2) in exactly one point. 
Then there exists a homeomorphism F : B2(0) \ B1(0) → K2 \ Int(K1) such that F (Sk−1

1 ) = ∂K1 and 
F (Sk−1

2 ) = ∂K2. In particular

IntK2 \K1 ∼= B2(0) \B1(0) ∼= Sk × (0, 1).
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Proof. By Lemma 19, there are two homeomorphisms F1 : Sk−1
1 → ∂K1, F2 : Sk−1

2 → ∂K2. Define

F : B2(0) \B1(0)) → K2 \ Int(K1), x �→ F (x) = (2 − |x|)F1(
x

|x| ) + (|x| − 1)F2(
2x
|x| ).

By definition (and the continuity of F1, F2), F is continuous and surjective. To see that F is injective, 
observe that, for points x1, x2 belonging to different rays, this follows from the assumption that every 
ray from 0 intersects ∂Ki (i = 1, 2) in exactly one point. Differently, let x2 = λx1 (w.l.o.g. λ > 0) and 
F (x1) = F (x2). Upon setting F1( x

|x| ) = a ∈ ∂K1 and F2( x
|x| ) = b ∈ ∂K1, we have (2 − |x1|)a + (|x1| − 1)b =

(2 −|x2|)a +(|x2| − 1)b, thus (|x2| −|x1|)(a − b) = 0 and, since a �= b, |x1| = |x2|, i.e. x1 = x2 (as x2 = λx1). 
Finally, F is a homeomorphism by the closed map lemma. The last part follows by restricting F to IntK2\K1
and by the fact that the annulus B2(0) \B1(0) is homeomorphic to Sk × (0, 1). �

The solution to the above presented problem is given by the following.

Theorem 21. Let k ≥ 3. Then:

(1) Mind(At(A)) is contractible.
(2) M(At(A)) \Mind(At(A)) is simply-connected (not contractible).

Proof. (1) Consider the (open) retraction

s : Rk+1
+ → Πk ⊂ (0, 1)k+1, �x = (x0, . . . , xk) �→

�x

s(�x) , (6)

where s(�x) :=
k∑

α=0
xα. Then

Mind(At(A)) =
k⋂

n=3
Cn ∩ Πk = s

(
k⋂

n=3
Cn

)

is contractible being a strong deformation retract of 
k⋂

n=3
Cn which is contractible (it is homeomorphic to 

k⋂
n=3

Hn ×Rk−n
+ by Lemma 17).

(2) Let C =
k⋂

n=3
Cn and H =

k⋂
n=3

Hn (the solid half-hypercones introduced in Lemma 17). Then, using 

(6), M(At(A)) \Mind(At(A)) is a strong deformation retract of Rk+1
+ \ C ∼= Rk+1

+ \H. Let X = H ∩ Sk
+. 

Then X is compact (the intersection of closed sets in the compact Sk
+), H ∼= X × (0, +∞) (by Remark 15) 

and Rk+1
+ \H ∼= (Sk

+ \X) × (0, +∞). Moreover, X has non-empty interior (it follows from Corollary 13 and 
the proof of Lemma 17 that, for instance, p = (1, . . . , 1) ∈ Int(X)) and it is geodesically convex as a subset 
of Sk

+. To see this, consider x1, x2 ∈ X ⊂ H. Let x1x2 ∈ H be the segment connecting x1, x2 (H is convex) 
and Hyp ⊂ C the hypercone in Rk+1 generated by x1x2 (the inclusion Hyp ⊂ C follows by Remark 15). 
Then Hyp ∩ Sk

+ ⊂ X is the minimal geodesic segment in Sk, since it is the intersection of Sk
+ with an 

hyperplane containing 0, x1 and x2. Thus, by Lemma 18, the geodesic from p = (1, . . . , 1) intersects ∂X
exactly in one point. Consider the stereographic projection π from the Sk \ {−p} to the tangent space TpS

k

of the sphere Sk at the point p, namely the homeomorphism which to a point x of Sk \ {−p} associates 
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the intersection of the line joining x to −p with TpS
k. Thus K1 := π(X) and K2 := π(Sk

+) are subsets in 
Rk ∼= TpS

k satisfying the assumptions of Lemma 20. It follows that

IntK2 \K1 ∼= Sk
+ \X ∼= Sk−1 × (0, 1)

and therefore Rk+1
+ \C = Sk

+ \X × (0, +∞) ∼= Sk−1 × (0, 1) × (0, +∞) is homotopically equivalent to Sk−1, 
thus simply connected (k ≥ 3) and not contractible. �
Remark 22. Consider the set of measure which can be induced in RN with a fixed N . Then one can show 
that this set is open in Πk for N ≥ k since each Cn with n ≤ k is open.

5. Conclusion and future work

The space of strictly positive probability measures M(A) of a finite Boolean algebra A is an open convex 
sets (the boundary being given by all probability measures) in [0, 1]n, with n = | A |. The main contribution 
of the present work consists in “splitting” such convex space into the (disjoint) union of the contractible set 
Mind(At(A)), corresponding to those measures m for which the space (At(A), dm) embeds isometrically in 
RN , and its complement. We have given examples of measures belonging to each of the two components: 
the measure corresponding to the principle of indifference (see Corollary 13) and the binomial distribution 
(see Example 16), respectively. As a remarkable consequence of our topological characterization, we get that 
m ∈ Mind(At(A)) if and only if m is homeotopically equivalent to the measure of indifference; on the other 
hand, all measures m for which (At(A), dm) can not be isometrically embedded in RN are path connected 
(though not homeotopically equivalent) to the binomial distribution.

It is natural to wonder in which component of M(At(A)) can be located well-known distributions finding 
applications in probability (e.g. the hypergeometrical distribution) and exploits the potential applications 
of the fact that measures belonging to the component Mind(At(A)) have the same homotopy. In order to 
tackle the former problem, refinements of the useful Lemma 11 shall be found to ease calculations.

Our main result (Theorem 21) relies on the topological characterization (see Lemma 17) of the objects 
Cn = {�x ∈ Rk+1

+ | det(M(x0, . . . , xn)) ≥ 0} (3 ≤ n ≤ k), for which the assumption about the finiteness of 
the Boolean algebra considered is crucial (the existence of atoms is only a byproduct). We leave to future 
work the extension of the present setting to infinite (atomic) Boolean algebras.

Finally, we confined our attention to metric Boolean algebras. However, in the last decades the theory 
of probability has been extended to algebraic semantics of several non-classical logics, via the development 
of the so-called theory of states. We will dedicate future work to the study of the metric properties, for 
instance, of MV-algebras (a study initiated in [20,17]) equipped with a faithful state (see e.g. [6,5,4]) or 
involutive bisemilattices (see [2]) and their isometric embeddability into Euclidean spaces.

6. Appendix

This section is dedicated to the proof of Lemma 11, whose technicalities are not so important (we believe) 
for the reading of the whole message of the paper.

Recall that, given a (square) matrix A of order n, the adjugate Adj(A) of A is the transpose of the cofactor 
matrix of A. Equivalently, Adj(A) is the matrix of order n such that A ·Adj(A) = Adj(A) ·A = det(A) · In, 
where In is the identity matrix of order n. We recall here a result from linear algebra (see e.g. [10]) that we 
will use in the proof of Lemma 11.

Lemma 23 (Matrix determinant lemma). Let A be a matrix of order n and u, v column vectors in Rn. Then

det(A + uvt) = det(A) + vtAdj(A)u.
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Lemma 10. Let A be a finite metric atomic Boolean algebra with k+1 atoms and M(x0, . . . , xn), 2 ≤ n ≤ k

be the matrix defined above. Then

det(M(x0, . . . , xn)) = 2n−1

⎡
⎣( n∑

α=0
x0 · · · · · x̂α · · · · · xn

)2

− (n− 1)
(

n∑
α=0

x2
0 · · · · · x̂2

α · · · · x2
n

)⎤
⎦ ,

where x̂i means that xi has to be omitted.

Proof. Preliminarily observe that M(x0, . . . , xn) = A + vvt, where A is the matrix whose generic entry is 
Aij = −2(1 − δij)xixj and v = (x0 + x1, . . . , x0 + xn) ∈ Rn.

Claim 1. det(A) = −2nx2
1 . . . x

2
n(n − 1).

Observe that det(A) = (−2)nx2
1 . . . x

2
n det(B), where B =

⎛
⎜⎜⎝

0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

⎞
⎟⎟⎠, i.e. Bij = 1 − δij . Moreover, 

B = cct − In, for c = (1, . . . , 1). Thus, by Lemma 23, det(B) = det(−In) + cAdj(−In)ct. Observe that 
Adj(−In) = (−1)n−1In (indeed −In(−1)n−1In = (−1)nIn = det(−In) · In), hence

det(B) =det(−In) + ctAdj(−In)c (Lemma 23)

=(−1)n + ct(−1)n−1Inc

=(−1)n + (−1)n−1ctc

=(−1)n + (−1)n−1n

=(−1)n−1(n− 1).

It then follows that det(A) = (−2)nx2
1·· · ··x2

n det(B) = (−2)nx2
1·· · ··x2

n(−1)n−1(n −1) = −2nx2
1·· · ··x2

n(n −1), 
showing Claim 1.

Claim 2. Adj(A) = D, with generic entry

Dij = 2n−1x2
1 . . . x

2
n

(
1

xixj
− δij

x2
i

(n− 1)
)
.

By definition of adjugate, A ·D = D ·A = det(A) · In, equivalently 
n∑

k=1

AikDkj = det(A) · δij .

n∑
k=1

AikDkj =
n∑

k=1

−2(1 − δik)xixk ·
(

2n−1x2
1 . . . x

2
n

(
1

xixj
− δkj

x2
k

(n− 1)
))

= −2nx2
1 . . . x

2
n

n∑
k=1

(1 − δik)
(
xi

xj
− xiδkj

xk
(n− 1)

)

= −2nx2
1 . . . x

2
n

(
xi

xj

n∑
k=1

(1 − δik) − xi(n− 1)
n∑

k=1

(1 − δik)δkj
xk

)

= −2nx2
1 . . . x

2
n

(
xi

xj
(n− 1) − xi

xj
(n− 1) + xi(n− 1)

n∑ δikδkj
xk

)

k=1
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= −2nx2
1 . . . x

2
n(n− 1)xi

n∑
k=1

δikδkj
xk

= det(A) · δij ,

which shows Claim 2.
To simplify notation, let us fix Eij = 1

xixj
− δij

x2
i
(n − 1) (a part of the generic entry of D). In order to 

conclude, observe that, by Lemma 23,

det(M(x0, . . . , xn)) = det(A) + vDvt

= −2nx2
1 . . . x

2
n(n− 1) + 2n−1x2

1 . . . x
2
nvEvt (Claims 1, 2)

= −2n−1x2
1 . . . x

2
n

(
−2(n− 1) + vEvt

)

= −2n−1x2
1 . . . x

2
n

⎛
⎝−2(n− 1) +

n∑
i,j=1

(x0 + xi)Eij(x0 + xj)

⎞
⎠

= −2n−1x2
1 . . . x

2
n

⎛
⎝−2(n− 1) +

n∑
i,j=1

(x0 + xi)
(

1
xixj

− δij
x2
i

(n− 1)
)

(x0 + xj)

⎞
⎠

= −2n−1x2
1 . . . x

2
n

⎛
⎝−2(n− 1) +

n∑
i,j=1

(
x0

xi
+ 1

)(
x0

xj
+ 1

)
−

n∑
i,j=1

(
x0

xi
+ 1

)
(x0 + xj)

δij(n− 1)
xi

⎞
⎠

= −2n−1x2
1 . . . x

2
n

⎛
⎝−2(n− 1) +

[
n∑

i=1

(
x0

xi
+ 1

)]2

− (n− 1)
n∑

i=1

(
x0

xi
+ 1

)2
⎞
⎠

= −2n−1x2
1 . . . x

2
n

⎛
⎝−2(n− 1) +

[
n− 1 + 1 +

n∑
i=1

x0

xi

]2

− (n− 1)
(

n∑
i=1

x2
0

x2
i

+ 2
n∑

i=1

x0

xi
+ n + 1 − 1

)⎞
⎠

= −2n−1x2
1 . . . x

2
n(−2(n− 1) +

(
1 +

n∑
i=1

x0

xi

)2

+ (n− 1)2 + 2(n− 1)
n∑

i=1

x0

xi
+ 2(n− 1)−

− (n− 1)
n∑

i=1

x2
0

x2
i

− 2(n− 1)
n∑

i=1

x0

xi
− (n− 1)2 − (n− 1))

= −2n−1x2
1 . . . x

2
n

⎡
⎣(1 +

n∑
i=1

x0

xi

)2

− (n− 1)
(

1 +
n∑

i=1

x2
0

x2
i

)⎤
⎦

= −2n−1

⎡
⎣(x1 . . . xn +

n∑
i=1

x0x1 . . . xn

xi

)2

− (n− 1)
(
x2

1 . . . x
2
n +

n∑
i=1

x2
0x

2
1 . . . x

2
n

x2
i

)⎤
⎦

= 2n−1

⎡
⎣( n∑

α=0
x0 · · · · · x̂j · · · · · xn

)2

− (n− 1)
(

n∑
α=0

x2
0 · · · · · x̂2

j · · · · x2
n

)⎤
⎦ . �
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