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A B S T R A C T
The DeepFake, which generates synthetic content, has sparked a revolution in the fight against
deception and forgery. However, most existing DeepFake detection methods mainly focus on
improving detection performance with high-quality data while ignoring low-quality synthetic
content that suffers from high compression. To address this issue, we propose a novel High-
Frequency Enhancement framework, which leverages a learnable adaptive high-frequency
enhancement network to enrich weak high-frequency information in compressed content without
uncompressed data supervision. The framework consists of three branches, i.e., the Basic branch
with RGB domain, the Local High-Frequency Enhancement branch with Block-wise Discrete
Cosine Transform, and the Global High-Frequency Enhancement branch with Multi-level Dis-
crete Wavelet Transform. Among them, the local branch utilizes the Discrete Cosine Transform
coefficient and channel attention mechanism to indirectly achieve adaptive frequency-aware
multi-spatial attention, while the global branch supplements the high-frequency information by
extracting coarse-to-fine multi-scale high-frequency cues and cascade-residual-based multi-level
fusion by Discrete Wavelet Transform coefficients. In addition, we design a Two-Stage Cross-
Fusion module to effectively integrate all information, thereby greatly enhancing weak high-
frequency information in low-quality data. Experimental results on FaceForensics++, Celeb-DF,
and OpenForensics datasets show that the proposed method outperforms the existing state-of-
the-art methods and can effectively improve the detection performance of DeepFakes, especially
on low-quality data. The code is available here 1.

1. Introduction
In recent years, with the development of social media, the Internet has provided a massive amount of information,

which not only makes it easier for humans to obtain knowledge, but also makes it possible for misleading information,
fake news, and other synthetic content to spread. The synthesis of fake content [19] has aroused great interest because it
promotes progress in certain fields, such as the use of digital people to replace real people in the field of live broadcasts,
the interaction between the virtual and the real world, the different expressions and actions of characters in film and
television production, etc. Nonetheless, it is difficult to ignore the huge harm it causes [37], especially the fake facial
content known as DeepFake [62, 28]. Through facial replacement or expression manipulation, malicious attackers
create fake news videos, making viewers mistakenly believe that the fictional events actually happened, which further
raises public concerns about the credibility of information and privacy security. To counter this technology, an arms
race has begun in the development of face forgery detectors [55, 2, 26].

To date, a considerable amount of DeepFake detection methods [70, 19] have been developed. For instance, a
series of works [55, 11, 4] have explored the existence of low-level artifact traces. Shiohara and Yamasaki [55]
constructed self-blended images (SBIs) to detect DeepFakes by reproducing common forgery artifacts. Chen et
al. [4] designed a Bi-granularity artifacts detector to explore the intrinsic-granularity artifacts caused by model

1https://github.com/Gina-YUE/HiFE
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Figure 1: Structural diagram of the proposed framework. It consists of three branches: (1) Basic branch, which uses original
RGB information; (2) adaptive Local High-Frequency Enhancement branch based on Block-wise DCT, channel attention
mechanism, and inverse Block-wise DCT; (3) adaptive Global High-Frequency Enhancement branch based on Multi-level
DWT and cascade-residual-based multi-level fusion strategy. Furthermore, the Two-Stage Cross-Fusion module is designed
to achieve complementary information from three different domains.

generation and extrinsic-granularity artifacts due to blend operation. Dong et al. [11] proposed an ID-unaware model
that aims to remove the influence of facial identity information, thereby using only artifact clues for authentic
and fake identification. Furthermore, some methods based on mid-level manipulation traces are devoted to finding
inconsistencies [14, 36, 71, 69] in fake content. In [14], the inconsistency of identity information between inner and
outer faces is explored. Liu et al. [36] developed a detector that focuses on temporal identity inconsistency. Yu et al.
[71] proposed an augmented multi-scale spatiotemporal inconsistency magnifier to capture comprehensive synthesis
spatiotemporal clues. Yang et al. [69] distinguished real from fake by detecting inconsistent 3D head poses caused by
manipulation. Moreover, some biological signals [17, 50, 65, 16] are also applied to this task. Hernandez-Ortega et al.
[17] developed a detector named DeepFakesON-Phys, which uses heart-rate estimation to judge real and fake videos.
Qi et al. [50] developed DeepRhythm, which captures differences in heart rate variations between genuine and fake
videos by detecting subtle changes in skin color caused by facial blood flow. Wu et al. [65] regarded DeepFake detection
as a source detection task and utilized the multi-scale spatiotemporal photoplethysmography map from multiple facial
regions to capture counterfeit cues. In [16], the author performed inter- and intra-modality reasoning on emotions
extracted from audio and visual modalities for DeepFake detection. However, these efforts primarily focus on the
outstanding performance of high-quality, uncompressed content, lacking analysis of key factors leading to performance
degradation when encountering low-quality fake content.

Considering that spatial artifacts and synthetic traces often suffer degradation during the compression process,
making it more challenging to detect compressed data, some methods utilize frequency domain information to mitigate
this issue, such as Fast Fourier Transform (FFT) [12, 38], Discrete Cosine Transform (DCT) [10, 51, 5], and Discrete
Wavelet Transform (DWT) [45]. Nevertheless, most of these methods use single-frequency transform. Although these
studies can address those above fragile spatial artifacts to some extent, the cues extracted by FFT and manually
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Figure 2: A running example of the proposed method is used to demonstrate the entire model running pipeline. The input
image is fed into three branches for feature extraction in different domains, and final fusion is performed for model inference
and prediction.

partitioned DCT multi-frequency information only provide limited global frequency-domain information. On the other
hand, analyzing the low and high-frequency components extracted by DWT ignores the local spatial relationship. These
previous works motivate us to explore the complementarity between the frequency and wavelet domains.

In this work, we focus on improving the detection performance of high-compression DeepFake data. Considering
that obtaining high-quality uncompressed data is often challenging in practical application scenarios, even if it is
available, deploying supervised learning based on uncompressed high-quality data will incur high computational costs.
Therefore, in this paper, we adopt an unsupervised learning strategy without high-quality data. Our goal is to bridge
the detection performance gap between high-quality and low-quality data by enhancing the weakened high-frequency
information in low-quality data through an unsupervised learning strategy.

Before constructing the model, we conducted extensive experimental analysis as described in Section 3.1. We
perform frequency information decomposition tests on both uncompressed data and their corresponding highly
compressed data. Moreover, we design three strategies to verify the importance of high-frequency information in
low-quality DeepFake discrimination. Based on the above massive analysis, we propose a new architecture named
High-Frequency Enhancement (HiFE), as shown in Figure 1.

Specifically, we employ Discrete Cosine and Wavelet Transforms to adaptively enhance the residual local and
global high-frequency information in low-quality data. Furthermore, we explore their complementarity and design a
fusion module. The strength of the proposed method lies in the adaptive utilization of high-frequency information in
low-quality data through local Discrete Cosine Transform and global Discrete Wavelet Transform, without the need for
supervision from high-quality data. Additionally, our module can be flexibly embedded into any model with extremely
low computational burden. The main contributions of this work are summarized as follows:

• We analyze the difference between low-quality and high-quality data through quantitative and qualitative
experiments, revealing the key factors leading to good detection performance on high-quality data. In addition,
we designed three strategies of information removal, information exchange, and information re-learning through
discrete wavelet decomposition to verify the conjecture further quantitatively.

• We propose a High-Frequency Enhancement (HiFE) network to handle low-quality data. To the best of our
knowledge, this is the first method that utilizes adaptive local and global high-frequency enhancement branches
to explore the most favorable high-frequency information for compressed DeepFake detection without the need
for uncompressed content supervision. Additionally, we design a Two-Stage Cross-Fusion strategy to simulate
the complementarity between different domains.
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• The adaptive frequency-aware features from local sub-networks adopt Block-wise DCT, channel attention mech-
anism, channel bottleneck module, and inverse Block-wise DCT. Moreover, Multi-level DWT decomposition
layers and cascade-residual-based multi-level fusion strategies are designed to realize adaptive global high-
frequency enhancement.

• Extensive comparative and thorough ablation experiments demonstrate that the proposed method achieves signif-
icant improvements and state-of-the-art performance on low-quality DeepFake data with a small computational
burden.

The remaining parts of the paper are organized as follows: Section 2 introduces the standard DeepFake generation
approaches and their corresponding detection methods. In Section 3, we provide a detailed explanation of our proposed
framework and its intuition. The experimental details and settings are presented in Section 4. Finally, in Section 5, we
draw conclusions based on the experimental results, summarize the advantages and limitations of the proposed method,
and discuss the prospect.

2. Related Work
This section focuses on DeepFake generation principles and a series of detection methods, especially the most

relevant work to solve the compression problem, including related applications of DCT and DWT.
2.1. DeepFake Generation Methods

As one of the most widely discussed technologies, DeepFake originated from the Reddit website in 2017 [46].
A user uploaded a malicious fake video on the website, garring significant public attention and sparking extensive
discussions. In recent years, with the continuous development of artificial intelligence technology, various DeepFake
synthesis technologies have been proposed, and some applications have been developed, such as FaceSwap 2,
DeepFaceLab 3, ZAO 4, ReFace 5, and so on. These advancements in deep learning technology have enabled anyone
without specialized knowledge to synthesize forged content. For instance, current technology can already create
people who do not exist, or directly change the speaker’s lip shape and expression in a real video to easily create a
corresponding fake video, which was unimaginable before. The increasingly realistic synthetic content is flooding the
entire Internet, leading to people’s contemplation and concern about the credibility of information.

DeepFake technology can automatically map the facial expressions or identity ID of a source person onto a target
person. With appropriate post-processing, the generated video can have a remarkably realistic visual appearance.
Considering that this technology is easily abused by criminals, a large number of DeepFake synthetic video datasets
have been publicly used for detector development research. Among them, the most widely used methods for automatic
face manipulation and forgery, including Deepfakes [24], Face2Face [58], FaceSwap [25], NeuralTextures [59], and
FaceShifter [30] which can be found in FaceForensics++ (FF++) [54] dataset. Advanced DeepFake generation
algorithms can successfully deceive and trick the human eye. Especially with the continuous development of DeepFake
generation techniques, the recognition of synthetically generated fake data becomes increasingly challenging. For
instance, datasets such as Celeb-DF [32] and OpenForensics [27], generated using improved synthesis methods,
significantly enhance the visual quality of fake images. This renders detection methods that performed well on previous
datasets inadequate in addressing these new challenges.

There are many types of research exploring facial forgery techniques. Among them, the two most commonly
used and effective forgery architectures are Variational Auto-Encoder (VAE) [23] and Generative Adversarial
Networks (GAN) [15]. The GAN-based methods have been continuously driving the sustainable development of this
field, consistently improving the visual realism of generated images. The basic principle behind them is a pair of
generator/discriminator, where the generator network aims to generate fake images that are indistinguishable from
real images, and the discriminator network aims to distinguish them. After repeated games, the generator can finally
synthesize images with realistic appearances. The strategy of this kind of adversarial game compels the generator to
effectively outmaneuver the discriminator, which is the fundamental reason why forgery models can generate high-
quality manipulated image content [60]. Especially in recent years, various improvements based on GANs have made

2https://github.com/MarekKowalski/FaceSwap/, (Last accessed: 18.02.2024)
3https://github.com/iperov/DeepFaceLab/, (Last accessed: 18.02.2024)
4https://zaodownload.com/,(Last accessed: 18.02.2024)
5https://reface.app/,(Last accessed: 18.02.2024)

Jie Gao et al.: Preprint submitted to Elsevier Page 4 of 29



DeepFake Detection Based on High-Frequency Enhancement Network for Highly Compressed Content

it possible to generate partially or completely fake media. For example, Singh et al. [56] utilized StyleGAN2 [22] to
produce synthetic facial images with variable facial expressions. Prajwal et al. [49] designed a Wav2Lip model based
on GAN, aiming to improve the lip-sync accuracy of synthesis video. Liu et al. [39] proposed a face-swapping model
by combining the attention mechanism and CycleGAN to alleviate the discontinuities across the blending boundaries.
Tao et al. [57] achieved high-quality text-to-image synthesis with the help of GAN. Kang et al. [21] presented a new
open-source library named StudioGAN, which supports many types of GAN architecture for image synthesis.
2.2. DeepFake Detection Methods

The continuous advancement of DeepFake synthesis methods has also propelled the development of corresponding
detection techniques. Currently, DeepFake detection has gained significant attention and plays a crucial role in ensuring
the security of facial recognition systems. Unfortunately, according to numerous references, most existing DeepFake
detection methods primarily focus on improving the performance of high-quality data (i.e., data with low compression
ratios) and achieving incredible performance for these data, while ignoring the challenges of low-quality data caused
by high compression ratios [18]. Although significant progress has been made in the forensic detection of high-
resolution image/video datasets, the prevalence of low-quality DeepFake data in practical scenarios caused by data
compression during transmission calls for further exploration and research. Therefore, we will introduce detection
methods specifically designed for high-quality data and methods dedicated to low-quality data separately below.
Methods for High-Quality Data. A large number of methods are dedicated to addressing the detection of
high-quality forged data and have demonstrated promising performance. These methods are generally based on
three categories of observations: low-level visual artifacts, mid-level manipulation traces, and high-level semantic
information.

Low-level. Li et al. [29] used the inconsistency between different color channels (e.g. HSV or YCbCr) to determine
whether the image is forged. Matern et al. [43] pointed out that the facial features of fake face images have some
inconsistencies of visual details (eyes, nose bridge, teeth, etc.), which can be used for fake face detection. Li and Lyu
[34] determined whether it is a fake video by detecting whether the video contain the distortion caused by the affine
transformation of scaling, rotating, and cutting. Shiohara and Yamasaki [55] constructed self-blended images (SBIs) to
detect DeepFakes by reproducing common forgery artifacts, such as blended boundaries and statistical inconsistencies
between source and target images. Zhou et al. [75] designed a fake face detection framework based on two streams,
one is GoogLeNet to detect tampering artifacts in a face classification stream, and another is a patch triplet stream to
capture local noise residuals and camera characteristics.

Mid-level. Wang et al. [61] proposed Fakespotter, which extracts the activation state of neurons for real and fake
detection. Yang et al. [69] considered inconsistencies in 3D head pose after synthesized face region stitching. According
to [31], fake faces typically involve a fusion step. Based on this assumption, they proposed Face X-ray to detect the
presence of face fusion boundaries in images and use it as a metric to measure the authenticity. Afchar et al. [1]
constructed a mid-level semantic classifier called MesoNet because they believed that the differences between genuine
and fake content are more evident at the intermediate semantic level.

High-level. In [17], DeepFakesON-Phys was developed, which uses heart rate estimation to detect fake content.
Qi et al. [50] constructed DeepRhythm to capture differences in heart rate variations between genuine and fake videos,
and they incorporated a motion-amplified spatiotemporal representation module and a dual spatiotemporal attention
module to better adapt to dynamically changing faces and various forgery types. Ciftci et al. [7] utilized physiological
signals from facial regions for real and fake distinguish, the spatial and temporal coherences are computed using
transformations, and signal features are captured from the PPG graph. Mittal et al. [47] introduced a Siamese network-
based approach to extract and analyze the similarity between audio and visual modalities in the same video. By
simultaneously extracting emotional cues from both modalities and constructing a triple loss, they aim to capture
the differences between genuine and fake videos.

However, the methods mentioned above are based on the assumption of uncompressed or lightly compressed data.
These methods assume that fake data will not be heavily compressed and that manipulation traces can be preserved.
Unfortunately, once forged content is highly compressed using codecs like JPEG or H.264, the forged traces are
susceptible to compression artifacts, making detection more challenging.
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Methods for Low-Quality Data. Recognizing the limitations of the above approaches, several studies have
observed and explored the issue from different perspectives. Although there are relatively few studies in this area,
we roughly divide them into three categories: DCT-based, DWT-based, and Others.

DCT-based. Given the advantages of fast operation speed and energy concentration, Discrete Cosine Transform is
often used not only in the field of data compression but also in other tasks. For instance, Qian et al. [51] introduced
frequency into face forgery detection by applying DCT as the applied frequency-domain transformation. Concas
et al. [10] proposed a novel feature extraction approach by exploiting the DCT domain to deal with the problem
of compressed images. In order to increase the amount of information collected by small images, they considered
overlapping block operations and further utilized the statistics of DCT coefficients to describe the input data.

DWT-based. Wavelet transforms can separate data into spatial frequency components of different directions and
scales. Due to their lossless and reversible nature, they are commonly used in various fields such as super-resolution,
image reconstruction, and image denoising [53, 66]. However, research on DWT has not been fully exploited in
DeepFake detection tasks. As far as we know, it has only been explored in [45]. Miao et al. [45] improved the ability
to capture general fine-grained artifacts in the frequency domain by exploiting DWT decomposition and discarding
low-frequency components.

Others. In addition, some works are dedicated to exploring spatial information. Hu et al. [18] designed a dual-
stream network for detecting compressed DeepFake videos, where the least compressed I-frames are used during the
training of the frame-level stream instead of the entire frame. Obviously, this method is generally not suitable for highly
compressed fake images. Liao et al. [35] constructed a facial-muscle-motions-based (FAMM) framework to solve the
problem of compressed DeepFake video detection, but this cannot be used for compressed images. Moreover, Li et
al. [33] proposed a Spatial Restoration Detection Framework (SRDF). Inspired by super-resolution techniques, they
designed feature extraction enhancement and mapping modules with the help of uncompressed videos to restore and
enhance the texture features of low-quality compressed videos. Woo et al. [64] proposed an Attention-based DeepFake
Detection Distiller (ADD) by utilizing knowledge distillation (KD), where they designed a distillation process to
transfer the distribution of teacher tensors from high-quality (HQ) data to student tensors called low-quality (LQ) data,
achieving good performance. However, their approach relies on the assumption that high-quality images are easily
obtainable, which is often challenging in practice.

In contrast to the above methods, our proposed approach simultaneously utilizes both DCT and DWT transforms
for enhancing local and global high-frequency information without supervision from uncompressed high-quality data.
Compared to the other methods, our proposed method is more generalizable and flexible as it can be embedded into
any network.
2.3. Unsupervised and Fusion Strategies

Except for the above-mentioned works in 2.2, there are also some kinds of literature devoted to the research of
unsupervised learning and fusion strategies.

Compared to supervised learning, unsupervised learning does not require large amounts of labeled training data,
reducing the cost and workload associated with data annotation. Additionally, through unsupervised learning, models
are less prone to getting stuck in local optima, making it easier for the algorithm to adapt to the overall structure
of the data rather than specific labels. Therefore, this strategy has been widely applied across multiple domains.
Currently, there are also some studies exploring its application in DeepFake detection tasks. For example, Fung et
al. [13] used data augmentation methods to generate two different versions of an image and achieved unsupervised
training by encouraging the model to learn the maximum similarity between the two images. Qiao et al. [52] designed
a pseudo-label generator to label training samples and fed them into the proposed enhanced contrastive learner for
binary classification of synthetic videos. Mejri et al. [44] introduced a framework named UNTAG, which is based on
unsupervised learning, for type-agnostic DeepFake detection to alleviate inadequate generalization.

Additionally, the concept of fusion strategy has brought new insights to the task of DeepFake detection. In [9],
the authors exploit the complementarity of different individual classifiers and evaluate which fusion rules are best
suited to improve the generalization capabilities of modern DeepFake detection systems. Omar et al. [48] proposed a
deep learning bagging ensemble classifier to detect manipulated faces in videos. They combined the predictions from
multiple learners to classify the video as real or fake. Zhang et al. [72] built Particle Swarm Optimization (PSO) based
weighted and evolving ensemble models integrating optimized 3D Convolutional Neural Networks and Recurrent
Neural Networks for video authenticity classification.

The success of the above strategies motivates us to explore more efficient and convenient detection models.
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3. The Proposed Method
In this section, we start by analyzing the differences between compressed DeepFake content and its corresponding

uncompressed versions, highlighting the motivation behind designing a high-frequency information enhancement
network from the frequency domain perspective. Additionally, we conduct comparative experiments to demonstrate
the importance of high-frequency information in detecting low-quality synthesized content. Subsequently, we provide
a more detailed explanation of the proposed method and architecture.
3.1. Motivation and Analysis

In this part, we analyze the motivation for using high-frequency enhancement strategies and a series of verifi-
cation experiments. Specifically, we conduct experimental verification on three different compressed versions of the
FaceForensics++ [54] dataset. As shown in Figure 3 and Figure 4, where "raw" denotes the uncompressed high-
quality version (HQ), "c23" represents a lightly compressed medium-quality version (MQ), and "c40" indicates a
highly compressed low-quality version (LQ).

raw c23 c40
Deepfakes Face2Face FaceSwap FaceShifter NeuralTextures

0

10

20

30

40

50

60

70

80

90

100
99.81%

97.41%

90.81%

99.26%
96.41%

80.94%

98.74%
96.62%

79.97%

99.56%
96.99%

86.01%

98.33%

89.33%

65.14%

Figure 3: Performance comparison of Xception network on aligned FF++ [54] dataset with different compression ratios.
Among them, raw is the uncompressed high-quality (HQ) version, c23 refers to the weakly compressed medium-quality
(MQ) version, and c40 represents the highly compressed low-quality (LQ) version.

Quantitative analysis. (The performance degradation of low-quality data.) DeepFake detection methods based
on deep learning have made significant progress in evaluating high-quality data. However, the performance often
degrades dramatically when testing with low-quality data that suffer from highly compressed. As shown in Figure 3,
We perform experiments on aligned data with different compression ratios, and experimental studies show that the
stronger the compression, the worse the performance of the DeepFake detection model. Considering that these data are
the same except for the compression, we believe that the reason for this phenomenon is the loss of information during
the compression process, which essentially discards high-frequency information that does not visible to the human eye
while preserving low-frequency information. Additionally, the quantization process introduces compression artifacts,
greatly affecting the detection of forged trace details.

Qualitative analysis. (The difference between the visualization of low-quality data and high-quality data.) In order
to find the difference between uncompressed data and aligned compressed data more intuitively, we perform visual
analysis by using discrete wavelet decomposition. Discrete Wavelet Transform is a traditional image decomposition
method that can decompose a two-dimensional image into a combination of low-frequency and high-frequency images
in multiple directions while preserving the spatial information of the image. Therefore, the structural information and
detailed information of the original image can be easily extracted by using this transformation. Based on the above
advantages, we decided to use wavelet decomposition to analyze the detection performance to observe which part
is more conducive to the improvement of DeepFake detection performance. As shown in Figure 4 (a), we perform
multi-level discrete wavelet decomposition visual analysis on the same image of three different compression versions,
where “J” represents the level of wavelet decomposition, “LL” represents low-frequency information, and “LH”, “HL”
and “HH” represent high-frequency information in different directions, respectively. From Figure 4 (a), we can easily
find that with the increase in decomposition levels, the difference between low-quality and high-quality data becomes
Jie Gao et al.: Preprint submitted to Elsevier Page 7 of 29
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 raw
c23

c40

J=1 J=2 J=3 J=4 J=5

LL LH HL HHLL LH HL HH LL LH HL HH LL LH HL HH LL LH HL HH

Original

(a) Multi-level Discrete Wavelet Decomposition coefficient visualization

raw
c4

0

J=2 (HL) J=3 (HL) J=4 (HL) J=5 (HL)

(b) The Comparison of HL high-frequency components between uncompressed (raw) and highly-compressed (c40) data

Figure 4: Illustration of using multi-level discrete wavelet decomposition. LL represents low-frequency components; LH,
HL, and HH represent high-frequency information in horizontal, vertical, and diagonal directions. The J represents the
decomposition level. The red line area is the decomposition visualization result of the aligned data under different
compression strengths. Figure (a) shows the results for all decomposed components. For a clearer observation, Figure
(b) only shows the comparison results of the HL component.

increasingly obvious, especially in high-frequency components. The higher the compression ratio, the more obvious the
difference. In order to illustrate the difference between highly compressed and uncompressed data in high-frequency
information more clearly, we take “HL” as an example in Figure 4 (b) for further visual analysis. Obviously, the high-
frequency coefficients are greatly changed after compression.

Information removal. In order to further analyze the impact of high-frequency information on DeepFake detection
performance, we design the information removal strategy. Specifically, we replace the high-frequency coefficients
obtained through discrete wavelet decomposition with 0 and then apply the inverse transformation to restore the signal
after removing the high-frequency information. Similarly, we set the low-frequency coefficients to 0 to eliminate
low-frequency information. Then we use the pre-trained model to test new combined data. As shown in Figure 5
(a), we conducted experiments on uncompressed raw data. Specifically, we employed two strategies: high-frequency
information removal and low-frequency information removal. Under each strategy, we use the pre-trained model on raw
data to test new composite data. From the results of Figure 5 (a), we can observe that the detection accuracy decreases
as the high-frequency information is gradually removed. Conversely, the accuracy improves as the low-frequency
information is removed to a lesser extent, and correspondingly more high-frequency information is retained. We can
better illustrate this point with two intuitive examples. For example, when removing high-frequency information, let’s
consider the case where 𝐽 = 1. The performance starts to decline in Figure 5 (a). As we increase 𝐽 to 5, the performance
becomes the worst. On the contrary, let us consider the opposite scenario. When performing remove low-frequency
information with 𝐽 = 5, the low-frequency information is removed the least, while the corresponding high-frequency
information is kept the most. The accuracy rate is the highest at this time, compared with 𝐽 = 1 to 𝐽 = 4. Similarly,
as a further comparative illustration, we conducted the same experiments on highly compressed data (c40) [54], as
shown in Figure 5 (b). It is evident that we arrive at a consistent conclusion that the more high-frequency information
is retained, the more advantageous it is for DeepFake detection tasks.
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Figure 5: Comparative validation experiments based on removing different frequency domain information. Figure (a)
illustrates the detection performance of the pre-trained model, which is trained on the uncompressed version data (raw),
on newly synthesized data obtained by applying high-frequency and low-frequency removal. Similarly, Figure (b) presents
the experimental results of the pre-trained model trained on the highly compressed version data (c40), showcasing the
model’s performance on newly synthesized data obtained by applying high-frequency removal and low-frequency removal
on the compressed c40 data.

Information exchange. Furthermore, we utilize discrete wavelet decomposition to perform information exchange
strategies between the uncompressed raw data and c40 data. We aim to explore the differences in information learned by
deep neural networks between high-quality and low-quality data, and further validate the importance of high-frequency
information in DeepFake detection tasks. To achieve this goal, we design two information exchange strategies:
high-frequency information exchange and low-frequency information exchange. As shown in Figure 6, we perform
information exchange between the c40 data and the raw data to synthesize new data (new c40 data and new raw data).
Additionally, we utilize the pre-trained model on the original raw data to test the new synthesized data. In Figure 6,
“original_c40/original_raw” represents the original data (c40 or raw), and “J” represents the wavelet decomposition
level. For example, in Figure 6 (a), "New_c40 (exchanging high-frequency information with raw), 𝐽 = 1" means
that we replace the first-level high-frequency information of the original c40 data with the first-level high-frequency
information from the original raw data. To illustrate this operation more intuitively, we visualize the new synthesized
data after information exchange, as shown in Figure 7. We visualize comparing information exchange results for
wavelet decomposition levels 𝐽 = 1 to 𝐽 = 5. For high-frequency information exchange, a higher decomposition
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Figure 6: Comparative verification experiment based on frequency domain information exchange strategy. In Figure (a), we
perform high-frequency information exchange and low-frequency information exchange on the c40 and aligned raw data.
Then, we utilize the pre-trained model based on raw data to test the newly synthesized c40 data. Similarly, in Figure (b),
we test the newly synthesized raw data with the pre-trained model based on the raw data.

level means more high-frequency information is exchanged, resulting in the newly combined c40 data containing
more uncompressed high-frequency information that comes from raw data. On the contrary, the quality of newly
synthesized raw data will be decreased. In addition, the experimental results in Figure 6 indicate that the richer the
high-frequency information, the higher the corresponding accuracy in DeepFake detection. This phenomenon suggests
that the promising detection performance of deep neural networks on uncompressed data is mainly attributed to the
learning of high-frequency information. However, for low-quality data, deep neural networks can only rely on low-
frequency information for learning, resulting in a sharp decline in detection performance. This observation indirectly
reflects that CNN-based deepfake detection methods mainly rely on high-frequency information (Texture) in synthetic
data for learning, which is consistent with the research results of Liu et al. [40].

Information re-learning. Moreover, we retrain a new model on the newly synthesized c40 data after the
information exchange to explore whether the information enhancement strategy can improve detection accuracy. As
shown in Table 1, we analyze the results after exchanging different levels of high-frequency information. It can be
found that when less low-frequency information is retained, more high-frequency information is obtained through
the exchange (e.g. 𝐽 = 5), and the synthesized data is more easily identified. In other words, the high-frequency
enhancement strategy is beneficial to the authenticity of low-quality data.
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(a) raw
(b) c40

J=1 J=3 J=4J=2 J=5originalJ=4 J=2 J=1J=3 originalJ=5

The exchange of high-frequency informationThe exchange of low-frequency information

Figure 7: New synthetic data results based on information exchange. The left sub-figure shows the result obtained by
low-frequency information exchange, and the right sub-figure shows the result obtained by high-frequency information
exchange. The first row, “(a) raw”, represents the visualization process of the newly synthesized raw data as information
swapping takes place. The second row, “(b) c40”, represents the visualization process of the newly combined c40 data as
information exchange occurs. Obviously, in the left sub-figure, as “J” gets larger, the c40 data becomes blurrier, while the
original data becomes clearer. On the right sub-figure, the raw data becomes more blurred as “J” gets larger, while the
c40 data behaves in the opposite direction.

Table 1
The performance of the model that retrained on the newly synthesized c40 data, where the high-frequency information in
the synthesized c40 data is derived from the original uncompressed raw data.

Data type original c40 New c40 data
J=1 J=2 J=3 J=4 J=5

DeepFakes 90.81 99.69 99.83 99.83 99.93 99.97
Face2Face 80.94 99.48 99.44 99.59 99.59 99.61
FaceSwap 79.97 98.01 98.54 99.13 99.16 99.34
FaceShifter 86.01 98.63 98.99 99.49 99.53 99.55

NeuralTextures 65.14 98.06 98.78 99.10 99.26 99.33

3.2. High-Frequency Enhancement Network
Based on a series of analyses above, we propose a novel High-Frequency Enhancement (HiFE) network for highly

compressed low-quality fake content from a novel perspective. Our goal is to solve the problem of poor performance
for low-quality data. In particular, HiFE aims to explore the most effective information for the DeepFake detection
task, and the architecture is shown in Figure 1. The proposed detection framework consists of three branches, i.e., the
Basic branch based on original RGB, the Local High-Frequency Enhancement (LHiFE) branch based on Block-wise
DCT, and the Global High-Frequency Enhancement (GHiFE) branch based on Multi-level DWT.

On the one hand, to reflect the importance of frequency domain information in different local spatial domains,
we construct a novel frequency-aware multi-spatial attention strategy based on Block-wise DCT. With the learnable
channel attention mechanism and channel bottleneck module, we are able to adaptively extract and enhance local
high-frequency information. In addition, the channel bottleneck module can also remove redundant information and
improve the utilization of effective information. Finally, we restore the new frequency-aware coefficients to the spatial
domain via inverse Block-wise DCT.

On the other hand, to make full use of multi-directional and multi-scale high-frequency information, we design a
global high-frequency enhancement branch through Multi-level DWT embedding. Specifically, we construct a Multi-
level DWT and a cascade-residual-based multi-level fusion strategy to explore and enhance the weakened global high-
frequency information in low-quality data.

Finally, we design a Two-Stage Cross-Fusion module for the multi-domain information fusion, which is built
after Dual Cross-Attention to effectively embed local high-frequency and global high-frequency information into the
backbone network.

To provide a clearer illustration of how the input image propagates through the model during the forward pass, we
present a running example (Figure 2) as a supplement to describe the entire model pipeline of our proposed architecture.
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3.2.1. Local High-Frequency Enhancement Branch with Block-wise DCT
Considering that the importance of various local regions is different, we aim to construct a Local High-Frequency

Enhancement branch that fully utilizes the frequency domain information to implement an adaptively frequency-aware
multi-spatial attention mechanism in different local spatial domains.

To achieve the above goal, we analyze existing compression techniques and point out that compression affects
different local regions differently. Moreover, we approach the problem from a novel perspective by leveraging the
principles of compression in reverse.

Image compression is a common digital image processing strategy to reduce transmission pressure. In particular,
JPEG technology divides the image into non-overlapping image blocks, performs discrete cosine transformation on
each image block to obtain DCT coefficients, and finally quantizes coefficients through a quantization table, which
will cause high-frequency loss. While this operation effectively reduces storage pressure overall, quantization has
different effects on different local regions of the image. For instance, certain local regions may lose more high-
frequency information compared to other regions. Losing some high-frequency information may not disrupt the content
of the image, but it can be detrimental to neural networks. Studies [68, 41, 73] have shown that in the process of
target recognition, the neural network will first use low-frequency information, and after reaching a certain level, it
will deeply dig high-frequency information to improve accuracy. This phenomenon also confirms why compressed
images are harder to discern. In order to fully exploit the importance of information in different local areas of the
image, we reproduce the DCT compression process. The difference is that our purpose is to extract the local high-
frequency information and give more attention to the remaining high-frequency components rather than eliminating
high-frequency details. The specific algorithm is shown in Algorithm 1.
Algorithm 1 Algorithm in the Local High-Frequency Enhancement branch (LHiFE)
Require: RGB image 𝑋 ∈ ℝ𝐶×𝐻×𝑊 ⊳ Input
Ensure: Local High-Frequency Enhancement image 𝑋𝐼𝐵𝐷 ∈ ℝ𝐶×𝐻×𝑊 ⊳ Output

1: 𝑋 →
{

𝑋𝑖, 𝑋𝑖 ∈ ℝ𝐶×ℎ×𝑤} ⊳ Block image
2: 𝑋 → 𝑋𝐵𝐷 ∈ ℝ64∗𝐶×𝑀×𝑁 ⊳ Block-wise DCT, Eq. (1)
3: 𝑋𝐵𝐷 ∈ ℝ64∗𝐶×𝑀×𝑁 → 𝑋𝐶𝐴 ∈ ℝ64∗𝐶×𝑀×𝑁 ⊳ Channel Attention, Eq. (2),(3)
4: 𝑋𝐶𝐴 ∈ ℝ64∗𝐶×𝑀×𝑁 → 𝑋𝐶𝐵 ∈ ℝ64∗𝐶×𝑀×𝑁 ⊳ Channel Bottleneck, Eq. (4)
5: 𝑋𝐶𝐵 ∈ ℝ64∗𝐶×𝑀×𝑁 → 𝑋𝐼𝐵𝐷 ∈ ℝ𝐶×𝐻×𝑊 ⊳ Inverse Block-wise DCT, Eq. (5)

To illustrate the proposed method more clearly, we represent the local high-frequency branch graphically. As shown
in Figure 8, suppose the input image is𝑋 ∈ ℝ𝐶×𝐻×𝑊 . Firstly, we partition the image𝑋 into non-overlapping blocks𝑋𝑖
of size ℎ ∗ 𝑤. Based on that operation, we get a total of 𝑀 ∗ 𝑁 sub-blocks, where 𝑀 = 𝐻

ℎ , 𝑁 = 𝑊
𝑤 . The input image

can be represented as 𝑋 =
{

𝑋𝑖
}𝑀∗𝑁
𝑖=1 , and 𝑋𝑖 ∈ ℝ𝐶×ℎ×𝑤. Then, we transform the spatial domain information into the

frequency domain 𝑋𝐵𝐷 by performing the Block-wise Discrete Cosine Transform (BD), which can be expressed by
Eq. (1):

𝑋𝐵𝐷 =
{

𝐷(𝑋𝑖)
}𝑀∗𝑁
𝑖=1 (1)

Where 𝐷 (⋅) indicates the DCT operation. After the above operation, all the DCT coefficients are spliced together
to form multiple DCT coefficient channels. Since we perform the 8*8 blocking operation on the image, we can get 64
DCT coefficients, and 𝑋𝐵𝐷 satisfies 𝑋𝐵𝐷 ∈ ℝ64∗𝐶×𝑀×𝑁 .

Furthermore, we adopt the channel attention mechanism (CA) to adaptively realize information interaction
and high-frequency enhancement of different DCT coefficient channels. As shown in Eq. (2), with the channel
attention mechanism, we adaptively adjust the importance of different DCT coefficient channels and achieve relative
enhancement of high-frequency information. After that, we obtain new channel weights 𝑊𝐶𝐴 ∈ ℝ64∗𝐶×1×1 through
the sigmoid function.

𝑊𝐶𝐴 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

𝑀𝐿𝑃
(

𝐴𝑣𝑔𝑃𝑜𝑜𝑙
(

𝑋𝐵𝐷
))

+𝑀𝐿𝑃
(

𝑀𝑎𝑥𝑃𝑜𝑜𝑙
(

𝑋𝐵𝐷
))) (2)

By reweighting the original DCT coefficient channel, the new DCT coefficient channel 𝑋𝐶𝐴 ∈ ℝ64∗𝐶×𝑀×𝑁 can
be obtained, as shown in Eq. (3), where the symbol ⊙ represents the element dot product operation.
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Figure 8: The proposed Local High-Frequency Enhancement branch (LHiFE) pipeline based on Block-wise DCT.

𝑋𝐶𝐴 = 𝑋𝐵𝐷 ⊙𝑊𝐶𝐴 (3)
In addition, we construct a learnable channel bottleneck (CB) module represented by the convolution module 𝐹𝐶𝐵 ,

which is designed to remove redundant information and further achieve adaptive fine-tuning enhancement of DCT
high-frequency coefficients. Moreover, by using multiple 3*3 convolution stacks, this module achieves information
interaction between adjacent spatial locations in the same DCT channel, and the local field of view of the high-
frequency enhancement strategy is expanded, thereby effectively retaining spatial information correlation. After that,
the new channel coefficients 𝑋𝐶𝐵 ∈ ℝ64∗𝐶×𝑀×𝑁 can be obtained. The operation can be referred to Eq. (4), where ⊗
represents convolution operation:

𝑋𝐶𝐵 = 𝐹𝐶𝐵 ⊗𝑋𝐶𝐴 (4)
Finally, the DCT coefficients of different channels adaptively weighted by the channel attention mechanism and

the channel bottleneck module are back to the spatial domain 𝑋𝐼𝐵𝐷 ∈ ℝ𝐶×𝐻×𝑊 through Inverse Block-wise Discrete
Cosine Transform (IBD), as depicted in Eq. (5).

𝑋𝐼𝐵𝐷 =
{

𝐷−1(𝑋𝐶𝐵)
} (5)

Through the above operations, the New DCT coefficients that highlight high-frequency information will be reflected
in different local spatial domains, thereby indirectly realizing the multi-spatial attention mechanism of frequency
awareness. Additionally, the designed algorithm can directly reflect the frequency domain information differences of
genuine and fake content, which are difficult for neural networks to capture, into different local spatial domain images.
Experimental experience tells us that this not only helps to make full use of frequency domain information but also
improves the training efficiency of the model.
3.2.2. Global High-Frequency Enhancement Branch with Multi-level DWT

In order to augment the global image texture representation with high-frequency information for robust high-
compression image detection, we propose a Global High-Frequency Enhancement branch. In particular, we employ
Jie Gao et al.: Preprint submitted to Elsevier Page 13 of 29



DeepFake Detection Based on High-Frequency Enhancement Network for Highly Compressed Content

discrete wavelet decomposition to decompose the image into multiple sub-bands of high-frequency and low-frequency
information to avoid destroying the spatial structure. Furthermore, we construct a multi-level enhancement strategy for
the high-frequency information obtained by different decomposition levels, aiming to exploit synthetic high-frequency
trajectories deeply.

As shown in Figure 9 (b), we design a cascade-residual-based multi-level fusion strategy, which is dedicated to
deeply mining high-frequency information in low-quality images. The high-frequency information from the previous
level is further decomposed into three components (horizontal information, vertical information, diagonal information),
and they are cascaded with the corresponding three types of high-frequency information from the next level. The
purpose of this operation is to gradually supplement the residual high-frequency information and prevent the loss of
weak high-frequency information during the forward propagation process of the deep neural network. In addition,
after each level of DWT, we constructed the corresponding high-frequency enhancement module to reinforce high-
frequency information at different scales adaptively. Moreover, to describe our algorithm more clearly, we provide a
detailed single-level fusion strategy in Figure 9 (a). And the overall global high-frequency enhancement algorithm is
shown in Algorithm 2.
Algorithm 2 Algorithm in the Global High-Frequency Enhancement branch (GHiFE)
Require: RGB image 𝑋 ∈ ℝ𝐶×𝐻×𝑊 , The total number 𝐽 of decomposition levels ⊳ Input
Ensure: Global High-Frequency Enhancement image 𝑋𝑀𝐿𝐷 ∈ ℝ𝐶×𝐻

16×
𝑊
16 ⊳ Output

1: for 𝑖 ← 1 to 𝐽 do
2: 𝑋 →

{

𝑋𝑖,𝐿𝐿, 𝑋𝑖,𝐿𝐻 , 𝑋𝑖,𝐻𝐿, 𝑋𝑖,𝐻𝐻
}, 𝑋𝑖,∗ ∈ ℝ𝐶×𝐻

2𝑖
×𝑊

2𝑖 ⊳ Single-Level DWT, Eq. (7,10)
3: 𝑋𝑖,𝐿𝐻 , 𝑋𝑖,𝐻𝐿, 𝑋𝑖,𝐻𝐻 ← 𝐹𝐻𝐹 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

(

𝑋𝑖,𝐿𝐻 , 𝑋𝑖,𝐻𝐿, 𝑋𝑖,𝐻𝐻
)

⊳ Eq. (8,11)
4: if 𝑖 > 1 then

5:
⎧

⎪

⎨

⎪

⎩

𝑋𝑖,𝐿𝐻 ← 𝐹𝐿𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋𝑖,𝐿𝐻 , 𝑋𝑖−1
𝐿𝐻

)

𝑋𝑖,𝐻𝐿 ← 𝐹𝐻𝐿 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋𝑖,𝐻𝐿, 𝑋𝑖−1
𝐻𝐿

)

𝑋𝑖,𝐻𝐻 ← 𝐹𝐻𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋𝑖,𝐻𝐻 , 𝑋𝑖−1
𝐻𝐻

)

𝑋𝑖,∗ ∈ ℝ𝐶×𝐻
2𝑖
×𝑊

2𝑖 ⊳ Multi-Level Fusion, Eq. (12)

6: 𝑋𝑖,𝐻 = 𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋𝑖,𝐿𝐻 , 𝑋𝑖,𝐻𝐿, 𝑋𝑖,𝐻𝐻
)

⊳ Enhanced Global High-Frequency Information
7: else if 𝑖 = 𝐽 then
8: 𝑋𝑀𝐿𝐷 ← 𝐹𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

(

𝑋𝑖,𝐿𝐻 , 𝑋𝑖,𝐻𝐿, 𝑋𝑖,𝐻𝐻
)

⊳ Final Fusion Results
9: end if

10:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑖,𝐿𝐻 →
{

𝑋𝐿𝐻
𝑖,𝐿𝐿, 𝑋

𝐿𝐻
𝑖,𝐿𝐻 , 𝑋𝐿𝐻

𝑖,𝐻𝐿, 𝑋
𝐿𝐻
𝑖,𝐻𝐻

}

, 𝑋𝐿𝐻
𝑖,∗ ∈ ℝ𝐶× 𝐻

2(𝑖+1)
× 𝑊
2(𝑖+1)

𝑋𝑖,𝐻𝐿 →
{

𝑋𝐻𝐿
𝑖,𝐿𝐿, 𝑋

𝐻𝐿
𝑖,𝐿𝐻 , 𝑋𝐻𝐿

𝑖,𝐻𝐿, 𝑋
𝐻𝐿
𝑖,𝐻𝐻

}

, 𝑋𝐻𝐿
𝑖,∗ ∈ ℝ𝐶× 𝐻

2(𝑖+1)
× 𝑊
2(𝑖+1)

𝑋𝑖,𝐻𝐻 →
{

𝑋𝐻𝐻
𝑖,𝐿𝐿, 𝑋

𝐻𝐻
𝑖,𝐿𝐻 , 𝑋𝐻𝐻

𝑖,𝐻𝐿, 𝑋
𝐻𝐻
𝑖,𝐻𝐻

}

, 𝑋𝐻𝐻
𝑖,∗ ∈ ℝ𝐶× 𝐻

2(𝑖+1)
× 𝑊
2(𝑖+1)

⊳ Multi-Level DWT

11:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑖
𝐿𝐻 ← 𝐹𝐿𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

(

𝑋𝐿𝐻
𝑖,𝐿𝐻 , 𝑋𝐻𝐿

𝑖,𝐿𝐻 , 𝑋𝐻𝐻
𝑖,𝐿𝐻

)

𝑋𝑖
𝐻𝐿 ← 𝐹𝐻𝐿 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

(

𝑋𝐿𝐻
𝑖,𝐻𝐿, 𝑋

𝐻𝐿
𝑖,𝐻𝐿, 𝑋

𝐻𝐻
𝑖,𝐻𝐿

)

𝑋𝑖
𝐻𝐻 ← 𝐹𝐻𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

(

𝑋𝐿𝐻
𝑖,𝐻𝐻 , 𝑋𝐻𝐿

𝑖,𝐻𝐻 , 𝑋𝐻𝐻
𝑖,𝐻𝐻

)

𝑋𝑖
∗ ∈ ℝ3𝐶× 𝐻

2(𝑖+1)
× 𝑊
2(𝑖+1) ⊳ Multi-Direction, Eq. (9)

12: 𝑋 ← 𝑋𝑖,𝐿𝐿 ⊳ Multi-Scale: Decomposition of Low-Frequency Information
13: end for

We use the following notation for a detailed description of the first-level high-frequency information enhancement
learning in Algorithm 2. Similar to Section 3.2.1, assuming that the input image can be represented by 𝑋 ∈ ℝ𝐶×𝐻×𝑊 ,
we adopt the multi-level wavelet decomposition strategy to globally separate frequency domain information. As shown
in Eq. (6), there are four wavelet decomposition filters in each stage, denoted as 𝑓𝐿𝐿, 𝑓𝐿𝐻 , 𝑓𝐻𝐿, and 𝑓𝐻𝐻 , respectively.

⎧

⎪

⎨

⎪

⎩

𝑓𝐿𝐿 =
[

1 1
1 1

]

𝑓𝐿𝐻 =
[

−1 −1
1 1

]

𝑓𝐻𝐿 =
[

−1 1
−1 1

]

𝑓𝐻𝐻 =
[

1 −1
−1 1

] (6)
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Figure 9: Schematic diagram of the Global High-Frequency Enhancement (GHiFE) branch based on Multi-level DWT.
Figure (a) describes the single-level fusion strategy in detail; Figure (b) shows the multi-level fusion strategy, and the part
inside the dotted rectangle box represents a rough representation of the single-level fusion.
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Decomposed by the first-level DWT, we can obtain one low-frequency information 𝑋1,𝐿𝐿 and three high-frequency
information 𝑋1,𝐿𝐻 , 𝑋1,𝐻𝐿, 𝑋1,𝐻𝐻 with different directions, which can be represented by Eq. (7). Where ⊗ represents
convolution operation, and ↓2 refers to the image size being reduced by half.

⎧

⎪

⎨

⎪

⎩

𝑋1,𝐿𝐿 = (𝑓𝐿𝐿 ⊗𝑋) ↓2
𝑋1,𝐿𝐻 = (𝑓𝐿𝐻 ⊗𝑋) ↓2
𝑋1,𝐻𝐿 = (𝑓𝐻𝐿 ⊗𝑋) ↓2
𝑋1,𝐻𝐻 = (𝑓𝐻𝐻 ⊗𝑋) ↓2

(7)

After that, we perform adaptive learning on the decomposed high-frequency information through Eq. (8) to achieve
single-level high-frequency information-enhanced learning. Among them, 𝐹𝐻𝐹 refers to our three-directional high-
frequency enhancement module, which is mainly composed of enhancement module 𝐹𝐸 and group learning module
𝐹𝐺𝑟𝑜𝑢𝑝𝐶𝑜𝑛𝑣. The purpose of group learning is to ensure the separation of information in different directions for the next
step of fusion. The 𝐹𝐸 module utilizes multiple convolution stacks with a kernel size of 1*1 to achieve enhancement
purposes. For the convenience of description, we uniformly use 𝐹𝐸 to refer to the enhancement module in the following
and provide the composition of this module in Figure 10.

𝑋1,𝐿𝐻 , 𝑋1,𝐻𝐿, 𝑋1,𝐻𝐻 = 𝐹𝐻𝐹 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋1,𝐿𝐻 , 𝑋1,𝐻𝐿, 𝑋1,𝐻𝐻
) (8)

 

Figure 10: The network architecture of some components (HF/HL/LH/HH Conv in Fig. 1) in the GHiFE branch.

Additionally, to obtain multi-scale high-frequency information, we further decompose the first-level high-
frequency information learned above. We perform DWT operations separately on the high-frequency information
in three different directions and concatenate them accordingly. Subsequently, we apply enhancement strategies
individually in each direction, as described in Eq. (9). Here we use different symbols (𝐹𝐿𝐻 ,𝐹𝐻𝐿,𝐹𝐻𝐻 ) to represent
high-frequency information enhancement learning modules in different directions.

⎧

⎪

⎨

⎪

⎩

𝑋1
𝐿𝐻 = 𝐹𝐿𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

{(

𝑓𝐿𝐻 ⊗𝑋1,𝐿𝐻
)

↓2,
(

𝑓𝐿𝐻 ⊗𝑋1,𝐻𝐿
)

↓2,
(

𝑓𝐿𝐻 ⊗𝑋1,𝐻𝐻
)

↓2
}

𝑋1
𝐻𝐿 = 𝐹𝐻𝐿 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

{(

𝑓𝐻𝐿 ⊗𝑋1,𝐿𝐻
)

↓2,
(

𝑓𝐻𝐿 ⊗𝑋1,𝐻𝐿
)

↓2,
(

𝑓𝐻𝐿 ⊗𝑋1,𝐻𝐻
)

↓2
}

𝑋1
𝐻𝐻 = 𝐹𝐻𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡

{(

𝑓𝐻𝐻 ⊗𝑋1,𝐿𝐻
)

↓2,
(

𝑓𝐻𝐻 ⊗𝑋1,𝐻𝐿
)

↓2,
(

𝑓𝐻𝐻 ⊗𝑋1,𝐻𝐻
)

↓2
}

(9)

At the same time, we excavate high-frequency information in different directions from the first-level low-frequency
information to supplement the above-mentioned insufficient high-frequency information, which can be described as
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Eq. (10).
⎧

⎪

⎨

⎪

⎩

𝑋2,𝐿𝐿 = (𝑓𝐿𝐿 ⊗𝑋1,𝐿𝐿) ↓2
𝑋2,𝐿𝐻 = (𝑓𝐿𝐻 ⊗𝑋1,𝐿𝐿) ↓2
𝑋2,𝐻𝐿 = (𝑓𝐻𝐿 ⊗𝑋1,𝐿𝐿) ↓2
𝑋2,𝐻𝐻 = (𝑓𝐻𝐻 ⊗𝑋1,𝐿𝐿) ↓2

(10)

Likewise, we use a three-directional high-frequency enhancement module 𝐹𝐻𝐹 to perform feature extraction and
reinforcement on them, as shown in Eq. (11).

𝑋2,𝐿𝐻 , 𝑋2,𝐻𝐿, 𝑋2,𝐻𝐻 = 𝐹𝐻𝐹 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋2,𝐿𝐻 , 𝑋2,𝐻𝐿, 𝑋2,𝐻𝐻
) (11)

Furthermore, we design a fusion strategy based on cascaded residuals. This strategy is similar to residual, but the
difference is that we only perform cascade fusion of the high-frequency information obtained by decomposing the
low-frequency information of the previous layer and the high-frequency information obtained by re-decomposing the
previous layer, instead of simple addition. Specifically, according to the direction, we combined the high-frequency
information (𝑋1

𝐿𝐻 ,𝑋1
𝐻𝐿,𝑋1

𝐻𝐻 ), which is obtained by re-decomposing and learning from the first-level high-frequency
information, and the high-frequency information (𝑋2,𝐿𝐻 , 𝑋2,𝐻𝐿, 𝑋2,𝐻𝐻 ), which is collected by decomposing and
learning from the first-level low-frequency information.

𝑋1,𝐻 = 𝐶𝑜𝑛𝑐𝑎𝑡

⎧

⎪

⎨

⎪

⎩

𝐹𝐿𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋2,𝐿𝐻 , 𝑋1
𝐿𝐻

)

𝐹𝐻𝐿 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋2,𝐻𝐿, 𝑋1
𝐻𝐿

)

𝐹𝐻𝐻 ⊗𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑋2,𝐻𝐻 , 𝑋1
𝐻𝐻

)

⎫

⎪

⎬

⎪

⎭

(12)

Finally, by cascading high-frequency information in different directions and further reinforcing strategy, the
enhanced first-level global high-frequency information 𝑋1,𝐻 is attained, which can be expressed by Eq. (12). So far,
we have achieved first-level global high-frequency information fusion results.

In order to obtain multi-level global high-frequency information, we continue to decompose and learn the obtained
high-frequency information 𝑋1,𝐻 and low-frequency information 𝑋2,𝐿𝐿 similar to the first-level above. After multiple
decompositions and fusions, we obtain the multi-level global high-frequency components 𝑋4,𝐻 (we set 𝐽=4 in
Algorithm 2), and then we construct a feature extract block 𝐹𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘 to get the final Multi-level Discrete Wavelet
Transform high-frequence feature 𝑋𝑀𝐿𝐷.

In our work, the proposed global branch based on the Discrete Wavelet Transform employs a four-level wavelet
decomposition to ensure compatibility between the output size of high-frequency components and the backbone
network, while also extracting more high-frequency information. In other words, following the same process, we
continue to obtain three levels of global high-frequency enhancement information, allowing the 224x224 input image
to be decomposed into 14x14, which is then fused with the features of the backbone network.
3.2.3. Two-Stage Cross-Fusion Module

Considering the complementarity of local and global information, we construct a Two-Stage Cross-Fusion module
for multi-domain information fusion, aiming to further improve the model’s robustness in the face of compression. In
particular, we perform the fusion of the Local High-Frequency Enhancement branch with the Global High-Frequency
Enhancement at the mid-stream position of the backbone network. On the one hand, choosing this location guarantees
feature size compatibility. On the other hand, the mid-stream position of the backbone network can not only extract
enough RGB image features, but the remaining backbone network can fully and effectively fuse the three-domain
information after this position.

In addition, before the fusion module we designed, our single high-frequency enhancement branch and backbone
network first adopted the Dual Cross-Attention (DCA) mechanism [42]. We hope that the module can adaptively pay
different levels of attention to the information coming from the two domains. As shown in Figure 1, on the one hand,
we use DCA to perform feature re-adjustment between the LHiFE branch and the backbone network. On the other
hand, we perform feature adaptive fine-tuning between the GHiFE branch and the backbone network in the same
way. After that, we embed the designed Two-Stage Cross-Fusion module to further learn and fuse the above features.
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By designing a two-stage fusion method, we not only avoid the conflicts caused by the direct fusion of global high-
frequency information and local frequency perception information but also effectively retain all available information,
and can learn adaptively in the second stage of fusion, making the learned high-frequency information is more fully
integrated into the backbone network. The schematic diagram of our fusion strategy is shown in Figure 11.

 

Figure 11: Schematic diagram of the Dual Cross-Attention and Two-Stage Cross-Fusion module.

4. Experiments
4.1. Experimental Setup
Datasets. In order to get a more complete and reliable conclusion, following most of the previous works on face
forgery detection, we choose to conduct experiments on the challenging FaceForensics++ [54] dataset which contains
three compression levels and five forgery methods, and Celeb-DF [32] dataset that is more realistic. Moreover, we also
choose the OpenForensics [27] dataset that is dedicated to DeepFake detection in the wild as a supplement to highlight
the superiority of our method.

FaceForensics++. FF++ is a face forgery detection video dataset containing 1000 real videos and 5000 fake
videos. To synthesize fake images, Faceforensics++ first extracts only face regions from the target image and then
matches non-face regions in the source image through final steps such as affine transformation and shape refinement,
which may cause visual artifacts. Those fake videos are composed of five forgery methods: DeepFakes, Face2Face,
FaceSwap, FaceShifter, and Neuraltextures. Each of them contains three quality levels, including uncompressed high-
quality (HQ, raw) version, weakly compressed medium-quality (MQ, c23) version, and highly compressed low-quality
(LQ, c40) version, respectively. The mechanics behind each DeepFake method are given below.

1) DeepFakes: DeepFakes is an identity manipulation technique by uses an autoencoder to replace the face of the
target video with the face of the source video. Moreover, the poisson blending post-processing is utilized to synthesize
realistic images further.

2) Face2Face: Face2Face is one kind of facial expression swap method that transfers the expression of a source
video to a target video while maintaining the identity of the target person.
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3) FaceSwap: FaceSwap belongs to facial identity swap methods. The source person’s face is first extracted based
on sparsely detected facial features, and a 3D template model is fitted using blend shapes, which are then copied into
the target person’s facial features, and finally color-corrected for realistic synthetic content.

4) FaceShifter: The task realized by FaceShifter is the face identity transformation in face generation, which means
the target face can be replaced with the source face, where the source image provides identity, and the target image
provides attributes. The entire face-swapping stage consists of two parts, in the first stage, a GAN-based Adaptive
Embedding Integration Network (AEI-Net) is designed for adaptive integration of target attributes. In the second stage,
they use the Heuristic Error Acknowledging Network (HEARNet) to handle the facial occlusions and refine the result.

5) Neuraltextures: NeuralTextures proposed a face reenactment method that utilizes rendering methods to modify
only the mouth region of the target video while keeping the rest of the region unchanged, making synthetic data more
realistic by minimizing adversarial and reconstruction losses.

Celeb-DF. The Celeb-DF dataset contains two released versions (V1 and V2). Compared with V1, Celeb-DF V2
contains more videos and more realistic visual perception. So far, Celeb-DF includes 590 original videos of different
ages, races, and genders collected from YouTube, and 5639 corresponding DeepFake videos.

OpenForensics. OpenForensics is a large-scale challenging dataset created for multi-face forgery detection. With
rich and explicit facial annotations, this dataset has great research potential in DeepFake prevention and face detection
in general. In contrast, this dataset contains various backgrounds and multiple people of different ages, genders, poses,
positions, and face occlusions, which is more suitable for real-world scene detection.
Implementation details. We implement all the approaches with PyTorch. First, we perform preprocessing on the
dataset. Specifically, for FF++ and Celeb-DF datasets, we use the face detection model MTCNN to locate and crop the
faces in the video dataset. In order to preserve more face regions and operation traces, we use conservative cropping
to enlarge the face regions by a factor of 1.3 around the tracked face center. Then, the cropped RGB face image is
resized to 224×224×3 pixels. At the same time, in order to explore the data differences with different compression
levels during detection, we must keep the same position and size when cropping faces under different compression
strength versions of the same fake data in FF++. Finally, for each synthetic dataset in FF++ data, we selected 750 fake
videos as the training set and the remaining 250 fake videos as the testing set. In order to ensure the balance between
real and fake data, we also select 750 real videos as the training set, and the remaining 250 real videos as the testing
set. Similarly, for the Celeb-DF v1 dataset, we select 600 videos (300 real, 300 fake) as the training set and 216 videos
as the testing set (108 real, 108 fake). For the Celeb-DF v2 dataset, we selected 1400 videos as the training set (700
real, 700 fake) and 380 as the testing set (190 real, 190 fake). In our experiments, all models are trained on frame-level
images. Thus, we sample 32 frames for each video, consistent with the literature [3].

Moreover, since the OpenForensics dataset only contains images, we don’t need to perform video frame extraction
on them. For the preprocessing of this dataset, we first adopted data randomization and then selected 12,000 images as
the training set, and 4,000 images as the test set for experiments. Just like the above setting, each image of this dataset
was set to 224×224×3.

Considering fairness, we perform the same setting on all models during the training phase. Specifically, for the
training protocol, we choose SGD with momentum as the optimizer, and the weight decay is set as 1e-5. In addition,
we set the initial learning rate to 0.001, the momentum to 0.9, and the batch size to 8. At the same time, to reduce the
burden on computing resources, we train each model for 20 iterations.
Evaluation metrics. For evaluation metrics, following most experimental settings, we use the Accuracy (Acc) and
Area Under the Receiver Operating Characteristic Curve (AUC-ROC), commonly used in face forgery detection tasks,
to perform verification.
4.2. Qualitative Visual Analysis

In order to more intuitively show that the features extracted by different branches in our proposed method are
complementary, we visualize the output results before the fusion of the three branches, as shown in Figure 12. The
first column represents the content synthesized by different forgery methods. The second column, Figure 12 (a), shows
the local high-frequency information learning process of the Local HiFE branch based on Block-wise DCT. The third
column, Figure 12 (b), is the feature heatmap visualization result extracted by the backbone network Xception before
fusion. Finally, Figure 12 (c) reveals the global high-frequency information learning process of the Global HiFE branch
based on Multi-level DWT. We can find that the features learned by the three branches are different, which is indicated
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(a) Local HiFE branch (c) Global HiFE branch(b) Basic branchDeepfakes

Face2Face (a) Local HiFE branch (b) Basic branch (c) Global HiFE branch

FaceSwap (b) Basic branch (c) Global HiFE branch

(c) Global HiFE branch(b) Basic branchFaceShifter

(c) Global HiFE branch(b) Basic branchNeuralTextures

(a) Local HiFE branch

(a) Local HiFE branch

(a) Local HiFE branch

Figure 12: Heatmap visualization of our proposed model in each branch based on CAM [20]. The first column shows the
original image (c40 version) of different forgery methods. Figure (a) shows the learning process of the Local High-Frequency
Enhancement branch. Figure (b) indicates the feature activation map of the backbone network before fusion. Figure (c)
describes the learning process of the Global High-Frequency Enhancement branch.

by the feature heatmap. Therefore, there is a complementary relationship between the three branches, which also lays
the foundation for performance improvement through fusion. Next, we separately analyze how the two branches we
proposed improve the detection performance.

Impact of Local HiFE branch. Fig. 12 (a) shows the feature learning process of the LHiFE branch based on Block-
wise DCT after frequency-aware spatial attention from left to right. We can see that the first picture clearly shows that
the importance of different local regions is different. The regions with higher brightness are assigned higher weights,
indicating that the model pays more attention to those areas. With the continuous learning process of the network, a
connected local region heat map is gradually formed, realizing a local-to-global attention model.

Impact of Global HiFE branch. Fig. 12 (c) illustrates the feature learning process of the GHiFE branch based
on Multi-level DWT from left to right. We can observe a progressive enhancement of high-frequency information,
transitioning from focusing on fewer local contour details in the first image to ultimately forming broader global details.
It also indicates the effectiveness of our multi-level fusion approach in enhancing the extraction of high-frequency detail
information.

Based on the visual analysis, we can conclude that our method can effectively extract local and global high-
frequency information with complementarity, which means our model can have multi-view capabilities and capture
more detailed information. Additionally, from the experimental results in Table 2 and Table 4, it can be observed that
our model not only enhances deepfake detection performance at high compression ratios but also shows performance
improvement for deepfake content at lower compression ratios. For example, in Table 2, for the uncompressed version
(raw) in the FF++ dataset, our algorithm improves by about 0.63% on average; for the lightly compressed version (c23),
the average improvement is about 2.99%. In addition, among all SOTA methods in Table 4, the average performance
of MAT[74] is the best, and its average performance of all compressed versions in the FF++ dataset is about 94.39%.
In comparison, our method HiFE is better, with an average performance of about 94.69%. Even on the OpenForensics
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Table 2
Ablation experiments on the performance of LHiFE and GHiFE fusion with backbone Xception and the Two-Stage Cross-
Fusion module (the second stage).

Data
Type

Data quality Acc(%) Accuracy
Improvementraw c23 c40 Xception [6] LHiFE(Ours,Xception) GHiFE(Ours,Xception) HiFE(Ours,Xception)

Deep ✓ 99.81 99.88 99.66 99.86 0.05↑

fakes ✓ 97.41 98.80 99.02 99.16 1.75↑
✓ 90.81 93.88 94.24 94.46 3.65↑

Face2 ✓ 99.26 99.76 99.49 99.82 0.56↑

Face ✓ 96.41 99.13 99.13 99.45 3.04↑
✓ 80.94 86.01 85.43 86.16 5.22↑

Face ✓ 98.74 99.83 99.86 99.80 1.06↑

Swap ✓ 96.62 99.05 98.92 99.12 2.50↑
✓ 79.97 87.48 87.28 87.99 8.02↑

Face ✓ 99.56 99.57 99.56 99.57 0.01↑

Shifter ✓ 96.99 99.04 98.98 98.99 2.00↑
✓ 86.01 92.28 90.96 92.63 6.62↑

Neural ✓ 98.33 99.55 99.58 99.79 1.46↑

Textures ✓ 89.33 94.18 94.59 94.98 5.65↑
✓ 65.14 68.82 69.11 68.66 3.52↑

Table 3
Ablation experiments on the Dual Cross-Attention (DCA) module and the Two-Stage Cross-Fusion module (the first stage).
The results (Acc%) show comparisons of the single HiFE branch fused with Xception and after removing the DCA module.

Data
Type

Data quality Xception LHiFE
(without DCA)

LHiFE
(Ours,Xception)

GHiFE
(without DCA)

GHiFE
(Ours,Xception)raw c23 c40

Deep ✓ 99.81 99.68 99.88(0.02↑) 99.66 99.66(0.00↑)

fakes ✓ 97.41 98.28 98.80(0.52↑) 98.46 99.02(0.56↑)
✓ 90.81 93.38 93.88(0.50↑) 92.86 94.24(1.38↑)

Face2 ✓ 99.26 99.08 99.76(0.68↑) 99.47 99.49(0.02↑)

Face ✓ 96.41 98.66 99.13(0.47↑) 98.77 99.13(0.36↑)
✓ 80.94 84.31 86.01(1.70↑) 84.36 85.43(1.07↑)

Face ✓ 98.74 99.76 99.83(0.07↑) 99.63 99.86(0.23↑)

Swap ✓ 96.26 98.38 99.05(0.67↑) 98.41 98.92(0.51↑)
✓ 79.97 86.29 87.48(1.19↑) 85.71 87.28(1.57↑)

Face ✓ 99.56 99.55 99.57(0.02↑) 99.56 99.56(0.00↑)

Shifter ✓ 96.99 98.57 99.04(0.47↑) 98.35 98.98(0.63↑)
✓ 86.01 90.46 92.28(1.82↑) 89.38 90.96(1.58↑)

Neural ✓ 98.33 99.06 99.55(0.49↑) 99.29 99.58(0.29↑)

Textures ✓ 89.33 93.78 94.18(0.40↑) 93.61 94.59(0.98↑)
✓ 65.14 67.71 68.82(1.11↑) 67.45 69.11(1.66↑)

dataset, which applies various perturbations to better simulate natural scenes, our method outperforms existing state-
of-the-art methods (Table 7), which also proves that our method can alleviate the indistinguishability problem caused
by compression during transmission to a certain extent.
4.3. Quantitative Ablation Analysis

To quantitatively illustrate the effectiveness of our proposed method, we conduct ablation study experiments to
explore the performance of different branches as well as fusion modules.

As shown in Table 2, we compare the performance of the original backbone network Xception, the GHiFE branch
embedded with the backbone, the LHiFE branch embedded with the backbone, and the final network HiFE. The best
detection results are highlighted in bold. Apparently, the results in the fourth and fifth columns of Table 2 confirm the
effectiveness of merging information from individual branches, leading to a significant improvement in the performance
of the backbone network. Moreover, in comparison, the network with the fusion of the three branches performs better
on low-quality data (c40), with an average performance improvement of approximately 5.41%. This also indicates that
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Table 4
Comparison of the detection performance (Acc%) of our method and SOTA methods based on three different compression
strengths in the FF++ dataset.

Data
Type

Data quality F3Net
(FAD+LFS) CEVIT Two stream CVIT EfficientNet

AutoAttB4
EfficientNet

AutoAttB4ST
Meso
Net

Meso
Inception4 MAT MCX-API HiFE

(Ours,Xception)raw c23 c40

Deep ✓ 99.98 99.61 99.75 99.74 99.88 92.45 95.81 96.23 99.50 99.31 99.86

fakes ✓ 98.49 97.69 98.16 96.65 99.18 80.01 81.18 91.36 98.39 94.89 99.16
✓ 93.26 90.45 92.29 90.38 93.40 69.38 73.36 84.23 94.41 87.68 94.46

Face2 ✓ 99.73 99.76 99.64 99.84 99.90 83.01 62.93 97.21 99.48 99.35 99.82

Face ✓ 98.36 98.27 98.04 97.69 99.08 72.59 81.84 87.61 98.94 96.73 99.45
✓ 84.29 82.43 83.78 84.79 84.34 60.15 72.55 69.83 86.00 81.07 86.16

Face ✓ 99.34 99.17 99.72 98.66 99.79 84.15 72.15 95.34 99.64 97.47 99.80

Swap ✓ 97.65 97.79 97.17 97.18 98.88 77.25 71.48 86.13 98.49 94.75 99.12
✓ 84.43 80.89 83.72 83.18 86.99 60.18 62.03 59.24 87.69 81.20 87.99

Face ✓ 99.57 99.45 99.54 99.56 99.58 89.49 90.97 96.38 99.56 99.41 99.57

Shifter ✓ 98.23 97.18 97.28 96.29 98.43 76.20 85.56 95.23 98.56 93.35 98.90
✓ 88.02 88.88 88.08 86.77 88.83 66.66 69.16 80.16 91.44 86.21 92.63

Neural ✓ 99.43 98.94 99.95 99.15 99.85 82.07 55.26 91.78 99.66 98.28 99.79

Textures ✓ 92.19 92.13 90.00 89.55 94.58 70.24 62.09 66.26 94.26 84.36 94.98
✓ 67.92 68.14 69.36 66.91 67.72 57.64 61.59 62.23 69.84 64.00 68.66

the proposed Two-Stage Cross-Fusion module (the second stage) can better integrate information from three domains.
Additionally, the advantages of our proposed method are further evident in the case of low compression strength data
(c23), with an average accuracy improvement of about 2.99%. It also enhances the accuracy of uncompressed original
data (raw) by approximately 0.63%. These experimental results validate the effectiveness of our two branches and
fusion module on DeepFake data, particularly on low-quality data.

In order to verify whether the Dual Cross-Attention module and our Two-Stage Cross-Fusion module (the first
stage) effectively fuse information from two different domains, we performed ablation experiments, as shown in
Table 3. We removed the Dual Cross-Attention module and only retained the backbone, single HiFE branch, and the
Two-Stage Cross-Fusion module (the first stage) for experimental verification. Compared with the backbone network
Xception in the third column of Table 3, the results in the fourth (LHiFE (without DCA)) and sixth (GHiFE (without
DCA)) columns reflect that the Two-Stage Cross-Fusion module (the first stage) we designed has greatly improved
the detection performance. In addition, the results in the fifth and seventh columns prove that the embedding of Dual
Cross-Attention can further improve the discriminative ability of the algorithm.
4.4. Comparative Experiments

In this section, we compare the proposed method with the state-of-the-art method to verify the effectiveness of our
proposed method from three perspectives.

Different Compressive Strengths. Considering that the original intention of our method is to improve the detection
performance of compressed DeepFake data, we first analyze the experimental results of our proposed method and the
state-of-the-art at different compression strengths. As shown in Table 4, we conduct experiments on five forgy methods
which from FF++ data. Each fake method includes three compression levels: raw (HQ), c23 (MQ), and c40 (LQ),
respectively. We selected ten SOTA methods to compare with our method. Among them, F3Net [51] distinguishes real
from fake by constructing dual-stream frequency-aware clues. The author uses DCT as the applied frequency-domain
transform. One stream manually divides the frequency sub-bands and constructs a frequency-aware decomposition
(FAD) image. The other stream uses local frequency statistical (LFS) features to achieve classification. Coccomini
et al. [8] combined Vision Transformers with convolutional EfficientNet (CEVIT), where EfficientNet is used as a
feature extractor, and the obtained features are sent to Transformer for classification. Luo et al. [42] designed a two-
stream architecture (Two stream), where the residual-guided spatial features and multi-scale high-frequency features
are fused for final classification. Wodajo and Atnafu [63] proposed a Convolutional Vision Transformer (CVIT)
for the detection of DeepFakes, which combines a Convolutional Neural Network (CNN) and Vision Transformer
(ViT). Among them, CNN extracts learnable features, while ViT takes the learned features as input and classifies
them using an attention mechanism. In addition, both EfficientNetAutoAttB4 and EfficientNetAutoAttB4ST [3] are
improved versions based on EfficientNetB4. The former integrates the attention mechanism into the network, and the
latter uses the Siamese Training mode. Afchar et al. [1] proposed to use a deep neural network with fewer layers for
deepfake detection, and constructed two structures: MesoNet and MesoInception4. They argue that image noise-based
microscopic analysis cannot be applied in compressed video environments where image noise is severely degraded.
Moreover, at a higher semantic level, it is difficult for the human eye to distinguish fake images. Therefore, they choose
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Table 5
Comparison of time complexity (FLOPs on one sample) and the number of model parameters (Params) of our proposed
method and the best SOTA method (MAT).

Model Params FLOPs
MAT 417.63M 76.41G

LHiFE(Ours,Xception) 27.46M 7.32G
GHiFE(Ours,Xception) 24.03M 5.24G
HiFE(Ours,Xception) 47.55M 11.29G

Table 6
Comparison of the model size between our proposed method and other SOTA methods.

Model Size
Xception 159MB
F3Net 321MB

Two stream 406MB
CVIT 679MB

EfficientNetAutoAttB4 134MB
EfficientNetAutoAttB4ST 67.7MB

MesoNet 198KB
MesoInception4 198KB

CEVIT 749MB
MAT 3.11GB

MCX-API 183MB
LHiFE(Ours,Xception) 219MB
GHiFE(Ours,Xception) 193MB
HiFE(Ours,Xception) 363MB

mid-level semantics for recognition. Zhao et al. [74] formulated deepfake detection as a fine-grained classification
problem and proposed a multi-attention deepfake detection network (MAT). By constructing multiple spatial attention
heads, texture feature enhancement block, and feature aggregation module, they effectively improved the detection
performance of low-quality data. Last but not least, Xu et al. [67] proposed Multi-Channel Xception Attention Pairwise
Interaction (MCX-API), which utilizes paired images for learning in a fine-grained manner and constructs multiple
color channels. Compared with the above methods, through local and global high-frequency information enhancement,
our method automatically learns and enhances the residual high-frequency information on low-quality images. The
experimental results in Table 4 show that our method achieved better performance in most cases under various
compression versions of FF++, especially on low-quality data (c40). Furthermore, on the other hand, we utilize the
AUC-ROC curve as another measure of classifier performance. As shown in Figure 13, we plot the AUC-ROC curves
of the remaining comparison methods and our proposed method on the FF++ dataset, where the classifier with a
larger AUC score has better performance. Similarly, we obtained the experimental results of all detection methods
under different compression strengths. From the results in the figure, we can see that our method outperforms other
methods. Specifically, the AUC of our proposed method is larger, and the ROC curve is sharper, which means that our
approach has better classification performance. Especially on highly compressed data (c40), our method significantly
outperforms other methods.

Furthermore, it is worth emphasizing that our model is lightweight. As depicted in Table 5, compared with the
best-performing state-of-the-art method (MAT), our model has two significant advantages: lower FLOPs and fewer
model parameters, which indicates faster inference, simpler, and easier to train. In addition, we provide the comparison
results of model sizes of all methods in Table 6 to illustrate that our method is more convenient to deploy in resource-
constrained environments.

Different Dataset. To verify that our proposed method is not only effective for the FF++ dataset, in this part, we
conduct additional experiments on other datasets. The experimental results are shown in Table 7. Considering that we
aim to improve the accuracy of low-quality fake data, as a further supplementary illustration, we conduct experiments
on three different compressed versions of the entire FF++ dataset, including five fake patterns. Furthermore, we select
three more challenging datasets to illustrate the practical generalizability of our method. Experiments were carried
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Table 7
Performance comparison of detection methods based on FF++, Celeb-DF and OpenForensics.

Method Dataset
FF++ (raw) FF++ (c23) FF++ (c40) Celeb-DF V1 Celeb-DF V2 OpenForensics

Xception [6] 98.88 90.46 69.97 94.76 95.30 98.70
F3Net(FAD) [51] 98.69 89.22 69.68 94.40 94.12 98.93
F3Net(LFS) [51] 90.03 85.17 62.52 80.61 80.48 93.90

F3Net(FAD+LFS) [51] 99.10 89.56 70.79 94.46 94.15 98.38
Two stream [42] 99.66 78.96 66.13 85.26 88.87 95.73

CVIT [63] 91.09 74.29 65.72 81.52 90.86 96.53
EfficientNetAutoAttB4 [3] 99.58 91.96 70.02 95.17 95.33 98.23

EfficientNetAutoAttB4ST [3] 69.66 61.41 55.06 76.24 69.39 86.10
MesoNet [1] 66.13 62.34 50.31 72.44 71.73 89.53

MesoInception4 [1] 75.24 68.87 65.86 78.94 82.83 92.48
CEVIT [8] 99.46 91.14 69.29 92.62 94.40 96.93
MAT [74] 98.63 90.34 69.84 95.23 95.63 98.53

MCX-API [67] 87.67 67.49 62.85 82.71 87.73 95.48
LHiFE (Ours,Xception) 98.97 92.82 71.51 96.33 95.56 98.35
GHiFE (Ours,Xception) 99.31 92.31 71.05 95.01 95.23 98.75
HiFE (Ours,Xception) 99.36 92.83 71.84 95.69 96.64 99.03

Table 8
Experimental results of the proposed method based on different backbone networks.

Model Dataset Avg.FF++ (raw) FF++ (c23) FF++ (c40) Celeb-DF V1 Celeb-DF V2 OpenForensics
Xception 98.88 90.46 69.97 94.76 95.30 98.70 91.35

HiFE(Ours,Xception) 99.36(0.48↑) 92.83(2.37↑) 71.84(1.87↑) 95.69(0.93↑) 96.64(1.34↑) 99.03(0.33↑) 92.57(1.22↑)
EfficientNetB4 99.29 91.23 69.39 94.84 95.58 97.38 91.29

HiFE(Ours,EfficientNetB4) 99.61(0.32↑) 91.96(0.73↑) 72.54(3.15↑) 97.12(2.28↑) 96.83(1.25↑) 98.60(1.22↑) 92.78(1.49↑)

out on two versions of Celeb-DF, as well as the OpenForensics dataset. Similarly, we mainly select ten methods for
comparison (except for Xception), and perform ablation experiments. From Table 7, it can be concluded that our
method works best on the whole FF++ dataset with low quality (c40). Moreover, it can be seen from Table 7 that our
proposed method outperforms most methods even on the highly realistic Celeb-DF dataset and OpenForensics dataset,
which is in the wild scenes. Same as the experiments in the previous section, we plot the AUC-ROC curves of all
models on these datasets, as shown in Figure 14. The superiority of our method is very obvious, which illustrates that
in the face of more challenging fake data, our method also has advantages compared with other SOTA methods.

Different Backbone Networks. To illustrate the flexibility and transferability of our model, except Xception, we
further conduct experiments using EfficientNetB4 as the backbone network, as shown in Table 8. Considering that our
purpose is to improve the accuracy of low-quality fake data, we still conduct experimental verification on three different
compression levels of aligned data in FF++. Here, we select the entire FF++ dataset for experimental illustration. In
addition, we also select the Celeb-DF and OpenForensics datasets for further experimental supplements to prove that
our method is not only applicable to FF++. Table 8 shows that our method can perfectly adapt to EfficientNetB4. Even
though EfficientNetB4 has achieved extremely excellent performance, we can still further improve the performance
with it as the backbone network, which further verifies the effectiveness and flexibility of our proposed method.

5. Conclusion
This paper focuses on the detection problem of low-quality DeepFake data. To address this issue, we conduct an

empirical study between low-quality faces with high compression ratios and corresponding high-quality faces; then we
draw two essential observations: first, the high-frequency information of low-quality data is different from high-quality
data; second, we design information exchange strategies between low-quality data and high-quality data, respectively,
and found that after high-frequency information exchange, new low-quality data were easier to identify.

Therefore, we propose a novel high-frequency enhancement algorithm, which we called HiFE, integrating the high-
frequency feature enhancement step into the network architecture as follows: (1) a global high-frequency enhancement

Jie Gao et al.: Preprint submitted to Elsevier Page 24 of 29



DeepFake Detection Based on High-Frequency Enhancement Network for Highly Compressed Content

D
ee

pf
ak

es

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Deepfakes

F3Net(FAD+LFS), AUC=1.000
CEVIT, AUC=0.999
CVIT, AUC=1.000
Two stream, AUC=1.000
EfficientNetAutoAttB4, AUC=1.000
EfficientNetAutoAttB4ST, AUC=0.974
MesoNet, AUC=0.995
MesoInception4, AUC=0.995
MAT, AUC=1.000
MCX-API, AUC=0.999
HiFE(Ours,Xception), AUC=1.000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Deepfakes

F3Net(FAD+LFS), AUC=0.999
CEVIT, AUC=0.997
CVIT, AUC=0.995
Two stream, AUC=0.998
EfficientNetAutoAttB4, AUC=1.000
EfficientNetAutoAttB4ST, AUC=0.863
MesoNet, AUC=0.912
MesoInception4, AUC=0.981
MAT, AUC=0.999
MCX-API, AUC=0.985
HiFE(Ours,Xception), AUC=1.000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Deepfakes

F3Net(FAD+LFS), AUC=0.979
CEVIT, AUC=0.966
CVIT, AUC=0.964
Two stream, AUC=0.978
EfficientNetAutoAttB4, AUC=0.983
EfficientNetAutoAttB4ST, AUC=0.727
MesoNet, AUC=0.795
MesoInception4, AUC=0.919
MAT, AUC=0.983
MCX-API, AUC=0.950
HiFE(Ours,Xception), AUC=0.985

Fa
ce

2F
ac

e

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Face2Face

F3Net(FAD+LFS), AUC=1.000
CEVIT, AUC=1.000
CVIT, AUC=1.000
Two stream, AUC=1.000
EfficientNetAutoAttB4, AUC=1.000
EfficientNetAutoAttB4ST, AUC=0.912
MesoNet, AUC=0.670
MesoInception4, AUC=0.995
MAT, AUC=1.000
MCX-API, AUC=1.000
HiFE(Ours,Xception), AUC=1.000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Face2Face

F3Net(FAD+LFS), AUC=0.999
CEVIT, AUC=0.998
CVIT, AUC=0.998
Two stream, AUC=0.998
EfficientNetAutoAttB4, AUC=0.999
EfficientNetAutoAttB4ST, AUC=0.786
MesoNet, AUC=0.907
MesoInception4, AUC=0.966
MAT, AUC=0.999
MCX-API, AUC=0.996
HiFE(Ours,Xception), AUC=1.000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Face2Face

F3Net(FAD+LFS), AUC=0.923
CEVIT, AUC=0.901
CVIT, AUC=0.925
Two stream, AUC=0.916
EfficientNetAutoAttB4, AUC=0.926
EfficientNetAutoAttB4ST, AUC=0.597
MesoNet, AUC=0.790
MesoInception4, AUC=0.776
MAT, AUC=0.934
MCX-API, AUC=0.895
HiFE(Ours,Xception), AUC=0.932

Fa
ce

Sw
ap

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FaceSwap

F3Net(FAD+LFS), AUC=0.999
CEVIT, AUC=0.999
CVIT, AUC=0.999
Two stream, AUC=1.000
EfficientNetAutoAttB4, AUC=1.000
EfficientNetAutoAttB4ST, AUC=0.908
MesoNet, AUC=0.836
MesoInception4, AUC=0.990
MAT, AUC=1.000
MCX-API, AUC=0.997
HiFE(Ours,Xception), AUC=1.000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FaceSwap

F3Net(FAD+LFS), AUC=0.998
CEVIT, AUC=0.997
CVIT, AUC=0.997
Two stream, AUC=0.996
EfficientNetAutoAttB4, AUC=0.999
EfficientNetAutoAttB4ST, AUC=0.827
MesoNet, AUC=0.871
MesoInception4, AUC=0.947
MAT, AUC=0.999
MCX-API, AUC=0.989
HiFE(Ours,Xception), AUC=0.999

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Deepfakes

F3Net(FAD+LFS), AUC=0.999
CEVIT, AUC=0.997
CVIT, AUC=0.995
Two stream, AUC=0.998
EfficientNetAutoAttB4, AUC=1.000
EfficientNetAutoAttB4ST, AUC=0.863
MesoNet, AUC=0.912
MesoInception4, AUC=0.981
MAT, AUC=0.999
MCX-API, AUC=0.985
HiFE(Ours,Xception), AUC=1.000

Fa
ce

Sh
ift

er

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FaceShifter

F3Net(FAD+LFS), AUC=0.995
CEVIT, AUC=0.996
CVIT, AUC=0.995
Two stream, AUC=0.995
EfficientNetAutoAttB4, AUC=0.995
EfficientNetAutoAttB4ST, AUC=0.951
MesoNet, AUC=0.987
MesoInception4, AUC=0.997
MAT, AUC=0.995
MCX-API, AUC=0.996
HiFE(Ours,Xception), AUC=0.995

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FaceShifter

F3Net(FAD+LFS), AUC=0.995
CEVIT, AUC=0.991
CVIT, AUC=0.992
Two stream, AUC=0.997
EfficientNetAutoAttB4, AUC=0.997
EfficientNetAutoAttB4ST, AUC=0.824
MesoNet, AUC=0.930
MesoInception4, AUC=0.991
MAT, AUC=0.995
MCX-API, AUC=0.984
HiFE(Ours,Xception), AUC=0.997

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FaceShifter

F3Net(FAD+LFS), AUC=0.954
CEVIT, AUC=0.951
CVIT, AUC=0.947
Two stream, AUC=0.949
EfficientNetAutoAttB4, AUC=0.965
EfficientNetAutoAttB4ST, AUC=0.710
MesoNet, AUC=0.792
MesoInception4, AUC=0.877
MAT, AUC=0.972
MCX-API, AUC=0.935
HiFE(Ours,Xception), AUC=0.972

N
eu

ra
lT

ex
tu

re
s

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NeuralTextures

F3Net(FAD+LFS), AUC=0.999
CEVIT, AUC=0.998
CVIT, AUC=0.999
Two stream, AUC=1.000
EfficientNetAutoAttB4, AUC=1.000
EfficientNetAutoAttB4ST, AUC=0.890
MesoNet, AUC=0.496
MesoInception4, AUC=0.975
MAT, AUC=1.000
MCX-API, AUC=0.994
HiFE(Ours,Xception), AUC=1.000

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NeuralTextures

F3Net(FAD+LFS), AUC=0.973
CEVIT, AUC=0.968
CVIT, AUC=0.961
Two stream, AUC=0.962
EfficientNetAutoAttB4, AUC=0.984
EfficientNetAutoAttB4ST, AUC=0.756
MesoNet, AUC=0.644
MesoInception4, AUC=0.701
MAT, AUC=0.983
MCX-API, AUC=0.922
HiFE(Ours,Xception), AUC=0.982

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NeuralTextures

F3Net(FAD+LFS), AUC=0.744
CEVIT, AUC=0.734
CVIT, AUC=0.730
Two stream, AUC=0.744
EfficientNetAutoAttB4, AUC=0.739
EfficientNetAutoAttB4ST, AUC=0.583
MesoNet, AUC=0.644
MesoInception4, AUC=0.640
MAT, AUC=0.768
MCX-API, AUC=0.687
HiFE(Ours,Xception), AUC=0.758

F
F
+

+

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FF++

F3Net(FAD+LFS), AUC=0.997
CEVIT, AUC=0.997
CVIT, AUC=0.972
Two stream, AUC=0.998
EfficientNetAutoAttB4, AUC=0.997
EfficientNetAutoAttB4ST, AUC=0.766
MesoNet, AUC=0.630
MesoInception4, AUC=0.928
MAT, AUC=0.997
MCX-API, AUC=0.948
HiFE(Ours,Xception), AUC=0.997

(a)raw

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FF++

F3Net(FAD+LFS), AUC=0.960
CEVIT, AUC=0.968
CVIT, AUC=0.819
Two stream, AUC=0.873
EfficientNetAutoAttB4, AUC=0.975
EfficientNetAutoAttB4ST, AUC=0.651
MesoNet, AUC=0.599
MesoInception4, AUC=0.815
MAT, AUC=0.964
MCX-API, AUC=0.737
HiFE(Ours,Xception), AUC=0.979

(b)c23

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

FF++

F3Net(FAD+LFS), AUC=0.782
CEVIT, AUC=0.762
CVIT, AUC=0.697
Two stream, AUC=0.716
EfficientNetAutoAttB4, AUC=0.767
EfficientNetAutoAttB4ST, AUC=0.566
MesoNet, AUC=0.482
MesoInception4, AUC=0.705
MAT, AUC=0.769
MCX-API, AUC=0.678
HiFE(Ours,Xception), AUC=0.793

(c)c40

Figure 13: Comparison of AUC results of various detection methods on FF++ dataset with different compress ratio.
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Figure 14: Comparison of AUC results of various detection methods on Celeb-DF (V1 and V2) and OpenForensics datasets.

branch is used to enhance the global high-frequency information by constructing Multi-level DWT and cascade-
residual-based multi-level fusion strategies; (2) a local high-frequency enhancement branch based on Block-wise DCT
by constructing a frequency-aware multi-spatial attention strategy reflects the importance of its frequency-domain
information in different local spatial domains. Through the proposed fusion strategy, we combine the global high-
frequency enhancement branch and the local high-frequency enhancement branch with the backbone network to obtain
our HiFE system. Extensive comparative and ablation experiments show that our proposed framework effectively
improved the performance of DeepFake detection, especially for low-quality data with high compression rates. Our
method achieves state-of-the-art on the FF++, Celeb-DF, and OpenForensics datasets.

Although our approach focuses on investigating the reasons for performance degradation in low-quality content
and has significantly improved performance, we have not considered research on the generalization ability in the case
of cross-dataset, which is also regarded as one of the challenges in DeepFake detection. Furthermore, we only utilize
spatial information and have not explored temporal inconsistencies between frames. Therefore, we will address this
issue in future work by examining it from both temporal and spatial perspectives.
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